## Homework 8

Exercise 1. Prove Pythagoras' theorem: if the three points $a, b, c$ in a Euclidean vector space form a right-angled triangle, that is if $(a-c) \perp(b-c)$, then

$$
\|a-c\|^{2}+\|b-c\|^{2}=\|a-b\|^{2}
$$

Exercise 2. Give $\mathbb{R}^{3}$ the inner product $\langle x, y\rangle:=\sum_{i, j=1}^{3} a_{i j} x_{i} y_{j}$, where

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 4
\end{array}\right]
$$

(That this is actually an inner product is not part of the exercise, and may be assumed). Calculate the cosines of the angles between the canonical unit vectors in $\mathbb{R}^{3}$.

Exercise 3. For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, n \geq 2$, define $|x|:=\max _{i}\left|x_{i}\right|$. Show that there exists no inner product $\langle$,$\rangle on \mathbb{R}^{n}$, for which $\langle x, x\rangle=|x|^{2}$ for all $x \in \mathbb{R}^{n}$.

Exercise 4. Let $V$ be the real vector space of all bounded real sequences (i.e., of all bounded functions of the form $x:\{1,2,3, \cdots\} \longrightarrow \mathbb{R})$

$$
V:=\left\{\left(x_{i}\right)_{i=1,2, \ldots} \mid x_{i} \in \mathbb{R} \text { and there exists } c \in \mathbb{R} \text { with }\left|x_{i}\right| \leq c \text { for all } i\right\}
$$

Then

$$
\langle x, y\rangle:=\sum_{n=1}^{\infty} \frac{x_{n} y_{n}}{n^{2}}
$$

obviously defines an inner product on $V$. Find a proper vector subspace $U \subset V$ (i.e., $U \neq V$ ) with $U^{\perp}=\{0\}$. (Remark: This in sharp contrast to what happens for finite-dimensional Euclidean vector spaces $V$. Recall from lecture that in this case, $V=U \oplus U^{\perp}$ for any subspace $U \subset V$.)

Exercise 5. Find the orthonormal basis of $\mathbb{R}^{3}$ (with the usual inner product) obtained by applying the Gram-Schmidt procedure to the basis $(1,1,0),(1,0,1)$, $(0,1,1)$.

Exercise 6. Let $\mathcal{P}_{3}=\left\{a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3} \mid a_{i} \in \mathbb{R}\right\}$ be the Euclidean space of polynomials in the indeterminate $t$ of degree $\leq 3$ with coefficients in $\mathbb{R}$ (see Homework 5) and with inner product $\langle\rangle:, \mathcal{P}_{3} \times \mathcal{P}_{3} \longrightarrow \mathbb{R}$ defined by

$$
\langle f(t), g(t)\rangle:=\int_{-1}^{1} f(t) g(t) d t
$$

Find the orthonormal basis of $\mathcal{P}_{3}$ obtained by applying the Gram-Schmidt procedure to the canonical basis $\left(1, t, t^{2}, t^{3}\right)$. (Remark: This is one way to obtain the "Legendre polynomials", up to a scalar multiple.)

Exercise 7. Prove the following proposition. (Hint: A short proof can be given using the proposition proved in Handout 7.)

Proposition 1. A matrix $A \in \mathrm{M}(n \times n, \mathbb{R})$ is orthogonal if and only if its columns $A_{1}, \ldots, A_{n}$ (images of the unit vectors) form an orthonormal system with respect to the usual inner product in $\mathbb{R}^{n}$; i.e., if and only if

$$
A^{t} A=I
$$

Here, we regard the matrix $A=\left[A_{1} \ldots A_{n}\right]$ as consisting of its column vectors.
Exercise 8. Prove the following proposition.
Proposition 2. For $A \in \mathrm{M}(n \times n, \mathbb{R})$, the following conditions are equivalent:
(i) $A$ is orthogonal
(ii) The columns of $A$ form an orthonormal system
(iii) $A^{t} A=I$
(iv) $A$ is invertible and $A^{-1}=A^{t}$
(v) $A A^{t}=I$
(vi) The rows of $A$ form an orthonormal system

