Math 35300: Sections 161 and 162. Linear algebra II Spring 2013 John E. Harper

Purdue University

Handout 1

Recall from lecture the following definition of a "real vector space", which we will sometimes refer to as a "vector space over \mathbb{R} ".

Definition 1. A triple $(V, +, \cdot)$ consisting of a set V and two maps

$$V \times V \xrightarrow{+} V,$$
 $(x, y) \longmapsto x + y$ "addition"
 $\mathbb{R} \times V \xrightarrow{\cdot} V,$ $(a, x) \longmapsto ax$ "scalar multiplication"

is called a *real vector space* (or *vector space over* \mathbb{R}) if the following eight axioms hold for the maps + and \cdot :

- (1) (x+y) + z = x + (y+z) for all $x, y, z \in V$.
- (2) x + y = y + x for all $x, y \in V$.
- (3) There exists an element $0 \in V$ with x + 0 = x for all $x \in V$.
- (4) For each $x \in V$ there exists an element $-x \in V$ with x + (-x) = 0.
- (5) a(bx) = (ab)x for all $a, b \in \mathbb{R}, x \in V$.
- (6) 1x = x for all $x \in V$.
- (7) a(x+y) = ax + ay for all $a \in \mathbb{R}, x, y \in V$.
- (8) (a+b)x = ax + bx for all $a, b \in \mathbb{R}, x \in V$.