Math 35300: Sections 161 and 162. Linear algebra IISpring 2013John E. HarperDealer Harper

Purdue University

Homework 3

Definition 1. Let V be a vector space over a field \mathbb{F} and suppose $S \subset V$ is a subset. A subspace U of V is called the *smallest subspace of* V containing S if (i) $U \supset S$ and (ii) if W is a subspace of V and $W \supset S$, then $W \supset U$.

Here, condition (i) is read as "U contains S" and condition (ii) is read as "if W is a subspace of V and W contains S, then W contains U."

Exercise 1. Let V be a vector space over a field \mathbb{F} . Prove the following.

- (a) If v_1, \ldots, v_r are elements of V, then $\text{Span}(v_1, \ldots, v_r)$ is the smallest subspace of V containing v_1, \ldots, v_r . (See Definition 1.)
- (b) The span of v_1, \ldots, v_r is the same as the span of any reordering of v_1, \ldots, v_r .

Exercise 2. Let V be a vector space over a field \mathbb{F} . Prove the following.

- (a) Any reordering of a linearly independent r-tuple of vectors (v_1, \ldots, v_r) is linearly independent.
- (b) An *r*-tuple of vectors (v_1, \ldots, v_r) is linearly independent if and only if none of these vectors is a linear combination of the others.

Exercise 3. Let V be a finite dimensional vector space over a field \mathbb{F} .

- (a) Show that any subset of a linearly independent set is linearly independent.
- (b) Show that any reordering of a basis is also a basis.

Exercise 4. Prove Proposition 2 below.

Proposition 2. Let V be a vector space over a field \mathbb{F} and let $v_1, \ldots, v_r, w_1, \ldots, w_s$ be vectors of V. If (v_1, \ldots, v_r) is linearly independent and $\text{Span}(v_1, \ldots, v_r, w_1, \ldots, w_s) = V$, then by suitably chosen vectors from (w_1, \ldots, w_s) one can extend (v_1, \ldots, v_r) to a basis of V.

Exercise 5. Let V be a vector space of dimension n over a field \mathbb{F} , and let $0 \le r \le n$. Prove that V contains a subspace of dimension r.

Exercise 6. Prove Proposition 3 below.

Proposition 3. Let V be a finite-dimensional vector space over a field \mathbb{F} . Let S, L be finite subsets of V.

- (a) If Span(S) = V, then $|S| \ge \dim V$ and equality holds only if S is a basis.
- (b) If L is linearly independent, then $|L| \leq \dim V$ and equality holds only if L is a basis.

Exercise 7. Prove Proposition 4 below.

Proposition 4. Let V be a vector space over a field \mathbb{F} . If (v_1, \ldots, v_n) and (w_1, \ldots, w_n) are bases of V, then for each v_i there exists some w_j , so that on replacing v_i by w_j in (v_1, \ldots, v_n) we still have a basis.

Exercise 8. Let V be a real vector space and $a, b, c, d \in V$. Suppose that

$$v_{1} = a + b + c + d$$

$$v_{2} = 2a + 2b + c - d$$

$$v_{3} = a + b + 3c - d$$

$$v_{4} = a - c + d$$

$$v_{5} = -b + c - d$$

Show that (v_1, \ldots, v_5) is linearly dependent. (Remark: One can solve this exercise by expressing one of the v_i as a linear combination of the other four. But there is a proof in which one does not need to do any calculations.)

Definition 5. Let V be a vector space over a field \mathbb{F} and let U_1, U_2 be subspaces of V. We say that U_1 and U_2 are *complementary subspaces* if $U_1 + U_2 = V$ and $U_1 \cap U_2 = \{0\}$.

For instance, consider the real vector space $V = \mathbb{R}^3$. It is easy to check that (i) $U_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_3 = 0\}$ and $U_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 = 0, x_2 = 0\}$ are complementary to each other and (ii) $U_1 = V$ and $U_2 = \{0\}$ are complementary to each other. The following exercise shows that there are many other examples.

Exercise 9. Let V be a vector space of dimension n over a field \mathbb{F} . Show that if U_1 is a subspace of dimension p, then there exists a subspace U_2 complementary to U_1 , and each such subspace U_2 has dimension n - p.

Given a complex vector space V one can make a real vector space from it by simply restricting the scalar multiplication $\mathbb{C} \times V \longrightarrow V$ to $\mathbb{R} \times V \longrightarrow V$. Since on restriction the concepts "span" and "dimension" take on a new meaning, we sometimes write $\operatorname{Span}_{\mathbb{C}}$ and $\dim_{\mathbb{C}}$ (resp. $\operatorname{Span}_{\mathbb{R}}$ and $\dim_{\mathbb{R}}$), when regarding V as a complex (resp. real) vector space.

Exercise 10. For each $n \ge 0$ determine for which pairs (r, s) of numbers there exists a complex vector space and vectors (v_1, \ldots, v_n) in it, such that

 $r = \dim_{\mathbb{R}} \operatorname{Span}_{\mathbb{C}}(v_1, \dots, v_n),$ $s = \dim_{\mathbb{R}} \operatorname{Span}_{\mathbb{R}}(v_1, \dots, v_n).$

Exercise 11. Let V be a finite dimensional vector space over a field \mathbb{F} , and let U_1, U_2 be subspaces of V. The formula $\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2)$ is analogous to the formula $|S_1 \cup S_2| = |S_1| + |S_2| - |S_1 \cap S_2|$, which holds for sets. If three sets are given, then

$$|S_1 \cup S_2 \cup S_3| = |S_1| + |S_2| + |S_3| - |S_1 \cap S_2| - |S_1 \cap S_3| - |S_2 \cap S_3| + |S_1 \cap S_2 \cap S_3|.$$

Does the corresponding formula for dimensions of subspaces hold? Prove or find a counter-example.