Handout 2

Recall from lecture that instead of calculating in the field of real numbers \mathbb{R} we may want to calculate in the field of complex numbers \mathbb{C}. This leads to the following notion of a “complex vector space”, also called a “vector space over \mathbb{C}”, which is defined analogously to a real vector space: one has only to replace \mathbb{R} by \mathbb{C} and “real” by “complex” in all instances.

Definition 1. A triple $(V, +, \cdot)$ consisting of a set V and two maps

$V \times V \xrightarrow{+} V, \quad (x, y) \mapsto x + y \quad “addition”$

$\mathbb{C} \times V \xrightarrow{\cdot} V, \quad (a, x) \mapsto ax \quad “scalar\ multiplication”$

is called a complex vector space (or vector space over \mathbb{C}) if the following eight axioms hold for the maps $+$ and \cdot:

1. $(x + y) + z = x + (y + z)$ for all $x, y, z \in V$.
2. $x + y = y + x$ for all $x, y \in V$.
3. There exists an element $0 \in V$ with $x + 0 = x$ for all $x \in V$.
4. For each $x \in V$ there exists an element $-x \in V$ with $x + (-x) = 0$.
5. $a(bx) = (ab)x$ for all $a, b \in \mathbb{C}, x \in V$.
6. $1x = x$ for all $x \in V$.
7. $a(x + y) = ax + ay$ for all $a \in \mathbb{C}, x, y \in V$.
8. $(a + b)x = ax + bx$ for all $a, b \in \mathbb{C}, x \in V$.