Homework 3

Definition 1. Let V be a vector space over a field \mathbb{F} and suppose $S \subset V$ is a subset. A subspace U of V is called the smallest subspace of V containing S if (i) $U \supset S$ and (ii) if W is a subspace of V and $W \supset S$, then $W \supset U$.

Here, condition (i) is read as " U contains S " and condition (ii) is read as "if W is a subspace of V and W contains S, then W contains U."

Exercise 1. Let V be a vector space over a field \mathbb{F}. Prove the following.
(a) If v_{1}, \ldots, v_{r} are elements of V, then $\operatorname{Span}\left(v_{1}, \ldots, v_{r}\right)$ is the smallest subspace of V containing v_{1}, \ldots, v_{r}. (See Definition 1.)
(b) The span of v_{1}, \ldots, v_{r} is the same as the span of any reordering of v_{1}, \ldots, v_{r}.

Exercise 2. Let V be a vector space over a field \mathbb{F}. Prove the following.
(a) Any reordering of a linearly independent r-tuple of vectors $\left(v_{1}, \ldots, v_{r}\right)$ is linearly independent.
(b) An r-tuple of vectors $\left(v_{1}, \ldots, v_{r}\right)$ is linearly independent if and only if none of these vectors is a linear combination of the others.

Exercise 3. Let V be a finite dimensional vector space over a field \mathbb{F}.
(a) Show that any subset of a linearly independent set is linearly independent.
(b) Show that any reordering of a basis is also a basis.

Exercise 4. Prove Proposition 2 below.
Proposition 2. Let V be a vector space over a field \mathbb{F} and let $v_{1}, \ldots, v_{r}, w_{1}, \ldots, w_{s}$ be vectors of V. If $\left(v_{1}, \ldots, v_{r}\right)$ is linearly independent and $\operatorname{Span}\left(v_{1}, \ldots, v_{r}, w_{1}, \ldots, w_{s}\right)=$ V, then by suitably chosen vectors from $\left(w_{1}, \ldots, w_{s}\right)$ one can extend $\left(v_{1}, \ldots, v_{r}\right)$ to a basis of V.

Exercise 5. Let V be a vector space of dimension n over a field \mathbb{F}, and let $0 \leq r \leq n$. Prove that V contains a subspace of dimension r.

Exercise 6. Prove Proposition 3 below.
Proposition 3. Let V be a finite-dimensional vector space over a field \mathbb{F}. Let S, L be finite subsets of V.
(a) If $\operatorname{Span}(S)=V$, then $|S| \geq \operatorname{dim} V$ and equality holds only if S is a basis.
(b) If L is linearly independent, then $|L| \leq \operatorname{dim} V$ and equality holds only if L is a basis.

Exercise 7. Prove Proposition 4 below.
Proposition 4. Let V be a vector space over a field \mathbb{F}. If $\left(v_{1}, \ldots, v_{n}\right)$ and $\left(w_{1}, \ldots, w_{n}\right)$ are bases of V, then for each v_{i} there exists some w_{j}, so that on replacing v_{i} by w_{j} in $\left(v_{1}, \ldots, v_{n}\right)$ we still have a basis.

Exercise 8. Let V be a real vector space and $a, b, c, d \in V$. Suppose that

$$
\begin{aligned}
& v_{1}=a+b+c+d \\
& v_{2}=2 a+2 b+c-d \\
& v_{3}=a+b+3 c-d \\
& v_{4}=a \quad-c+d \\
& v_{5}=-b+c-d
\end{aligned}
$$

Show that $\left(v_{1}, \ldots, v_{5}\right)$ is linearly dependent. (Remark: One can solve this exercise by expressing one of the v_{i} as a linear combination of the other four. But there is a proof in which one does not need to do any calculations.)

Definition 5. Let V be a vector space over a field \mathbb{F} and let U_{1}, U_{2} be subspaces of V. We say that U_{1} and U_{2} are complementary subspaces if $U_{1}+U_{2}=V$ and $U_{1} \cap U_{2}=\{0\}$.

For instance, consider the real vector space $V=\mathbb{R}^{3}$. It is easy to check that (i) $U_{1}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{3}=0\right\}$ and $U_{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}=0, x_{2}=0\right\}$ are complementary to each other and (ii) $U_{1}=V$ and $U_{2}=\{0\}$ are complementary to each other. The following exercise shows that there are many other examples.
Exercise 9. Let V be a vector space of dimension n over a field \mathbb{F}. Show that if U_{1} is a subspace of dimension p, then there exists a subspace U_{2} complementary to U_{1}, and each such subspace U_{2} has dimension $n-p$.

Given a complex vector space V one can make a real vector space from it by simply restricting the scalar multiplication $\mathbb{C} \times V \longrightarrow V$ to $\mathbb{R} \times V \longrightarrow V$. Since on restriction the concepts "span" and "dimension" take on a new meaning, we sometimes write $\operatorname{Span}_{\mathbb{C}}$ and $\operatorname{dim}_{\mathbb{C}}$ (resp. $\operatorname{Span}_{\mathbb{R}}$ and $\operatorname{dim}_{\mathbb{R}}$), when regarding V as a complex (resp. real) vector space.

Exercise 10. For each $n \geq 0$ determine for which pairs (r, s) of numbers there exists a complex vector space and vectors $\left(v_{1}, \ldots, v_{n}\right)$ in it, such that

$$
\begin{aligned}
r & =\operatorname{dim}_{\mathbb{R}} \operatorname{Span}_{\mathbb{C}}\left(v_{1}, \ldots, v_{n}\right), \\
s & =\operatorname{dim}_{\mathbb{R}} \operatorname{Span}_{\mathbb{R}}\left(v_{1}, \ldots, v_{n}\right) .
\end{aligned}
$$

Exercise 11. Let V be a finite dimensional vector space over a field \mathbb{F}, and let U_{1}, U_{2} be subspaces of V. The formula $\operatorname{dim}\left(U_{1}+U_{2}\right)=\operatorname{dim} U_{1}+\operatorname{dim} U_{2}-\operatorname{dim}\left(U_{1} \cap\right.$ U_{2}) is analogous to the formula $\left|S_{1} \cup S_{2}\right|=\left|S_{1}\right|+\left|S_{2}\right|-\left|S_{1} \cap S_{2}\right|$, which holds for sets. If three sets are given, then

$$
\begin{aligned}
\left|S_{1} \cup S_{2} \cup S_{3}\right| & =\left|S_{1}\right|+\left|S_{2}\right|+\left|S_{3}\right| \\
& -\left|S_{1} \cap S_{2}\right|-\left|S_{1} \cap S_{3}\right|-\left|S_{2} \cap S_{3}\right|+\left|S_{1} \cap S_{2} \cap S_{3}\right| .
\end{aligned}
$$

Does the corresponding formula for dimensions of subspaces hold? Prove or find a counter-example.

