Math 35300: Sections 161 and 162. Linear algebra IISpring 2013John E. HarperDealer Harper

Purdue University

Homework 9

Exercise 1. Determine the eigenvalues and associated eigenspaces for the following 2×2 matrices over both the fields $\mathbb{F} = \mathbb{R}$ and $\mathbb{F} = \mathbb{C}$:

(a) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	(b) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	(c) $\begin{bmatrix} 0\\ 0 \end{bmatrix}$	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$
(d) $\begin{bmatrix} 0 & 1 \\ 4 & 3 \end{bmatrix}$	(e) $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$	(f) $\begin{bmatrix} 0\\ -5 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 4 \end{bmatrix}$

Exercise 2. Prove the following proposition.

Proposition 1. The following conditions on an endomorphism $f: V \longrightarrow V$ of a finite-dimensional vector space are equivalent:

- (a) Ker f > 0.
- (b) $\operatorname{Im} f < V$.
- (c) If A is the matrix of the endomorphism with respect to an arbitrary basis, then det A = 0.
- (d) 0 is an eigenvalue of f.

Exercise 3. Prove the following: The eigenvalues of an upper or lower triangular matrix are its diagonal entries.

Exercise 4. Let $f: V \longrightarrow V$ be an endomorphism on a vector space of dimension 2. Assume that f is not multiplication by a scalar. Prove that there is a vector $v \in V$ such that (v, f(v)) is a basis of V, and describe the matrix of f with respect to that basis.

Exercise 5. Find all invariant subspaces of the real endomorphism whose matrix is as follows.

(a)
$$\begin{bmatrix} 1 & 1 \\ & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & & \\ & 2 & \\ & & 3 \end{bmatrix}$

Exercise 6. Let $f: V \longrightarrow V$ be an endomorphism of a vector space V. Recall that a subspace $U \subset V$ is *invariant* under f if $f(U) \subset U$. Show that the eigenspaces of $f^n := f \circ \cdots \circ f$ are invariant under f.

Exercise 7. An endomorphism $f: V \longrightarrow V$ on a vector space is called *nilpotent* if $f^k = 0$ for some k. Let f be a nilpotent endomorphism on a vector space V, and let $W^i := \text{Im } f^i$.

- (a) Prove that if $W^i \neq 0$, then dim $W^{i+1} < \dim W^i$.
- (b) Prove that if V has dimension n and if f is nilpotent, then $f^n = 0$.

Exercise 8. Prove that the matrices $\begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$ and $\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$ $(b \neq 0)$ are similar if and only if $a \neq d$.

Exercise 9.

- (a) Use the characteristic polynomial to prove that a 2×2 real matrix A all of whose entries are positive has two distinct real eigenvalues.
- (b) Prove that the larger eigenvalue has an eigenvector in the first quadrant, and the smaller eigenvalue has an eigenvector in the second quadrant.

Exercise 10.

- (a) Find the eigenvectors and eigenvalues of the matrix $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.
- (b) Find a matrix P such that PAP^{-1} is diagonal.
- (c) Compute $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}^{30}$

Exercise 11. Prove that if A, B are $n \times n$ matrices and if A is invertible, then AB is similar to BA.

Exercise 12. Prove that an endomorphism $f: V \longrightarrow V$ on a finite-dimensional vector space is nilpotent if and only if there is a basis of V such that the matrix of f is upper triangular, with diagonal entries zero.

Exercise 13. Let $\mathbb{R}^{\mathbb{N}}$ denote the vector space of real sequences $(a_n)_{n\geq 1}$. Determine the eigenvalues and eigenspaces of the endomorphism $f \colon \mathbb{R}^{\mathbb{N}} \longrightarrow \mathbb{R}^{\mathbb{N}}$ given by

$$(a_n)_{n\geq 1}\longmapsto (a_{n+1})_{n\geq 1}.$$

Exercise 14. Since we can both add and compose endomorphisms of V it makes sense to use the polynomial $P(t) = a_0 + a_1 t + \cdots + a_n t^n$, $a_i \in \mathbb{F}$ to define an endomorphism $P(f) = a_0 + a_1 f + \cdots + a_n f^n \colon V \longrightarrow V$. Show that if c is an eigenvalue of f, then P(c) is an eigenvalue of P(f).

