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Abstract. In this paper we consider the Brauer groups of algebraic stacks and GIT quotients: the only
algebraic stacks we consider in this paper are quotient stacks [X/G] with certain restrictions on X and G,

and defined over a Dedekind domain, a discrete valuation ring, or a field. We discuss the calculation of
the Brauer groups of various examples: the class of smooth toric stacks over Dedekind domains provides a

large family of examples, and we show many familiar stacks fit in to this framework. This will be continued

in a sequel, where we will discuss more examples, especially the Brauer groups of various moduli stacks of
principal G-bundles as well as the Brauer groups of their GIT quotients.

Contents

1. Introduction and the Main Results 1

2. Equivariant Brauer groups 6

3. Equivariant Brauer groups vs. Brauer groups of quotient stacks: Proof of Theorem 1.4 8

4. Proof of Corollary 1.6 15

5. Brauer groups of stacks of the form [X/D] where D is a smooth diagonalizable group scheme and

Proof of Theorem 1.7. 15

6. Brauer group of the moduli stack of elliptic curves and Proof of Theorem 1.9. 24

7. Brauer group and torsion index of linear algebraic groups: Proof of Theorem 1.10. 27

8. Proof of Proposition 1.11. 30

9. Appendix A: Motivic cohomology over regular Noetherian base schemes 30

10. Appendix B: Brauer groups of smooth split toric schemes 31

References 35

1. Introduction and the Main Results

The paper originated in an effort by the authors to study the Brauer groups quotient stacks and of GIT

quotients associated to actions of reductive groups. We began by assuming the base scheme is a separably

closed field, then soon extended our framework to the case where it is any field. While working on various

examples, we realized that as several of the algebraic stacks one encounters often are defined over the ring of

integers or Dedekind domains, it is preferable to adopt a more general framework as follows. This enables us

to consider cohomological invariants of algebraic stacks defined over arbitrary Dedekind domains. The only
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cohomological invariants we consider will be the m torsion part of the Brauer group, where m is invertible

in the given base ring.

Let B denote a regular Noetherian excellent scheme of dimension at most 1: B will serve as the base

scheme. We also consider two basic situations here:

1.1. Basic hypotheses.

(i) B = Spec R, where R is a Dedekind domain, or a DVR which is assumed to be excellent (for example,

the ring of integers Z or its localization at a prime p), or

(ii) B is a smooth scheme of pure dimension at most 1 over a field k.

Let m denote a fixed positive integer invertible in OB and let X denote a scheme of finite type over B. Then

one begins with the Kummer sequence

(1.1) 1→ µm(1)→ Gm
m→Gm → 1,

which holds on the (small) étale site Xet of X, whenever m is invertible in OB. (See [Gr, section 3] or [Mi,

p. 66].) Taking étale cohomology, we obtain corresponding long-exact sequence:

(1.2) → H1
et(X,Gm)

m→H1
et(X,Gm)→ H2

et(X, µm(1))→ H2
et(X,Gm)→ H2

et(X,Gm)→ · · · ,

which holds on the étale site when m is invertible in OB.

Definition 1.1. The cohomological Brauer group Br(X) is the torsion subgroup of the cohomology group

H2
et(X,Gm). In other words, Br(X) = H2

et(X,Gm)tors.
1

Next assume X is smooth over the base scheme B. Then, by Hilbert’s Theorem 90, we obtain the

isomorphisms:

(1.3) Pic(X) ∼= CH1(X) ∼= H1
et(X,Gm) ∼= H2,1

M (X,Z),

where H2,1
M (X,Z) denotes motivic cohomology (in degree 2 and weight 1) whose definition for smooth schemes

of finite type over B is worked out in [Geis], and we recall this in the Appendix. Then one also obtains the

short-exact sequence:

(1.4) 0→ Pic(X)/m ∼= NS(X)/m → H2
et(X, µm(1))→ mBr(X)→ 0,

where the map Pic(X)/m = H2,1
M (X,Z/m)→ H2

et(X, µm(1)) is the cycle map, and therefore, mBr(X) identifies

with the cokernel of the cycle map. Thus it follows that for smooth schemes X over B, mBr(X) is trivial if

and only if the above cycle map is surjective: our approach to the Brauer group adopted in this paper is

to consider the above cycle map from motivic cohomology to etale cohomology, and involves a combination

of motivic and étale cohomology techniques. Moreover, in view of this, we will always restrict to smooth

schemes of finite type over the given base scheme B. However, apart from the restriction to smooth schemes,

our approach making use of both motivic and étale cohomology techniques over Dedekind domains offers

considerable advantages in various computations: these will become clear in later sections of the paper.

1If X is a regular integral Noetherian scheme, one may observe that H2
et(X,Gm)tors = H2

et(X,Gm): see, for example, [CTS,

Lemma 3.5.3]
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Let G denote a not-necessarily connected smooth affine group scheme, of finite type over B, and acting on

the given scheme X. Next we recall the framework of Borel-style equivariant étale cohomology, and Borel-

style equivariant motivic cohomology. For this we form an ind-scheme {EGgm,m×
G

X|m} and then take its

étale cohomology, and also its motivic cohomology when X is also assumed to be smooth. One may consult

[Tot99], [MV99], and also section 3 of this paper for more details. Here BGgm,m is a finite dimensional

approximation to the classifying space of the affine group scheme G, and EGgm,m denotes the universal

principal G-bundle over BGgm,m. In the terminology of Definition 2.1, EGgm,m = Um and BGgm,m = Um/G.

We also assume that such a BGgm,m exists for every m ≥ 0, as a quasi-projective scheme over the given base

B. There are standard arguments to prove that that the cohomology of the ind-schemes {BGgm,m|m ≥ 0},
{EGgm,m ×G X|m ≥ 0} are independent of the choice of the admissible gadgets {Um|m ≥ 0} that enter into

their definition: see, for example, Proposition 3.5.

Let m denote a fixed positive integer invertible in OB. Then we let H∗,•G,M(X,Z/m) denote the motivic

cohomology of {EGgm,m×
G

X|m} defined as the homotopy inverse limit of the motivic cohomology of the finite

dimensional approximations EGgm,m×
G

X, that is, defined by the usual Milnor exact sequence relating lim1

and lim of the motivic hypercohomology of the above finite dimensional approximations. (When ∗ = 2i and

• = i, for a non-negative integer i, these identify with the usual (equivariant) Chow groups.) H∗G,et(X, µm(•))
is defined similarly and will be often denoted H∗,•G,et(X, µm).

Recall that for each fixed integer i ≥ 0, one obtains the isomorphisms (for m chosen, depending on i):

H2i,i
G,M(X,Z/m) ∼= H2i,i

M (EGgm,m×
G

X,Z/m),m � 0 and X smooth, and

H2i,i
G,et(X, µm) ∼= H2i

et(EGgm,m×
G

X, µm(i)),m� 0.

These show that one may define the G-equivariant Brauer group of a G-scheme X as follows:

Definition 1.2. BrG(X) = H2
et(EGgm,u×

G
X,Gm)tors, for u� 0, where the subscript tors denotes the torsion

subgroup.

Moreover, we obtain from the Kummer-sequence the short-exact sequence:

(1.5) 0→ Pic(EGgm,m×
G

X)/m → H2
et(EGgm,m×

G
X, µm(1))→ mBr(EGgm,m×

G
X) = mBrG(X)→ 0 and

where

Pic(EGgm,m×
G

X)/m = coker(Pic(EGgm,m×
G

X)
m→Pic(EGgm,m×

G
X)),

mBrG(X) = the m-torsion part of BrG(X).

Definition 1.3. Given an Artin stack S of finite type over the base scheme B, we define its Brauer group to

be H2
smt(S ,Gm)tors , where H2

smt(S ,Gm) denotes cohomology computed on the smooth site (see (3.20)), and

the subscript tors denotes its torsion subgroup. We denote this by Br(S ). For a fixed positive integer m

invertible in OB, we let mBr(S ) denote the m-torsion part of Br(S ).

Then our first result is the following, which shows the Brauer group of a quotient stack [X/G], so defined,

identifies with the G-equivariant Brauer group defined in Definition 1.2.
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Theorem 1.4. Assume that X is a smooth scheme of finite type over the base scheme B satisfying one of

the hypotheses 1.1, and provided with an action by the affine smooth group scheme G. Then, assuming the

above terminology,

mBr([X/G]) ∼= mBrG(X).

Therefore, mBrG(X) is intrinsic to the quotient stack [X/G].

Remark 1.5. The comparison theorem [J20, Theorem 1.6] shows that H∗G,et(X, µm(•)) identifies with

H∗smt([X/G], µm(•)), which denotes the cohomology of the quotient stack [X/G] computed on the smooth

site. However, it may be important to point out that this result does not imply the above theorem, mainly

because the Picard groups appearing in (1.5) and in the corresponding short-exact sequence for the quotient

stack [X/G] need not be trivial. See the first paragraph in section 3 for a more detailed discussion on this

issue.

We derive a number of results based on the above theorem, a few of which are listed below.

Corollary 1.6. Assume in addition to the hypotheses of Theorem 1.4 that mBr(X) = 0. Then mBr([X/G]) ∼=
0 as well in the following cases:

(i) G is a split torus, or

(ii) G is a finite product of general linear groups.

We define a toric stack X to be an algebraic stack of the following form: let X denote a toric variety defined

over a field k for the split torus T = Gs
m, or more generally a toric scheme over an excellent Dedekind domain

R in the sense of [JL, section 4(i), (4.1)]. (Recall that the hypotheses in [JL, section 4(i), (4.1)](i.e., 10.5)

require that the toric scheme X contain as an open subscheme a split torus T = Gs
m and that all the T-

orbits are defined and faithfully flat over B = Spec R.) We will assume such an X comes equipped with a

homomorphism φ : T0 = Gr
m → T, for some r > 0. Then we require that X = [X/T0].

Theorem 1.7. (i) The scheme (A2 − {0})r ×T0
X, where T0 acts on X through φ and it acts diagonally on

(A2 − {0})r ×X, is a split toric scheme over k, for the split torus T0 × T.

(ii) Therefore, mBr([X/T0]) is isomorphic to the m-torsion part of the Brauer group of the toric scheme

(A2 − {0})r ×T0 X.

Remarks 1.8. (i) Making use of the determination of the Brauer groups of smooth toric schemes over

any field or a Dedekind domain as in [JL, Theorems 2.1, 4.1] (i.e., Theorem 10.4), Theorem 1.7(ii)

enables one to determine the Brauer groups of all toric stacks: see Theorem 5.8 and Corollary 5.9, as

well as Example 5.10.

(ii) In Theorem 5.14, we also extend the above calculations to determine the Brauer groups of quotient

stacks of the form [X/µ`n ], where ` is prime to the characteristic and µ`n acts on the smooth scheme

X.

As an application of Theorem 1.4 for stacks defined over Dedekind domains, and Theorem 1.7 we also

obtain the following computations. Let R denote any excellent Dedekind domain in which both 2 and 3

are invertible, for example, Z1/6 which denotes the localization of Z by inverting 6. Let M1,1,R denote the

moduli stack of elliptic curves defined over R. Let Y = Spec R[g2, g3][1/∆] ⊆ A2
R, where ∆ = g3

2 − 27g2
3 .
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Theorem 1.9. (See Corollary 6.2.) Next assume the base ring R is an excellent Dedekind domain or a field

in which 2 and 3 are invertible and the following hold: ` denotes a prime not necessarily different from 2 or

3, so that ` is also invertible in R, and R contains a primitive `n-th root of unity for some positive integer

n. Then `nBr(M1,1,R) ∼= `nBr(Spec R)⊕H1
et(Spec R, µ`n(0)).

In fact, several more related results on the Brauer group ofM1,1,R under different hypotheses are discussed

in section 6. For example, in Theorem 6.1, we have a more general calculation of the m-torsion part of the

Brauer group of the stackM1,1,R, where R is any Dedekind domain with the primes 2 and 3 invertible in R.

Next we discuss the following application of the torsion index of linear algebraic groups: see [Tot05,

section 1].