Exercise 9. Prove the following proposition.
Proposition 3. If $A \in \mathrm{M}(n \times n, \mathbb{R})$ is orthogonal, then $\operatorname{det} A= \pm 1$.
Definition 4. Let $V, V^{\prime}$ be Euclidean vector spaces. A linear map $f: V \longrightarrow V^{\prime}$ is an isometry if (i) $f$ is orthogonal and (ii) there exists an orthogonal map $g: V^{\prime} \longrightarrow V$ such that

$$
f \circ g=\mathrm{Id}, \quad g \circ f=\mathrm{Id}
$$

We say that $V, V^{\prime}$ are isometric if there exists an isometry $f: V \longrightarrow V^{\prime}$.
Exercise 10. Prove the following proposition.
Proposition 5. Let $V, V^{\prime}$ be Euclidean vector spaces. Let $f: V \longrightarrow V^{\prime}$ be an isomorphism. Then $f$ is orthogonal if and only if $f^{-1}$ is orthogonal. In particular, a linear map $V \longrightarrow V^{\prime}$ is an isometry if and only if it is an orthogonal isomorphism.
Exercise 11. Prove the following proposition.
Proposition 6. Let $V$ be a Euclidean vector space and let $\left(v_{1}, \cdots, v_{n}\right)$ be an orthonormal basis. If $v, w \in V$ are expressed in the form

$$
\begin{aligned}
v & =c_{1} v_{1}+\cdots+c_{n} v_{n} \\
w & \left.=d_{1} v_{i} \in \mathbb{F}\right) \\
+\cdots+d_{n} v_{n} & \left(d_{i} \in \mathbb{F}\right)
\end{aligned}
$$

then $\langle v, w\rangle=c_{1} d_{1}+\cdots+c_{n} d_{n}$. In other words, the inner product of $v, w$ in $V$ is the same as the usual inner product of their coordinate vectors $\left(c_{1}, \cdots, c_{n}\right),\left(d_{1}, \ldots, d_{n}\right)$ in $\mathbb{R}^{n}$.

Exercise 12. Prove the following proposition.
Proposition 7. Let $V$, $W$ be finite-dimensional Euclidean vector spaces. If $\operatorname{dim}(V) \leq$ $\operatorname{dim}(W)$, then there exists an orthogonal map $f: V \longrightarrow W$.
Exercise 13. Prove the following theorem.
Theorem 8. Let $V, W$ be finite-dimensional Euclidean vector spaces. Then $V, W$ are isometric if and only if $\operatorname{dim}(V)=\operatorname{dim}(W)$.

Exercise 14. Prove the following proposition.

Proposition 9. Let $V$ be finite-dimensional Euclidean vector space of dimension $n$. Then $V$ and $\mathbb{R}^{n}$ (with the usual inner product) are isometric.
Remark 10. The upshot is that "up to orthogonal isomorphism", there is only one $n$-dimensional Euclidean vector space (e.g., $\mathbb{R}^{n}$ with the usual inner product).
Remark 11. Careful: It would be unwise to study $\mathbb{R}^{n}$ alone, since all sorts of other concrete Euclidean vector spaces will tumble across our path.

Exercise 15. Prove the following proposition.
Proposition 12. Let $V$ be a finite-dimensional Euclidean vector space of dimension $n$. If $\left(v_{1}, \ldots, v_{k}\right)$ is an orthonormal system in $V$, then it can be extended to an orthonormal basis $\left(v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{n-k}\right)$ of $V$.

Exercise 16. Prove the following theorem.
Theorem 13 (Riesz Representation Theorem). Let $V$ be a finite-dimensional Euclidean vector space. If $f: V \longrightarrow \mathbb{R}$ is a linear map, then there exists a unique vector $a \in V$ such that

$$
f(v)=\langle v, a\rangle
$$

for all $v \in V$.
Remark 14. It is useful to note for applications (after proving the above theorem), that the unique vector $a$ associated to $f \neq 0$ is characterized by the following properties:
(i) $a \neq 0$
(ii) $a \perp \operatorname{Ker} f$
(iii) $f(a)=\langle a, a\rangle$

The trivial case $f=0$ is clearly satisfied by $a=0$.
Exercise 17. Prove the following proposition. (Hint: Study your proof of the above theorem.)
Proposition 15. Let $V$ be a finite-dimensional Euclidean vector space, $f: V \longrightarrow \mathbb{R}$ a linear map, $f \neq 0$, and $b$ a nonzero vector such that $b \perp \operatorname{Ker} f$. If we define

$$
a:=\frac{f(b)}{\langle b, b\rangle} b,
$$

then $f(v)=\langle v, a\rangle$ for all $v \in V$.