Exercise 15. Let $f: V \longrightarrow V$ be an endomorphism on a real vector space V such that $f^2 = \text{Id.}$ Define subspaces as follows:

$$W^+ := \{ v \in V \mid f(v) = v \}, \qquad W^- := \{ v \in V \mid f(v) = -v \}$$

Prove that V is isomorphic to the direct sum $W^+ \oplus W^-$.

Exercise 16. Let $f: V \longrightarrow V$ be an endomorphism on a finite-dimensional vector space V. Prove that there is an integer n so that $(\text{Ker } f^n) \cap (\text{Im } f^n) = 0$.

Exercise 17. Consider the symmetric matrix

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}.$$

Find an orthogonal matrix $P \in O(3)$ so that PAP^t is diagonal.

Exercise 18. Prove the following proposition from lecture.

Proposition 2. Let (V, \langle , \rangle) be a Euclidean vector space.

(a) If (v_1, \ldots, v_n) is an orthonormal basis of V, then the corresponding matrix A of an endomorphism $f: V \longrightarrow V$ is given by

$$a_{ij} = \langle f(v_j), v_i \rangle.$$

(b) If (v_1, \ldots, v_n) is an orthonormal basis of V, then an endomorphism $f: V \longrightarrow V$ is self-adjoint if and only if the corresponding matrix A is symmetric.

 $\mathbf{2}$

Exercise 19. Prove the following proposition. (Hint: this may be argued similar to the proof of the Spectral Theorem given in lecture).

Proposition 3.

- (a) (Vector space form): Let f: V→V be an endomorphism of a finite-dimensional complex vector space V. Then there is a basis B of V such that the corresponding matrix A of f is upper triangular (i.e., all entries below the diagonal are zero).
- (b) (Matrix form): Let A be a complex $n \times n$ matrix. Then there is an invertible matrix $P \in M(n \times n, \mathbb{C})$ such that PAP^{-1} is upper triangular.

Exercise 20. Use the Spectral Theorem proved in lecture to give a short proof of the following proposition. (Hint: Even a one line proof can be given).

Proposition 4. Let $f: V \longrightarrow V$ be a self-adjoint endomorphism on an n-dimensional $(n \ge 1)$ Euclidean vector space. Then there exists an orthogonal map

$$P: \mathbb{R}^n \xrightarrow{\cong} V$$

so that the matrix of f with respect to P has the form

of the indicated diagonal matrix. Here c_1, \ldots, c_r are the distinct eigenvalues of f, the number of each appearing on the diagonal being equal to the geometric multiplicity.

Exercise 21. Let $f: V \longrightarrow V$ be a self-adjoint endomorphism on a Euclidean vector space V. Prove the following: If v, w are eigenvectors of f corresponding to distinct eigenvalues $c \neq d$, then $v \perp w$.

Exercise 22. Use the Spectral Theorem proved in lecture to give a proof of the following proposition. (Hint: Exercise 21 should also be helpful).

Proposition 5. Let $f: V \longrightarrow V$ be a self-adjoint endomorphism of a finite-dimensional Euclidean vector space, c_1, \ldots, c_r its distinct eigenvalues, and $P_k: V \longrightarrow E_{c_k} \subset V$ the orthogonal projection onto the eigenspace E_{c_k} . Then

$$f = c_1 P_1 + \dots + c_r P_r.$$

Exercise 23. Let V be a finite-dimensional real vector space. Show that an endomorphism $f: V \longrightarrow V$ is diagonalizable if and only if there exists an inner product \langle , \rangle on V for which f is self-adjoint.

Exercise 24. Let V be a finite-dimensional Euclidean vector space and $U \subset V$ a subspace. Show that the orthogonal projection $P: V \longrightarrow U \subset V$ is self-adjoint, and determine its eigenvalues and eigenspaces.

Exercise 25. Let V be a finite-dimensional Euclidean vector space. Show that two self-adjoint endomorphisms $f, g: V \longrightarrow V$ can be diagonalized by the same orthogonal map $P: \mathbb{R}^n \xrightarrow{\cong} V$ if and only if they *commute* (i.e., $f \circ g = g \circ f$).

4