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Homework 5

We can define the notion of a polynomial with coefficients in a field F to mean a
linear combination of powers of the variable (or indeterminate):

f(t) = amtm + am−1t
m−1 + · · ·+ a1t + a0,(1)

where ai ∈ F. Such expressions are sometimes called formal polynomials, to distin-
guish them from polynomial functions. Every formal polynomial with coefficients
in F determines a polynomial function on F. The variable appearing in (1) is an
arbitrary symbol, and the monomials ti are considered linearly independent. This
means that if

g(t) = bnt
n + bn−1t

n−1 + · · ·+ b1t + b0

is a polynomial with coefficients in F, then f(t) and g(t) are equal if and only if
ai = bi for all i = 0, 1, 2, . . . . Sometimes it is useful to write a polynomial in the
standard form

f(t) = a0 + a1t + a2t
2 + · · · ,(2)

where the coefficients ai are all in the field F and only finitely many of the coefficients
are different from zero. Formally, the polynomial (2) is determined by its sequence
of coefficients ai:

a = (a0, a1, a2, . . . ),

where ai ∈ F and all but a finite number of ai are zero. Every such sequence
corresponds to a polynomial.

Addition and multiplication of polynomials mimic the familiar operations on
polynomial functions. Let f(t) be as in (2), and let

g(t) = b0 + b1t + b2t
2 + · · · ,(3)

be a polynomial with coefficients in the same field F, determined by the sequence
b = (b0, b1, b2, . . . ). The sum of f and g is

f(t) + g(t) :=(a0 + b0) + (a1 + b1)t + (a2 + b2)t2 + · · ·

=
∑
k

(ak + bk)tk,

which corresponds to addition of sequences: a + b = (a0 + b0, a1 + b1, a2 + b2, . . . ).
The product of f and g is computed by multiplying term by term and collecting
coefficients of the same degree in t. If we expand the product using the distributive
law, but without collecting terms, we obtain

f(t)g(t) =
∑
i,j

aibjt
i+j .

Note that there are only finitely many nonzero coefficients aibj . The right-hand
side is not in standard form since the same monomial tn appears many times—once
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for each pair (i, j) of indices such that i + j = n. Putting the right-hand side back
into standard form (by collecting terms) leads to the definition

f(t)g(t) := p0 + p1t + p2t
2 + · · · ,

where

pk := a0bk + a1bk−1 + · · ·+ akb0 =
∑
i+j=k

aibj .

Exercise 1. Let F be a field and Pn = {a0 + a1t + · · · + ant
n | ai ∈ F} be the

vector space of polynomials in the indeterminate t of degree ≤ n with coefficients
in F. If f(t) ∈ Pm and g(t) ∈ Pn, the product f(t)g(t) ∈ Pm+n is defined as above.
We call (1, t, . . . , tm) the canonical basis of Pm. Determine the matrix of the linear
map

P3−→P4, f(t) 7−→ (2− t)f(t)

relative to the canonical bases.

Exercise 2. By a finite chain complex C of vector spaces over a field F one un-
derstands a sequence of homomorphisms

0
fn+1 // Vn

fn // Vn−1
fn−1 // · · · f2 // V1

f1 // V0
f0 // 0

of vector spaces over F with the property that fifi+1 = 0 for each i; i.e., such that
Ker fi ⊃ Im fi+1. The quotient vector space Hi(C) := Ker fi/ Im fi+1 is called the
i-th homology group of the complex. Show that if all the Vi are finite-dimensional,
then

n∑
i=0

(−1)i dim Vi =
n∑
i=0

(−1)i dim Hi(C).

Exercise 3. Consider the following commutative diagram of homomorphisms of
vector spaces over a field F.

V4
f4 //

epi. ϕ4

��

V3
f3 //

∼= ϕ3

��

V2
f2 //

ϕ2

��

V1
f1 //

∼= ϕ1

��

V0

mono. ϕ0

��
W4 g4

// W3 g3
// W2 g2

// W1 g1
// W0

Assume that the rows are exact, i.e., Ker fi = Im fi+1 and Ker gi = Im gi+1 for
i = 1, 2, 3, and suppose furthermore that the vertical homomorphisms have the
indicated properties; i.e., ϕ4 is an epimorphism, ϕ3 and ϕ1 are isomorphisms, and
ϕ0 is a monomorphism. Show that under these conditions ϕ2 is an isomorphism.

Basic Assumption. From now on in this section, assume that V,W are vector
spaces over a field F, unless otherwise specified.

Recall from lecture that if U ⊂ V is a subspace, then a coset of U is a subset of
the form x+U := {x+u | u ∈ U}. The following exercise motivates this definition.

Exercise 4. Let ϕ : V−→W be a linear map. Let U := Ker ϕ and let x, y ∈ V .
(a) Prove that ϕ(x) = ϕ(y) if and only if y = x + u for some element u ∈ U ,

or equivalently, if and only if y − x ∈ U .
(b) Conclude that the cosets of U partition V .
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Recall from lecture the following definition.

Definition 1. Let U ⊂ V be a subspace. The quotient space V/U of V modulo U
is the set

V/U := {x + U | x ∈ V }
of all cosets of U , with addition and scalar multiplication defined by

(x + U) + (y + U) := (x + y) + U “addition”

a(x + U) := ax + U “scalar multiplication”

for every x, y ∈ V , a ∈ F. The projection map is defined by

V−→V/U =: V , x 7−→ x + U := x.

Exercise 5. Let U ⊂ V be a subspace.
(a) Prove that the operations “addition” and “scalar multiplication” in Defini-

tion 1 determine well-defined maps

V/U × V/U
+−−→ V/U “addition”

F× V/U
·−→ V/U “scalar multiplication”

(b) Prove that (V/U, +, ·) is a vector space over F.

Exercise 6. Let U ⊂ V be a subspace. Prove that if V is finite-dimensional, then

dim V/U = dim V − dim U.

Exercise 7. Consider the subspaces V ⊂ V and 0 ⊂ V . Prove that V/V = 0 and
V/0 ∼= V .

Exercise 8. Prove Proposition 2.

Proposition 2. Let f : V−→V ′ be an epimorphism, and let U := Ker f .
(a) Then the induced map

V/U
f−−→ V ′,

x = x + U 7−→ f(x) = f(x)

is an isomorphism.
(b) The set of subspaces A′ ⊂ V ′ is in bijective correspondence with the set of

subspaces A ⊂ V which contain U , the correspondence being defined by the
maps A 7−→ f(A) and A′ 7−→ f−1(A′).

Exercise 9. Prove the following.
(a) If A, B ⊂ V are subspaces, then there is an isomorphism of the form

A/(A ∩B) ∼= (A + B)/B.

(b) If A ⊂ A′ ⊂ B′ ⊂ B ⊂ V are subspaces, then there is an isomorphism of
the form

B′/A′ ∼= (B′/A)/(A′/A).

Hint: For part (a), consider the inclusion map A−→A + B. For part (b), note that
A′/A ⊂ B′/A is a subspace and consider the projection map B′−→B′/A.

Exercise 10. Prove Proposition 3.
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Proposition 3. Let f : V−→W be a linear map.
(a) If g is a linear map which makes the solid diagram

V ′

g

��

0

��
∃!

g

��
Ker f

⊂ // V
f // W

commute, then there exists a unique linear map g which makes the diagram
commute.

(b) If h is a linear map which makes the solid diagram

V
f //

0 ''

W

h

��

π // W/f(V )

h

∃!

uu

Coker f

W ′

commute, then there exists a unique linear map h which makes the diagram
commute.


