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In this paper we identify a class of profinite groups (totally torsion free groups) 
that includes all separable Galois groups of fields containing an algebraically closed 
subfield, and demonstrate that it can be realized as an inverse limit of torsion free 
virtually finitely generated abelian (tfvfga) profinite groups. We show by examples 
that the condition is quite restrictive. In particular, semidirect products of torsion 
free abelian groups are rarely totally torsion free. The result is of importance for 
K-theoretic applications, since descent problems for tfvfga groups are relatively 
manageable.
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1. Introduction

It is well understood that the structure of absolute Galois groups is quite restricted, and that general 
profinite groups cannot be absolute Galois groups. Here are some examples of the restrictions that are 
known or conjectured.

1. The Artin-Schreier theorem asserts that the only finite groups that can occur as subgroups of absolute 
Galois groups are the trivial group and the cyclic group of order two.

2. F. Bogomolov has conjectured in [4] that in the case where the base field contains an algebraically closed 
field, the p-Sylow subgroup of the commutator subgroup is free. This is obviously a very restrictive 
condition.

3. The Bloch-Kato conjecture [9] implies in particular that when the roots of unity are in the base field, 
then the cohomology ring of the absolute Galois group is generated in degree one and is defined by 
relations in degree two. This is also clearly a very restrictive condition.
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In this paper, we study another condition which applies to all absolute and separable Galois groups. Specif-
ically, we prove three results.

1. We identify a new group theoretic condition, total torsion freeness (see Definition 2.1), and prove that 
it holds for absolute Galois groups of fields which contain all roots of unity. The condition can be 
interpreted both in the case of discrete groups and profinite groups. Total torsion freeness condition 
implies the usual notion of torsion freeness.

2. We prove that all groups satisfying total torsion freeness can be approximated in an appropriate sense 
by groups in a very restricted family which we call B. In the case of profinite groups, this means that 
the group can be described as an inverse limit of groups in B. The family B consists of groups which are 
(a) virtually finitely generated abelian (virtually topologically finitely generated abelian in the profinite 
case) and (b) torsion free. See Definition 3.1 for the definition.

3. We prove that every group in the family B embeds as a torsion free subgroup of the group Σn�Zn (or 
Σn � Ẑn in the profinite case) for some n. We also show that it follows that every group Γ in B acts on 
the ring

En =
⋃
s

k[t±
1
s

1 , . . . , t
± 1

s
n ]

for some n, in such way that the extension EΓ
n ⊆ En is a Galois ring extension in the sense of [11]. This 

last statement will be extremely useful in our work on the algebraic K-theory of fields.

Example of groups satisfying the total torsion freeness condition include free groups, free profinite groups, 
free abelian groups, free abelian profinite groups, fundamental groups of orientable two manifolds (not 
necessarily compact), and free products of totally torsion free groups. On the other hand, groups that are 
torsion free in the usual sense but not totally torsion free include fundamental groups of non-orientable 
surfaces, and the groups of upper triangular integral n ×n matrices with ones along the diagonal. It is also 
easy to check that most semidirect products of the form Z � Zn fail to be totally torsion free but are of 
course torsion free.

This work is motivated by our work on the descent problem in the algebraic K-theory of fields. We will 
not go into detail on this work here, but will note that a key component is understanding the structure of an 
analogue of the geometric classifying space construction of [12] for profinite groups, and the approximation 
theorem in this paper permits the construction of very useful and explicit models of such classifying spaces. 
We believe that the results are also of independent interest, hence the present paper.

The first author wishes to express his thanks to Brian Conrad for a number of stimulating conversations, 
in particular concerning the proof of Theorem 2.1.

2. Total torsion freeness

In this section, we define total torsion freeness and prove that separable Galois groups of fields have this 
property.

Definition 2.1. A Hausdorff topological group G is said to be totally torsion free if the abelianization of any 
closed subgroup of G is torsion free. In this case, the abelianization of a subgroup K means the quotient of 
K by the closure of its commutator subgroup. A topological group is said to be weakly totally torsion free
if every closed subgroup of finite index has torsion free abelianization.

Remark 2.1. The only groups with non-discrete topology we study will be profinite groups. The general 
statement is made only since it allows uniform treatment of the discrete and profinite cases.
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Remark 2.2. Note that total torsion freeness implies torsion freeness, since a group is torsion free if and 
only if every cyclic subgroup is torsion free and, since it is abelian, its abelianization is torsion free. In the 
profinite case, we have the same situation, since topologically cyclic subgroups must be torsion free since 
they are abelian.

