Homework 5

We can define the notion of a polynomial with coefficients in a field \mathbb{F} to mean a linear combination of powers of the variable (or indeterminate):

$$
\begin{equation*}
f(t)=a_{m} t^{m}+a_{m-1} t^{m-1}+\cdots+a_{1} t+a_{0} \tag{1}
\end{equation*}
$$

where $a_{i} \in \mathbb{F}$. Such expressions are sometimes called formal polynomials, to distinguish them from polynomial functions. Every formal polynomial with coefficients in \mathbb{F} determines a polynomial function on \mathbb{F}. The variable appearing in (1) is an arbitrary symbol, and the monomials t^{i} are considered linearly independent. This means that if

$$
g(t)=b_{n} t^{n}+b_{n-1} t^{n-1}+\cdots+b_{1} t+b_{0}
$$

is a polynomial with coefficients in \mathbb{F}, then $f(t)$ and $g(t)$ are equal if and only if $a_{i}=b_{i}$ for all $i=0,1,2, \ldots$. Sometimes it is useful to write a polynomial in the standard form

$$
\begin{equation*}
f(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots \tag{2}
\end{equation*}
$$

where the coefficients a_{i} are all in the field \mathbb{F} and only finitely many of the coefficients are different from zero. Formally, the polynomial (2) is determined by its sequence of coefficients a_{i} :

$$
a=\left(a_{0}, a_{1}, a_{2}, \ldots\right)
$$

where $a_{i} \in \mathbb{F}$ and all but a finite number of a_{i} are zero. Every such sequence corresponds to a polynomial.

Addition and multiplication of polynomials mimic the familiar operations on polynomial functions. Let $f(t)$ be as in (2), and let

$$
\begin{equation*}
g(t)=b_{0}+b_{1} t+b_{2} t^{2}+\cdots, \tag{3}
\end{equation*}
$$

be a polynomial with coefficients in the same field \mathbb{F}, determined by the sequence $b=\left(b_{0}, b_{1}, b_{2}, \ldots\right)$. The sum of f and g is

$$
\begin{aligned}
f(t)+g(t) & :=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) t+\left(a_{2}+b_{2}\right) t^{2}+\cdots \\
& =\sum_{k}\left(a_{k}+b_{k}\right) t^{k}
\end{aligned}
$$

which corresponds to addition of sequences: $a+b=\left(a_{0}+b_{0}, a_{1}+b_{1}, a_{2}+b_{2}, \ldots\right)$. The product of f and g is computed by multiplying term by term and collecting coefficients of the same degree in t. If we expand the product using the distributive law, but without collecting terms, we obtain

$$
f(t) g(t)=\sum_{i, j} a_{i} b_{j} t^{i+j}
$$

Note that there are only finitely many nonzero coefficients $a_{i} b_{j}$. The right-hand side is not in standard form since the same monomial t^{n} appears many times-once
for each pair (i, j) of indices such that $i+j=n$. Putting the right-hand side back into standard form (by collecting terms) leads to the definition

$$
f(t) g(t):=p_{0}+p_{1} t+p_{2} t^{2}+\cdots,
$$

where

$$
p_{k}:=a_{0} b_{k}+a_{1} b_{k-1}+\cdots+a_{k} b_{0}=\sum_{i+j=k} a_{i} b_{j} .
$$

Exercise 1. Let \mathbb{F} be a field and $\mathcal{P}_{n}=\left\{a_{0}+a_{1} t+\cdots+a_{n} t^{n} \mid a_{i} \in \mathbb{F}\right\}$ be the vector space of polynomials in the indeterminate t of degree $\leq n$ with coefficients in \mathbb{F}. If $f(t) \in \mathcal{P}_{m}$ and $g(t) \in \mathcal{P}_{n}$, the product $f(t) g(t) \in \mathcal{P}_{m+n}$ is defined as above. We call $\left(1, t, \ldots, t^{m}\right)$ the canonical basis of \mathcal{P}_{m}. Determine the matrix of the linear map

$$
\mathcal{P}_{3} \longrightarrow \mathcal{P}_{4}, \quad f(t) \longmapsto(2-t) f(t)
$$

relative to the canonical bases.
Exercise 2. By a finite chain complex C of vector spaces over a field \mathbb{F} one understands a sequence of homomorphisms

$$
0 \xrightarrow{f_{n+1}} V_{n} \xrightarrow{f_{n}} V_{n-1} \xrightarrow{f_{n-1}} \cdots \xrightarrow{f_{2}} V_{1} \xrightarrow{f_{1}} V_{0} \xrightarrow{f_{0}} 0
$$

of vector spaces over \mathbb{F} with the property that $f_{i} f_{i+1}=0$ for each i; i.e., such that $\operatorname{Ker} f_{i} \supset \operatorname{Im} f_{i+1}$. The quotient vector space $H_{i}(C):=\operatorname{Ker} f_{i} / \operatorname{Im} f_{i+1}$ is called the i-th homology group of the complex. Show that if all the V_{i} are finite-dimensional, then

$$
\sum_{i=0}^{n}(-1)^{i} \operatorname{dim} V_{i}=\sum_{i=0}^{n}(-1)^{i} \operatorname{dim} H_{i}(C)
$$

Exercise 3. Consider the following commutative diagram of homomorphisms of vector spaces over a field \mathbb{F}.