Theorem 1.10. Assume the base scheme is any field k and that m is a fixed positive integer invertible in

k. If H is a connected linear algebraic group defined over k and whose torsion index is prime to m, then

mBr(BH) = mBr(Spec k), where BH denotes the classifying stack of H, that is [Spec k/H]. In particular, the

following hold:

(i) mBr(BG) = mBr(Spec k) for any positive integer m invertible in k if G = GLn, G = SLn or G =

Sp(2n), for any n.

(ii) `n′Br(BG) = `n′Br(Spec k) for any prime ` different from the characteristic of k and 2 if G = SO(2n),

SO(2n+ 1), or Spin(n), for any n and n′.

(iii) `n′Br(BG) = `n′Br(Spec k) for any simply-connected group G, if ` is different from the characteristic

of k and also different from 2, 3, or 5.

We conclude with the following example. Let X denote a smooth projective curve of genus g over a field

k, provided with a k-rational point. Then one knows the isomorphism of stacks (see for example, [Wang,

Proposition 4.2.5]):

(1.6) Bun1,d(X) ∼= BGgm
m ×Picd(X),

where BGgmm = lim
n→∞

BGgm,nm , Bun1,d(X) denotes the moduli stack of line bundles of degree d on X and

Picd(X) denotes the Picard scheme. In view of the above isomorphism of stacks, one may define the Brauer

group of the stack Bun1,d(X) to be the Brauer group of the stack BGgm
m × Picd(X). Then, we obtain the

following.

Proposition 1.11. Assume the base field k is separably closed, and that m is positive integer invertible in

k. Then, assuming the above situation, we obtain the isomorphism:

mBr(Bun1,d(X)) ∼= mBr(Picd(X)) ∼= mBr(Symd(X)),

where Symd(X) denotes the d-fold symmetric power of the curve X. In particular, mBr(Bun1,d(X)) ∼= 0 if X

is rational.

Acknowledgments. We thank N. Ramachandran for discussions on Theorem 1.9.
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2. Equivariant Brauer groups

We begin by discussing the construction of geometric classifying spaces and the Borel construction making

use of such gadgets. Throughout this section, the base scheme B will denote the spectrum of a regular

Noetherian integral domain R of dimension at most 1 as in 1.1.

2.1. Admissible gadgets. Let G denote a fixed smooth affine group scheme over B. We will define a pair

(W,U) of smooth schemes over B to be a good pair for G if W is a representation of G and U ( W is a

G-invariant non-empty open subscheme on which G acts freely and so that U/G is a quasi-projective scheme

over B. Moreover, one may choose (W,U) so that the complement W−U has sufficiently high codimension.

It is known (cf. [Tot99])that a good pair for G always exists.

Definition 2.1. A sequence of pairs {(Wm,Um)|m ≥ 1} of smooth schemes over B is called an admissible

gadget for G, if there exists a good pair (W,U) for G such that Wm = W×
m

and Um ( Wm is a G-invariant

open subset such that the following hold for each m ≥ 1.

(1) (Um ×W) ∪ (W ×Um) ⊆ Um+1 as G-invariant open subschemes.

(2) {codimUm+1
(Um+1 \ (Um ×W)) |m} is a strictly increasing sequence,

that is,

codimUm+2
(Um+2 \ (Um+1 ×W)) > codimUm+1

(Um+1 \ (Um ×W)) .

(3) {codimWm (Wm \Um) |m} is a strictly increasing sequence, that is,

codimWm+1 (Wm+1 \Um+1) > codimWm (Wm \Um) .

(4) Um has a free G-action, the quotient Um/G is a smooth quasi-projective scheme over B and Um →
Um/G is a principal G-bundle.

(5) In addition, we will also assume the following (see [MV, Definition 2.1, p. 133]):

the structure map Um → B has a section.

Lemma 2.2. Let U denote a smooth quasi-projective scheme over B with a free action by the smooth affine

group scheme G so that the quotient U/G exists as a smooth quasi-projective scheme over B. Then if X is

any smooth G-quasi-projective scheme over B, the quotient U×
G

X ∼= (U ×
Spec B

X)/G (for the diagonal action

of G) exists as a scheme over B.

Proof. This follows, for example, from [MFK94, Proposition 7.1]. �

Example 2.3. An example of an admissible gadget for G can be constructed as follows: start with a good

pair (W,U) for G. The choice of such a good pair will vary depending on G, but may be chosen as follows.

Choose a faithful representation R of G of dimension n, that is, G admits a closed immersion into GL(R).

Then G acts freely on an open subscheme U of W = R⊕n = End(R) so that U/G is a scheme. (For e.g.

U = GL(R).) Let Z = W \U.

Given a good pair (W,U), we now let

(2.1) Wm = W×m,U1 = U and Um+1 = (Um ×W) ∪ (W ×Um) for m ≥ 1.
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Setting Z1 = Z and Zm+1 = Wm+1 \Um+1 for m ≥ 1, one checks that Wm \Um = Zm and Zm+1 = Zm × Z.

In particular, codimWm
(Wm \Um) = m(codimW(Z)). Moreover, Um → Um/G is a principal G-bundle and

the quotient Vm = Um/G exists as a smooth quasi-projective scheme.

2.2. The geometric Borel construction. Given an admissible gadget {(Wm,Um)|m ≥ 0} for the affine

smooth group scheme G and a G-scheme X, we define

EGgm,m = Um, EGgm,m ×G X = Um ×G X, BGgm,m = Um ×G B, and(2.2)

πm : EGgm,m ×G X→ BGgm,m.

The ind-scheme {EGgm,m ×G X|m ≥ 0} is called the geometric Borel construction. We will often denote

lim
m→∞

{EGgm,m ×G X|m ≥ 0} by EGgm ×G X: one may view this as a simplicial presheaf.

2.3. Basic techniques for computing the equivariant Brauer groups. In this section, we will discuss

certain techniques that will facilitate the computation of equivariant Brauer groups. We will make use of

the admissible gadgets defined in Example 2.3, as well as Corollary 3.4 and Proposition 3.5, which are all

discussed in the next section.

Let G = GLn, for a fixed integer n > 0. Let W = End(An) = the space of all n× n-matrices with entries

in OB. In this case, we will let

(2.3) EGgm,2 = (GLn×W)
⋃

GLn×GLn

(W ×GLn).

The determination of the bad set Zm as in Example 2.3 shows that the codimension of EGgm,2 in W×W is

2. We also observe that the following hold, when X is a scheme provided with an action by GLn:

(i) (GLn×W)×GLn
X is open in EGgm,2 ×GLn

X with the compliment being ((W−GLn)×GLn)×GLn
X

(ii) ((W −GLn)×GLn)×GLn
X has codimension 1 in (GLn×W)×GLn

X.

Therefore, [JL, Corollary 2.8] (i.e., Proposition 10.3) and Corollary 3.4 provide the short exact sequence:

(2.4) 0→ mBrGLn
(X)→ mBr((GLn×W)×GLn

X)−→H3
((W−GLn)×GLn)×GLnX,et((W×GLn)×GLn

X, µm(1)).

Clearly

(2.5) (GLn×W)×GLn
X ∼= W ×X and ((W −GLn)×GLn)×GLn

X ∼= (W −GLn)×X,

so that the exact sequence (2.4) identifies with

(2.6) 0→ mBrGLn
(X)→ mBr(X)

β→H3
(W−GLn)×X,et(W ×X, µm(1)).

We may also consider the following special cases of the above general result.

(i) Take n = 1, so that GLn = Gm. In this case one may take W = A1, so that EGgm,2 = A2 − {0} =

A1 ×Gm

⋃
Gm × A1. In this case the exact sequence (2.6) becomes

(2.7)

0→ mBrGm
(X)→ mBr((Gm×A1)×Gm

X) ∼= mBr(X)
res→H1

et((A1−Gm)×Gm)×Gm
X, µm(0)) ∼= H1

et(X, µm(0)).

(ii) Take n = 2, so that in this case W = End(A2). Therefore, in this case the exact sequence (2.6) becomes

(2.8) 0→ mBrGL2
(X)→ mBr(X)

β→H3
(W−GL2)×X,et(W ×X, µm(1)).
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(iii) In case G is a closed smooth affine sub-group-scheme of GLn, with G acting on X, one obtains an

induced action by GLn on GLn×GX. In view of Theorem 1.4, BrG(X) ∼= BrGLn
(GLn×GX). Therefore,

in this case the exact sequence (2.6) becomes

(2.9) 0→ mBrG(X)→ mBr(GLn×GX)→ H3
(W−GLn)×(GLn×GX),et(W × (GLn×GX), µm(1)).

As an example of this, assume X is provided by an action of SLn which in fact extends to an action by

GLn. Then GLn×SLn
X ∼= GLn /SLn ×X ∼= Gm ×X. Therefore, the exact sequence in (2.9) becomes

(2.10) 0→ mBrSLn(X)→ mBr(Gm ×X)→ H3
(W−GLn)×(Gm×X),et(W × (Gm ×X), µm(1)).

In particular, it follows that mBrSLn
(X) injects into mBr(Gm ×X) ∼= mBr(X⊕H1

et(X, µm(0)).

(iv) We next consider the case where G = Gr
m, a split torus of rank r, or more generally a diagonalizable

group scheme of the form µn1
× · · · × µns

× Gtm, with r = s + t. In this case, we will always choose

EGgm,2 = (A2−{0})r . Moreover, we will also observe that when Gr
m is provided with an action on the

scheme X with an induced action by G on X, the quotient (A2 − {0})r ×G X identifies with a sum of s

line bundles over (A2 − {0})r ×Gr
m

X with their zero section removed. These observations will be very

useful when we consider the Brauer groups of toric stacks.

Example 2.4. We will assume the base B is the spectrum of a field k of characteristic different from

2. We show here as an immediate consequence of (2.8) above that if H̄g denotes the moduli stack of

stable hyper-elliptic curves of genus g ≥ 2 and even, then mBr(H̄g) ∼= mBr(Spec k), for any ` different

from 2 and invertible in the base field k. There is an open substack H̄′g ⊆ H̄g so that H̄′g = [Ug/GL2],

for an open subscheme Ug ⊆ A2g+3 so that the complement of Ug in A2g+3 has codimension greater

than 1. Then the restriction mBr(H̄g) → mBr(H̄′g) is injective. Now mBr(H̄′g) = mBr([Ug/GL2]). By

(2.8), the latter injects into mBr(Ug) ∼= mBr(A2g+3) ∼= mBr(Spec k). This shows the composite map

above mBr(H̄g)→ mBr(A2g+3) ∼= mBr(Spec k) is an injection.

On the other hand, one has the pull-back π∗ : mBr(Spec k) → mBr(H̄g): the composition of this

map with the above map mBr(H̄g) → mBr(A2g+3) ∼= mBr(Spec k) is clearly an isomorphism. This

shows that the map mBr(H̄g)→ mBr(A2g+3) ∼= mBr(Spec k) is in fact an isomorphism.

3. Equivariant Brauer groups vs. Brauer groups of quotient stacks: Proof of

Theorem 1.4

The goal of this section is to prove Theorem 1.4. It may be important to point out the need for a careful

proof of this result. One starts with the long exact sequence in étale cohomology obtained from the Kummer

sequence:

(3.1)
→ H1

et(EG×G X,Gm)
m→H1

et(EG×G X,Gm)
δ→H2

et(EG×G X, µm(1))→ H2
et(EG×G X,Gm)

m→H2
et(EG×G X,Gm)→ · · ·

Then the cokernel(H1
et(EG×GX,Gm)

m→H1
et(EG×GX,Gm)) maps to H2

et(EG×GX, µm(1)), by a map induced

by the boundary map δ: we will denote this map by δ̄. Then the Brauer group mBr([X/G]) identifies with

the cokernel of the map δ̄. Here EG denotes the simplicial variant given in degree n by G×n.
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One also obtains a similar Kummer sequence where EG considered in 3.1 is replaced by a finite degree

approximation EGgm,u, i.e., one obtains:

(3.2)

→ H1
et(EGgm,u ×G X,Gm)

m→H1
et(EGgm,u ×G X,Gm)

δgm,u

→ H2
et(EGgm,u ×G X, µm(1))→ H2

et(EGgm,u ×G X,Gm)

m→H2
et(EGgm,u ×G X,Gm)→ · · ·

Then the cokernel(H1
et(EGgm,u ×G X,Gm)

m→H1
et(EGgm,u ×G X,Gm)) maps to H2

et(EGgm,u ×G X, µm(1)), by

a map induced by the boundary map δgm,u: we will denote this map by δ̄gm,u. Then the Brauer group

mBrG(X) identifies with the cokernel of the map δ̄gm,u, when u > 1 as shown below.