Example 2.1. Free groups and free abelian groups are totally torsion free. Similarly for free and free abelian 
profinite and pro-l groups. See Proposition 2.1 for a proof.

Example 2.2. The integral Heisenberg group is torsion free, but not totally torsion free. The group consists 
of upper triangular integral matrices with diagonal elements all equal to one. It is easy to check that the 
subgroup consisting of all elements of the form

[1 2m n
0 1 l
0 0 1

]

has abelianization isomorphic to Z ×Z × Z/2Z, and that therefore the group is not totally torsion free.

Example 2.3. Fundamental groups of non-orientable surfaces are torsion free but not totally torsion free. 
They are torsion free since they act freely on a finite dimensional contractible manifold, but not totally 
torsion free since their one-dimensional integral homology has torsion.

One elementary result about this notion is the following.

Proposition 2.1. Free products of totally torsion free groups are totally torsion free. Free products of weakly 
totally torsion free profinite (pro-p) groups are weakly totally torsion free.

Proof. The first statement follows immediately from the Kurosh theorem. The second statement follows 
from the analogous profinite and pro-p statements in [3] and [7]. �

We also have the following.

Proposition 2.2. The fundamental groups of orientable two dimensional manifolds M without boundary are 
totally torsion free.

Proof. It suffices to prove that H1(M, Z) ∼= π1(M)ab is torsion free, since any subgroup of π1(M) is also 
the fundamental group of an orientable 2-manifold without boundary. But this result is Corollary 7.13 of 
[5]. �

We will also need to record results concerning Pontrjagin duality. Recall that for a compact topological 
abelian group A, we define the Pontrjagin dual to A, denoted Â, to be Homc(A, S1), where S1 denotes the 
circle group, and the superscript “c” denotes continuous homomorphisms.

Proposition 2.3. The construction A → Â satisfies the following properties.

1. The ̂-construction defines an equivalence of categories from the category of compact topological abelian 
groups to the opposite of the category of discrete abelian groups. The ̂-construction is its own inverse.

2. For a profinite group G, Ĝ is isomorphic to Homc(G, μ∞), where μ∞ ⊆ S1 is the group of all roots of 
unity, isomorphic to Q/Z. If G is a p-profinite group, then μ∞ can be replaced by μp∞, the group of all 
p-power roots of unity, isomorphic to Z[ 1 ]/Z.
p
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3. The functor A → Â is exact.
4. For G a profinite abelian group, G is torsion free if and only if Ĝ is divisible. Similarly for “p-torsion 

free” and “p-divisible”.

Proof. Statement (1) is one version of the statement of the Pontrjagin duality theorem, (2) is an immediate 
consequence, and (3) follows immediately from (1). It remains to prove (4). To prove (4), we note that G is 
torsion free if and only if the sequence 0 → G ×n−→ G is exact. The exactness proves that this occurs if and 
only if Ĝ ×n−→ Ĝ → 0 is exact, so ×n is surjective. This is the result. �

We now have the main result of this section.

Theorem 2.1. Let F be any field containing all roots of unity. Then the absolute Galois group GF of F is 
totally torsion free.

Remark 2.3. Class field theory shows, for example, that one cannot expect this result to hold for absolute 
Galois groups of number fields, so that some condition on the field is necessary.

Proof. Consider any closed subgroup K ⊆ GF , and its corresponding extension FK of F . We are interested 
in the Galois group A = Gab

FK
of the extension F ab

K over FK , and want to prove that it is torsion free. We 
have that

A ∼= lim
←
n

A/nA

where n varies over the partially ordered set of integers with ordering given by n ≤ n′ if and only if n|n′. For 
each prime, we let Ap denote the p-Sylow subgroup of A. Of course, we have A ∼=

∏
p Ap, and it will suffice 

to prove that Ap is torsion free for each p. When p �= char(F ), we can apply Kummer theory as follows. 
Kummer theory asserts that

Homc(A/pkA,Z/pkZ) ∼= F ∗
k /p

kF ∗
K

∼= F ∗ ⊗ Cpk

where Cpn denotes the cyclic group of order pn. We can pass to the direct limit on both sides of this 
isomorphism to get an isomorphism

