Math 35300: Sections 161 and 162. Linear algebra II

Spring 2013

John E. Harper Purdue University

Handout 2

Recall from lecture that instead of calculating in the field of real numbers \mathbb{R} we may want to calculate in the field of complex numbers \mathbb{C} . This leads to the following notion of a "complex vector space", also called a "vector space over \mathbb{C} ", which is defined analogously to a real vector space: one has only to replace \mathbb{R} by \mathbb{C} and "real" by "complex" in all instances.

Definition 1. A triple $(V, +, \cdot)$ consisting of a set V and two maps

$$V \times V \stackrel{+}{\longrightarrow} V$$
, $(x,y) \longmapsto x+y$ "addition" $\mathbb{C} \times V \stackrel{\cdot}{\longrightarrow} V$, $(a,x) \longmapsto ax$ "scalar multiplication"

is called a *complex vector space* (or *vector space over* \mathbb{C}) if the following eight axioms hold for the maps + and \cdot :

- (1) (x+y) + z = x + (y+z) for all $x, y, z \in V$.
- (2) x + y = y + x for all $x, y \in V$.
- (3) There exists an element $0 \in V$ with x + 0 = x for all $x \in V$.
- (4) For each $x \in V$ there exists an element $-x \in V$ with x + (-x) = 0.
- (5) a(bx) = (ab)x for all $a, b \in \mathbb{C}, x \in V$.
- (6) 1x = x for all $x \in V$.
- (7) a(x+y) = ax + ay for all $a \in \mathbb{C}$, $x, y \in V$.
- (8) (a+b)x = ax + bx for all $a, b \in \mathbb{C}, x \in V$.