## Handout 1

Recall from lecture the following definition of a "real vector space", which we will sometimes refer to as a "vector space over $\mathbb{R}$ ".

Definition 1. A triple $(V,+, \cdot)$ consisting of a set $V$ and two maps

$$
\begin{array}{rlc}
V \times V \xrightarrow{+} V, & (x, y) \longmapsto x+y & \text { "addition" } \\
\mathbb{R} \times V \xrightarrow{\longrightarrow} V, & (a, x) \longmapsto a x \quad \text { "scalar multiplication" }
\end{array}
$$

is called a real vector space (or vector space over $\mathbb{R}$ ) if the following eight axioms hold for the maps + and $\cdot$ :
(1) $(x+y)+z=x+(y+z)$ for all $x, y, z \in V$.
(2) $x+y=y+x$ for all $x, y \in V$.
(3) There exists an element $0 \in V$ with $x+0=x$ for all $x \in V$.
(4) For each $x \in V$ there exists an element $-x \in V$ with $x+(-x)=0$.
(5) $a(b x)=(a b) x$ for all $a, b \in \mathbb{R}, x \in V$.
(6) $1 x=x$ for all $x \in V$.
(7) $a(x+y)=a x+a y$ for all $a \in \mathbb{R}, x, y \in V$.
(8) $(a+b) x=a x+b x$ for all $a, b \in \mathbb{R}, x \in V$.