Homc(Ap, Cp∞) → F ∗
K ⊗ Cp∞

where Cp∞ denotes the group Z[ 1p ]/Z. We note that the group Homc(Ap, Cp∞) can be interpreted as the 

Pontrjagin dual Âp, by part 2 of Theorem 2.3. The discrete group F ∗
K ⊗ Cp∞ is clearly p-divisible, so by 

part 4 of Proposition 2.3, Ap is torsion free.
On the other hand, if p = char(F ), we use Witt vectors instead, as in [10], Ch. 26. We recall that for 

any algebra A over the finite field Fp, we can construct the ring of Witt vectors W (A). It has a number of 
useful properties.

1. As a set, W (A) is the infinite product 
∏∞

n=0 A.
2. The shift operator

V (a0, a1, . . .) = (0, a0, a1, . . .)

is a homomorphism of abelian groups.
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3. The Frobenius operator F defined by F (a0, a1, . . .) = (ap0, a
p
1, . . .) commutes with V , and the composite 

V F = FV is multiplication by p in the group structure on W (A).
4. The subset In(A) ⊆ W (A) given by In(A) = V nW (A) is an ideal in W (A), and we denote the quotient 

algebra W (A)/In(A) by Wn(A). Multiplication by V gives an operator Wn(A) → Wn+1(A).

We now use these constructions to study the dual to Ap, following F. Lorenz [10]. Let π : W (F ) → W (F )
denote the operator F − id. Because F and V commute, it is clear that V : Wn(F ) → Wn+1(F ) induces a 
homomorphism

F̃ : Wn(F )/π(Wn(F )) → Wn+1(F )/π(Wn+1(F ))

and what is proved in [10], Ch. 26, p. 108, is that there is a perfect duality between the groups

Wn(FK)/π(Wn(FK)) × Ap/p
nAp → Cp∞

and consequently an isomorphism colim
→

Wn(FK)/π(Wn(FK)) → Homc(Ap, Cp∞), after passage to colimits 
over n. We claim that the group colim

→
Wn(FK)/π(Wn(FK)) is p-divisible, from which the torsion freeness 

of Ap would follow as in the case p �= char(F ) above. To see this, one must only observe that FV also 
induces a map

F̃ V : Wn(F )/π(Wn(F )) → Wn+1(F )/π(Wn+1(F ))

and that because x = F (x) in Wn(F )/π(Wn(F )), the two maps F̃ and F̃ V are equal. Since FV is multipli-
cation by p, the result follows. This gives the required result. �
3. The approximation theorem

This section will define a class of groups which can be used to approximate any totally torsion free 
profinite group, in the sense that the group can be described as an inverse limit of groups in that family.

Definition 3.1. A profinite group G is said to be virtually finitely generated abelian if it contains a closed 
topologically finitely generated abelian subgroup of finite index. We will denote the family of all virtually 
finitely generated abelian profinite groups by Vab. The family of torsion free groups in Vab will be denoted 
by B. In the discrete situation, we will denote by B0 the family of all torsion free groups that contain a 
finitely generated abelian subgroup of finite index.

Example 3.1. Let A and B be finitely generated torsion free abelian groups, and let ϕ : A −→ Aut(B) be a 
homomorphism. Suppose further that the image of ϕ is finite. Then the semidirect product A �ϕB is torsion 
free and virtually finitely generated abelian. The torsion free property holds for any semidirect product of 
one free abelian group with another, and the fact that it is virtually finitely generated abelian follows from 
the observation that Ker(ϕ) × B ⊆ A �ϕ B is a normal subgroup of finite index, and therefore A �ϕ B

belongs to B0. The profinite completion of any such group gives a profinite group in B.

Example 3.2. Let G be the fundamental group of any compact flat Riemannian manifold. Then by the 
results of [2] G is in the family B0. The profinite completion of G gives a profinite group in B.

