1. Let \(A = \begin{pmatrix} 3 & 6 & 3 & 6 & 1 \\ 5 & 10 & 4 & 2 & -3 & 6 \\ 7 & 14 & 2 & 0 & -11 & 7 \\ 1 & 2 & 0 & 0 & -1 & 2 \end{pmatrix} \) and find:

(a.) A basis for the row space of \(A \).
(b.) A basis for the column space of \(A \).
(c.) A basis for the nullspace of \(A \). DO NOT USE MATLAB.
(d.) The rank of \(A \).

2. Suppose that \(\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \), \(\mathbf{v}_2 = \begin{pmatrix} 0 \\ -1 \\ 3 \end{pmatrix} \), \(\mathbf{v}_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \) and \(\mathbf{v}_4 = \begin{pmatrix} 2 \\ 2 \\ 8 \end{pmatrix} \). Find a basis for \(\text{Span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4) \).

Note: there is more than one answer.

3. Determine if \(S \) is a subspace of \(V \) where:

(a.) \(V = \mathbb{R}^{2 \times 2} \) and \(S \) is the set of \(2 \times 2 \) matrices \(A \) with \(\det(A) = 0 \).
(b.) \(V = \mathbb{R}^{2 \times 2} \) and \(S \) is the set of \(2 \times 2 \) upper triangular matrices.
(c.) \(V = \mathbb{R}^2 \) and \(S = \{(x_1, x_2)^T | |x_1| = |x_2|\} \).
(d.) \(V = \mathbb{P}_2 \) and \(S \) is the set of all polynomials \(p(x) \) in \(V \) such that \(p(1) = 0 \).
(e.) \(V = \mathbb{C}[-1, 1] \) and \(S \) is the set of odd functions in \(V \).

4. Determine if \(1, e^x \) and \(\cos x \) are linearly independent in \(\mathbb{C}[0, 1] \).

5. Find a basis for the subspace \(S \) of \(V \) where:

(a.) \(V = \mathbb{R}^3 \) and \(S = \{(a - b + c, a + c, a + 2b - c, b - 3c)^T | a, b, c \text{ are real numbers}\} \).
(b.) \(V = \mathbb{C}[0, 1] \) and \(S = \text{Span}(1, \sin 2x, \sin x \cos x) \).
(c.) \(V = \mathbb{P}_4 \) and \(S \) is the set of all polynomials \(p(x) \) in \(V \) with \(p(0) = 0 \) and \(p(1) = 0 \).

6. Let \(A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \) and let \(S = \{B \in \mathbb{R}^{2 \times 2} | AB = BA\} \).

(a.) Show that \(S \) is a subspace of \(\mathbb{R}^{2 \times 2} \).
(b.) Find a basis for \(S \).

7. True or False?

(a.) A linearly independent set can not contain \(\mathbf{0} \).
(b.) A subspace of a vector space must contain \(\mathbf{0} \).
(c.) If \(A \) is an \(m \times n \) matrix, then \(\dim(\text{Col}(A)) + \dim(\text{N}(A)) = m \).
(d.) If \(A \) is an \(m \times n \) matrix, then \(Ax = b \) is consistent if and only if \(b \) is in the column space of \(A \).
(e.) If \(A \) is a singular \(n \times n \) matrix, then the columns of \(A \) form a basis for \(\mathbb{R}^n \).
(f.) A spanning set can never be linearly independent.

8. Prove the following:

(a.) Let \(S \) be the subset of \(\mathbb{R}^{n \times n} \) consisting of matrices \(A \) such that \(A^T = A \). Show that \(S \) is a subspace of \(\mathbb{R}^{n \times n} \). (The matrices in \(S \) are called symmetric matrices.)

(b.) If \(\{\mathbf{v}_1, \ldots, \mathbf{v}_n\} \) are linearly independent vectors in a vector space \(V \), then \(\{\mathbf{v}_2, \ldots, \mathbf{v}_n\} \) do not span \(V \).
(c.) If \(\{\mathbf{v}_1, \ldots, \mathbf{v}_n\} \) are linearly independent vectors in a vector space \(V \) which do not span \(V \), then there is a vector \(\mathbf{v}_0 \) in \(V \) such that \(\{\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_n\} \) is also linearly independent.