Homework 4

Exercise 1. Prove Proposition 1 below.
Proposition 1. Let V be a vector space over a field \mathbb{F}. If V is finite-dimensional and $U \subset V$ is a subspace, then U is also finite-dimensional and $\operatorname{dim} U \leq \operatorname{dim} V$, with equality if and only if $U=V$.

Exercise 2. Prove Proposition 2 below.
Proposition 2. Let V be a vector space over a field \mathbb{F}. If W_{1}, \ldots, W_{n} are subspaces of V, then the sum $W_{1}+\cdots+W_{n}$ is the smallest subspace of V containing W_{1}, \ldots, W_{n}.

Exercise 3. Prove Proposition 3 below.
Proposition 3. Let V be a vector space over a field \mathbb{F}.
(a) A single subspace W_{1} is independent.
(b) Two subspaces W_{1}, W_{2} are independent if and only if $W_{1} \cap W_{2}=\{0\}$.

Exercise 4. Prove Proposition 4 below.
Proposition 4. Let V be a vector space over a field \mathbb{F}. If W_{1}, \ldots, W_{n} are subspaces of V, then $V=W_{1} \oplus \cdots \oplus W_{n}$ if and only if every vector $v \in V$ can be written in the form

$$
v=w_{1}+\cdots+w_{n}, \quad\left(\text { where } w_{i} \text { is a vector in } W_{i}\right)
$$

in exactly one way.
Exercise 5. Prove Proposition 5 below.
Proposition 5. Let W_{1}, \ldots, W_{n} be subspaces of a finite-dimensional vector space V, and let \mathbf{B}_{i} be a basis for W_{i}.
(a) The ordered set \mathbf{B} obtained by listing the bases $\mathbf{B}_{1}, \ldots, \mathbf{B}_{n}$ in order is a basis of V if and only if $V=W_{1} \oplus \cdots \oplus W_{n}$.
(b) $\operatorname{dim}\left(W_{1}+\cdots+W_{n}\right) \leq \operatorname{dim}\left(W_{1}\right)+\cdots+\operatorname{dim}\left(W_{n}\right)$, with equality if and only if the subspaces W_{1}, \ldots, W_{n} are independent.

Exercise 6. Let V be a vector space over a field \mathbb{F}. Show that $V=V \oplus\{0\}$.
Exercise 7. Prove Proposition 6 below.
Proposition 6. Let V, W be vector spaces over a field \mathbb{F}. Let $f: V \longrightarrow W$ be a linear map. Then f is injective if and only if $\operatorname{Ker} f=0$.
Exercise 8. Prove Proposition 7 below.
Proposition 7. Let V, W be vector spaces over a field \mathbb{F}. Let $f: V \longrightarrow W$ be an isomorphism. If $\left(v_{1}, \ldots, v_{r}\right)$ is a linearly independent r-tuple of vectors in V, then the r-tuple of vectors $\left(f\left(v_{1}\right), \ldots, f\left(v_{r}\right)\right)$ in W is also linearly independent.

Exercise 9. Prove Proposition 8 below.

Proposition 8. Let V, W be vector spaces over a field \mathbb{F}. If $\left(v_{1}, \ldots, v_{n}\right)$ is a basis of V, then a linear map $f: V \longrightarrow W$ is an isomorphism if and only if $\left(f\left(v_{1}\right), \ldots, f\left(v_{n}\right)\right)$ is a basis of W.
Exercise 10. Prove Proposition 9 below.
Proposition 9. Let V, W be finite-dimensional vector spaces over a field \mathbb{F}. If $\operatorname{dim}(V)=\operatorname{dim}(W)$, then a linear map $f: V \longrightarrow W$ is surjective if and only if it is injective.

