Infinite Series and Geometric Distributions

1. GEOMETRIC SERIES

Suppose that |z| < 1, then the geometric series in x is absolutely convergent
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In fact we can use this method to find the tall sums of this series
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Now consider another sum which converges absolutcly for x| < 1
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Finally, one last sum:
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2. GEOMETRIC DISTRIBUTIONS

Suppose that we conduct a sequence of Bernoulli (p)-trials, that is each trial has a success probability of

0 < p <1 and a failure probability of 1 — p. The geometric distribution is given by:

P(X =n) = the probability that the first success occurs on trial n
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As this last sum is a geometric series, and |1 — p| < 1,
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The cumulative distribution function is given by:
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If X is a geometrically distributed random variable with parameter p, then
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