Handout 3

Subfields of the complex numbers. Instead of calculating with only \mathbb{R} or \mathbb{C}, one can work with any subfield of the complex numbers. A subfield of \mathbb{C} is any subset which is closed under the four operations addition, subtraction, multiplication, and division, and which contains 1 . In other words, a subset $\mathbb{F} \subset \mathbb{C}$ is a subfield of \mathbb{C} if the following properties hold:
(a) $a+b \in \mathbb{F}$ for all $a, b \in \mathbb{F}$.
(b) If $a \in \mathbb{F}$, then $-a \in \mathbb{F}$.
(c) $a b \in \mathbb{F}$ for all $a, b \in \mathbb{F}$.
(d) If $a \in \mathbb{F}$ and $a \neq 0$, then $a^{-1} \in \mathbb{F}$.
(e) $1 \in \mathbb{F}$.

The following are examples of subfields of \mathbb{C}.
(i) $\mathbb{F}=\mathbb{R}$ the field of real numbers.
(ii) $\mathbb{F}=\mathbb{Q}$ the field of rational numbers.
(iii) $\mathbb{F}=\mathbb{Q}[\sqrt{2}]:=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$.

The abstract notion of a field. Instead of working only with subfields of \mathbb{C}, one can list the properties of the "scalars" that are needed axiomatically. This leads to the abstract notion of a "field", which contains important new classes of fields including the finite fields. Axioms (1)-(9) below are modeled on calculation with real or complex numbers. In other words, they are essentially designed so that one can calculate in a field "exactly as" one would calculate in \mathbb{R} or \mathbb{C}.
Definition 1. A field is a triple $(\mathbb{F},+, \cdot)$ consisting of a set \mathbb{F} and two operations

$$
\begin{array}{rlr}
\mathbb{F} \times \mathbb{F} \xrightarrow{+} \mathbb{F}, & (x, y) \longmapsto x+y & \text { "addition" } \\
\mathbb{F} \times \mathbb{F} \xrightarrow{\bullet}, & (x, y) \longmapsto x y \quad \text { "multiplication" }
\end{array}
$$

such that the following nine axioms hold:
(1) $(a+b)+c=a+(b+c)$ for all $a, b, c \in \mathbb{F}$.
(2) $a+b=b+a$ for all $a, b \in \mathbb{F}$.
(3) There exists an element $0 \in \mathbb{F}$ with $a+0=a$ for all $a \in \mathbb{F}$.
(4) For each $a \in \mathbb{F}$ there exists an element $-a \in \mathbb{F}$ with $a+(-a)=0$.
(5) $a(b c)=(a b) c$ for all $a, b, c \in \mathbb{F}$.
(6) $a b=b a$ for all $a, b \in \mathbb{F}$.
(7) There exists an element $1 \in \mathbb{F}, 1 \neq 0$, such that $1 a=a$ for all $a \in \mathbb{F}$.
(8) For all $a \in \mathbb{F}$ with $a \neq 0$ there exists an element $a^{-1} \in \mathbb{F}$ with $a^{-1} a=1$.
(9) $a(b+c)=a b+a c$ for all $a, b, c \in \mathbb{F}$.