The main difficulty in showing that the groups mBr([X/G]) and mBrG(X) are isomorphic is because the

terms in the corresponding Kummer sequences defining the corresponding Picard-groups,

i.e., H1
et(EG ×G X,Gm) and H1

et(EGgm,u ×G X,Gm) may not be trivial in general. In the special case

where they are both trivial, the isomorphisms of the above Brauer groups amounts to an isomorphism

H2
et(EG×G X, µm(1)) ∼= H2

et(EGgm,u×G X, µm(1)) which may be established using the homotopy property of

étale cohomology with respect to the sheaf µm : see [J20, Proposition 5.2]. Therefore, the main effort in the

proof of Theorem 1.4 is to show that one obtains an isomorphism between the Brauer groups mBr([X/G])

and mBrG(X) without assuming the corresponding Picard groups are trivial: this really needs the use of

motivic techniques (and Hilbert’s Theorem 90), even when the base scheme is the spectrum of a field.

We begin discussing a simplicial variant of the Borel construction. Throughout this section, the base

scheme B will again denote the spectrum of a regular Noetherian integral domain R of dimension at most 1

as in 1.1.

3.1. The simplicial Borel construction. We next consider EG×GX which is the simplicial scheme defined

by Gn ×X in degree n, and with the structure maps defined as follows:

di(g0, · · · , gn, x) = (g1, · · · , gn, x), i = 0(3.3)

= (g1, · · · , gi−1.gi, · · · , gn, x), 0 < i < n

= (g1, · · · , gn−1, gn.x), i = n, and

si(g0, · · · , gn−1, x) = (g0, · · · , gi−1, e, gi, · · · , x)

where gi ∈ G, x ∈ X, gi−1.gi denotes the product of gi−1 and gi in G, while gn.x denotes the product of

gn and x. e denotes the unit element in G. This is the simplicial Borel construction. Then we obtain the

following identification, which is well-known.

Lemma 3.1. One obtains an isomorphism: EG×G X ∼= cosk
[X/G]
0 (X), where cosk

[X/G]
0 (X) is the simplicial

scheme defined in degree n by the (n+ 1)-fold fibered product of X with itself over the stack [X/G], with the

structure maps of the simplicial scheme cosk
[X/G]
0 (X) induced by the above fibered products.
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For each fixed u ≥ 0, we obtain the diagram of simplicial schemes (where p1 is induced by the projection

EGgm,u ×X→ X and p2 is induced by the projection EG× (EGgm,u ×X)→ EGgm,u ×X):

(3.4) EG×G (EGgm,u ×X)

p1

vv

p2

((
EG×G X EGgm,u×

G
X

G acts diagonally on EG×G (EGgm,u ×X).

Proposition 3.2. (i) The map

p∗1 : H1
et(EG×G X,Gm)→ H1

et(EG×G (EGgm,u ×X),Gm) and the map(3.5)

p∗2 : H1
et(EGgm,u ×G X,Gm)→ H1

et(EG×G (EGgm,u ×X),Gm), for u > 1,

are isomorphisms.

(ii) The corresponding maps, for u > 1 with ` invertible in OB,

p∗1 : H2
et(EG×G X, µ`n(1))→ H2

et(EG×G (EGgm,u ×X), µ`n(1)), and(3.6)

p∗2 : H2
et(EGgm,u ×G X, µ`n(1))→ H2

et(EG×G (EGgm,u ×X), µ`n(1))

are isomorphisms.

Proof. The isomorphisms in (i) are rather involved, and therefore, we discuss the proof of (i) first. A key to

the proof is the observation that, over a scheme A which is a regular local ring, H1
et(An

A,Gm) ∼= Pic(An
A) ∼= 0,

for any n ≥ 0. We consider the Leray spectral sequences associated to the maps p1 and p2:

Es,t
2 (1) = Hs

et(EG×G X,Rtp1∗(Gm)) =⇒ Hs+t
et (EG×G (EGgm,u ×X),Gm) and(3.7)

Es,t
2 (2) = Hs

et(EGgm,u ×G X,Rtp2∗(Gm)) =⇒ Hs+t
et (EG×G (EGgm,u ×X),Gm).

Since s, t ≥ 0, both spectral sequences converge strongly.

The stalks of Rtp2∗(Gm) ∼= Ht(EG ×
Spec B

(Spec A),Gm), where A denotes a strict Hensel ring. (Strictly

speaking, in order to obtain the above identification, we need to make use of the simplicial topology as

in [J02] or [J20, 5.4]. But we will ignore this rather subtle point for the rest of the discussion.) Since

EG ∼= coskSpec B
0 (G), EG ×

Spec B
(Spec A) ∼= coskSpec A

0 (G ×Spec B Spec A) is a smooth hypercover of Spec A.

Therefore, we obtain the isomorphism:

(3.8) Ht
et(EG ×

Spec B
(Spec A),Gm) ∼= Ht

smt(EG ×
Spec B

(Spec A),Gm) ∼= Ht(Spec A,Gm).

These groups are trivial for t = 1 (see, for example, [Mi, Chapter III, Lemma 4.10]). Therefore, it follows

that

(3.9) Rtp2∗(Gm)Spec A
∼= 0, for t = 1.

Next we observe the isomorphism, by taking t = 0 in (3.8):

(3.10) p2∗(Gm)Spec A
∼= H0(EG ×

Spec B
(Spec A),Gm) ∼= H0(Spec A,Gm),

where p2∗(Gm)Spec A denotes the stalk of the sheaf p2∗(Gm) at Spec A. Observing that Gm is in fact a sheaf

on the flat site, and therefore also on the smooth site, it follows that there is a natural map of sheaves
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Gm → p2∗(Gm), where the Gm on the left (on the right) denotes the sheaf Gm restricted to the étale site of

EGgm,u ×G X (the étale site of EG×G (EGgm,u ×X), respectively). The isomorphism in (3.10) shows this

map induces an isomorphism stalk-wise. It follows that the natural map Gm → p2∗(Gm) of sheaves on the

étale site is an isomorphism. This provides the isomorphism:

(3.11) E1,0
2 (2) = H1

et(EGgm,u ×G X,p2∗(Gm)) ∼= H1
et(EGgm,u ×G X,Gm),u > 0.

The stalks of Rtp1∗(Gm) ∼= Ht(EGgm,u ×
Spec B

(Spec A),Gm), where A denotes a strict Hensel ring, for all

t ≥ 0. Observe that this strict Hensel ring A is the stalk of the structure sheaf of (EG×G X)n = Gn ×X, at

a geometric point. Hence it is a filtered direct limit limi Ai, with each Ai regular.

To determine the groups Ht(EGgm,u ×
Spec B

(Spec A),Gm), we consider the long exact sequence (with EGgm,u =

Uu, which is assumed to be an open subscheme of the affine space Au, with Zu = Au −Uu):

(3.12)

· · · → H0
et,Zu×Spec BSpec A(Au ×Spec B Spec A,Gm)→ H0

et(Au ×Spec B Spec A,Gm)→
α→H0

et(Uu ×Spec B Spec A,Gm)→ H1
et,Zu×Spec BSpec A(Au ×Spec B Spec A,Gm)

→ H1
et(Au ×Spec B Spec A,Gm)

β→H1
et(Uu ×Spec k Spec A,Gm)→

→ H2
et,Zu×Spec BSpec A(Au ×Spec B Spec A,Gm)→ · · ·

Next we observe the identification of Gm with Z(1)[1] from Proposition 9.2. As a result, we obtain the

following identifications, for a smooth scheme Y of finite type over the base B, which is assumed to be a

Dedekind domain (which also includes the case of it being a field) and a closed smooth subscheme Z of pure

codimension c in Y:

H1
et,Z(Y,Gm) ∼= H1

Zar,Z(Y,Gm) ∼= H2,1
M,Z(Y), and(3.13)

H0
et,Z(Y,Gm) ∼= H0

Zar,Z(Y,Gm) ∼= H1,1
M,Z(Y).

Therefore, by Proposition 9.4, we see that if c > 1, then

H1
et,Z(Y,Gm) ∼= H2,1

M,Z(Y) ∼= 0, and(3.14)

H0
et,Z(Y,Gm) ∼= H1,1

M,Z(Y) ∼= 0.

The map denoted α (β) in the long exact sequence (10.3) identifies with the restriction

H1,1
M (Au ×Spec B Spec A)→ H1,1

M (Uu ×Spec B Spec A)

(H2,1
M (Au ×Spec B Spec A)→ H2,1

M (Uu ×Spec B Spec A), respectively)

forming part of the localization sequence for the motivic cohomology groups. In fact, the corresponding

localization sequence is given by:

(3.15)
· · · → H1,1−cu

M (Zu ×Spec B Spec A)→ H1,1
M (Au ×Spec B Spec A)

α′→H1,1
M (Uu ×Spec B Spec A)

→ H2,1−cu
M (Zu ×Spec B Spec A)→ H2,1

M (Au ×Spec B Spec A)
β′→H2,1

M (Uu ×Spec B Spec A)→ 0

where cu denotes the codimension of Zu in Au, which we assume satisfies cu > 1. To see that one gets such

a localization sequence, one first replaces the strict Hensel ring A by one of the Ai, where A = limi Ai, with

each Ai a regular local ring. Clearly then the corresponding localization sequence exists and the groups

in (3.15) involving the Zu are trivial, as cu > 1, by assumption. At this point, one takes the direct limit

over the Ai: since the motivic cohomology groups are contravariantly functorial for flat maps, and filtered
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colimits are exact, we obtain the localization sequence (3.15). Moreover, the groups appearing in (3.15)

involving the Zu are all trivial, thereby proving that the maps α′ and β′ in (3.15), and therefore, the maps

α and β in (10.3) are isomorphisms. This provides the isomorphisms for t = 0, 1:

Rtp1∗(Gm)Spec A
∼= Ht

et(Uu ×Spec k Spec A,Gm) ∼= Ht
et(Au ×Spec k Spec A,Gm)(3.16)

∼= Ht
et(Spec A,Gm).

Therefore, it follows that

(3.17) Rtp1∗(Gm)Spec A
∼= 0, for t = 1.

Since Gm is a sheaf on the flat and hence on the smooth topology, there is a natural map Gm → p1∗(Gm) of

sheaves where the Gm on the left (on the right) is a sheaf on the étale site of EG×G X (on the étale site of

EG×G (EGgm,m ×X), respectively). The stalk-wise isomorphism in (3.16) for t = 0 shows that the natural

map Gm → p1∗(Gm) of sheaves on the étale site is an isomorphism. This provides the isomorphism:

(3.18) E1,0
2 (1) = H1

et(EG×G X,p1∗(Gm)) ∼= H1
et(EG×G X,Gm).

Moreover, observing that the differentials in the spectral sequences above go from Ep,q
r to Ep+r,q−r+1

r , one

sees (using (3.9) and (3.17)) that

(3.19) E0,1
r (1) = E0,1

r (2) = 0 for all r ≥ 2 and that E1,0
2 (i) ∼= E1,0

r (i), for all r ≥ 2, i = 1, 2.

The last observation shows that E1,0
2 (i), i = 1, 2 is isomorphic to the abutment in degree 1, namely,

H1
et(EG ×G (EGgm,u × X),Gm), u > 1. (Observe that the assumption u > 1 implies the codimension

cu of Zu in Au is at least 2.) Therefore, the isomorphisms in (3.18) and (3.11) complete the proof of (i).

