Math 35300: Sections 161 and 162. Linear algebra II Spring 2013 John E. Harper

Purdue University

Homework 5

We can define the notion of a *polynomial* with coefficients in a field \mathbb{F} to mean a linear combination of powers of the variable (or indeterminate):

(1)
$$f(t) = a_m t^m + a_{m-1} t^{m-1} + \dots + a_1 t + a_0,$$

where $a_i \in \mathbb{F}$. Such expressions are sometimes called *formal polynomials*, to distinguish them from polynomial functions. Every formal polynomial with coefficients in \mathbb{F} determines a polynomial function on \mathbb{F} . The variable appearing in (1) is an arbitrary symbol, and the monomials t^i are considered linearly independent. This means that if

$$q(t) = b_n t^n + b_{n-1} t^{n-1} + \dots + b_1 t + b_0$$

is a polynomial with coefficients in \mathbb{F} , then f(t) and g(t) are equal if and only if $a_i = b_i$ for all i = 0, 1, 2, ... Sometimes it is useful to write a polynomial in the standard form

(2)
$$f(t) = a_0 + a_1 t + a_2 t^2 + \cdots$$

where the coefficients a_i are all in the field \mathbb{F} and only finitely many of the coefficients are different from zero. Formally, the polynomial (2) is determined by its sequence of coefficients a_i :

$$a=(a_0,a_1,a_2,\ldots),$$

where $a_i \in \mathbb{F}$ and all but a finite number of a_i are zero. Every such sequence corresponds to a polynomial.

Addition and multiplication of polynomials mimic the familiar operations on polynomial functions. Let f(t) be as in (2), and let

(3)
$$g(t) = b_0 + b_1 t + b_2 t^2 + \cdots$$

be a polynomial with coefficients in the same field \mathbb{F} , determined by the sequence $b = (b_0, b_1, b_2, ...)$. The *sum* of f and g is

$$f(t) + g(t) := (a_0 + b_0) + (a_1 + b_1)t + (a_2 + b_2)t^2 + \cdots$$
$$= \sum_k (a_k + b_k)t^k,$$

which corresponds to addition of sequences: $a + b = (a_0 + b_0, a_1 + b_1, a_2 + b_2, ...)$. The *product* of f and g is computed by multiplying term by term and collecting coefficients of the same degree in t. If we expand the product using the distributive law, but without collecting terms, we obtain

$$f(t)g(t) = \sum_{i,j} a_i b_j t^{i+j}.$$

Note that there are only finitely many nonzero coefficients $a_i b_j$. The right-hand side is not in standard form since the same monomial t^n appears many times—once

for each pair (i, j) of indices such that i + j = n. Putting the right-hand side back into standard form (by collecting terms) leads to the definition

$$f(t)g(t) := p_0 + p_1 t + p_2 t^2 + \cdots$$

where

$$p_k := a_0 b_k + a_1 b_{k-1} + \dots + a_k b_0 = \sum_{i+j=k} a_i b_j.$$

Exercise 1. Let \mathbb{F} be a field and $\mathcal{P}_n = \{a_0 + a_1t + \cdots + a_nt^n \mid a_i \in \mathbb{F}\}$ be the vector space of polynomials in the indeterminate t of degree $\leq n$ with coefficients in \mathbb{F} . If $f(t) \in \mathcal{P}_m$ and $g(t) \in \mathcal{P}_n$, the product $f(t)g(t) \in \mathcal{P}_{m+n}$ is defined as above. We call $(1, t, \ldots, t^m)$ the canonical basis of \mathcal{P}_m . Determine the matrix of the linear map

$$\mathcal{P}_3 \longrightarrow \mathcal{P}_4, \qquad f(t) \longmapsto (2-t)f(t)$$

relative to the canonical bases.

Exercise 2. By a *finite chain complex* C of vector spaces over a field \mathbb{F} one understands a sequence of homomorphisms

$$0 \xrightarrow{f_{n+1}} V_n \xrightarrow{f_n} V_{n-1} \xrightarrow{f_{n-1}} \cdots \xrightarrow{f_2} V_1 \xrightarrow{f_1} V_0 \xrightarrow{f_0} 0$$

of vector spaces over \mathbb{F} with the property that $f_i f_{i+1} = 0$ for each *i*; i.e., such that Ker $f_i \supset \text{Im } f_{i+1}$. The quotient vector space $H_i(C) := \text{Ker } f_i / \text{Im } f_{i+1}$ is called the *i*-th homology group of the complex. Show that if all the V_i are finite-dimensional, then

$$\sum_{i=0}^{n} (-1)^{i} \dim V_{i} = \sum_{i=0}^{n} (-1)^{i} \dim H_{i}(C).$$

Exercise 3. Consider the following commutative diagram of homomorphisms of vector spaces over a field \mathbb{F} .

