Suppose that v is a vector in \mathbb{R}^n of length n. Prove the following:

(a.) A basis for the row space of A.
(b.) A basis for the column space of A.
(c.) A basis for the nullspace of A.
(d.) The rank and nullity of A.

(b.) Suppose that the initial distributions of states is given by v_1, v_2, v_3, v_4. Find a basis for the subspace of v_1, v_2, v_3, v_4.

Note: there is more than one answer.

(c.) Find the transition matrix of this process.
(d.) Determine if $1, e^x$ and $\cos x$ are linearly independent in $C[0, 1]$.
(e.) Determine if $1, e^x$ and $\cos x$ are linearly independent in $C[0, 1]$.
(f.) Find a basis for the subspace S of V where:

(a.) $V = \mathbb{R}^{2 \times 2}$ and S is the set of 2×2 matrices A with $\det(A) = 0$.
(b.) $V = \mathbb{R}^{2 \times 2}$ and S is the set of 2×2 upper triangular matrices.
(c.) $V = \mathbb{R}^2$ and $S = \{(x_1, x_2)^T \mid |x_1| = |x_2|\}$.
(d.) $V = \mathbb{P}_3$ and S is the set of all polynomials $p(x)$ in V such that $p(1) = 0$.
(e.) $V = C[-1, 1]$ and S is the set of odd functions in V.

(1.) Let $A = \begin{pmatrix} 1 & 2 & -1 & 2 & 2 & 4 & 4 \\ 3 & 6 & -5 & -8 & 7 & 6 & -7 \\ -2 & -4 & -3 & 1 & 3 & 1 & -12 \\ -2 & 4 & 1 & 1 & 0 & 4 & 13 \\ 2 & 4 & -2 & 4 & 4 & 8 & 8 \end{pmatrix}$ and find:

(a.) A basis for the row space of A.
(b.) A basis for the column space of A.
(c.) A basis for the nullspace of A.
(d.) The rank and nullity of A.

(2.) Suppose that $v_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 0 \\ -1 \\ 3 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$ and $v_4 = \begin{pmatrix} 2 \\ 2 \\ 8 \end{pmatrix}$. Find a basis for $\text{Span}(v_1, v_2, v_3, v_4)$.

(3.) Determine if S is a subspace of V where:

(a.) $V = \mathbb{R}^{2 \times 2}$ and S is the set of 2×2 matrices A with $\det(A) = 0$.
(b.) $V = \mathbb{R}^{2 \times 2}$ and S is the set of 2×2 upper triangular matrices.
(c.) $V = \mathbb{R}^2$ and $S = \{(x_1, x_2)^T \mid |x_1| = |x_2|\}$.
(d.) $V = \mathbb{P}_3$ and S is the set of all polynomials $p(x)$ in V such that $p(1) = 0$.
(e.) $V = C[-1, 1]$ and S is the set of odd functions in V.

(4.) Determine if $1, e^x$ and $\cos x$ are linearly independent in $C[0, 1]$.

(5.) Find a basis for the subspace S of V where:

(a.) $V = \mathbb{R}^4$ and $S = \{(a - b + c, a + c, a + 2b - c, b - 3c)^T \mid a, b, c, d \text{ are real numbers} \}$.
(b.) $V = C[0, 1]$ and $S = \text{Span}(1, \sin 2x, \sin x \cos x)$.
(c.) $V = \mathbb{P}_4$ and S is the set of all polynomials $p(x)$ in V with $p(0) = 0$ and $p(1) = 0$.

(6.) True or False?

(a.) A linearly independent set can contain 0.
(b.) A subspace of a vector space must contain 0.
(c.) If A is an $m \times n$ matrix, then $\dim(\text{Col}(A)) + \dim(\text{Nul}(A)) = m$.
(d.) If A is an $m \times n$ matrix, then $Ax = b$ is consistent if and only if b is in the column space of A.
(e.) If A is a singular $n \times n$ matrix, then the columns of A form a basis for \mathbb{R}^n.
(f.) A spanning set can never be linearly independent.

(7.) Suppose that a molecule has three excited states which are denoted by A, B and C. Each second, the probability that it transitions from one state to the other is as follows: From A to B: 0.2, from A to C: 0.3, from B to A: 0.4, from B to C: 0.2, from C to A: 0.5 and from C to B: 0.2. Note that these transitions are a Markov process.

(a.) Find the transition matrix of this process.
(b.) Determine that the initial distributions of states is 100 in state A, 75 in state B and 25 in state C. Find the resulting distributions after 10 seconds.
(c.) Find the steady state probability vector for this process.

(8.) Prove the following:

(a.) Let S be the subset of $\mathbb{R}^{n \times n}$ consisting of matrices A such that $A^T = -A$. Show that S is a subspace of $\mathbb{R}^{n \times n}$. (The matrices in S are called skew-symmetric matrices.)
(b.) If $\{v_1, \ldots, v_n\}$ are linearly independent vectors in a vector space V, then $\{v_2, \ldots, v_n\}$ does not span V.
(c.) If $\{v_1, \ldots, v_n\}$ are linearly independent vectors in a vector space V which do not span V, then there is a vector v_{n+1} in V such that $\{v_1, \ldots, v_n, v_{n+1}\}$ is also linearly independent.