Next we consider the proof of (ii). The key point is to consider the Leray spectral sequences for the maps

p1 and p2. In this case, one may readily compute the stalks of Rtpi∗(µm(1)) to be trivial for t = 1, 2 and

∼= µm(1) for t = 0, and for u > 1. In fact, one may adopt the same arguments as before, with the sheaf Gm
on the étale site replaced by µm(1). Then a localization sequence corresponding to the one in (10.3) still

holds, but also extends to higher degrees. The corresponding local cohomology groups there will vanish in all

cohomological degrees less than 4, since the codimension of Zu in Au is assumed to be at least 2. Therefore,

the conclusions in (ii) follow readily. (One may also consult [J20, Theorem 1.6] for further details.) �

Let S denote an algebraic stack, which we will assume is of Artin type and of finite type over the given

base field k, with x : X → S an atlas, that is, a smooth surjective map from an algebraic space X. We let

BxS = coskS
0 (X) denote the corresponding simplicial algebraic space. Then we let Ssmt denote the smooth

site, whose objects are y : Y → S , with y a smooth map from an algebraic space Y to S , and where a

morphism between two such objects y′ : Y′ → S and y : Y → S is given by a map f : Y′ → Y making the

triangle

(3.20) Y′
f //

y′   

Y

y
��

S

commute. The same definition defines the smooth site of any algebraic space. The smooth and étale sites of

the simplicial algebraic space BxS may be defined as follows. The objects of Smt(BxS ) are given by smooth
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maps un : Un → (BxS )n for some n ≥ 0. Given such a un : Un → BxSn and vm : Vm → BxSm, a morphism

from un → vm is a commutative square:

Un

α′ //

un

��

Vm

vm

��
BxSn

α //
BxSm

where α is a structure map of the simplicial algebraic space BxS . The Étale site Et(BxS ) is defined similarly.

An abelian sheaf F on Smt(BxS ) is given by a collection of abelian sheaves F = {Fn|n} with each Fn being

an abelian sheaf on Smt(BxSn), so that it comes equipped with the following data: for each structure map

α : BxSn → BxSm, one is provided with a map of sheaves φn,m : α∗(Fm)→ Fn so that the maps {φn,m|n,m}
are compatible. Abelian sheaves on the site Et(BxS ) may be defined similarly. We skip the verification that

the category of abelian sheaves on the above sites have enough injectives. The n-th cohomology group of

the simplicial object BxS with respect to an abelian sheaf F is defined as the n-th right derived functor of

the functor sending

(3.21) F 7→ kernel(δ0 − δ1 : Γ(BxS0,F0)→ Γ(BxS1,F1)).

Now we obtain the following Proposition.

Proposition 3.3. Let F denote an abelian sheaf on Smt(S). Then we obtain the following isomorphisms:

(i) H∗smt(BxS , x∗• (F )) ∼= H∗smt(S ,F ), where the subscript smt denotes cohomology computed on the smooth

sites and x• : BxS → S is the simplicial map induced by x : X→ S.

(ii) H∗smt(BxS , x∗• (F )) ∼= H∗et(BxS , α∗x
∗
• (F )), where the subscript et denotes cohomology computed on the

étale site and α : Smt(BxS )→ Et(BxS ) is the obvious morphism of sites.

Proof. Observe that x : X→ S is a covering of the stack S in the smooth topology, so that

kernel(δ0 − δ1 : Γ(BxS0,F0 )→ Γ (BxS1,F1 )) ∼= Γ (S ,F ).

Since Hn
smt(S ,F ) is the n-th right derived functor of the above functor, in view of (3.21), we see that

it identifies with Hn
smt(BxS , x∗• (F )). This provides the isomorphism in (i). The isomorphism in (ii) is a

straight-forward extension of a well-known result comparing the cohomology of an algebraic space computed

on the smooth and étale sites. �

Corollary 3.4. Assume the above context.

(i) Then we obtain an isomorphism

H1
et(EGgm,u ×G X,Gm) ∼= H1

et(EG×G X,Gm) ∼= H1
smt([X/G],Gm), for u > 1,

which is functorial in the G-scheme X.

(ii) Moreover, we obtain isomorphisms:

H2
et(EGgm,u ×G X, µm(1)) ∼= H2

et(EG×G X, µm(1)) ∼= H2
smt([X/G], µm(1)) for u > 1.

which are functorial in the G-scheme X, and where m is invertible in k.
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Here H1
smt([X/G],Gm) and H2

smt([X/G], µm(1)) denote the cohomology of the quotient stack [X/G] computed

on the smooth site.

(iii) One obtains an isomorphism mBr(EGgm,u ×G X) ∼= mBrG(X) ∼= mBr([X/G]), for any u > 1, thereby

proving that mBrG(X) is an invariant of the quotient stack [X/G], for any positive integer m invertible in k.

Proof. The first isomorphisms in both the statements (i) and (ii) are from Proposition 3.2. The second

isomorphisms in (i) and (ii) follow from the isomorphism of the simplicial schemes: EG×G X ∼= cosk
[X/G]
0 (X)

and Proposition 3.3. Next we consider the third statement.

Recall the long exact sequence in étale cohomology obtained from the Kummer sequence:

(3.22)
→ H1

et(EG×G X,Gm)
m→H1

et(EG×G X,Gm)
δ→H2

et(EG×G X, µm(1))→ H2
et(EG×G X,Gm)

m→H2
et(EG×G X,Gm)→ · · ·

Then the cokernel(H1
et(EG×GX,Gm)

m→H1
et(EG×GX,Gm)) maps to H2

et(EG×GX, µm(1)), by a map induced

by the boundary map δ: we will denote this map by δ̄. Then, in view of the isomorphisms in (i) and (ii),

the Brauer group BrG(X)`n identifies with the cokernel of the map δ̄.

In view of Proposition 3.3, the isomorphisms in (i) and (ii) and the long exact sequence (3.22), mBr([X/G])

identifies with

kernel(H2
et(EG×G X,Gm)

m→H2
et(EG×G X,Gm)).

Again by Proposition 3.3, the isomorphisms in (i) and (ii) and the long-exact sequence (3.22), this identifies

with

cokernel((H1
et(EG×G X,Gm)/m

δ̄→H2
et(EG×G X, µm(1))) ∼= mBrG(X).

This proves the third assertion. �

Proof of Theorem 1.4. Clearly Corollary 3.4(iii) completes the proof of Theorem 1.4. �

Proposition 3.5. The equivariant Brauer groups are independent of the choice of an admissible gadget

defined as in Definition 2.1.

Proof. Let {(Wm,Um)|m} and {(W̄m, Ūm)|m} denote two admissible gadgets for the given linear algebraic

group G. Let G act on the given scheme X. Let Zm = Wm − Um, Z̄m = W̄m − Ūm. Then one may observe

that {(W̃m = Wm × W̄m, Ũm = Um × W̄m ∪ W̄m × Ūm)|m} is also an admissible gadget. Moreover,

codimŨm×GX(Ũm ×G X− (Um × W̄m)×G X) = codimWm
(Wm −Um), and(3.23)

codimŨm×GX(Ũm ×G X− (Wm × Ūm)×G X) = codimW̄m
(W̄m − Ūm).(3.24)

Therefore, if codimWm
(Wm −Um) ≥ 2 and codimW̄m

(W̄m − Ūm) ≥ 2, then in the long exact sequence

· · · → H2,1
Qm

(Ũm ×G X)→ H2,1(Ũm ×G X)→ H2,1((Um × W̄m)×G X)→ H3,1
Qm

(Ũm ×G X)→ · · · ,

where Qm = Ũm ×G X− (Um × W̄m)×G X, and in the long exact sequence

· · · → H2,1

Q̄m
(Ũm ×G X)→ H2,1(Ũm ×G X)→ H2,1((Wm × Ūm)×G X)→ H3,1

Q̄m
(Ũm ×G X)→ · · · ,

where Q̄m = Ũm×G X− (Wm× Ūm)×G X, both the end terms are trivial, thereby showing that the middle

maps in both the long exact sequences are isomorphisms. Here Hi,1 denotes either motivic cohomology of

weight 1 with Z/m-coefficients or étale cohomology with respect to the sheaf µm(1). The assertion on the
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triviality of the local motivic cohomology terms above follows from Proposition 9.4, while the corresponding

assertion for étale cohomology follows from well-known cohomological semi-purity statements. �

4. Proof of Corollary 1.6

Proof of Corollary 1.6. When G = GLn or Gm, the two statements follow readily from the discussion

in section 2.3: see especially (2.4) and (2.6). When G = GLn, or G = Gm, for p ≥ 2, the codimension

of the complement of (G×p ×W×p) ×G×p X in E(G×p)gm,2 ×G×p X is at least 2. Therefore in this case,

mBrG×p(X) ∼= mBr((G×p ×W×p)×G×p X) ∼= mBr(X). �

5. Brauer groups of stacks of the form [X/D] where D is a smooth diagonalizable group

scheme and Proof of Theorem 1.7.

The main theme of this section is the determination of the Brauer groups of quotient stacks of the form

[X/D], where D is a smooth diagonalizable group scheme. We begin by observing that when D is the 1-

dimensional torus Gm, then (2.7) provides a means to compute the Brauer group of the quotient stack [X/D].

We proceed to consider some of the remaining cases.

5.1. Toric stacks. Let X denote a toric variety defined over a field k for the split torus T = Gs
m, or more

generally a toric scheme over the base B in the sense of [JL, section 4(i), (4.1)], i.e. satisfying the hypotheses

as in (10.5). Recall B is assumed to be the spectrum of a Dedekind domain R which is an excellent scheme

and that the hypotheses in (10.5) require that the toric scheme X contain as an open subscheme a split torus

T = Gs
m, and that all the T-orbits are defined and faithfully flat over B. Consider a homomorphism

Gr
m → Gsm

given by characters

α1, . . . , αs : Gr
m → Gm.

Each character in turn decomposes as αi = (αi1, αi2, . . . , αir) where αij : Gm → Gm given by z 7→ zαij .

We are interested in the Brauer group of the quotient stack [X/Gr
m]: as defined in the introduction, such

stacks are what we call toric stacks. (See [GSat] and/or [JK, section 2].) We let

(5.1) X2(X,Gr
m) := (A2 \ {0})r ×Gr

m
X.

5.2. Notation. We let

AG(u) =

{
Gm × A1 if u = 1

A1 ×Gm if u = 2

Given v ∈ {1, 2}r , with v = (v1, . . . , vr) we set

(5.2) U(v ,X,Gr
m) = (

r∏
1

AG(vi))×Gr
m

X.

Given u ∈ {1, 2}, we let

û =

{
1 if u = 2

2 if u = 1.
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Proposition 5.1. In the above situation, for each choice of v = (v1, · · · , vr), there is an isomorphism

φv : U(v ,X,Gr
m)→ Ar ×X

given by

φv((x11, x12), . . . (xr1, xr2), p) =

(
x1v̂1

x1v1

, . . . ,
xrv̂r
xrvr

,

r∏
1

x−1
ivi
.p

)

Proof. One checks that the lift of φv, defined by the same equations is equivariant for the action of Gr
m on∏r

1 Avi ×X and hence φv is well defined. One can write down the inverse of φv as

φ−1
v (x1, . . . xr, p) = [(y11, y12), . . . (yr1, yr2), p]

where

yi1 =

{
1 if vi = 1

xi if vi = 2

and

yi2 =

{
xi if vi = 1

1 if vi = 2
.

One checks that these maps are mutually inverse. �

Proposition 5.2. As v varies over {1, 2}r the U(v ,X,Gr
m), form an open cover of X2(X,Gr

m).

Proof. This is clear. �

Proposition 5.3. The variety (scheme) X2(X,Gr
m) is toric and has dense open torus

Gr
m × T

λ→ X2(X,Gr
m)

given by

(z1, . . . , zr, p) 7−→ [(1, z1), (1, z2), . . . , (1, zr), p].

Moreover all the Gr
m × T-orbits on X2(X,Gr

m) are faithfully flat over B.

Proof. The question that λ is an open embedding is local on X2(X,Gr
m) so it can be checked locally on

U(v ,X,Gr
m). Using the isomorphism of the prior proposition, we check that it is an open embedding with

dense image. To see that X2(X,Gr
m) is normal, note that normality is local for the smooth topology and the

smooth cover X× (A− {0})r is normal. One may see from the above discussion that, when B = Spec R for

an excellent Dedekind domain R, the Gr
m × T-orbits on X2(X,Gr

m) are of the form Gr
m × T′, where T′ is a

factor of T. Therefore, they are faithfully flat over B. �

We proceed to discuss an explicit fan for the toric variety (scheme) X2(X,Gr
m).

