Homework 6

Exercise 1. Show that if $A, B \in \mathrm{M}(n \times n, \mathbb{F})$ then

$$
\operatorname{rk} A+\operatorname{rk} B-n \leq \operatorname{rk} A B \leq \min (\operatorname{rk} A, \operatorname{rk} B)
$$

(Hint: use the dimension formula for linear maps).
Exercise 2. Let V be a finite-dimensional vector space over \mathbb{F} and $f: V \longrightarrow V$ an endomorphism. Show that if with respect to all bases f is represented by the same matrix A; i.e., $A=\Phi^{-1} f \Phi$ for all isomorphisms $\Phi: \mathbb{F}^{n} \longrightarrow V$, then there exists some $c \in \mathbb{F}$ with $f=c(\mathrm{Id})$.

Exercise 3. Let $A \in \mathrm{M}(m \times n, \mathbb{F})$ and $b \in \mathbb{F}^{m}$. Prove the following: If $x_{0} \in \mathbb{F}^{n}$ is a solution of $A x=b$ (i.e., if $A x_{0}=b$), then

$$
\operatorname{Sol}(A, b)=\left(x_{0}+\operatorname{Ker} A\right):=\left\{x_{0}+x \mid x \in \operatorname{Ker} A\right\}
$$

Exercise 4. Let $A \in \mathrm{M}(m \times n, \mathbb{F})$ and $b \in \mathbb{F}^{m}$. Prove the following: If $x_{0} \in \mathbb{F}^{n}$ is a solution of $A x=b$ and $\left(v_{1}, \ldots, v_{r}\right)$ is a basis of $\operatorname{Ker} A$, then

$$
\operatorname{Sol}(A, b)=\left\{x_{0}+c_{1} v_{1}+\cdots+c_{r} v_{r} \mid c_{i} \in \mathbb{F}\right\}
$$

here, $r=\operatorname{dim} \operatorname{Ker} A=n-\operatorname{rk} A$.
Exercise 5. Let $A \in \mathrm{M}(m \times n, \mathbb{F})$ and $b \in \mathbb{F}^{m}$. Prove the following: Assume that $A x=b$ is solvable. Then $A x=b$ is uniquely solvable if and only if $\operatorname{Ker} A=0$ (i.e., if and only if $\operatorname{rk} A=n$).

Exercise 6. Find all solutions of the system of equations $A x=b$ when

$$
A=\left[\begin{array}{rrrr}
1 & 2 & 1 & 1 \\
3 & 0 & 0 & 4 \\
1 & -4 & -2 & -2
\end{array}\right]
$$

and b has the following value:
(a) $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
(b) $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$
(c) $\left[\begin{array}{l}0 \\ 2 \\ 2\end{array}\right]$

Exercise 7. Find all solutions of the equation $x_{1}+x_{2}+2 x_{3}-x_{4}=3$.
Exercise 8. Use row reduction to find inverses of the following matrices:
(a) $\left[\begin{array}{ll}1 & \\ & 2\end{array}\right]$
(b) $\left[\begin{array}{ll}1 & 1 \\ & 1\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 1\end{array}\right]$
(d) $\left[\begin{array}{ll}3 & 5 \\ 1 & 2\end{array}\right]$

Exercise 9. How much can a matrix be simplified if both row and column operations are allowed?

Exercise 10. Prove that every invertible 2×2 matrix is a product of at most four elementary matrices.

Exercise 11. Prove that if a product $A B$ of $n \times n$ matrices is invertible then so are its factors A, B.

Exercise 12. Let A be a square matrix. Prove that there is a set of elementary matrices E_{1}, \ldots, E_{k} such that $E_{k} \cdots E_{1} A$ either is the identity or has its bottom row zero.

Exercise 13. Prove the following proposition from lecture. (Hint: it suffices to prove the implications $(a) \Rightarrow(b) \Rightarrow(c) \Rightarrow(d) \Rightarrow(a))$.
Proposition 1. Let A be a square matrix. The following conditions are equivalent:
(a) A can be reduced to the identity by a sequence of elementary row operations.
(b) A is a product of elementary matrices.
(c) A is invertible.
(d) The linear system $A x=0$ has only the trivial solution $x=0$.

Exercise 14. Let $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ be linearly independent elements of the real vector space V. If

$$
\begin{array}{lr}
w_{1}= & v_{2}-v_{3}+2 v_{4} \\
w_{2}= & v_{1}+2 v_{2}-v_{3}-v_{4} \\
w_{3}= & =v_{1}+v_{2}+v_{3}+v_{4}
\end{array}
$$

show that $\left(w_{1}, w_{2}, w_{3}\right)$ is linearly independent. (Hint: first show that the linear independence of $\left(w_{1}, w_{2}, w_{3}\right)$ is equivalent to a certain matrix having rank 3 , and then use the procedure for determining rank to find the rank of this matrix).
Exercise 15. For which values of c, is the real matrix

$$
A_{c}:=\left[\begin{array}{llll}
1 & c & 0 & 0 \\
c & 1 & 0 & 0 \\
0 & c & 1 & 0 \\
0 & 0 & c & 1
\end{array}\right]
$$

invertible? For these values of c determine the inverse matrix A_{c}^{-1}.
Exercise 16. Prove the following: If $U \subset \mathbb{F}^{n}$ is a subspace and $x \in \mathbb{F}^{n}$, then there exists a system of equations with coefficients in \mathbb{F}, having n equations and n unknowns, whose solution set equals $x+U$.

