Math 35300: Sections 161 and 162. Linear algebra II John E. Harper Spring 2013

Purdue University

Homework 8

Exercise 1. Prove Pythagoras' theorem: if the three points a, b, c in a Euclidean vector space form a right-angled triangle, that is if $(a - c) \perp (b - c)$, then

$$||a - c||^2 + ||b - c||^2 = ||a - b||^2$$

Exercise 2. Give \mathbb{R}^3 the inner product $\langle x, y \rangle := \sum_{i,j=1}^3 a_{ij} x_i y_j$, where

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 4 \end{bmatrix}$$

(That this is actually an inner product is not part of the exercise, and may be assumed). Calculate the cosines of the angles between the canonical unit vectors in \mathbb{R}^3 .

Exercise 3. For $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, $n \ge 2$, define $|x| := \max_i |x_i|$. Show that there exists no inner product \langle , \rangle on \mathbb{R}^n , for which $\langle x, x \rangle = |x|^2$ for all $x \in \mathbb{R}^n$.

Exercise 4. Let V be the real vector space of all bounded real sequences (i.e., of all bounded functions of the form $x: \{1, 2, 3, \dots\} \longrightarrow \mathbb{R}$)

 $V := \{ (x_i)_{i=1,2,\dots} \mid x_i \in \mathbb{R} \text{ and there exists } c \in \mathbb{R} \text{ with } |x_i| \le c \text{ for all } i \}.$

Then

$$\langle x, y \rangle := \sum_{n=1}^{\infty} \frac{x_n y_n}{n^2}$$

obviously defines an inner product on V. Find a proper vector subspace $U \subset V$ (i.e., $U \neq V$) with $U^{\perp} = \{0\}$. (Remark: This in sharp contrast to what happens for finite-dimensional Euclidean vector spaces V. Recall from lecture that in this case, $V = U \oplus U^{\perp}$ for any subspace $U \subset V$.)

Exercise 5. Find the orthonormal basis of \mathbb{R}^3 (with the usual inner product) obtained by applying the Gram-Schmidt procedure to the basis (1,1,0), (1,0,1), (0,1,1).

Exercise 6. Let $\mathcal{P}_3 = \{a_0 + a_1t + a_2t^2 + a_3t^3 \mid a_i \in \mathbb{R}\}$ be the Euclidean space of polynomials in the indeterminate t of degree ≤ 3 with coefficients in \mathbb{R} (see Homework 5) and with inner product $\langle , \rangle \colon \mathcal{P}_3 \times \mathcal{P}_3 \longrightarrow \mathbb{R}$ defined by

$$\langle f(t), g(t) \rangle := \int_{-1}^{1} f(t)g(t) dt$$

Find the orthonormal basis of \mathcal{P}_3 obtained by applying the Gram-Schmidt procedure to the canonical basis $(1, t, t^2, t^3)$. (Remark: This is one way to obtain the "Legendre polynomials", up to a scalar multiple.)

Exercise 7. Prove the following proposition. (Hint: A short proof can be given using the proposition proved in Handout 7.)

Proposition 1. A matrix $A \in M(n \times n, \mathbb{R})$ is orthogonal if and only if its columns A_1, \ldots, A_n (images of the unit vectors) form an orthonormal system with respect to the usual inner product in \mathbb{R}^n ; i.e., if and only if

$$A^t A = I$$

Here, we regard the matrix $A = [A_1 \dots A_n]$ as consisting of its column vectors.

Exercise 8. Prove the following proposition.

Proposition 2. For $A \in M(n \times n, \mathbb{R})$, the following conditions are equivalent:

- (i) A is orthogonal
- (ii) The columns of A form an orthonormal system
- (iii) $A^t A = I$
- (iv) A is invertible and $A^{-1} = A^t$
- (v) $AA^t = I$
- (vi) The rows of A form an orthonormal system

Exercise 9. Prove the following proposition.

Proposition 3. If $A \in M(n \times n, \mathbb{R})$ is orthogonal, then det $A = \pm 1$.

