Recall from lecture that if $f: X \rightarrow Y$ is a map, then the set
\[\Gamma_f := \{(x, f(x)) \mid x \in X\} \]
is called the graph of f. The graph is a subset of the Cartesian product $X \times Y$.

Exercise 1. Let X, Y be sets. As in lecture, we can draw a picture (or cartoon) of the Cartesian product $X \times Y$ by a rectangle (here, we are thinking of X and Y as intervals, although in general this will not be true). In this way, give examples of graphs of maps f with the following properties (please draw a picture for each):

- (a) f is surjective, but not injective
- (b) f is injective, but not surjective
- (c) f is bijective
- (d) f is constant
- (e) f is neither injective nor surjective
- (f) $X = Y$ and $f = \text{Id}_X$
- (g) $f(X)$ consists of only two elements

(Careful: not all subsets of the Cartesian product $X \times Y$ are graphs of a map $f: X \rightarrow Y$; i.e., many subsets of $X \times Y$ are nongraphs.)

The inverse map f^{-1} of a bijective map $f: X \rightarrow Y$ clearly has the properties
\[f \circ f^{-1} = \text{Id}_Y, \quad f^{-1} \circ f = \text{Id}_X, \]
since in the first case each element $f(x) \in Y$ is mapped by $f(x) \mapsto x \mapsto f(x)$ onto $f(x)$, and in the second case each $x \in X$ is mapped by $x \mapsto f(x) \mapsto x$ onto x. Conversely, one has the following property.

Proposition 1. Let $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be maps such that
\[f \circ g = \text{Id}_Y, \quad g \circ f = \text{Id}_X. \]
Then f is bijective and $f^{-1} = g$.

Exercise 2. Prove Proposition 1. (To get started: An injectivity proof runs like this: “Let $x, x' \in X$ and $f(x) = f(x')$, then Therefore $x = x'$, and f is proved to be injective.” On the other hand, the pattern for a surjectivity proof is: “Let $y \in Y$. Choose $x = . . .$. Then we have . . . , therefore $f(x) = y$, and f is proved to be surjective.”)

Exercise 3. Consider any commutative diagram of sets of the form
\[
\begin{array}{ccc}
X & \xrightarrow{f} & Y \\
\downarrow{\alpha} & \Leftrightarrow & \downarrow{\beta} \\
A & \xrightarrow{g} & B
\end{array}
\]
with α, β bijective.

(a) Show that g is injective if and only if f is injective.
(b) Show that \(g \) is surjective if and only if \(f \) is surjective.

(We will frequently meet this kind of diagram in the course. The situation is then mostly: \(f \) is the object of our interest, \(\alpha \) and \(\beta \) are subsidiary constructions, means to an end, and we already know something about \(g \). This information about \(g \) then tells us something about \(f \). In solving this exercise, you will see the mechanism of this information transfer.)