$$V_{4} \xrightarrow{f_{4}} V_{3} \xrightarrow{f_{3}} V_{2} \xrightarrow{f_{2}} V_{1} \xrightarrow{f_{1}} V_{0}$$

epi. $\left| \varphi_{4} \right| \cong \left| \varphi_{3} \right| \left| \varphi_{2} \right| \cong \left| \varphi_{1} \right| = 0$
 $W_{4} \xrightarrow{g_{4}} W_{3} \xrightarrow{g_{3}} W_{2} \xrightarrow{g_{2}} W_{1} \xrightarrow{g_{1}} W_{0}$

Assume that the rows are *exact*, i.e., Ker $f_i = \text{Im } f_{i+1}$ and Ker $g_i = \text{Im } g_{i+1}$ for i = 1, 2, 3, and suppose furthermore that the vertical homomorphisms have the indicated properties; i.e., φ_4 is an epimorphism, φ_3 and φ_1 are isomorphisms, and φ_0 is a monomorphism. Show that under these conditions φ_2 is an isomorphism.

Basic Assumption. From now on in this section, assume that V, W are vector spaces over a field \mathbb{F} , unless otherwise specified.

Recall from lecture that if $U \subset V$ is a subspace, then a *coset* of U is a subset of the form $x + U := \{x + u \mid u \in U\}$. The following exercise motivates this definition.

Exercise 4. Let $\varphi \colon V \longrightarrow W$ be a linear map. Let $U := \operatorname{Ker} \varphi$ and let $x, y \in V$.

- (a) Prove that $\varphi(x) = \varphi(y)$ if and only if y = x + u for some element $u \in U$, or equivalently, if and only if $y x \in U$.
- (b) Conclude that the cosets of U partition V.

Recall from lecture the following definition.

Definition 1. Let $U \subset V$ be a subspace. The *quotient space* V/U of V modulo U is the set

$$V/U := \{x + U \mid x \in V\}$$

of all cosets of U, with addition and scalar multiplication defined by

$$(x+U) + (y+U) := (x+y) + U$$
 "addition"
 $a(x+U) := ax + U$ "scalar multiplication"

for every $x, y \in V$, $a \in \mathbb{F}$. The projection map is defined by

$$V \longrightarrow V/U =: \overline{V}, \qquad x \longmapsto x + U := \overline{x}.$$

Exercise 5. Let $U \subset V$ be a subspace.

(a) Prove that the operations "addition" and "scalar multiplication" in Definition 1 determine well-defined maps

$$V/U \times V/U \xrightarrow{+} V/U$$
 "addition"
 $\mathbb{F} \times V/U \xrightarrow{\cdot} V/U$ "scalar multiplication"

(b) Prove that $(V/U, +, \cdot)$ is a vector space over \mathbb{F} .

Exercise 6. Let $U \subset V$ be a subspace. Prove that if V is finite-dimensional, then $\dim V/U = \dim V - \dim U$.

Exercise 7. Consider the subspaces $V \subset V$ and $0 \subset V$. Prove that V/V = 0 and $V/0 \cong V$.

Exercise 8. Prove Proposition 2.

Proposition 2. Let $f: V \longrightarrow V'$ be an epimorphism, and let U := Ker f.

(a) Then the induced map

$$V/U \xrightarrow{f} V',$$

$$\overline{x} = x + U \longmapsto \overline{f}(\overline{x}) = f(x)$$

is an isomorphism.

(b) The set of subspaces A' ⊂ V' is in bijective correspondence with the set of subspaces A ⊂ V which contain U, the correspondence being defined by the maps A → f(A) and A' → f⁻¹(A').

Exercise 9. Prove the following.

(a) If $A, B \subset V$ are subspaces, then there is an isomorphism of the form

$$A/(A \cap B) \cong (A+B)/B.$$

(b) If $A \subset A' \subset B' \subset B \subset V$ are subspaces, then there is an isomorphism of the form

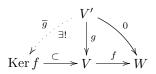
$$B'/A' \cong (B'/A)/(A'/A)$$

Hint: For part (a), consider the inclusion map $A \longrightarrow A + B$. For part (b), note that $A'/A \subset B'/A$ is a subspace and consider the projection map $B' \longrightarrow B'/A$.

Exercise 10. Prove Proposition 3.

Proposition 3. Let $f: V \longrightarrow W$ be a linear map.

(a) If g is a linear map which makes the solid diagram



commute, then there exists a unique linear map \overline{g} which makes the diagram commute.

(b) If h is a linear map which makes the solid diagram

$$V \xrightarrow{f} W \xrightarrow{\pi} W/f(V) = \operatorname{Coker} f$$

$$\downarrow h \quad \exists!$$

$$\psi_{V'} \swarrow \quad \overline{h}$$

commute, then there exists a unique linear map \overline{h} which makes the diagram commute.