Infinite Series and Geometric Distributions

1. Geometric Series

Suppose that $|x|<1$, then the geometric series in x is absolutely convergent:

$$
\sum_{i=0}^{\infty} x^{i}=\frac{1}{1-x}
$$

Here is how we find this value: Let

$$
S_{0}=\sum_{k=0}^{\infty} x^{k}=1+x+x^{2}+\cdots
$$

then

$$
x S_{0}=x \sum_{k=0}^{\infty} x^{k}=x+x^{2}+x^{3}+\cdots
$$

SO

$$
\begin{aligned}
S_{0}-x S_{0} & =1 \\
S_{0}(1-x) & =1 \\
\sum_{\mathbf{k}=\mathbf{0}}^{\infty} \mathbf{x}^{\mathbf{k}}=\mathbf{S}_{\mathbf{0}} & =\frac{\mathbf{1}}{\mathbf{1}-\mathbf{x}}
\end{aligned}
$$

In fact we can use this method to find the tail sums of this series:

$$
\sum_{k=m}^{\infty} x^{k}-x \sum_{k=m}^{\infty} x^{k}=x^{m}
$$

So

$$
\sum_{\mathrm{k}=\mathrm{m}}^{\infty} \mathrm{x}^{\mathrm{k}}=\frac{\mathrm{x}^{\mathrm{m}}}{1-\mathrm{x}}
$$

Now consider another sum which converges absolutely for $|x|<1$:

$$
S_{1}=\sum_{k=0}^{\infty}(k+1) x^{k}=1+2 x+3 x^{2}+\cdots
$$

then

$$
x S_{1}=x \sum_{k=0}^{\infty}(k+1) x^{k}=x+2 x^{2}+3 x^{3}+\cdots
$$

so

$$
\begin{gathered}
S_{1}-x S_{1}=S_{0}=\frac{1}{1-x} \\
S_{1}(1-x)=\frac{1}{1-x} \\
\sum_{\mathbf{k}=\mathbf{0}}^{\infty}(\mathbf{k}+\mathbf{1}) \mathbf{x}^{\mathbf{k}}=\mathbf{S}_{\mathbf{1}}=\frac{\mathbf{1}}{(\mathbf{1}-\mathbf{x})^{2}}
\end{gathered}
$$

Finally, one last sum:

$$
S_{2}=\sum_{k=0}^{\infty}(k+1)^{2} x^{k}=1+4 x+9 x^{2}+\cdots
$$

then

$$
x S_{2}=x \sum_{k=0}^{\infty}(k+1)^{2} x^{k}=x+4 x^{2}+9 x^{3}+\cdots
$$

$$
\begin{gathered}
S_{2}-x S_{2}=1+3 x+5 x^{2}+7 x^{3}=\left(2+4 x+6 x^{2}+\cdots\right)-\left(1+x+x^{2}+\cdots\right)=2 S_{1}-S_{0} \\
S_{1}(1-x)=\frac{2}{(1-x)^{2}}-\frac{1}{1-x}=\frac{1+x}{(1-x)^{2}} \\
\sum_{\mathbf{k}=\mathbf{0}}^{\infty}(\mathbf{k}+\mathbf{1})^{2} \mathbf{x}^{\mathbf{k}}=\mathbf{S}_{\mathbf{2}}=\frac{\mathbf{1}+\mathbf{x}}{(\mathbf{1}-\mathbf{x})^{3}}
\end{gathered}
$$

2. Geometric Distributions

Suppose that we conduct a sequence of Bernoulli (p)-trials, that is each trial has a success probability of $0<p<1$ and a failure probability of $1-p$. The geometric distribution is given by:

$$
\begin{aligned}
& P(X=n)=\text { the probability that the first success occurs on trial } n \\
& \qquad \mathbf{P}(\mathbf{X}=\mathbf{n})=(\mathbf{1}-\mathbf{p})^{\mathbf{n}-\mathbf{1}} \mathbf{p} \quad \text { where } n \in\{1,2, \ldots\}
\end{aligned}
$$

Note that

$$
\sum_{n=1}^{\infty} P(X=n)=\sum_{n=1}^{\infty}(1-p)^{n-1} p=\sum_{k=0}^{\infty}(1-p)^{k} p=p \sum_{k=0}^{\infty}(1-p)^{k}
$$

As this last sum is a geometric series, and $|1-p|<1$,

$$
\sum_{j=n}^{\infty} P(X=n)=p \frac{1}{1-(1-p)}=p \frac{1}{p}=1
$$

The cumulative distribution function is given by:

$$
P(X \leq n)=1-P(X>n)=1-\sum_{k=n+1}^{\infty}(1-p)^{k-1} p=1-\sum_{k=n}^{\infty}(1-p)^{k} p=1-p \frac{(1-p)^{n}}{p}
$$

so

$$
\mathbf{P}(\mathbf{X} \leq \mathbf{n})=\mathbf{1}-(\mathbf{1}-\mathbf{p})^{\mathbf{n}}
$$

If X is a geometrically distributed random variable with parameter p, then

$$
E(X)=\sum_{n=1}^{\infty} n(1-p)^{n-1} p=\sum_{k=0}^{\infty}(k+1)(1-p)^{k} p=p \sum_{k=0}^{\infty}(k+1)(1-p)^{k}
$$

Using the notes above:

$$
E(X)=p \sum_{k=0}^{\infty}(k+1)(1-p)^{k}=p \frac{1}{[1-(1-p)]^{2}}=p \frac{1}{p^{2}}
$$

so

$$
\mathbf{E}(\mathbf{X})=\frac{\mathbf{1}}{\mathbf{p}}
$$

Also

$$
E\left(X^{2}\right)=\sum_{n=1}^{\infty} n^{2}(1-p)^{j-1} p=\sum_{k=0}^{\infty}(k+1)^{2}(1-p)^{k} p=p \sum_{k=0}^{\infty}(k+1)^{k}(1-p)^{k}
$$

Using the notes above:

$$
E\left(X^{2}\right)=p \sum_{k=0}^{\infty}(k+1)^{2}(1-p)^{k}=p \frac{1+(1-p)}{[1-(1-p)]^{3}}=p \frac{2-p}{p^{3}}
$$

So

$$
\mathbf{E}\left(\mathrm{X}^{2}\right)=\frac{2-\mathbf{p}}{\mathbf{p}^{2}}
$$

Thus

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=\frac{2-p}{p^{2}}-\frac{1}{p^{2}}=\frac{1-p}{p^{2}}
$$

and

$$
\mathbf{S D}(X)=\frac{\sqrt{1-\mathrm{p}}}{\mathrm{p}}
$$