Assume that the rows are exact, i.e., $\operatorname{Ker} f_{i}=\operatorname{Im} f_{i+1}$ and $\operatorname{Ker} g_{i}=\operatorname{Im} g_{i+1}$ for $i=1,2,3$, and suppose furthermore that the vertical homomorphisms have the indicated properties; i.e., φ_{4} is an epimorphism, φ_{3} and φ_{1} are isomorphisms, and φ_{0} is a monomorphism. Show that under these conditions φ_{2} is an isomorphism.

Basic Assumption. From now on in this section, assume that V, W are vector spaces over a field \mathbb{F}, unless otherwise specified.

Recall from lecture that if $U \subset V$ is a subspace, then a coset of U is a subset of the form $x+U:=\{x+u \mid u \in U\}$. The following exercise motivates this definition.
Exercise 4. Let $\varphi: V \longrightarrow W$ be a linear map. Let $U:=\operatorname{Ker} \varphi$ and let $x, y \in V$.
(a) Prove that $\varphi(x)=\varphi(y)$ if and only if $y=x+u$ for some element $u \in U$, or equivalently, if and only if $y-x \in U$.
(b) Conclude that the cosets of U partition V.

Recall from lecture the following definition.
Definition 1. Let $U \subset V$ be a subspace. The quotient space V / U of V modulo U is the set

$$
V / U:=\{x+U \mid x \in V\}
$$

of all cosets of U, with addition and scalar multiplication defined by

$$
\begin{aligned}
(x+U)+(y+U) & :=(x+y)+U \quad \text { "addition" } \\
a(x+U) & :=a x+U \quad \text { "scalar multiplication" }
\end{aligned}
$$

for every $x, y \in V, a \in \mathbb{F}$. The projection map is defined by

$$
V \longrightarrow V / U=: \bar{V}, \quad x \longmapsto x+U:=\bar{x} .
$$

Exercise 5. Let $U \subset V$ be a subspace.
(a) Prove that the operations "addition" and "scalar multiplication" in Definition 1 determine well-defined maps

$$
\begin{aligned}
V / U \times V / U & \stackrel{+}{\longrightarrow} V / U \\
& \text { "addition" } \\
\mathbb{F} \times V / U \xrightarrow{ } V / U & \text { "scalar multiplication" }
\end{aligned}
$$

(b) Prove that $(V / U,+, \cdot)$ is a vector space over \mathbb{F}.

Exercise 6. Let $U \subset V$ be a subspace. Prove that if V is finite-dimensional, then

$$
\operatorname{dim} V / U=\operatorname{dim} V-\operatorname{dim} U
$$

Exercise 7. Consider the subspaces $V \subset V$ and $0 \subset V$. Prove that $V / V=0$ and $V / 0 \cong V$.

Exercise 8. Prove Proposition 2.
Proposition 2. Let $f: V \longrightarrow V^{\prime}$ be an epimorphism, and let $U:=\operatorname{Ker} f$.
(a) Then the induced map

$$
\begin{gathered}
V / U \xrightarrow{\bar{f}} V^{\prime}, \\
\bar{x}=x+U \longmapsto \bar{f}(\bar{x})=f(x)
\end{gathered}
$$

is an isomorphism.
(b) The set of subspaces $A^{\prime} \subset V^{\prime}$ is in bijective correspondence with the set of subspaces $A \subset V$ which contain U, the correspondence being defined by the maps $A \longmapsto f(A)$ and $A^{\prime} \longmapsto f^{-1}\left(A^{\prime}\right)$.
Exercise 9. Prove the following.
(a) If $A, B \subset V$ are subspaces, then there is an isomorphism of the form

$$
A /(A \cap B) \cong(A+B) / B
$$

(b) If $A \subset A^{\prime} \subset B^{\prime} \subset B \subset V$ are subspaces, then there is an isomorphism of the form

$$
B^{\prime} / A^{\prime} \cong\left(B^{\prime} / A\right) /\left(A^{\prime} / A\right)
$$

Hint: For part (a), consider the inclusion map $A \longrightarrow A+B$. For part (b), note that $A^{\prime} / A \subset B^{\prime} / A$ is a subspace and consider the projection map $B^{\prime} \longrightarrow B^{\prime} / A$.

Exercise 10. Prove Proposition 3.

Proposition 3. Let $f: V \longrightarrow W$ be a linear map.
(a) If g is a linear map which makes the solid diagram

commute, then there exists a unique linear map \bar{g} which makes the diagram commute.
(b) If h is a linear map which makes the solid diagram

commute, then there exists a unique linear map \bar{h} which makes the diagram commute.

