Math 571

Orthogonal Projections and Least Squares

1. PRELIMINARIES

We start out with some background facts involving subspaces and inner products.

Definition 1.1. Let U and V be subspaces of a vector space W such that UNV = {0}. The direct sum of U
and V is the set UV ={u+v|ueUandv € V}.

Definition 1.2. Let S be a subspace of the inner product space V. The the orthogonal complement of S is
the set St ={v eV |(v,s) =0 for alls € S}.

Theorem 1.3. (1) If U and V' are subspaces of a vector space W with U NV = {0}, then U &V is also a
subspace of W.
(2) If S is a subspace of the inner product space V, then S* is also a subspace of V.

Proof: (1.) Note that 0+0 = 0isin U@ V. Now suppose wi,wy € UBV, then w; = u; +v; and wo = ug vy
with w; € U and v; € V and wy + wo = (u1 + v1) + (u2 + vo) = (u; + ug) + (v1 4+ va). Since U and V are
subspaces, it follows that w1 +wo € U@ V. Suppose now that « is a scalar, then aw; = a(u; +v1) = aug +av;.
As above, it then follows that awy; € U @ V. Thus U & V is a subspace for W.

For (2.), first note that 0 € S*. Now suppose that v; and vy € S*. Then (vy,s) = (vo,s) =0 for all s € S.
So (vi + va,s) = (v1,8) + (va,8) =0+ 0= 0 for all s € S. Thus v; + v, € S*. Similarly, if o is a scalar, then
{avy,8) = a(vi,s) =a-0=0for all s € S. Thus S+ is a subspace of V. O

Theorem 1.4. If U and V are subspaces of W with UNV = {0} and w € U @V, then w = u+ v for unique
uelUandvelV.

Proof: Write w =u; +vy and w=uy+vy. Thenuj +vi=us+veo=>u—us=vy—vi=u —us =0=
Vo — V] = U] = ug and vy = vy. [
Recall that one of the axioms of an inner product is that (x,x) > 0 with equality if and only if x = 0. An

immediate consequence of this is that SN S+ = 0.

Definition 1.5. Let S be a subspace of the inner product space V and let {xi,...,x,} be a basis for S such
that (x;,x;) = 0 if i # j, then this basis is called an orthogonal basis. Furthermore, if (x;,x;) = 1 then this

basis is called an orthonormal basis.

Definition 1.6. Let S be a finite dimensional subspace of the inner product space V- and let {x1,...,x,} be an

orthogonal basis for S. If v is any vector in V then the orthogonal projection of v onto S is the vector:

Note that if {x1,...,%X,} is an orthonormal basis, then we have the simpler expression:

n
p= Z<V>Xi>xi
i=1
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Also in the special case where S is spanned be the single vector x1, then p is just the usual orthogonal projection
of v onto S, which is the line spanned by x;.

Now we can prove the main theorem of this section:

Theorem 1.7. Let S be a finite dimensional subspace of the inner product space V. and v be some vector in 'V .

Moreover let {x1,...,x,} be an orthogonal basis for S and p be the orthogonal projection of v onto S. Then
(1) v—-peSt.
(2) V=Sa&st.

(3) If y is any vector in S with'y # p, then |[v —p|| < ||[v =yl

Note that part (3.) says that p is the vector in S which is closest to v. Moreover, an immediate consequence
of (2.) is that the orthogonal projection p of v onto S is independent of the choice of orthogonal basis for S.
Proof: (1.) We need to show that p and v — p are orthogonal. So consider (p,v — p) = (p,v) — (p,p). Note
that (x;,x;) = 0 when ¢ # j, so that

n . v, %; n
<p,V> = Z<Cixi7v> with Ci = < > and <p7p> = Z<Cixivc’ix’i> =

i=1 (i, xi) i=1
_ & <V7Xi> ) _ - <V’Xi>2 Cx
(p,v) = Z ) (x;,v) and (p,p) = Z ERERE (xi,%4)
Thus ) B
B "L (v, x;)? B "L (v, x;)?
(p,v} B Z <Xi Xi> and (p,p) B Z <Xi Xi>

and the result follows for this part. Now let v be any vector in V, then v = p + (v — p). Note that p € S and
from (1.), v—p € S+, and SN S+ = {0}. Therefore we must have V = S @ S+, proving (2.). For part (3.), let
y be some vector in S with y # p. Then |[v —p||=|[v—-p+p—y]||- Sincep—y € S and v—p € S+ by (1.),

we have
v =pl+llp—yl[*=lv -yl
By the Pythagorean Theorem. So
v —plP* = lv -yl ~lp - yII*
Since y # p, ||p — yl| # 0. Therefore ||[v — p||* < [|v —y|* and |lv - y|| < |lv - y]|. O
Note that by (3.) of the above theorem, if v is actually in S, then p = v.

