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I. Introduction

This paper will explore the error term on the Hardy-Littlewood A-tuple Conjecture, which
estimates the number of prime constellations in a given range from 2 to N (where N is a large
positive integer). A prime constellation is defined as the set of prime numbers of the form: (p,
p+2my, p+2my, ..., p+2my ), where m,, m,, ..., m,, are positive integers. The conjecture estimates
the number of prime constellations using the formula given below:
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In Eq. 2, g is every odd prime between 2 and N, w, (q) is the number of distinct residue classes
of (0,m, ..., my) modulo ¢, and s is one less than the size of the prime constellation (i.e. a 2-

tuple has s = 1). In addition, we can note that w,(q) = s + 1 for all q > m,. Thus for the 2-tuple

case, the formula for C(m,, m,, ..., m;) becomes:
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a 1")2 , when taken over a sufficient number of of odd primes g , converges to
q

1

The term [,

approximately 0.66016. This value is called the Twin Primes Constant and is often referred to as
c,. This gives us the final formula:

C(my)~2c, 1_[ q;l (Eq. 4).
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I1. Determining the Upper Bound of a
Using Eq. 1 and Eq. 4, we calculated the conjecture’s estimate of twin prime

constellations for a fixed NV and a varying m;. This paper will measure the error of the
conjecture’s estimate using an error term « that is defined as:

_ Log[|Empirical — Conjecturel|] (Eq. 5)
*= Log[N] ’

where “Empirical” is the actual number of prime constellations that exist in a given range 2 to N
and “Conjecture” is the value of the estimate. We chose to study a because we anticipate the
error of the conjecture, |Empirical — Conjecture|, to be of the form:
|Empirical — Conjecture| < AN“. (Eq. 6)

While this paper does not explain why we anticipate the error to be of this form, we use this
prediction due to the nature of pre-existing work done on error estimates of conjectures. The
paper will begin its study by looking at the behavior of a for various sets of 2-tuples at a fixed N
value. The graphs in Appendix A demonstrate the behavior of a for different ranges of N and
m;. The graphs show that a is bounded by Y.
II1. Determining the Upper Bound of A

Using a = Y2, we calculated 4 in Eq. 6; however, we are interested in the maximum value

of 4 since we are looking for the error bound. Thus, to find where 4 is maximized, we calculated



A for a fixed m, at various N. The general trend for 4 tended to be a monotonically decreasing
function as seen in the table below for m; = 2 and various N values.

For the table below m; = 2.

N A

220 3.84914*107°
221 1.98577%1075
222 5.50649%10°
223 8.85031%107°
224 1.0991*107°

Table 1 Behavior of 4: Values for 4 were calculated at many N values, only a few are show
here.

The trend seen above holds true for all m; we have studied, m; = 1 to 20,100,1000; thus, we
can reasonably assume that 4 is inversely proportional to N. This result agrees with the general
claim of the conjecture itself that states: for a sufficiently large N, the conjecture can accurately
predict the number of prime constellations in a given range 2 to N. From these results, we
complied a table that has various m, values and their corresponding 4 values (See Appendix B).
IV. Conclusion

From the results above, we can gather that the error term on the Hardy-Littlewood -tuple
Conjecture does in fact have an error approximation that can be modeled by a function of the

form AN“, where 4 is a constant dependent on N, N is the upper bound of the range of interest,
and a = % While this paper does not explicitly explore other size tuples, previous work with 3-

tuples suggests that their error term behavior would be similar to the 2-tuples. Thus, we may



reasonably assume that error terms for various tuples can be modeled in a similar form to the one
illustrated above.

Note: Calculations for this project were done using Wolfram Alpha’s Mathematica Software;
some sample code that was used to calculate these results is included in Appendix C. In the
references below, I have listed two papers. The first paper, Brent (1974), was useful in
understanding the conjecture itself. The second paper, Granville (2007), contains research

relevant to this project’s topic.
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Appendix A: Behavior of a Graphs
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Figure 1: The table above shows how the value of alpha is bounded from above by 2 for various
for m; and N. Note: In the graphs the axes have “r” and “NN” these correspond to m; and N (the
naming difference is due to cross referencing multiple sources).



