(1.) Let \(A = \begin{pmatrix} 3 & 6 & 3 & 3 & 6 & 1 \\ 5 & 10 & 4 & 2 & -3 & 6 \\ 7 & 14 & 2 & 0 & -11 & 7 \\ 1 & 2 & 0 & 0 & -1 & 2 \end{pmatrix} \).

(a.) Find a basis for the row space of \(A \).
(b.) Find a basis for the column space of \(A \).
(c.) Find a basis for the nullspace of \(A \). DO NOT USE MATLAB.
(d.) The rank of \(A \).

(2.) Suppose that \(x_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, x_2 = \begin{pmatrix} 0 \\ -1 \\ 3 \end{pmatrix}, x_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \) and \(x_4 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} \). Find a basis for \(\text{Span}(x_1, x_2, x_3, x_4) \).

Note: there is more than one answer.

(3.) Determine if \(1, e^x \) and \(\cos x \) are linearly independent in \(C[0,1] \).

(4.) Find a basis for the subspace \(S \) of \(V \) where:

(a.) \(V = \mathbb{R}^4 \) and \(S = \{ (a - b + c, a + c, a + 2b - c, b - 3c)^T \mid a, b, c \text{ are real numbers} \} \).
(b.) \(V = C[0,1] \) and \(S = \text{Span}(1, \sin 2x, \sin x \cos x) \).
(c.) \(V = \mathbb{P}_4 \) and \(S \) is the set of all polynomials \(p(x) \) in \(V \) with \(p(0) = 0 \) and \(p(1) = 0 \).

(5.) Let \(A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \) and let \(S = \{ B \in \mathbb{R}^{2 \times 2} \mid AB = BA \} \).

(a.) Show that \(S \) is a subspace of \(\mathbb{R}^{2 \times 2} \).
(b.) Find a basis for \(S \).

(6.) Let \(x_1 = 1, x_2 = 2, x_3 = -1 \) and \(x_4 = -2 \). Then

\[\langle p(x), q(x) \rangle = p(x_1)q(x_1) + p(x_2)q(x_2) + p(x_3)q(x_3) + p(x_4)q(x_4) \]

defines an inner product on \(\mathbb{P}_4 \). If \(p(x) = x^3 - 6x^2 + 2 \) and \(q(x) = x^3 + x - 1 \), find the following with respect to THIS inner product:

(a.) \(\langle p(x), q(x) \rangle \), \(||p(x)|| \), \(||q(x)|| \),
(b.) the orthogonal projection of \(p(x) \) onto the line spanned by \(q(x) \) and
(c.) the angle between \(p(x) \) and \(q(x) \).

(7.) True or False?

(a.) A linearly independent set can not contain 0.
(b.) If \(x \) and \(y \) are vectors in the inner product space \(V \), then \(||x + y||^2 = ||x||^2 + ||y||^2 \).
(c.) If \(A \) is an \(m \times n \) matrix, then \(\dim(\text{Col}(A)) + \dim(\text{N}(A)) = m \).
(d.) If \(A \) is an \(m \times n \) matrix, then \(Ax = b \) is consistent if and only if \(b \) is in the column space of \(A \).
(e.) If \(A \) is a singular \(n \times n \) matrix, then the columns of \(A \) form a basis for \(\mathbb{R}^n \).
(f.) A spanning set can never be linearly independent.

(8.) Prove the following:

(a.) Let \(S \) be the subset of \(\mathbb{R}^{n \times n} \) consisting of matrices \(A \) such that \(A^T = A \). Show that \(S \) is a subspace of \(\mathbb{R}^{n \times n} \).

(b.) If \(\{x_1, \ldots, x_n\} \) are linearly independent vectors in a vector space \(V \), then \(\{x_2, \ldots, x_n\} \) do not span \(V \).
(c.) If \(\{x_1, \ldots, x_n\} \) are linearly independent vectors in a vector space \(V \) which do not span \(V \), then there is a vector \(x_0 \) in \(V \) such that \(\{x_0, x_1, \ldots, x_n\} \) is also linearly independent.
(d.) If \(p \) is the orthogonal projection of \(x \) onto the line spanned by \(y \) then \(p \) and \(x - p \) are orthogonal.