Modular Forms

Sergio David Zapeta Tzul Adviser: PhD Ghaith A. Hiary

August 1, 2017

Basic Definitions

Define

- * $SL_2(\mathbb{Z}) = \left\{ \left(egin{array}{cc} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{array} \right) : \mathsf{ad} \mathsf{bc} = 1, \mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d} \in \mathbb{Z} \right\}$
- * $\mathfrak{h} = \{z \in \mathbb{C} : Im(z) > 0\}$, \mathfrak{h} is called the complex upper half plane

If $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ Then for any $z \in \mathbb{C}$ we define the action of $SL_2(\mathbb{Z})$ on $\mathfrak h$ by a linear functional transformation:

$$\gamma(z) = \frac{az+b}{cz+d} \in \mathfrak{h}$$

Basic Definitions

Let R be an open subset of \mathbb{C} . We define $f:R\to\mathbb{C}$ to be holomorphic at a point $z\in R$ if f is complex differentiable at z i.e. for $z\in R$ the limit:

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

exists, and it is the same if we take h along any path.

We said that f is holomorphic on R if f is holomorphic at all points $z \in R$.

f(z) is holomorphic at ∞ if f(z), is bounded, or f(1/z) is holomorphic at 0.

Modular Forms

A modular form of weight k on $SL_2(\mathbb{Z})$ is a function $f:\mathfrak{h}\to\mathbb{C}$ such that

$$\begin{array}{l} \mathrm{i} \ \mathrm{lf} \ \gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in \mathit{SL}_2(\mathbb{Z}) \ \mathrm{then} \ f(\gamma(z)) = (cz+d)^k f(z) \\ \forall z \in \mathfrak{h} \end{array}$$

ii f(z) is holomorphic on $\mathfrak h$ and at ∞

Let f a modular form, take $\gamma = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in SL_2(\mathbb{Z})$ then $\forall z \in \mathfrak{h}$ we have $f(z+1) = f(\gamma(z)) = (cz+d)^k f(z) = f(z)$ then f(z) is periodic, also f is holomorphic at ∞ , thus f has a Fourier expansion

$$f(z) = \sum_{n=0}^{\infty} a_n e^{2\pi i n z}$$

Let $q(z)=e^{2\pi iz}$, then $f(z)=\sum_{n=0}^{\infty}a_nq^n$ and this is called the

q-expansion of f about ∞ .

Eisenstein Series

Let $k \in \mathbb{Z}, k > 2$. Define the Eisenstein series of weight k to be a series

$$G_k(z) = \frac{(k-1)!}{2(2\pi i)^k} \sum_{\substack{(n,m) \in \mathbb{Z}^2 \\ (m,n) \neq (0,0)}} \frac{1}{(nz+m)^k}$$

$\mathsf{Theorem}$

For k > 2, the function $G_k(z)$ is modular of weight k on $SL_2(\mathbb{Z})$

Proof: We must prove that $G_k(z+1) = G_k(z)$, and $G_k(\frac{-1}{z}) = z^k G_k(z)$

Eisenstein Series

The beginning of the q-expansion of the first few $G_k(z)$ are given by:

$$G_4(z) = \frac{1}{240} + q + 9q^2 + 28q^3 + 73q^4 + 126q^5 + 252q^6 + \cdots$$

$$G_6(z) = -\frac{1}{504} + q + 33q^2 + 244q^3 + 1057q^4 + \cdots$$

In general,

$$G_k = \frac{1}{2}\zeta(1-k) + \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n$$

where $\sigma_{k-1}(n) = \sum_{d|n} d^{k-1}$ and $\zeta(s)$ is the Riemann zeta function.

Vector Space M_k

Consider the set M_k of all modular forms of weight k. We have that:

- * $f(z) = 0 \in M_k$
- * If $g \in M_k$, then $\alpha g \in M_k \ \forall \alpha \in \mathbb{C}$
- * If $g, h \in M_k$, then $g + h \in M_k$

Thus M_k is a vector space over \mathbb{C} . Then $G_k \in M_k \ \forall k \in \mathbb{Z}, \ k > 2$. We can calculate the dimension of each vector space M_k

Application in Number Theory

Note that if $f \in M_k$, $g \in M_h$, then $fg \in M_{k+h}$.

Example: $G_4^2 \in M_8$, and by previous observation $G_8 \in M_8$. Since M_8 is 1-dimensional, $G_8 = \alpha G_4^2$ for some $\alpha \in \mathbb{C}$. Comparing the q-expansions, we get the non-obvious identity

$$\sigma_7(n) = \sigma_3(n) + 120 \sum_{m=1}^{n-1} \sigma_3(m) \sigma_3(n-m)$$

- DON ZAGIER Introduction to Modular Forms, Chapter 1,
- WILLIAM A. STEIN Modular Forms: A Computational Approach, pages 1–12, 1991.
- PAUL E. GUNNELLS *Modular Forms Twigs*, pages 1–2, 1991.
- SIMON C. F. ROSE Introduction to Modular Forms, 2014.