Definition 4. Let V, V' be Euclidean vector spaces. A linear map $f: V \longrightarrow V'$ is an *isometry* if (i) f is orthogonal and (ii) there exists an orthogonal map $g: V' \longrightarrow V$ such that

$$f \circ g = \mathrm{Id}, \qquad g \circ f = \mathrm{Id}$$

We say that V, V' are *isometric* if there exists an isometry $f: V \longrightarrow V'$.

Exercise 10. Prove the following proposition.

Proposition 5. Let V, V' be Euclidean vector spaces. Let $f: V \longrightarrow V'$ be an isomorphism. Then f is orthogonal if and only if f^{-1} is orthogonal. In particular, a linear map $V \longrightarrow V'$ is an isometry if and only if it is an orthogonal isomorphism.

Exercise 11. Prove the following proposition.

Proposition 6. Let V be a Euclidean vector space and let (v_1, \dots, v_n) be an orthonormal basis. If $v, w \in V$ are expressed in the form

$$v = c_1 v_1 + \dots + c_n v_n \qquad (c_i \in \mathbb{F}),$$

$$w = d_1 v_1 + \dots + d_n v_n \qquad (d_i \in \mathbb{F}),$$

then $\langle v, w \rangle = c_1 d_1 + \cdots + c_n d_n$. In other words, the inner product of v, w in V is the same as the usual inner product of their coordinate vectors $(c_1, \cdots, c_n), (d_1, \ldots, d_n)$ in \mathbb{R}^n .

Exercise 12. Prove the following proposition.

Proposition 7. Let V, W be finite-dimensional Euclidean vector spaces. If $\dim(V) \leq \dim(W)$, then there exists an orthogonal map $f: V \longrightarrow W$.

Exercise 13. Prove the following theorem.

Theorem 8. Let V, W be finite-dimensional Euclidean vector spaces. Then V, W are isometric if and only if $\dim(V) = \dim(W)$.

Exercise 14. Prove the following proposition.

Proposition 9. Let V be finite-dimensional Euclidean vector space of dimension n. Then V and \mathbb{R}^n (with the usual inner product) are isometric.

Remark 10. The upshot is that "up to orthogonal isomorphism", there is only one *n*-dimensional Euclidean vector space (e.g., \mathbb{R}^n with the usual inner product).

Remark 11. Careful: It would be unwise to study \mathbb{R}^n alone, since all sorts of other concrete Euclidean vector spaces will tumble across our path.

Exercise 15. Prove the following proposition.

Proposition 12. Let V be a finite-dimensional Euclidean vector space of dimension n. If (v_1, \ldots, v_k) is an orthonormal system in V, then it can be extended to an orthonormal basis $(v_1, \ldots, v_k, w_1, \ldots, w_{n-k})$ of V.

Exercise 16. Prove the following theorem.

Theorem 13 (Riesz Representation Theorem). Let V be a finite-dimensional Euclidean vector space. If $f: V \longrightarrow \mathbb{R}$ is a linear map, then there exists a unique vector $a \in V$ such that

$$f(v) = \langle v, a \rangle$$

for all $v \in V$.

Remark 14. It is useful to note for applications (after proving the above theorem), that the unique vector a associated to $f \neq 0$ is characterized by the following properties:

(i) $a \neq 0$ (ii) $a \perp \operatorname{Ker} f$ (iii) $f(a) = \langle a, a \rangle$

The trivial case f = 0 is clearly satisfied by a = 0.

Exercise 17. Prove the following proposition. (Hint: Study your proof of the above theorem.)

Proposition 15. Let V be a finite-dimensional Euclidean vector space, $f: V \longrightarrow \mathbb{R}$ a linear map, $f \neq 0$, and b a nonzero vector such that $b \perp \text{Ker } f$. If we define

$$a := \frac{f(b)}{\langle b, b \rangle} b,$$

then $f(v) = \langle v, a \rangle$ for all $v \in V$.