Proposition 5.4. Choose v ,w ∈ {1 , 2}r .

(1) We have φv (U(v ,X,Gr
m) ∩U(w ,X,Gr

m)) =
∏r

1 AGvi ,wi ×X where

AGvi ,wi =

{
A1 if vi = wi

Gm otherwise.
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(2) The composition

r∏
1

AGvi ,wi ×X
φ−1
v→ U(v ,X,Gr

m) ∩U(w ,X,Gr
m)

φw→
r∏
1

AGvi ,wi ×X

is given by

φw ◦ φ−1
v (x1 , . . . , xr , p) = (x v1 ,w1

1 , . . . , x vr ,wr
r , t · p)

where

x vi ,wi

i =

{
xi if vi = wi

x−1i otherwise,

and

t =

r∏
i=1 ,vi 6=wi

x−1i .

Proof. (1) Set

ÃGvi ,wi =


Gm × A1 if vi = wi = 1

Gm ×Gm if vi 6= wi

A1 ×Gm if vi = wi = 2 .

It follow from 5.2 that
∏r

1 Ãvi ,wi ×Gr
m

X = U(v ,X,Gr
m) ∩U(w ,X,Gr

m).

When vi = wi the ith component of Ãvi ,wi is the same as that of U(v,X,Gr
m) and when vi 6= wi then an

open axis is missing. The result follows directly from the formula for φv .

(2) Here we make use of the formula for φ−1
v given in the proof of 5.1. We see that

φw ◦ φ−1
v (x1, . . . , xr , p) = φw ((y11 , y12 ), . . . , (yr1 , yr2 ), p)

=

(
y1,ŵ1

y1w1

, . . . ,
yr,ŵr

yrwr

,

r∏
1

y−1iwi
· p

)
,

where

yi1 =

{
1 if vi = 1

xi if vi = 2
yi2 =

{
xi if vi = 1

1 if vi = 2 .

One checks

yiwi =

{
xi if vi = wi

1 if vi 6= wi .
yiŵi =

{
1 if vi = wi

xi if vi 6= wi .

It follows that

yiŵi

yiwi

=

{
xi if vi = wi

x−1i if vi 6= wi

and
r∏
1

y−1i,wi
=
∏

vi 6=wi

x−1i = t .

�

We will assume from now on familiarity with cones and fans and their associated toric varieties.

Proposition 5.5. Consider the morphism of split tori

φv : Gr
m × T = Gr+s

m → Gr+s
m
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induced by the map φv : U(v ,X,Gr
m) → Ar × X where Gr

m × T = Gr+s
m ⊆ U(v ,X,Gr

m) and Gr+sm ⊆ Ar × X.

Then the induced pullback map on character lattices φ∗v : X(Gr+s
m ) = Zr+s → X(Gr+s

m ) = Zr+s is given by

multiplication by the matrix

B(v , α) =

(
Iv A(v , α)

0s×r Is×s

)
,

where:

Iv =


ε(v1 ) 0 · · · 0

0 ε(v2 ) · · · 0
...

...
...

...
0 · · · 0 ε(vr )



A(v , α) =


−α11(v1 − 1 ) · · · −αs1 (v1 − 1 )
−α12(v2 − 1 ) · · · −αs2 (v2 − 1 )

...
...

...
−α1r(vr − 1 ) · · · −αsr (vr − 1 )


Here

ε(vi) =

{
1 if vi = 1

−1 if vi = 2

Proof. We need to compute the morphism from the torus Gr
m ×T to Ar ×X via φv . The torus Gr

m ×T sits

inside U(v ,X,Gr
m) as described in 5.3. Recall the embedding is

(z1, . . . , zr, p) 7−→ [(1, z1), . . . , (1, zr), p].

Hence, one computes

φv ((1, z1 ), (1 , z2 ), . . . , (1 , zr ), p1 , . . . , ps) =
(

z
ε(v1 )
1 , z

ε(v2 )
2 , . . . , z ε( vr )

r , tp1 , tp2 , . . . , tps

)
where

t =

r∏
i=1,vi=2

z−1i .

Now let χi : Gr+sm → Gm be the character χi(z1, . . . , zr+s) = zi. We need to compute χi ◦ φv . It is easy to

see that

χi ◦ φv = χεi(vi)

when i ≤ r. This proves that the left (r+ s)× r block of the matrix B(v, α) is as stated. Now assume i > r.

Take 1 ≤ j ≤ r. Then

χi ◦ φv ([(1, 1), . . . , (1, zj), . . . , (1, 1), 1]) = χi(1, . . . , z
ε(vj)
j , . . . , 1, zλj .1).

Now λ = 0 if vj = 1 and λ = −1 if vj = 2. Now recall that the torus Gr
m acts on T = Gs

m via the characters

αi as described at the start of this section. The top right r×s block of B(v, α) is obtained by observing that

vi − 1 =

{
0 if vi = 1

1 if vi = 2.

It remains to check that the bottom s× s block is the identity. This is straightforward as Gsm act on Gsm via

ordinary multiplication. �

Proposition 5.6. Let V be a finite dimensional vector space with an automorphism a : V→ V. Let ρ be a

cone in V with dual cone ρ∨. Then we have

a(ρ)∨ = (at)−1(ρ∨).
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Proof.

v ∈ (a(ρ))∨ ⇐⇒ < a(x ), v > 0 ≥ ∀ x ∈ ρ

⇐⇒ < x , at(v) > 0 ≥ ∀ x ∈ ρ

⇐⇒ (at)(v) ∈ ρ∨

⇐⇒ v ∈ (at)−1 (ρ∨).

�

Proposition 5.7. Let Σ ⊆ Zs be a fan for the toric variety (toric scheme) X. Let cone(e1, . . . , er) be the

standard fan for the toric variety (toric scheme) Ar so that cone(e1, . . . , er)× Σ is a fan for Ar × X. Then

a fan for X2(X,Gr
m) is given by taking the union of the fans

(B(v , α)t)−1 (cone(e1, . . . , er)× Σ)

as v varies over {1, 2}r .

Proof. Consider first the case where X is affine, given by a cone σ. We write Sσ for the monoid consisting

of lattice points in σ∨. We have

Spec(k [Sσ×cone(e1...er)]) = X, (Spec(R[Sσ×cone(e1...er)]) = X).

As a sub-algebra of the co-ordinate ring of the torus, this is

k [SB(v ,α)(σ×cone(e1...er))] (R[SB(v,α)(σ×cone(e1...er))], respectively).

In other words, the dual cone for U(v ,X,Gr
m) is B(v , α)(σ × cone(e1 . . . er)). The cone is then described via

the lemma. The affine case now follows from [CLS, Exercise 3.2.11]. The same gluing procedure yields the

result in general. �

Proof of Theorem 1.7. Clearly the above discussion proves the first statement. Now the second statement

follows readily from Theorem 1.4 making use of Corollary 3.4. �

We will now recall the following basic framework from [JL, sections 2 and 4]. In the following discussion,

we state the results explicitly only for toric schemes defined over the excellent Dedekind domain R: the

case for toric varieties over the field k should be clear by replacing R by k . Throughout we will assume the

hypothesis 10.5 holds. Observe that X2(X,Gr
m) is now a smooth split toric scheme with the open orbit given

by the split torus Gr+sm . We will denote the coordinates of this torus by ti, i = 1, · · · r + s. Let ζ denote a

primitive m-th root of unity in k and let (ti, tj)ζ and (b, ti)ζ denote cyclic algebras with b ∈ R∗. Observe

that any Azumaya algebra generated by the cyclic algebras (ti, tj)ζ , i < j will be of the form Πi<j(ti, tj)
ei,j
ζ ,

for some choice of integers 0 ≤ ei,j < m, while any Azumaya algebra generated by the cyclic algebras (b, t)ζ ,

with b ∈ R∗ and t a coordinate of the torus Gr+sm will be of the form Λ = Πr
i=1(bi, ti)

ei
ζ , for some integers

0 ≤ ei < m.

We will denote the subgroup of mBr(T) generated by {Π1≤i<j≤r+s(ti, tj)
ei,j
ζ |ei,j ≥ 0} by A, and the

subgroup generated by {Π1≤i≤r+s(b, ti)
ei
ζ |ei ≥ 0, b ∈ R∗} by B. Let M (N) denote the lattice of characters

(co-characters or 1-parameter subgroups) associated to the split torus Gr+sm . Let ∆′ denote the fan associated

to the toric scheme X2(X,Gr
m) and let N′ denote the subgroup generated by

⋃
σ′∈∆′ σ

′ ∩N. Then N′ =

Za1n1 ⊕ · · ·Zaunu , where n1, · · · ,nu,nu+1, · · · .nr+s is a basis for N and ai ≥ 0 are integers with ai |ai+1 ,
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for i = 1, · · · , u. Then [JL, Theorems 2.1 and 4.1] (i.e., Theorem 10.4) readily provide the following theorem

that calculates the Brauer group of the toric stack [X/Gr
m].

Theorem 5.8. For a positive integer m invertible in R, let mBr([X/Gr
m]) denote the m- torsion part of the

Brauer group of [X/Gr
m]. Then the following hold, assuming R contains a primitive m-th root of unity ζ:

(i) mBr([X/Gr
m]) ∼= mBr(Spec R)⊕ (mBr([X/Gr

m])∩A)⊕ (mBr([X/Gr
m])∩B), where (following the termi-

nology in [JL, Theorem 3.2])

(ii) mBr([X/Gr
m])∩A = the subgroup generated by {Λ = Πi<j(ti , tj )

ei,j
ζ |m > ei,j ≥ 0} satisfying the following

conditions: for each v = 1, . . . ,min{u, r+s−1}, if mv = hcf{m, e1,v, e2,v, · · · , ev−1,v, ev,v+1, · · · , ev,r+s},
then ( mmv

)|av. Moreover, we also obtain the following qualitative determination of mBr([X/Gr
m]) ∩ A:

mBr([X/Gr
m]) ∩ A ∼= Hom(Ab.groups)(∧2(N/N′),Z/mZ),

where N is the lattice of co-characters of rank r + s and N′ is the sublattice generated by the rays of

the fan of the toric variety discussed in Proposition 5.7.

(iii) mBr([X/Gr
m]) ∩ B is generated by {Λ = Πr+s

i=1 (bi, ti)
ei
ζ | m > ei ≥ 0}, as bi ∈ R∗ varies among the

corresponding classes in H1
et(Spec R, µm(0)) so that the following conditions are satisfied: for each

v = 1, · · · , u, if mv = hcf{m, ev, ordm(bv)}, then ( ordm(bv)
mv

)|av. (For an element b ∈ R∗, we let b̄

denote the image of b in K∗/(K∗)m . Let ordm(b) denote the order of b̄, which is the least positive

integer so that bordm(b) ∈ (K∗)m .)

Moreover, we also obtain the following qualitative determination of mBr([X/Gr
m]) ∩ A:

mBr(X) ∩ B = Hom(Ab.groups)(N/N′,K∗/K∗m),

again where N denotes the lattice of ran r+ s and N′ is the sublattice generated by the rays of the fan of the

toric variety discussed in Proposition 5.7.

Moreover, [JL, Corollaries 3.3 and 4.2] provide the following corollary.

Corollary 5.9. Assume the basic hypotheses of the last theorem. Let ∆ denote the fan for the toric scheme

X. Then the following hold:

(i) In case there is a cone σ in the fan ∆ with dimension(σ) ≥ s− 1, then mBr([X/Gr
m]) ∩ A is trivial.

(ii) In case there is a cone σ in the fan ∆ with dimension(σ) ≥ s, then both mBr([X/Gr
m]) ∩ B and

mBr([X/Gr
m]) ∩ A are trivial, so that mBr([X/Gr

m]) ∼= mBr(Spec R).