Remark 3.1. Note that these examples are not totally torsion free. Although groups in B will be used to 
approximate totally torsion free groups, they are not generally totally torsion free themselves.
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It is easy to see that if a profinite group is virtually abelian, then it admits a closed normal abelian 
subgroup of finite index. This follows since if K is any finite index abelian subgroup of a profinite group, 
then the intersection of the (finite) collection of conjugates of K is the required abelian normal subgroup. 
Our initial goal is to prove that given a totally torsion free profinite group Γ, and a continuous surjective 
homomorphism π : Γ → G, where G is finite, then there is a profinite group G ∈ B and surjections π : Γ → G

and σ : G → G, with the kernel of σ abelian and finitely generated, so that σ ◦ π = π. So, we fix a finite 
quotient group of G of Γ, and define an approximation system for Γ → G to be a sequence of continuous 
surjective homomorphisms

Γ −→ Ĝ
σ−→ G

where the composite is the projection from Γ to G, and where the kernel of σ is torsion free, finitely 
generated, and abelian.

Let p be a prime, let α : Γ → Ĝ → G be an approximation system for Γ → G, and let g ∈ G be of order 
p. We say that α is p-torsion free over g if σ−1(g) ⊆ Ĝ contains no p-torsion elements.

Proposition 3.1. Let π : Γ → G be a continuous homomorphism of profinite groups, where G is finite, and Γ
is weakly totally torsion free. Then for any prime p and element g of order p in G, there is an approximation 
system

Γ −→ Ĝg
σg−→ G

which is p-torsion free over g.

Proof. Let g be an element of order p in G. The subgroup L = π−1〈g〉 ⊆ Γ is closed, and therefore 
has torsion free abelianization Lab. The restriction of π to L gives a surjective homomorphism from L to 
〈g〉 ∼= Z/pZ, which we also denote by π. Let Lab

p denote the p-Sylow subgroup of Lab, which is naturally 
both a subgroup and a quotient of Lab, and let rp denote the projection Lab → Lab

p . Since π vanishes 
on all q-Sylow subgroups (for q �= p) of Lab, it follows that π naturally factors through a homomorphism 
πp : Lab

p → Z/pZ. The Pontrjagin dual D = Homc(Lab
p , μp∞), where μp∞ ∼= Z[ 1p ]/Z, is a divisible group 

because Lab
p is torsion free. The homomorphism πp is identified with a non-zero element of order p in D. 

Because of the divisibility of D, there is a sequence of elements ϕi ∈ D with ϕ1 = πp, and p · ϕi = ϕi−1, or 
equivalently, a homomorphism μp∞ into D extending ϕ1. Since μp∞ is the Pontrjagin dual to Zp, we obtain 
a surjective homomorphism Πp : Lab

p → Zp, which projects to πp in Z/pZ. Let Πp denote the composite

L → Lab
p

Πp−→ Zp

The kernel of Πp (denote it by L) is a closed subgroup of L, and the quotient L/L is isomorphic to Zp. 
Of course, L is also a closed subgroup of K ⊆ Γ, where K is the kernel of π, but it is not necessarily normal 
in Γ. However, it has only finitely many conjugates, as it is normalized by L, which has finite index in Γ. 
Let {L1, . . . , Ln} be the set of conjugates of L, and let L denote the intersection

n⋂
i=1

Li

The closed subgroup L is normal in Γ, and we consider the quotient Γ/L. We have the short exact sequence 
of groups

{e} → K/L → Γ/L → G → {e}
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Since K/L ⊆
∏

i K/Li we have that K/L is a torsion free profinite group, and that it is topologically finitely 
generated. Finally, we need to show that Γ/L is p-torsion free over g. But it is clear that any lift of g to L
projects to the image of g under the homomorphism πp, and is consequently a topological generator for Zp. 
In particular, it cannot be a torsion element. �
Definition 3.2. Let α1 : Γ → Ĝ1

σ1−→ G and α2 : Γ → Ĝ2
σ2−→ G be two approximation systems for 

Γ → G. Let Ĝ12 denote the image of Γ in Ĝ1 × Ĝ2. It is clear that the composites Ĝ12
π1−→ Ĝ1

σ1−→ G and 
Ĝ12

π2−→ Ĝ2
σ2−→ G are equal, so we obtain a homomorphism σ12 : Ĝ12 → G. We will define the fiber product

of α1 and α2 to be the approximation system

Γ −→ Ĝ12
σ12−→ G

and denote it by α1 ×
G
α2.

The following proposition will allow us to construct an approximation system Γ → Ĝ → G for which Ĝ
is finitely generated and torsion free.