Appendix B: Behavior of 4

Value of my Value of A
1 221274 ¥*107°
2 3.84914*107°>
3 4.60216*107>
4 3.86429%10°°
5 2.69231*%107°>
6 4.84824*%10°°
7 1.37947%107°
8 1.56882%107°
9 1.78449%107>
10 2.3626%¥10°°
11 4.06328%107°
12 7.22066*%107>
13 2.52207*%107°>
14 4.79284*107>
15 7.09623*107°
16 1.65303*107°
17 1.78241%107°>
18 1.85252*%107°>
19 3.2703*107°
20 8.7101*10°
100 3.54925%107°
1000 1.54595%107°

Table 1: Table of A. The values for 4 are displayed above. The 4 values above correspond to an
N-value of 229, As mentioned in the paper, 4 generally tends to be a monotonically decreasing as
N increases. We chose N=22° as it is the lowest value of N where are results can be applicable to
the uses of the conjecture (reducing N to very small integers is not useful as the conjecture
operates on the premise N is sufficiently large).
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Figure 2: Graph of 4. Again, R on the graph above is m,. 4 generally tends to be be around
107> or 107° order of magnitude. The alpha value for m;=100 or 1000 is not on the graph (as
the values distort the graph); however, this trend hold for those higher values of m,as well.



Appendix C: Mathematica Code

(*Below is some of the code used to find Alphax)

c2 =0.66016;

qlist[r_] := Select[FactorInteger[r], 0ddQ[#[[1]]] & #[[1]] > 1 &] [[All, 1]];
mathprod[lst_] := If[Length[lst] == 0, 1, Times @@ 1st]

A[r_] :=2xc2»mathprod[ (qlist[r] - 1) / (qlist[r] -2)];

Timing[
out = {}

For[j j £100, j++, {

7
=41y
r=2"j;
(*# r = 27F *)
(#* r = Floor[1.5%j] =*)
NN = 2728;
(# NN = 2730 =*)
counter = 0;
k=1;
p = Prime[k];
While[p < NN, {If[PrimeQ[p+2r], counter++]; k++; p = Prime[k];}];
emp = counter;
conj = A[r] N[Integrate[l/ ((Log[x]) (Log[x+2r])), {x, 2, NN}]];
alpha = Log[Abs[emp - conj]] /Log [NN];
Print[j, " ", alpha];
out = Append[out, {(Log[r] /Log[NN]), alpha}];
Lis}llllot [out, AxesLabel » {"Log[r]/Log[NN]", "Alpha"},
Joined -» True, PlotLabel - Style["Behavior of alpha"], PlotRange - All]

(*Below is some of the code used to find Ax)



2 | Code for Appendix.nb

c2 =0.66016;

qlist[r_] := Select[FactorInteger[r], OddQ[#[[1]]] & #[[1]] > 1 &] [[All, 1]];
mathprod[lst_] := If[Length[lst] == 0, 1, Times @@ 1lst]

A[r_] :=2%c2 *mathprod[ (qlist[r] - 1) / (qlist[r] - 2)] ;

out242 = {};

For[r=1, r<2l, r++, {

Print["R-Value: ", r];
Timing |

For[j=1,3j <28, j++, {

= 273 %)
(* = Floor[1.5"j] %)
NN 2"75;
(* NN = 2730 %)
counter = 0;
k=1;
p = Prime[k];
While[p < NN, {If[PrimeQ[p+2r], counter++];
k++;
p = Prime[k];}];
emp = counter;
conj = A[r] N[Integrate[l/ ((Log[x]) (Log[x+2r])), {x, 2, NN}]];
alpha = Log[Abs[emp - conj]] /Log[NN] ;
AConstant = ScientificForm[Abs [emp - conj] / (NN) * 1/2] ;
Print["N Value: ", NN, " ", "Value of A: ", AConstant];
out242 = Append[out242, {(r), AConstant}];

HI

ListPlot[out242, AxesLabel » {"r", "A"},
Joined - True, PlotLabel - Style["Behavior of A"], PlotRange - All]

Hi

(*
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