Proof. In view of Proposition 5.7, one may observe that if there is a cone σ for the given toric scheme X

with dimension(σ) ≥ s−1 (dimension(σ) ≥ s), then there is a cone σ′ for the toric scheme X2(X,Gr
m) with

dimension(σ′) ≥ r + s − 1 (dimension(σ′) ≥ r + s, respectively). Therefore the conclusions follow in view

of [JL, Corollary 3.3 and 4.2]. �

Example 5.10. Let n ≥ 1 denote a positive integer. We will now consider the Brauer group of the weighted

projective stack [(An − {0})/Gm] defined over a base B as in (1.1). (Observe (see [GSat, Example 4.14])

that the stack M1,1,R is a weighted projective stack, so that our results here apply to such stacks.)

Corollary 5.11. Assume the basic hypotheses of Theorem 5.8. Then mBr([(An − {0})/Gm]) ∼= mBr(B).
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Proof. From the description of the fan for the associated toric variety (scheme) X2(An − {0},Gm) as in

Proposition 5.7, one can see that it satisfies hypotheses in Corollary 5.9(ii). �

Example 5.12. Here we consider the stack [A1/Gm]. This is the stack that classifies pairs (L, s) with L→ X

a line bundle on the scheme X and s ∈ H0(X,L). Now (2.7) shows that mBr([A1/Gm]) injects into mBr(A1).

Clearly the latter is trivial if m = `n for a prime ` invertible in k (R) and k (R) has `-cohomological

dimension 1 or less. The same holds for the stack [An/Gm], where Gm acts diagonally on An.

Proposition 5.13. (The period-index problem for toric stacks)

(i) Assume the base field k is algebraically closed and let m denote a positive integer invertible in k. Then

for [X/Gr
m] a toric stack as in Theorem 1.7, if α ∈ mBr([X/Gr

m]), Period(α)|Index(α)r+s−1.

(ii) Assume the base field k is the function field of a smooth curve over an algebraically closed field and

the positive integer m is invertible in k. Then for [X/Gr
m] a toric stack as in Theorem 1.7, if α ∈

mBr([X/Gr
m]), Period(α)|Index(α)r+s.

Proof. This follows readily from Theorem 1.7, Proposition 5.3 and [JL, Theorem 5.3 and Corollary 5.7]. �

5.3. Quotient stacks of the form [X/µ`n ]. Next we proceed to consider quotient stacks of the form [X/µ`n ]

where X is a smooth scheme provided with an action by the diagonalizable group scheme of the form µ`n , all

defined over the base scheme B as in 1.1, with ` a prime invertible in OB. In this case, we let Eµ`n = A2−{0}
provided with the action of µ`n , where it acts through the obvious injection µ`n → Gm and Gm acts on A2

in the obvious manner. In view of Theorem 1.4, one may identify Br([X/µ`n ]) with Br(Eµ`n ×µ`n
X).

Theorem 5.14. Assume the above situation. Then the following hold.

(i) For n ≥ n′, we obtain a short exact sequence:

0→ `n′Br([X/Gm])→ `n′Br([X/µ`n ])→ H1
et([X/Gm], µ`n′ (0))→ 0.

(ii) In case n < n′, we obtain a short exact sequence, where σ is the first Chern classes of the line bundle

O(−1) on BGm = P∞:

0→ (`n′Br([X/Gm]))/`nσ → `n′Br([X/µ`n ])→ ker(H1
et([X/Gm], µ`n′ (0))

`nσ̄−→H3,1
et ([X/Gm]))→ 0.

(iii) Next assume that OB has a primitive `-th root of unity and that the smooth scheme X is provided

with an action by the symmetric group Σ`, where Σ` denotes the symmetric group on `-letters. Then µ`

identifies with the constant sub-sheaf Z/` of Σ` and

`Br([X/Σ`]) ∼= (`Br([X/µ`]))
Aut(µ`).

Proof. We will first prove (i) and (ii) when X = B, so that µ`n acts trivially on X in this case. We begin

with the calculations in [Voev2, section 6] on the motivic cohomology of Bµ`n . A key observation is that

Bµ`n = O(−`n) − z(P∞), where O(−`n) denotes the obvious line bundle on P∞. This is clear since a

model for the geometric classifying space for µ`n is given as the quotient (An+1 − 0)/µ`n which fibers over

Pn = (An+1 − 0)/Gm. Therefore, the homotopy purity theorem [MV, Theorem 2.23] provides the cofiber

sequence:

(5.3) Bµ`n+ → (O(−`n)P∞)+ → Th(O(−`n)),



22 A. DHILLON, J. N. IYER, AND R. JOSHUA

where Th(O(−`n)) is the Thom-space of the above line bundle, which identifies with the cofiber of the first

map. Next we let Heven
M (P∞,Z/`n′) = ⊕iH

2i,i
M (P∞,Z/`n′) and similarly Heven

et (P∞, µ`n′ ) = ⊕iH
2i,i
et (P∞, µ`n′ ).

Then

H∗,•M (P∞,Z/`n
′
) ∼= H∗,•M (B,Z/`n

′
)[[σ]] and(5.4)

H∗,•et (P∞, µ`n′ ) ∼= H∗,•et (B, µ`n′ )[[σ̄]].

Thus, H∗,•M (P∞,Z/`n′) (H∗,•et (P∞, µ`n′ )) is a formal power series ring in the variable σ (σ̄) over H∗,•M (B,Z/`n′)
(over H∗,•et (B, µ`n′ ), respectively). σ and σ̄ are the first Chern classes of the line bundle O(−1). (Observe

that the cycle map sends σ to σ̄.)

Then the long-exact sequences in motivic and in étale cohomology associated to the above cofiber sequence

provide the commutative diagram of long exact sequences

(5.5)

//
H0,0

M (B,Z/`n′)[[σ]]
∪e //

��

H2,1
M (B,Z/`n′)[[σ]]

//

��

H2,1
M (Bµ`n ,Z/`n

′
)

//

��

H1,0
M (B,Z/`n′)[[σ]]

//

��//
H0

et(B, µ`n′ (0))[[σ̄]]
∪e //

H2,1
et (B, µ`n′ (1))[[σ̄]]

//
H2

et(Bµ`n , µ`n′ )
//
H1

et(B, µ`n′ (0))[[σ̄]]
//

where σεH2,1(P∞) is the first Chern class of O(−1).

Here e denotes the Euler class of the line bundle O(−`n). H∗,• denotes either motivic or étale cohomology

with Z/`m-coefficients. The map denoted ∪e is the composition of the Thom isomorphism and the obvious

map H∗,•(Th(O(−`n)))→ H∗,•(E(O(−`n)P∞)) ∼= H∗,•(P∞).

Next we break the remaining part of the proof into two cases, (i) when n ≥ n′ and (ii) when n < n′. In

the first case, observe that `nσ = e(O(−`n)) and therefore, the above long exact sequence breaks up into

short exact sequences since we are working with Z/`n′ -coefficients for n ≥ n′. In view of (5.4), the statement

in (i) follows when n ≥ n′ by taking the cokernels of the vertical maps, and observing that H1,0
M = 0 (since

motivic complex Z/`n(0) identifies with the constant sheaf Z/`n). In fact one may observe that the vertical

maps above are all injective, as one may see from the Kummer sequence and then apply a snake Lemma

argument (see, for example: [JL, Lemma 2.6]) to obtain the required conclusion, when X = B and the action

by µ`n is trivial.

Next we consider the case where X is no longer the base scheme B. In this case, and for the remainder of

the proof, we will denote (A2 − {0})×µ`n
X by [X/µ`n ] and similarly (A2 − {0})×Gm X by [X/Gm]. A key

observation now is that (A2 −{0})×µ`n
X = π∗(O(−`n))− z([X/Gm]), where π : (A2 −{0})×µ`n

X→ Bµ`n

is the projection and π∗(O(−`n)) denotes the pull-back of the line bundle O(−`n) on P∞ = BGm. This is

clear since a model for the geometric classifying space for µ`n is given as the quotient (An+1− 0)/µ`n which

fibers over Pn = (An+1− 0)/Gm. Therefore, the homotopy purity theorem [MV, Theorem 2.23] provides the

cofiber sequence:

(5.6) ((A2 − {0})×µ`n
X)+ → π∗(O(−`n)P∞)+ → Th(π∗(O(−`n))).
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In this case, in place of the diagram (5.5), we obtain the diagram:

(5.7)

//
H0,0

M ([X/Gm],Z/`n′ )
∪π∗(e) //

��

H2,1
M ([X/Gm],Z/`n′ )

//

��

H2,1
M ([X/µ`n ],Z/`n′ )

//

��

H1,0
M ([X/Gm],Z/`n′ )

//

��//
H0

et([X/Gm], µ
`n
′ (0))

∪π∗(e) //
H2

et([X/Gm], µ
`n
′ (1))

//
H2

et([X/µ`n ], µ
`n
′ (1))

//
H1

et([X/Gm], µ
`n
′ (0))

//

where the map denoted ∪π∗(e) is the cup product with the Euler class of the pulled-back line bundle
π∗(O(−`n)P∞). Now the class π∗(e) = π∗(`nσ) = `nπ∗(σ) and hence is trivial. Therefore, the long-exact
sequences in each row break up into short-exact sequences. One obtains the short exact sequence in (i) on
taking the cokernels.

Next we consider (ii), i.e., the case when n < n′. Now the long exact sequence (5.5) no longer breaks up
into short exact sequences so that we will argue a bit differently as follows. Here also we first consider the
special case where X = B and µ`n acts trivially. Then one obtains the following commutative diagram of
short exact sequences from the long exact sequence (5.5):

(5.8) 0
//

��

H2,1
M (B,Z/`n′)[[σ]]/(`nσ)

��

//
H2,1

M (Bµ`n ,Z/`n
′
)

//

��

K
//

��

0

��
0

//
H2

et(B, µ`n′ )[[σ̄]]/(`nσ̄)
//
H2

et(Bµ`n , µ`n′ )
//
K̄

//
0

where

K = ker(H1,0
M (B,Z/`n

′
)[[σ]]

`nσ−→H3,1
M (B,Z/`n

′
)[[σ]]) and K̄ = ker(H1

et(B, µ`n′ (0))[[σ̄]]
`nσ̄−→H3

et(B, µ`n′ (1))[[σ̄]]).

Taking the cokernels of the vertical maps, and observing again that H1,0
M = 0 now proves (ii) in this case.

When X is no longer B, we will instead obtain the commutative diagram with exact rows:

(5.9) 0
//

��

H2,1
M ([X/Gm],Z/`n′)/(`nσ)

��

//
H2,1

M ([X/µ`n ],Z/`n′)
//

��

K
//

��

0

��
0

//
H2

et([X/Gm], µ`n′ )/(`
nσ̄)

//
H2

et([X/µ`n ], µ`n′ )
//
K̄

//
0

where

K = ker(H1,0
M ([X/Gm],Z/`n

′
)
`nσ−→H3,1

M ([X/Gm],Z/`n
′
)) and

K̄ = ker(H1
et([X/Gm], µ`n′ (0))

`nσ̄−→H3
et([X/Gm], µ`n′ (1))).

Taking the cokernels of the vertical maps, now proves (ii) in this case.

Next we will consider (iii). First observe that, under our hypotheses, one may identify the sheaf µ` with
the constant sheaf Z/`. In this case, we will adopt the terminology from section 2.3 and let EGLgm,2n denote
the object defined in (2.3). Then we will let [X/Σ`] denote EGLgm,2n ×GLn (GLn ×Σ`

X). Moreover we will

let [X/µ`n ] denote EGLgm,2n ×GLn
(GLn×Z/`X). Then one has a natural map p : [X/µ`]

∼=→[X/Z/`]→ [X/Σ`].
The main observation now is that |Σl/Z/`| = (` − 1)! is invertible in Z/` and µ`. Therefore, the induced
maps

p∗ : H∗,•M ([X/Σ`],Z/`)→ H∗,•M ([X/µ`],Z/`)Aut(µ`) and(5.10)

p∗ : H∗et([X/Σ`],Z/`)→ H∗et([X/µ`],Z/`)Aut(µ`)

are split injective. One may also observe that the action of Aut(µ`) is compatible with the cycle map.
Therefore the case of [X/µ`] considered above completes the proof of (iii) in the Theorem. �
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Example 5.15. As an example one can consider the quotient stack [A1/µ`n′ ]. Here we make use of Proposi-

tion 5.14 to compute the resulting Brauer groups. Observe that H1
et([A1/Gm], µ`n′ (0)) ∼= H1

et(BGm, µ`n′ (0)) ∼=
H1(B, µ`n′ (0)) since BGm ∼= P∞. One may now complete the computation making use of the short-exact se-

quences in Proposition 5.14. Observe that when B = Spec k with k a separably or algebraically closed field,

`nBr([A1/µ`n′ ]) is trivial.