Proposition 3.2. Let α1 : Γ −→ Ĝ1
σ1−→ G and α2 : Γ −→ Ĝ2

σ2−→ G be approximation systems for Γ → G, 
where Γ is profinite and G is finite. Suppose that S1 and S2 are finite collections of pairs (p, g), where p is 
a prime and g ∈ G is an element of order p. Suppose further that the approximation system αi is such that 
for any (p, g) ∈ Si, αi is p-torsion free over g. Then α1 ×

G
α2 is p torsion free over g for any (p, g) ∈ S1∪S2.

Proof. Clear from the definitions. �
Theorem 3.1. Let Γ be a weakly totally torsion free profinite group, and suppose we are given a continuous 
homomorphism Γ → G. Then there is an approximation system

Γ −→ Ĝ → G

with Ĝ torsion free.

Proof. Let {(p1, gi), . . . , (pm, gm)} be a complete list of all pairs (p, g) so that p is a prime and g is a p-torsion 
element of G. For each i, construct an approximation system

αi : Γ −→ Ĝi → G

so that Ĝi is p-torsion free over gi. Form the iterated fiber product

α1 ×
G
· · · ×

G
αm = {Γ → Ĝ → G}

It is p-torsion free for every element g of order p in G. Suppose that there is a torsion element g in Ĝ. Then 
by choosing one of the primes p dividing the order of g, and taking appropriate powers, we can generate 
an element g′ of order p. Since the kernel of the projection Ĝ → G is a torsion free group, g′ must have 
a non-trivial projection in G. But from the construction, its powers will all be non-identity in the fiber 
product factor corresponding to (p, g′), which gives the result. �

This implies the following result concerning weakly totally torsion free profinite groups.
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Theorem 3.2. Let Γ denote a weakly totally torsion free profinite group. Let V denote the set of all closed 
normal subgroups K of Γ for which Γ/K is in B. Then we have the natural homomorphism

ϕ : Γ −→
∏
K∈V

Γ/K

The map ϕ is an inclusion and the group Γ is isomorphic as a topological group to the image of ϕ. Equiva-
lently, Γ is isomorphic to the inverse limit of the partially ordered set of quotients in V.

Proof. The injectivity of ϕ is an immediate consequence of Theorem 3.1, and the statement about being 
homeomorphic to its image is a standard property of compact Hausdorff spaces. The inverse limit statement 
is similarly elementary. �
Remark 3.2. Note that the approximating groups Γ/K are only required to be torsion free, they are likely 
not totally torsion free themselves.

There is an analogous statement for discrete groups, which can be proved in an entirely analogous manner. 
Since the final conclusion is weaker, we state it without proof.

Theorem 3.3. Let Γ we a weakly totally torsion free discrete group, and suppose further that Γ is residually 
finite. Then for any element γ ∈ Γ, there is a homomorphism f : Γ → G, where G ∈ B0, so that f(γ) �= e.

4. Galois theoretic properties

We will begin by showing that every group in B can be embedded as a closed subgroup of the semidirect 
product Σn�Ẑn for some n. As a set, Σn�Ẑn is isomorphic to the product Σn×Ẑn, and we topologize it as 
such, with the topology on Σn being the discrete topology. It is then clearly Hausdorff, compact, and totally 
disconnected, and it is easy to check that the multiplication remains continuous, from which it follows that 
it is a profinite group. We first recall the definition of the wreath product.

Definition 4.1. Let G denote a discrete group, and K any group. Let KG denote the set of all functions 
f : G → K, made into a group by equipping it with pointwise multiplication. Also, we equip KG with the left 
G-action by automorphisms (g · f)(g′) = f(g′g−1). We define the wreath product G �K to be the semidirect 
product G �KG with the given action. We note that in the situation where K is a topological group (but 
G remains discrete), this construction still makes sense, and G �K is in a natural way a topological group.

We consider the situation of a topological group G equipped with a continuous surjective homomorphism 
π : G → Q, where Q is equipped with the discrete topology, and where the kernel of π is abelian.

Lemma 4.1. Suppose that G is as above, and is Hausdorff. Let K denote the kernel of π, an abelian Hausdorff 
topological group. Then there is a closed embedding i : G → Q �K over Q, in the sense that the diagram

G Q �K

Q

�i

�
�
���

π

�

commutes, so the image of i is a closed subgroup of Q �K.