Definition 1.8. Let S be a subspace of the inner product space V', v be a vector in 'V and p be the orthogonal
projection of v onto S. Then p is called the least squares approximation of v (in S) and the vectorr = v—p

is called the residual vector of v.

2. LEAST SQUARES IN R"

In this section we consider the following situation: Suppose that A is an m X n real matrix with m > n. If b
is a vector in R™ then the matrix equation Ax = b corresponds to an overdetermined linear system. Generally
such a system does not have a solution, however we would like to find an x such that Ax is as close to b as
possible. In this case Ax is the least squares approximation to b and we refer to x as the least squares solution
to this system. Recall that if r = b — Ax, then r is the residual of this system. Moreover, our goal is then to
find a x which minimizes ||r||.

Before we continue, we mention a result without proof:
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Theorem 2.1. Suppose that A is a real matriz. Then Col(A)* = N(AT) and Col(AT)+ = N(A).

We will use the results of the previous section to find X, or more precisely Ax. Given b there is a unique vector
p in Col(A) such that ||b — p|| is minimal by theorem 1.7. Moreover, by the same theorem, b — p € N(AT).
Thus:

ATb-p)=0=A"b-ATp=0= ATp=A"Db
However, p = Ax for some vector X (note: X is not necessarily unique, but Ax is). So
ATp=ATb = ATAx = ATb
Thus to find X we simply solve for X in the equation:
ATAx = A"p

which is necessarily consistent. Note that in this case we did not need to know an orthogonal basis for Col(A).
This is because we never explicitly calculate p.

Another general fact about A in this case is that the rank of A is generally n. That is, the columns of A will
usually be linearly independent. We have the following theorem which gives us an additional way to solve for x

in this situation:
Theorem 2.2. If A is an m x n matriz and the rank of A is n then AT A is invertible.

Proof: Clearly, N(A) is a subset of N(AT A). We now wish to show that N(AT A) is a subset of N(A4). This
would establish that N(A4) = N(ATA). Let x € N(ATA), then (ATA)x = 0 = AT(Ax) = 0 = Ax € N(4T).
Note also that Ax € Col(A) so that Ax € N(AT) N Col(A). Since Col(A)+ = N(AT) = Ax = 0, thus x € N(A)
and N(ATA) = N(A). By the rank-nullity theorem we see that the rank of A7 A is the same as the rank of A
which is assumed to be n. As AT A is an n x n matrix, it must be invertible. O

Thus, when A has rank n, AT A is invertible, and
x=(ATA)'ATD

Now we proceed with some examples:

Example 1: Consider the linear system:

-1+ Ty = 10
2251 + Ty = 5
r1 — 2!,62 = 20

This system is overdetermined and inconsistent. We would like to find the least squares approximation to b

and the least squares solution X to this system. We can rewrite this linear system as a matrix system Ax = b

where:
-1 1 10
A= 2 1 andb=] 5
1 -2 20

It is easy to check that A has rank 2, hence AT A is invertible. Therefore:

—6.43

2.71

x=(ATA)"1ATb = ( ) 71) ,  Ax=| 1.71 | and [|r|]| = ||b — A%|| = 19.44
e 10.14
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Example 2: Suppose some system is modeled by a quadratic function f(x), so that f(z) = ax?® + bx + c.

Experimental data is recorded in the form (z, f(z)) with the following results:
(1,1),(2,10), (3,9), (4, 16)

We would like to find the best approximation for f(z). Using these data points, we see that:

a(l) +b(1)+c = 1
a(4) +b(2)+¢ = 10
a(9) +b(3)+¢c = 9
a(16) +b(4) +c = 16

This corresponds to the matrix equation Ax = b where:

1 1 1
4 2 1 1
A= and b = 0
9 3 1 9
16 4 1 16

As in the previous example, the matrix A has full rank, hence AT A is invertible. Therefore the least squares
solution to this system is:
-0.5
x=(ATA) 'ATb=| 6.9
—4.5
Therefore f(z) is approximately —0.522 + 6.9z — 4.5
Example 3: The orbit of a comet around the sun is either elliptical, parabolic, or hyperbolic. In particular,

the orbit can be expressed by the polar equation:
r=[—e(rcosb)

where ( is some positive constant and e is the eccentricity. Note that the orbit is elliptical if 0 < e < 1, parabolic
if e =1 and hyperbolic if e > 1.

