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Homework 8

Exercise 1. Prove Pythagoras’ theorem: if the three points a, b, c in a Euclidean
vector space form a right-angled triangle, that is if (a− c) ⊥ (b− c), then

‖a− c‖2 + ‖b− c‖2 = ‖a− b‖2

Exercise 2. Give R3 the inner product 〈x, y〉 :=
∑3

i,j=1 aijxiyj , where

A =

2 1 0
1 2 1
0 1 4


(That this is actually an inner product is not part of the exercise, and may be
assumed). Calculate the cosines of the angles between the canonical unit vectors
in R3.

Exercise 3. For x = (x1, . . . , xn) ∈ Rn, n ≥ 2, define |x| := maxi |xi|. Show that
there exists no inner product 〈 , 〉 on Rn, for which 〈x, x〉 = |x|2 for all x ∈ Rn.

Exercise 4. Let V be the real vector space of all bounded real sequences (i.e., of
all bounded functions of the form x : {1, 2, 3, · · · }−→R)

V := {(xi)i=1,2,... | xi ∈ R and there exists c ∈ R with |xi| ≤ c for all i}.
Then

〈x, y〉 :=
∞∑

n=1

xnyn

n2

obviously defines an inner product on V . Find a proper vector subspace U ⊂ V
(i.e., U 6= V ) with U⊥ = {0}. (Remark: This in sharp contrast to what happens
for finite-dimensional Euclidean vector spaces V . Recall from lecture that in this
case, V = U ⊕ U⊥ for any subspace U ⊂ V .)

Exercise 5. Find the orthonormal basis of R3 (with the usual inner product)
obtained by applying the Gram-Schmidt procedure to the basis (1, 1, 0), (1, 0, 1),
(0, 1, 1).

Exercise 6. Let P3 = {a0 + a1t + a2t
2 + a3t

3 | ai ∈ R} be the Euclidean space
of polynomials in the indeterminate t of degree ≤ 3 with coefficients in R (see
Homework 5) and with inner product 〈 , 〉 : P3 × P3−→R defined by

〈f(t), g(t)〉 :=
∫ 1

−1

f(t)g(t) dt

Find the orthonormal basis of P3 obtained by applying the Gram-Schmidt proce-
dure to the canonical basis (1, t, t2, t3). (Remark: This is one way to obtain the
“Legendre polynomials”, up to a scalar multiple.)

Exercise 7. Prove the following proposition. (Hint: A short proof can be given
using the proposition proved in Handout 7.)

1



2

Proposition 1. A matrix A ∈ M(n×n, R) is orthogonal if and only if its columns
A1, . . . , An (images of the unit vectors) form an orthonormal system with respect
to the usual inner product in Rn; i.e., if and only if

AtA = I

Here, we regard the matrix A = [A1 . . . An] as consisting of its column vectors.

Exercise 8. Prove the following proposition.

Proposition 2. For A ∈ M(n× n, R), the following conditions are equivalent:
(i) A is orthogonal

(ii) The columns of A form an orthonormal system
(iii) AtA = I
(iv) A is invertible and A−1 = At

(v) AAt = I
(vi) The rows of A form an orthonormal system

Exercise 9. Prove the following proposition.

Proposition 3. If A ∈ M(n× n, R) is orthogonal, then det A = ±1.

Definition 4. Let V, V ′ be Euclidean vector spaces. A linear map f : V−→V ′ is an
isometry if (i) f is orthogonal and (ii) there exists an orthogonal map g : V ′−→V
such that

f ◦ g = Id, g ◦ f = Id.

We say that V, V ′ are isometric if there exists an isometry f : V−→V ′.

Exercise 10. Prove the following proposition.

Proposition 5. Let V, V ′ be Euclidean vector spaces. Let f : V−→V ′ be an iso-
morphism. Then f is orthogonal if and only if f−1 is orthogonal. In particular, a
linear map V−→V ′ is an isometry if and only if it is an orthogonal isomorphism.

Exercise 11. Prove the following proposition.

Proposition 6. Let V be a Euclidean vector space and let (v1, · · · , vn) be an or-
thonormal basis. If v, w ∈ V are expressed in the form

v = c1v1 + · · ·+ cnvn (ci ∈ F),

w = d1v1 + · · ·+ dnvn (di ∈ F),

then 〈v, w〉 = c1d1 + · · ·+cndn. In other words, the inner product of v, w in V is the
same as the usual inner product of their coordinate vectors (c1, · · · , cn), (d1, . . . , dn)
in Rn.

Exercise 12. Prove the following proposition.

Proposition 7. Let V,W be finite-dimensional Euclidean vector spaces. If dim(V ) ≤
dim(W ), then there exists an orthogonal map f : V−→W .

Exercise 13. Prove the following theorem.

Theorem 8. Let V,W be finite-dimensional Euclidean vector spaces. Then V,W
are isometric if and only if dim(V ) = dim(W ).

Exercise 14. Prove the following proposition.
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Proposition 9. Let V be finite-dimensional Euclidean vector space of dimension
n. Then V and Rn (with the usual inner product) are isometric.

Remark 10. The upshot is that “up to orthogonal isomorphism”, there is only one
n-dimensional Euclidean vector space (e.g., Rn with the usual inner product).

Remark 11. Careful: It would be unwise to study Rn alone, since all sorts of other
concrete Euclidean vector spaces will tumble across our path.

Exercise 15. Prove the following proposition.

Proposition 12. Let V be a finite-dimensional Euclidean vector space of dimension
n. If (v1, . . . , vk) is an orthonormal system in V , then it can be extended to an
orthonormal basis (v1, . . . , vk, w1, . . . , wn−k) of V .

Exercise 16. Prove the following theorem.

Theorem 13 (Riesz Representation Theorem). Let V be a finite-dimensional Eu-
clidean vector space. If f : V−→R is a linear map, then there exists a unique vector
a ∈ V such that

f(v) = 〈v, a〉
for all v ∈ V .

Remark 14. It is useful to note for applications (after proving the above theorem),
that the unique vector a associated to f 6= 0 is characterized by the following
properties:

(i) a 6= 0
(ii) a ⊥ Ker f
(iii) f(a) = 〈a, a〉

The trivial case f = 0 is clearly satisfied by a = 0.

Exercise 17. Prove the following proposition. (Hint: Study your proof of the
above theorem.)

Proposition 15. Let V be a finite-dimensional Euclidean vector space, f : V−→R
a linear map, f 6= 0, and b a nonzero vector such that b ⊥ Ker f . If we define

a :=
f(b)
〈b, b〉

b,

then f(v) = 〈v, a〉 for all v ∈ V .