6. Brauer group of the moduli stack of elliptic curves and Proof of Theorem 1.9.

Let M1,1,R denote the moduli stack of elliptic curves over the base scheme B, which we assume is the

spectrum of a Dedekind domain R, for example, the ring of integers in a number field. We proceed to

compute the `-primary torsion part of the corresponding Brauer group. We will assume that the primes 2

and 3 are invertible in R. Let Y = Spec R[g2, g3][1/∆] ⊆ A2
R, where ∆ = g3

2 − 27g2
3 . We define an action of

Gm by g2 7→ u4g2, g3 7→ u6g3, u ∈ Gm. Let B = Spec R. Then we make use of the following presentation for

the stack M1,1,R: see [Ols, Proposition 28.6] or [Hart77, Chapter IV section 4, Theorem 4.14B]:

(6.1) M1,1,R = [Y/Gm].

Then we obtain the following result.

Theorem 6.1. Assume further that the prime ` is invertible in R. Then the following hold:

(i) `nBr(Y) ∼= `nBr(B)⊕H1
et(B, µ`n(0)) ∼= `nBr(B)⊕Homcont(π

et
1 (B, ∗),Z/`n), where πet1 (B, ∗) denotes the

étale fundamental group of B (pointed by a base point ∗) and Homcont(π
et
1 (B, ∗),Z/`n) denotes the group

of continuous homomorphisms into the the discrete group Z/`n,

(ii) H1
et(Y, µ`n(1)) ∼= H1

et(B, µ`n(1))⊕H0
et(B, µ`n(0)) ∼= coker(R∗

`n→R∗)⊕ Z/`n,

(iii) `nBr(M1,1,R) = kernel(res : `nBr((A1 × Gm) ×Gm
Y) ∼= `nBr(Y) → H3

et,(Gm×{0})×GmY(Gm × A1 ×Gm

Y, µ`n(1)) ∼= H1
et((Gm × {0})×Gm

Y, µ`n(0)) ∼= H1
et(Y, µ`n(0))),

where res denotes the residue map discussed in (2.7) and in [JL, 2.3]. In particular the Brauer group

`nBr(M1,1,R) is a subgroup of `nBr(Y). Moreover `nBr(M1,1,R) ∼= 0 if the residue map in (ii) is

injective.

(iv) In case the Brauer group `nBr(B) is trivial, `nBr(Y) ∼= H1
et(B, µ`n(0)) and hence `nBr(M1,1,R) is

generated by classes coming from H1
et(B, µ`n(0)).

(v) In case R is a finite field, separably closed field, or a complete discrete valuation ring with finite or

separably closed residue field, `nBr(B) is trivial, so that the conclusions in (iv) hold in these cases.

Proof. Throughout the proof, we will let x = g2 , y = g3 and ∆̃ = SpecR[x , y ]/(x3 − 27y2 ). Let AiB
denote the affine space of dimension i over B = Spec R. Observe that the curve corresponding to ∆̃ has

an isolated singularity at the origin, which can be resolved by taking the normalization as follows. Recall

that ∆̃ corresponds to the plane curve with equation : (x/3)3 = y2. Therefore, we substitute (x/3) = t2

and y = t3, so that A = R[x , y ]/((x3 − 27y2 ) ∼= R[t2, t3] with function field K(t), where K denotes the

function field of R. This is because 1/t = t2/t3 = (x/3 )/y = x/(3y). Since R is assumed to be a Dedekind

domain, it is integrally closed in its field of fractions K. Therefore, R[t] is integrally closed in K(t): see

[StacksP, Normal rings: Lemma 10.37.8]. Clearly t is integral over A, and therefore the integral closure of

A in K(t) is R[t] = R[3y/x ], which corresponds to the affine line A1
B over B = Spec R. This proves that the
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normalization of the curve ∆̃ is the affine line A1
B and the normalization maps A1

B − {0} isomorphically to

the curve ∆̃− {0}.

Therefore, we obtain the isomorphisms:

(6.2) A2
B − ∆̃ ∼= (A2

B − {0})− ((∆̃)− {0}) ∼= A2
B − A1

B
∼= A1

B ×Gm,B

H3
et(A2

B − ∆̃, µ`n(1)) ∼= H3
et((A2

B − {0})− (∆̃− {0}), µ`n(1)) ∼= H3
et((A2

B − A1
B), µ`n(1)),

where the last isomorphism follows from the observation made earlier that the normalization of ∆̃ is the affine

line A1. At this point Theorem 10.1(i) applies to provide a proof of the assertion in (i) while Theorem 10.1(ii)

applies to provide a proof of the assertion in (ii). The assertion in (iii) then follows from (2.7). The remaining

statements are clear. �

Corollary 6.2. (i) Next assume the base ring R is a field k in which 2 and 3 are invertible. Let ` denote a

prime not necessarily different from 2 or 3, so that ` is also invertible in k, and k contains a primitive

`n-th root of unity for some positive integer n. Then

(6.3) `nBr(M1,1,k ) ∼= `nBr(Spec k)⊕H1
et(Spec k , µ`n(0)).

Moreover the last summand corresponds to cyclic algebras of the form (b, t)ζ , where b ∈ k∗ and t ∈ Gm
corresponds to the character that generates the lattice of characters of Gm.

(ii) The corresponding results also hold when the base ring R is an excellent Dedekind domain in which 2

and 3 are invertible and where ` denotes a prime not necessarily different from 2 or 3, so that ` is also

invertible in R, and R contains a primitive `n-th root of unity for some positive integer n.

Proof. We will first consider the proof of the first statement. The main point to observe is that, in view

of (6.2), now M1,1,k identifies with the toric stack [(A1
k × Gm,k)/Gm,k ]. According to Proposition 5.7,

the corresponding toric variety X2(A1
k × Gm,k ,Gm,k ) has an open covering by toric varieties of the form

A1
k ×A1

k ×Gm,k . Now the open orbit is G×3
m,k , but there are only two codimension 1 orbits coming from the

fan, namely {0} ×G×2
m,k and Gm,k × {0} ×Gm,k . Observe also that the fan for the toric variety A1

k ×Gm,k
is 1-dimensional and hence the fan for X2(A1

k × Gm,k ,Gm,k ) is 2-dimensional. Using the terminology of

Theorem 5.8, r + s = 3, and u = 2 and since the toric schemes are all smooth, the invariant factors av = 1

for all v. Therefore, Corollary 5.9(i) applies to show that the term `nBr([A1
k × Gm,k/Gm,k ]) ∩ A is trivial.

Now Theorem 5.8(iii) and Corollary 5.9(ii) apply to show that as b ∈ k∗ varies, the corresponding classes in

H1
et(Spec k , µ`n(0)) give rise to the cyclic algebras (b, t)ζ contributing to the last summand H1

et(Spec k , µ`n(0))

in (6.3). This completes the proof of (i). For the second statement, one may observe that M1,1,R identifies

with the corresponding toric stack defined over B = Spec R and therefore a very similar calculation holds in

this case. �

Now we return to the general setting where R is a Dedekind domain and consider the situation without

assuming it has a primitive `n-th root of unity. One considers the following conditions on B = Spec R.

(i) Pic(B) = 0,

(ii) H2
fppf(B, µ`n(1)) = 0. (In case ` is invertible in OB, H2

et(B, µ`n(1)) = 0.) and

(iii) H1
fppf(B, µ`n(1)) = 0. (In case ` is invertible in OB, H1

et(B, µ`n(1)) = 0.)
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Lemma 6.3. (i) Under the hypothesis in (i), `nBr(B) ∼= H2
fppf(B, µ`n(1)), which denotes cohomology com-

puted on the fppf site. If in addition to the hypothesis in (i), ` is invertible in OB, `nBr(B) ∼= H2
et(B, µ`n(1)).

Therefore, under the hypothesis in (i), (ii) is equivalent to `nBr(B) ∼= 0.

(ii) Under the hypothesis in (i), H1
fppf(B, µ`n(1)) ∼= 0 if and only if the the `n-th power map Γ(B,Gm)→

Γ(B,Gm) is surjective. If ` is invertible in B and (i) holds, H1
et(B, µ`n(1)) ∼= 0 if and only if the the `n-th

power map Γ(B,Gm)→ Γ(B,Gm) is surjective.

Proof. To see (i), consider the the following part of the long exact sequence provided by the Kummer

sequence:

(6.4) · · · → H1
fppf(B,Gm)→ H1

fppf(B,Gm)
α→H2

fppf(B, µ`n(1))
β→H2

fppf(B,Gm)
γ→H2

fppf(B,Gm)→ · · ·

(If ` is invertible in OB, one may also use the corresponding long-exact sequence in étale cohomology.) The

map denoted γ is the `n-th power map, and its kernel is `nBr(B). The exactness of the long exact sequence

above shows that the kernel of γ is isomorphic to the image of β. But the map β is clearly injective in

view of the assumption that Pic(B) = 0. Thus `nBr(B) ∼= H2
fppf(B, µ`n(1)). The same argument proves the

corresponding statement in étale cohomology when ` is invertible in OB.

For (ii) we consider the following part of the long exact sequence provided by the Kummer sequence:

(6.5) 0→ H0
fppf(B, µ`n(1))→ Γ(B,Gm)

`n→Γ(B,Gm)
δ→H1

fppf(B, µ`n(1))→ Pic(B) ∼= 0

This shows that H1
fppf(B, µ`n(1)) is isomorphic to the cokernel of the `n-th power map. Thus H1

fppf(B, µ`n(1)) ∼=
0 if and only if the `n-th power map Γ(B,Gm)

`n→Γ(B,Gm) is surjective. The corresponding statement for

étale cohomology, when ` is invertible in OB may be proven similarly. �

Next we make the following observations. Let Z denote the ring of integers in Q. Then

(i) Pic(SpecZ) ∼= 0, and

(ii) Br(SpecZ) ∼= 0. In particular `nBr(SpecZ) ∼= 0.

One may readily see (i) is true because Z is a PID. The statement that Br(SpecZ) ∼= 0 may be proven using

class-field-theory: see [Ay], for example. Since `nBr(SpecZ) denotes the `n-torsion part of Br(SpecZ) the

second assertion in (ii) follows.

Let Z1/6 denote the localization of the ring Z by inverting the number 6. Next observe that SpecZ1/6 =

SpecZ− {(2), (3)}. Therefore, one may compute its Brauer group as follows.

Lemma 6.4. `nBr(SpecZ1/6) ∼= `n(Z/2Z)⊕ `n(Q/Z), for ` = 2 or 3.

Proof. We skip the proof as this follows from a standard argument using the computation that Br(Z) = 0. �

Taking R = Z1/6, we obtain the following corollary to Theorem 6.1.

Corollary 6.5. Let B = SpecZ1/6 and let Y be as in (6.1). Let Z∗1/6 denote the units in the ring Z1/6.

Then for ` = 2, or 3,

(i) `nBr(Y) ∼= `n(Z/2Z)⊕ `n(Q/Z)⊕H1
et(SpecZ1/6,Z/`n) ∼= `n(Z/2Z)⊕ `n(Q/Z)⊕Homcont(Z∗2×Z∗3,Z/`n),

where Homcont(Z∗2 × Z∗3,Z/`n) denotes the set of continuous homomorphisms from the profinite group

Z∗2 × Z∗3 (which denotes the group of units in Z2 × Z3) to the discrete group Z/`n,
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(ii) H1
et(Y, µ`n(1)) ∼= H1

et(SpecZ1/6, µ`n(1))⊕H0
et(SpecZ1/6, µ`n(0))

∼= coker(Z∗1/6
`n→Z∗1/6)⊕H0

et(SpecZ1/6,Z/`n) ∼= Z∗1/6/(Z
∗
1/6)`

n ⊕ Z/`n, and

(iii) `nBr(M1,1,R) = ker(res : `nBr(Y) → H1
et(Y, µ`n(1))) where res denotes the residue map as in Theo-

rem 6.1.