A certain comet is observed over time and the following set of data (r,8) was recorded:
(1.2,0.3),(2.1,1.2), (4.1,2.6),(6.3,3.8)

Using this data we would like to find the approximate orbital equation of this comet. Plugging these data points

in the equation above gives us the linear system:

B—e(l.146) = 1.2
B—e(0.761) = 2.1
B—e(—3513) = 4.1
B—e(—4.983) = 6.3

This system corresponds to the matrix equation Ax = b where

1 —-1.146 1.2

1 -0.761 2.1
A= and b =

1 3.513 4.1

1 4.983 6.3



Once again, the matrix A has full rank so that the least squares solution is given by:

2.242
x=(ATA)1ATb =
0.718
Therefore the orbital equation is approximately r = 2.242 — 0.718(r cos §). This example is similar to one of the
first applications of least squares. Gauss is credited with developing the method of least squares and applying

it to predicting the path of the asteroid Ceres. He did this to a remarkable degree of accuracy in 1801.

3. LEAST SQUARES IN C|a, b]

Recall that an inner product in Cfa, b] is given by

b
(g = [ T@gla)u() do

where w(z) is some continuous, positive function on [a,b]. Consider that we have a collection of functions
{fi(x),..., fn(x)} which are mutually orthogonal. Moreover, assume that they form an orthogonal basis for S.
Then, given any function f(z) in Cla,b], we can approximate f(z) by a linear combination of the f;. The best
such approximation (in terms of least squares) will be given by the orthogonal projection p(z) of f(z) onto S.
The most common application of such an approximation is in Fourier Series which will be covered in the next
section.

There is an analytical consideration which has to be made, and that is how good can we make this approx-
imation. In particular, can we enlarge S is a regular way so that the limit of this process is f(x). This is a

question which is beyond our scope, but the answers is yes in some cases and no in others.

4. FOURIER SERIES

In this section we consider the function space C[—m, 7] and we wish to know if given a function f(z) in
C[—m, ] how can we approximate this function using functions of the form cos ma and sinma. This is obviously

useful for periodic functions. Our setup is as follows:

—T

and

1 . .
S, = Span(ﬁ,sma;, ...,8innx,cosw,...,co8nw)

We can check that the following are true:

1 ™
(1,cosax) = 7/ cosazx dr =0
™ —T

(1,sin pz) = l/ sin Bx dx = 0
™

—T

1 [ lifa=
(cos aux, cos fx) = f/ cos ax cos Bz dx = fo=p
- 0if a #
1 [ lifa=
(sin ax, sin fz) = f/ sin az sin Bz dx = fa=p
T ) Oifa # 8

1 s
(cos ax,sin fzx) = — / cosarsinfr dr =0
™ —1T
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Therefore
1 .
{—,sinz,...,sinnz,cosz,...,cosnx}
V2
is an orthonormal basis for S,,.

Given a function f(z) in C[—m, ], the least squares approximation of f(z) in S, will be

C%O + Z(ak cos kx + by, sin kx)
k=1
where L
== d
ag = f(z) dzx
1 T
ap = — f(x) coskx dx
™ J)_rn
1 (" .
b, = — f(x)sinkx dx
™ —Tr

Note that ay and by are just the inner products of f(x) with the basis vectors of S,, and

% + ;(ak cos kx + by, sin kx)

is just the orthogonal projection of f(z) onto Sj,.

The series %> +>r_, (a cos kz+by sin kz) is called the nth order or nth degree Fourier series approximation
of f(z) and ag, by are called the Fourier coefficients . If we consider the approximations as partial sums, then
as n — oo we get the usual Fourier series % + >~° | (aj, cos kx + by, sin kx). There still remains the question of
how good an approximation this is and if this series actually converges to f(x).

Now lets try see what the projection of an easy function onto S, is:

Example 4: Let f(r) = . Then clearly f(z) is a vector in C[—m, 7]. The Fourier coefficients are:

1 K
aoz—/ xdr =20
™ —Tr

1 [7 rsinkz|” 1 [
ap = — zcoskx dr = - — sinkx dex =0
T . km )
2

- km
I — ka|" 1 [
bk:f/ wsinkr dr = —— 0T ——/ —coskx dr = (—1)F12
U 7 k

T km

Therfore the closest vector in S, to f(x) is

n

. 2
pn(x) = Z by sin kx = Z(—l)]ﬁl% sin kx
k=1

k=1
It is beyond our scope, but as n — oo, these approximations do converge to f(x) on the interval (—m, 7). In

particular, on that interval,

x=f(z) = i(—l)kH% sin kx

k=1
and -
g = Z(—l)”"‘l sin kx
k=1
If we take x = /2, then we see that
- 1
%ZZ( 1)k+t smkle—f—l—f—?—i—



