Error Term on the Hardy-Littlewood k-tuple Conjecture

By: Mahesh Dhulipala

I. Introduction

This paper will explore the error term on the Hardy-Littlewood *k*-tuple Conjecture, which estimates the number of prime constellations in a given range from 2 to *N* (where *N* is a large positive integer). A prime constellation is defined as the set of prime numbers of the form: (p, $p+2m_1, p+2m_2, ..., p+2m_k$), where $m_1, m_2, ..., m_k$ are positive integers. The conjecture estimates the number of prime constellations using the formula given below:

$$C(m_1, m_2, ..., m_k) \int_2^N \frac{1}{Log[x] Log[x + 2m_1] ... Log[x + 2m_k]} dx,$$
 (Eq.1)

where

$$C(m_1, m_2, ..., m_k) \sim 2^s \prod_q \frac{1 - \frac{w_q(q)}{q}}{(1 - \frac{1}{q})^{s+1}}.$$
 (Eq. 2)

In Eq. 2, *q* is every odd prime between 2 and *N*, $w_q(q)$ is the number of distinct residue classes of $(0, m_1, ..., m_k)$ modulo *q*, and *s* is one less than the size of the prime constellation (i.e. a 2tuple has s = 1). In addition, we can note that $w_q(q) = s + 1$ for all $q > m_s$. Thus for the 2-tuple case, the formula for $C(m_1, m_2, ..., m_k)$ becomes:

$$C(m_1) \sim 2 \prod_q \frac{1 - \frac{2}{q}}{(1 - \frac{1}{q})^2} \prod_{q \mid m_1} \frac{q - 1}{q - 2}.$$
 (Eq. 3)

The term $\prod_{q} \frac{1-\frac{2}{q}}{(1-\frac{1}{q})^2}$, when taken over a sufficient number of of odd primes q, converges to

approximately 0.66016. This value is called the Twin Primes Constant and is often referred to as c_2 . This gives us the final formula:

$$C(m_1) \sim 2c_2 \prod_{q|m_1} \frac{q-1}{q-2}.$$
 (Eq. 4).

II. Determining the Upper Bound of α

Using Eq. 1 and Eq. 4, we calculated the conjecture's estimate of twin prime constellations for a fixed N and a varying m_1 . This paper will measure the error of the conjecture's estimate using an error term α that is defined as:

$$\alpha = \frac{Log[|Empirical - Conjecture|]}{Log[N]},$$
 (Eq. 5)

where "Empirical" is the actual number of prime constellations that exist in a given range 2 to N and "Conjecture" is the value of the estimate. We chose to study α because we anticipate the error of the conjecture, [*Empirical – Conjecture*], to be of the form:

$$|Empirical - Conjecture| \le AN^{\alpha}$$
. (Eq. 6)

While this paper does not explain why we anticipate the error to be of this form, we use this prediction due to the nature of pre-existing work done on error estimates of conjectures. The paper will begin its study by looking at the behavior of α for various sets of 2-tuples at a fixed N value. The graphs in Appendix A demonstrate the behavior of α for different ranges of N and m_1 . The graphs show that α is bounded by $\frac{1}{2}$.

III. Determining the Upper Bound of A

Using $\alpha = \frac{1}{2}$, we calculated *A* in Eq. 6; however, we are interested in the maximum value of *A* since we are looking for the error bound. Thus, to find where *A* is maximized, we calculated

A for a fixed m_1 at various N. The general trend for A tended to be a monotonically decreasing function as seen in the table below for $m_1 = 2$ and various N values.

Ν	A
2 ²⁰	$3.84914*10^{-5}$
2 ²¹	1.98577*10 ⁻⁵
2 ²²	$5.50649*10^{-6}$
2 ²³	8.85031*10 ⁻⁶
2 ²⁴	1.0991*10 ⁻⁶

For the table below $m_1 = 2$.

The trend seen above holds true for all m_1 we have studied, $m_1 = 1$ to 20, 100,1000; thus, we can reasonably assume that A is inversely proportional to N. This result agrees with the general claim of the conjecture itself that states: for a sufficiently large N, the conjecture can accurately predict the number of prime constellations in a given range 2 to N. From these results, we complied a table that has various m_1 values and their corresponding A values (See Appendix B).

IV. Conclusion

From the results above, we can gather that the error term on the Hardy-Littlewood *k*-tuple Conjecture does in fact have an error approximation that can be modeled by a function of the form AN^{α} , where A is a constant dependent on N, N is the upper bound of the range of interest, and $\alpha = \frac{1}{2}$. While this paper does not explicitly explore other size tuples, previous work with 3tuples suggests that their error term behavior would be similar to the 2-tuples. Thus, we may

Table 1 Behavior of *A***:** Values for *A* were calculated at many *N* values, only a few are show here.

reasonably assume that error terms for various tuples can be modeled in a similar form to the one illustrated above.

Note: Calculations for this project were done using Wolfram Alpha's *Mathematica* Software; some sample code that was used to calculate these results is included in Appendix C. In the references below, I have listed two papers. The first paper, Brent (1974), was useful in understanding the conjecture itself. The second paper, Granville (2007), contains research relevant to this project's topic.

References:

- Brent, Richard P. "The Distribution of Small Gaps Between Successive Primes." Mathematics of Computation 28.125 (1974): 315. Web.
- Granville, Andrew. "Refinements of Goldbach's Conjecture, and the Generalized Riemann Hypothesis." *Functiones Et Approximatio Commentarii Mathematici* 37.1 (2007): 159-73. Web.