G. Carlsson, R. Joshua / Journal of Pure and Applied Algebra 226 (2022) 107039 9
Proof. We first consider the case where G is discrete. The standard classification of extensions of groups 
with abelian kernel shows that group structures on the set Q ×K for which the projection Q ×K → Q and 
the inclusion K ↪→ Q ×K given by k → (e, k) are homomorphisms are in one to one correspondence with 
2-cocycles on G with values in the G-module K, and that cocycles c1 and c2 determine isomorphic groups 
if c1 − c2 is a coboundary. For a 2-cocycle c, we let G(c) denote the corresponding group. It is immediate 
that given a group Q and a homomorphism of G-modules f : K1 → K2, there is a naturally associated 
homomorphism G(c) → G(f ◦ c), which respects the projection to Q, and for which the restriction of the 
homomorphism to the kernels is the homomorphism f . Thus our exact sequence 1 → K → G → Q → 1 is 
associated to a 2-cocycle c on Q with values in K. We consider the induced Q-module KQ as in Definition 4.1
above. Shapiro’s lemma ([1], [6]) asserts that H2(Q, KQ) vanishes, and we see that for any 2-cocycle c on Q
with values in KQ, the group G(c) is isomorphic to the wreath product Q �K. Let c denote a cocycle defining 
the extension 1 → K → G → Q → 1. There is a natural homomorphism iK : K → KQ of Q-modules, 
which sends k ∈ K to the constant function on Q with value k. We therefore obtain a homomorphism 
G(c) → G(iK · c) of groups, suitably compatible with the projections to Q and the inclusions of the kernels, 
and from the above discussion G(iK ·c) is isomorphic to the wreath product Q �K. In the non-discrete case, the 
identical method works provided one verifies continuity of the homomorphism iK , which is immediate. �

Suppose now that we have a group G in the family B. By definition, it contains a topologically finitely 
generated torsion free normal closed abelian subgroup K of finite index, with the quotient G/K denoted by 
Q, a finite group equipped with the discrete topology. We have just seen that we have a closed embedding 
G ↪→ Q �K.

Lemma 4.2. For any topologically finitely generated and torsion free profinite abelian group A, there is a 
closed embedding A → Ẑn for some integer n.

Proof. In Theorem 4.3.3 of [13], it is shown that any torsion free topologically finitely generated abelian 
profinite group A is of the form

∏
p

Zrp
p

where the set of integers rp are uniformly less than a fixed number n. It is therefore clear that A embeds in 
Ẑn ∼=

∏
p Z

n
p . �

Lemmas 4.1 and 4.2 above now give the following result.

Proposition 4.1. For any profinite group G within the class B, G embeds as a closed subgroup of ΣN � ẐN

for some N .

Proof. Let G fit into an exact sequence of the form

1 → K → G → Q → 1

where K is torsion free, abelian, and topologically finitely generated, and Q is finite. Lemma 4.1 now 
shows that G embeds as a closed subgroup in Q � K, and Lemma 4.2 shows that Q � K in turn embeds 
in Q � Ẑn for some n. By the definition of the wreath products, it is clear that there is an embedding 
Q � Ẑn ↪→ Σq � (Ẑn)q ∼= Σq � Ẑnq, where q = #(Q). Finally, it is also clear that the action of Σq on Ẑnq

extends over the inclusion Σq ↪→ Σnq, any permutation of the set with nq elements will act on Ẑnq by 
permutation of factors. This gives the result, with N = nq. �
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We now use this result to observe that members of the family B can always be realized as Galois groups 
in some special ring extensions, which will turn out to be very useful in applications to K-theory. Fix a 
ground field k, including all roots of unity. For n a positive integer, let Tn denote the ring k[t±1

1 , . . . , t±1
n ]. 

Similarly, let En denote the union

⋃
s

k[t±
1
s

1 , . . . , t
± 1

s
n ]

where in the characteristic zero case the union is over the partially ordered set of all positive integers 
(respectively the set of all positive integers prime to the characteristic of k in the case of finite characteristic), 
with the partial order given by s1 ≤ s2 if and only if s1|s2. We now define a group action of Ẑ on E1 in the 
case where char(k) = 0, and of the group Ẑ(p), the product of all the q-Sylow subgroups of Ẑ for q �= p, in 
the case of positive characteristic = p. In the characteristic zero case, we fix an identification θ : Q/Z → μ∞, 
where μ∞ denotes the group of all roots of unity in k. In the case where k has characteristic p, the domain 
of θ is Z(p)/Z, where Z(p) denotes the localization of the integers at p. Let α ∈ Ẑ (or Ẑ(p)) denote the 
topological generator 1 ∈ Z. In order to specify an action of Ẑ or Ẑ(p) it suffices to specify the action of α
on the elements t 1

m , which we do via the formula

α · t 1
m = θ( 1

m
)t 1

m

This constructs an action of Ẑ or Ẑ(p) on E1. For the remainder of the paper, we will let Γn = Ẑn or Ẑ(p)n
depending on the characteristic. Forming the tensor products En, we obtain a Γn action on En, and it is 
easy to verify that EΓn

n = Tn. Therefore, we have the following.

