Math 35300: Sections 161 and 162. Linear algebra II

Spring 2013

John E. Harper Purdue University

Handout 4

If $\mathbb F$ is any field, one defines the concept of a *vector space over* $\mathbb F$ analogously to the notion of a vector space over $\mathbb C$ — replace $\mathbb C$ by $\mathbb F$ everywhere. It is probably better to once again write out the whole definition.

Definition 1. A triple $(V, +, \cdot)$ consisting of a set V and two maps

$$V \times V \stackrel{+}{\longrightarrow} V, \qquad (x,y) \longmapsto x+y \qquad \text{``addition''}$$

$$\mathbb{F} \times V \stackrel{\cdot}{\longrightarrow} V, \qquad (a,x) \longmapsto ax \qquad \text{``scalar multiplication''}$$

is called a $vector\ space\ over\ \mathbb F$ if the following eight axioms hold for the maps + and $\cdot:$

- (1) (x+y) + z = x + (y+z) for all $x, y, z \in V$.
- (2) x + y = y + x for all $x, y \in V$.
- (3) There exists an element $0 \in V$ with x + 0 = x for all $x \in V$.
- (4) For each $x \in V$ there exists an element $-x \in V$ with x + (-x) = 0.
- (5) a(bx) = (ab)x for all $a, b \in \mathbb{F}, x \in V$.
- (6) 1x = x for all $x \in V$.
- (7) a(x+y) = ax + ay for all $a \in \mathbb{F}$, $x, y \in V$.
- (8) (a+b)x = ax + bx for all $a, b \in \mathbb{F}$, $x \in V$.