Appendix A: Behavior of α Graphs

Value of N	Value of <i>m</i> ₁	Graph
224	1 to 100	Behavior of alpha
2 ²⁴	2 to 2 ¹⁰⁰	Behavior of alpha
		0.35 0.30 0.25 0.20 0.15 0.10 0.05 1 2 3 4 Log[r]/Log[NN]
2 ²⁸	1 to 100	Behavior of alpha Alpha 0.4 0.3 0.2 0.2 0.1

Figure 1: The table above shows how the value of alpha is bounded from above by $\frac{1}{2}$ for various for m_1 and N. Note: In the graphs the axes have "r" and "NN" these correspond to m_1 and N (the naming difference is due to cross referencing multiple sources).

Appendix B: Behavior of *A*

Value of <i>m</i> ₁	Value of A
1	2.21274 *10 ⁻⁵
2	3.84914*10 ⁻⁵
3	4.60216*10 ⁻⁵
4	3.86429*10 ⁻⁶
5	2.69231*10 ⁻⁵
6	4.84824*10 ⁻⁵
7	1.37947*10 ⁻⁵
8	1.56882*10 ⁻⁵
9	1.78449*10 ⁻⁵
10	2.3626*10 ⁻⁶
11	$4.06328*10^{-6}$
12	7.22066*10 ⁻⁵
13	2.52207*10 ⁻⁵
14	4.79284*10 ⁻⁵
15	7.09623*10 ⁻⁶
16	1.65303*10 ⁻⁵
17	1.78241*10 ⁻⁵
18	1.85252*10 ⁻⁵
19	3.2703*10 ⁻⁵
20	8.7101*10 ⁻⁶
100	3.54925*10 ⁻⁵
1000	1.54595*10 ⁻⁵

Table 1: Table of *A*. The values for *A* are displayed above. The *A* values above correspond to an *N*-value of 2^{20} . As mentioned in the paper, *A* generally tends to be a monotonically decreasing as *N* increases. We chose $N=2^{20}$ as it is the lowest value of *N* where are results can be applicable to the uses of the conjecture (reducing *N* to very small integers is not useful as the conjecture operates on the premise *N* is sufficiently large).

Figure 2: Graph of *A*. Again, R on the graph above is m_1 . *A* generally tends to be be around 10^{-5} or 10^{-6} order of magnitude. The alpha value for $m_1=100$ or 1000 is not on the graph (as the values distort the graph); however, this trend hold for those higher values of m_1 as well.

Appendix C: Mathematica Code

```
(*Below is some of the code used to find Alpha*)
c2 = 0.66016;
qlist[r_] := Select[FactorInteger[r], OddQ[#[[1]]] && #[[1]] > 1 &][[All, 1]];
mathprod[lst_] := If[Length[lst] == 0, 1, Times@@lst]
A[r_] := 2 * c2 * mathprod[(qlist[r] - 1) / (qlist[r] - 2)];
Timing
 out = {};
 For j = 1, j \le 100, j + +, \{
   r = 2^j;
    (* r = 2^j *)
    (* r = Floor[1.5<sup>j</sup>] *)
   NN = 2^{28};
    (* NN = 2^{30} *)
   counter = 0;
   k = 1;
   p = Prime[k];
   While [p \le NN, \{ If [PrimeQ[p+2r], counter++]; k++; p = Prime[k]; \} ];
   emp = counter;
   conj = A[r] N[Integrate[1 / ((Log[x]) (Log[x+2r])), {x, 2, NN}]];
   alpha = Log[Abs[emp - conj]] / Log[NN];
   Print[j, " ", alpha];
   out = Append[out, {(Log[r] / Log[NN]), alpha}];
  }]]
ListPlot[out, AxesLabel \rightarrow {"Log[r]/Log[NN]", "Alpha"},
 Joined \rightarrow True, PlotLabel \rightarrow Style["Behavior of alpha"], PlotRange \rightarrow All]
```

(*Below is some of the code used to find A*)

```
c2 = 0.66016;
qlist[r_] := Select[FactorInteger[r], OddQ[#[[1]]] && #[[1]] > 1 &][[All, 1]];
mathprod[lst_] := If[Length[lst] == 0, 1, Times@@lst]
A[r_] := 2 * c2 * mathprod[(qlist[r] - 1) / (qlist[r] - 2)];
out242 = { };
For [r = 1, r < 21, r++, \{
    Print["R-Value: ", r];
    Timing[
    For j = 1, j \le 28, j + +, \{
       (* r = 2^j *)
       (* r = Floor[1.5<sup>j</sup>] *)
       NN = 2^{j};
       (* NN = 2^{3}0 *)
       counter = 0;
       k = 1;
       p = Prime[k];
       While [p \le NN, \{If[PrimeQ[p+2r], counter++]\};
         k++;
         p = Prime[k]; \}];
       emp = counter;
       conj = A[r] N[Integrate[1 / ((Log[x]) (Log[x+2r])), {x, 2, NN}]];
       alpha = Log[Abs[emp-conj]]/Log[NN];
       AConstant = ScientificForm [Abs[emp - conj] / (NN)^{1/2}];
       Print["N Value: ", NN, "
                                         ", "Value of A: ", AConstant];
       out242 = Append[out242, {(r), AConstant}];
      }]];
   ListPlot[out242, AxesLabel \rightarrow {"r", "A"},
     Joined \rightarrow True, PlotLabel \rightarrow Style["Behavior of A"], PlotRange \rightarrow All]
  }];
```