Proposition 4.2. The ring extension Tn ⊆ En is a Galois ring extension, i.e. an infinite Galois extension in 
the sense of [11], Definition 22, p. 97.

Proof. We will first prove that each of the extensions EΓ1
1 ⊆ Es·Γ1

1 are strongly separable in the sense of [11], 
Definition 21, p. 95. Letting R = EΓ1

1 and S = Es·Γ1
1 , we must prove that S is a projective S ⊗

R
S-module, 

where S is given the S ⊗
R
S-module structure coming from the multiplication map for S. But this is clear, 

since R = k[t±1], S = k[t± 1
s ], and therefore S is a free R-module of rank n with basis {1, t 1

s , . . . , t
s−1
s }. The 

algebra E1 is the colimit of the algebras Es·Γ1
1 , and so E1 satisfies the requirements of Definition 22 of [11]. 

The situation for n > 1 follows easily from Lemmas 4.1 and 4.2 on p. 96 of [11]. �
We also observe that the Γn-action extends to an action of Σn�Γn on En. Consider any closed subgroup 

G ⊆ Σn � Γn. We will need a criterion to determine if the ring extension EG
n ⊆ E is Galois. We recall some 

terminology and a result from [8]. Let A be a commutative ring equipped with the discrete topology, and 
let a profinite group G act continuously on it with fixed point subring B Let p be a prime ideal of A, and let 
Gp denote its stabilizer, which will be called its decomposition group. Gp is a closed subgroup of G. Let k(p)
denote the field of fractions of A/p. Similarly, let q = p ∩B, and write k(q) for the field of fractions of B/q. 
There is an evident inclusion k(q) ⊆ k(p). The group Gp acts continuously on k(p), when k(p) is equipped 
with the discrete topology. There is therefore a homomorphism from Gp to the Galois group Gal(k(p), k(q)), 
which is in general a profinite group. This homomorphism is surjective. This is stated explicitly in [8] in 
the case where G is finite, and the result in this context follows immediately from this case by passing to 
inverse limits over Hausdorff finite quotients. The kernel of this homomorphism is called the inertia group
of p, and is clearly a closed subgroup of Gp. We denote it by Ip. The following is proved in the case of finite 
G in [8]. The profinite case follows directly.
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Proposition 4.3. Let A be a commutative ring equipped with the discrete topology, and let a profinite group 
G act continuously on A. Then the extension AG ⊂ A is Galois if and only if the inertia group Ip is trivial 
for all prime ideals p of A.

We want to consider the action of Σn � Γn on En, specifically the action of G, where G is a torsion free 
closed subgroup of Σn � Γn.

Proposition 4.4. Let G be a torsion free closed subgroup of Σn � Γn. Then the ring extension EG
n ⊆ En is a 

Galois ring extension.

Proof. We let Ip(G) denote the inertia group of the prime p for the group action of G on En. It is readily 
verified that Ip(G) = Ip ∩ G. We claim that any torsion free subgroup G ⊆ Σn � Γn has a non-trivial 
intersection with Γn. For, suppose γ ∈ G is any non-trivial element. The projection of γ in Σn is an element 
of finite order, say s. The element γs is an element in Γn, and it is non-trivial due to the fact that G is torsion 
free. It follows that Ip(G) = 1, since if there were a non-trivial element γ ∈ Ip(G), it would follow that Ip(G)
would contain a non-trivial element of Γn, which is precluded by Proposition 4.2, since Ip(Γn) = Ip∩Γn. �
Remark 4.1. Note the very close analogy to the results of Auslander and Kuranishi concerning the structure 
of fundamental groups of flat manifolds [2]. There it is shown that if a discrete subgroup of the group of 
isometries of Euclidean space En is torsion free, then it acts freely on En.
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