Proof. One may compute the étale fundamental group of SpecZ1/6 to be Z∗2 × Z∗3. Therefore (i) follows

from the first statement in Theorem 6.1(i). The Kummer sequence in (6.5) (which holds on the étale site in

this case since ` = 2, 3) shows that H1
et(SpecZ1/6, µ`n(1)) ∼= coker(Z∗1/6

`n→Z∗1/6). Therefore, (ii) follows from

Theorem 6.1(ii). Now (iii) follows readily from Theorem 6.1(iii) and the above observations. This completes

the proof of the Corollary. �

Remark 6.6. We would like to point out that, though there are related results in the literature, such as

[AMO], their work uses a completely different presentation of the moduli stack.We are able to obtain the

results discussed above, as a direct consequence of our work on the Brauer groups of toric stacks and quotient

stacks as in the earlier sections of this paper.

7. Brauer group and torsion index of linear algebraic groups: Proof of Theorem 1.10.

Throughout this section we will work over any base field k with m a positive integer invertible in k. All

linear algebraic groups we consider will be defined over k. Let H denote a fixed connected linear algebraic

group with a chosen Borel subgroup B and a chosen maximal torus T ⊆ B. Let N denote the dimension of

H/B. For a linear algebraic group G, we will let BGgm denote BGgm,m, for some m� 0.

Next consider the diagram

(7.1) H/B
i→BBgm ∼= EHgm ×H (H/B)

f→BHgm,

where f denotes the obvious map induced by the inclusion B ⊆ H (or equivalently the projection H/B →
Spec k). Observe that BBgm ' BTgm, where ' denotes an isomorphism in the motivic homotopy category.

We next recall the definition of the torsion index of connected linear algebraic groups from [Tot05, section

1].

Definition 7.1. (See [Tot05, section 1].) Let N = dim(H/B), so that CHN(H/B) ∼= Z. Then the torsion

index of H (denoted t(H)) is the least positive integer t(H) so that

image(i∗ : CHN(BBgm)→ CHN(H/B))

equals t(H).CHN(H/B).

Observe that there exists a class a ∈ CHN(BBgm,Z/m)(∼= H2N,N
M (BBgm,Z/m)) so that

(7.2) f∗(a) = t(H) ∈ CH0(BHgm,Z/m) ∼= Z/m,

where t(H) is the image of the torsion index t(H).

Remark 7.2. For linear algebraic groups defined over the complex numbers, the torsion index can also be

defined using singular cohomology with integral coefficients, as for such groups the singular cohomology of

H/B with integral coefficients is isomorphic to the corresponding Chow group.
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Next we consider the following squares that commute:

(7.3) H∗,•M (BBgm,Z/m)
f∗ //

cycl

��

H∗−2N,•−N
M (BHgm,Z/m)

cycl

��
H∗et(BBgm, µm(•))

f̄∗ //
H∗−2N

et (BHgm, µm(• −N))

(7.4) H∗,•M (BBgm,Z/m)

cycl

��

H∗,•M (BHgm,Z/m)
f∗
oo

cycl

��
H∗et(BBgm, µm(•)) H∗et(BHgm, µm(•))

f̄∗
oo

To see that these squares commute, one may observe that BBgm,m identifies with EHgm,m ×H (H/B)

while BHgm,m identifies with EHgm,m×H (H/H) ∼= EHgm,m×H (Spec k). Now observe that, since B is a Borel

subgroup in H, H/B is a flag variety and therefore admits an H-equivariant closed immersion into a projective

space Pn on which H acts. Therefore, the map EHgm,m ×H H/B → EHgm,m ×H H/H ∼= EHgm,m ×H Spec k

factors as the composition EHgm,m×HH/B
i→EHgm,m×HPn π→EHgm,m×HSpec k . Therefore it suffices to show

that the cycle map commutes with i∗ and i∗ as well as with π∗ and π∗. One may prove i∗ commutes with the

cycle map by using a deformation to the normal cone argument. To prove π∗ commutes with the cycle map,

one may use the projective space bundle formula for motivic and étale cohomology. The commutativity of

i∗ and π∗ with the cycle map may be proven similarly.

Lemma 7.3. (i) The cycle map cycl : H∗,•M (BBgm,Z/m)→ H∗et(BBgm, µm(•)) is an isomorphism when the

base field k is separably closed.

(ii) For any base field k, Hu
et(BBgm, µm(v)) ∼= ⊕i+2m=u,j+m=vH

i
et(Spec k , µm(j ))⊗Z/mH2m

M (BBgm,Z/m(m)).

In particular,

H2
et(BBgm, µm(1)) ∼= H2

et(Spec k , µm(1))⊗Z/mH0
M(BBgm,Z/m(0))⊕H0

et(Spec k , µm(0))⊗Z/mH2
M(BBgm,Z/m(1))

∼= H2
et(Spec k , µm(1))⊕H2

M(BBgm,Z/m(1)).

(iii) For any base field k, the cycle maps in the left column in the commutative squares (7.3) and (7.4) are

both injective.

(iv) H∗,•M (Spec k ,Z/m) is a split summand of both H∗,•M (BBgm,Z/m) and H∗,•M (BHgm,Z/m). H∗et(Spec k , µm(•))
is a split summand of both H∗et(BBgm, µm(•)) and H∗et(BHgm, µm(•)). It follows that mBr(Spec k) is a split

summand of both mBr(BBgm) and mBr(BHgm).

Proof. Observe that BBgm,m ' BTgm,m = ×rPm, where T is a split maximal torus in H of rank r. Therefore,

the first two statements follow readily from the calculation of the motivic and étale cohomology of a projective

space Pn. In fact, we will presently provide the following details on this. One starts with the isomorphisms

provided by the projective space bundle formula:

(7.5) H∗,•M (BBgm,m,Z/m) ∼= H∗,•M (Spec k ,Z/m) ⊗
Z/m

(⊗r
Z/m,i=1Z/m[ti]/(t

m+1
i )),

where each ti has bi-degree (2, 1). Similarly one see that

(7.6) H∗et(BBgm,m, µm(•)) ∼= H∗,•et (Spec k ,Z/m) ⊗
Z/m

(⊗r
Z/m,i=1Z/m[ti]/(t

m+1
i )),
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where each ti has bi-degree (2, 1). Next one may observe that

⊕mj=0H2j,j
M (BBgm,m,Z/m) ∼= ⊗r

Z/m,i=1Z/m[ti]/(t
m+1
i ).

On letting m→∞, these observations prove the statement in (i) and the first statement in (ii). The second

statement in (ii) is now an immediate consequence of the first statement.

The third statement is an immediate consequence of the first two. Observe from the definition of admissible

gadgets as in (2.1), we require that the Um there always has a k-rational point. It follows that the finite

degree approximations BBgm,m and BHgm,m also have k-rational points. The statements in (iv) are immediate

consequences of this. �

Moreover, one may observe that the cycle map H0,0
M (BHgm,Z/m)→ H0

et(BHgm, µm(0)) ∼= Z/m is also an

isomorphism. In view of these observations, one may define the torsion index t(H) as the class in Z/m so

that if ā = cycl(a), with the class a as in (7.2)

(7.7) f̄∗(ā) = t(H) ∈ H0
et(BHgm, µm) ∼= Z/m,

Proposition 7.4. (See [Tot05, section 1].) (i) The kernel of the cycle map

cycl : H∗,•M (BHgm,Z/m)→ H∗et(BHgm, µm),

as well as the kernel of the restriction map

f∗ : H∗,•M (BHgm,Z/m)→ H∗,•M (BBgm,Z/m)

are killed by t(H).

(ii) mBr(BHgm)/(mBr(Spec k)) = H2
et(BHgm, µm(1))/(Im(cycl) + H2

et(Spec k , µm(1))) is killed by t(H),

where Im(cycl) denotes the image of the cycle map cycl : H2,1
M (BHgm,Z/m)→ H2

et(BHgm, µm(1)).

Proof. Define a map α : CHi(BBgm,Z/m) ∼= H2i,i
M (BBgm,Z/m)→ CHi(BHgm,Z/m) ∼= H2i,i

M (BHgm,Z/m) by

α(x) = f∗(a.x). Then, α(f∗(x)) = f∗(a.f
∗(x)) = f∗(a).x = t(H).x . As BTgm identifies with BBgm, the

map f∗ identifies with the restriction homomorphism res : H∗,•M (BHgm,Z/m) → H∗,•M (BTgm,Z/m), thereby

proving that its kernel is killed by the class t(H). In view of the fact that cycle map forming the left vertical

map in (7.4) is injective, it follows that the kernel of the cycle map

(7.8) cycl : H∗,•M (BHgm,Z/m)→ H∗et(BHgm, µm(•))

is contained in the kernel of f∗, and hence is killed by the class t(H). This completes the proof of (i).

We next consider the statement in (ii). Therefore, let x̄ ∈ H2
et(BHgm, µm(1) denote a class. Then

(7.9) t(H).x̄ = f̄∗(cycl(a).̄f∗(x̄ )).

In view of statements (ii) and (iv) in Lemma 7.3, one may write

(7.10) f̄∗(x̄ ) = cycl(y) + z = cycl(y) + f̄∗(z̄ ), y ∈ H2,1
M (BBgm,Z/m), z̄ ∈ H2

et(Spec k , µm(1))

Therefore,

(7.11) t(H).x̄ = f̄∗(cycl(a.y) + cycl(a).f̄ ∗(z̄ )) = cycl(f̄∗(a.y)) + f̄∗(cycl(a).f̄ ∗z̄ ) = cycl(f̄∗(a.y)) + t(H)z̄ .

This proves the statement in (ii), thereby completing the proof of the Proposition. �
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7.1. Information on the torsion index. Using the fact that connected reductive groups over any alge-

braically closed field of positive characteristic admit liftings to characteristic 0, one may make use of the

determination of the torsion index for compact Lie groups. The following are known:

(i) The only primes that divide the torsion index of simply-connected groups are 2, 3 and 5.

(ii) The torsion index for GLn, SLn and Sp(2n), for any n is 1.

(iii) The torsion index for SO(2n) and SO(2n+ 1), for any n, are powers of 2.

(iv) The torsion index of Spin(n) is a power of 2: see [Tot05] for more details.

(v) The torsion index of E6 is 6 and of E8 is 26325: see [Tot05.2].

Corollary 7.5. (i) mBr(BG) ∼= mBr(Spec k) for any positive integer m invertible in k if G = GLn, G = SLn

or G = Sp(2n), for any n.

(ii) `n′Br(BG) ∼= `n′Br(Spec k) for any prime ` different from the characteristic of k and 2 if G = SO(2n),

SO(2n+ 1), or Spin(n), for any n and n′.

(iii) `nBr(BG) ∼= `nBr(Spec k) for any prime ` different from the characteristic of k for any simply-

connected group G, if ` is also different from 2, 3, or 5.

Proof of Theorem 1.10. Clearly the above discussion completes the proof of the theorem. �

8. Proof of Proposition 1.11.

We first observe that BGgm
m
∼= lim

n→∞
Pn. Since each Pn is a linear scheme which is projective and smooth,

it follows from [J01, Theorem 4.5, Corollary 4.6] that one obtains isomorphisms for any smooth scheme Y:

⊕iH2i,i
M (BGgm

m ×Y,Z/m) ∼= (⊕iH2i,i
M (BGm,Z/m))⊗ (⊕iH

2i,i
M (Y,Z/m)) and(8.1)

⊕iH2i
et(BGgm

m ×Y, µm(i)) ∼= (⊕iH2i
et(BGm, µm(i)))⊗ (⊕iH

2i
et(Y, µm(i))).

Since the cycle map cycl : ⊕iH2i,i
M (BGgm

m ,Z/m)→ ⊕iH
2i
et(BGgm

m , µm(i)) is an isomorphism, the Brauer group

mBr(Bun1,d(X)), which is the cokernel of cycle map, identifies with mBr(Picd(X)). Finally the isomorphism

mBr(Picd(X)) ∼= mBr(Symd(X)) is proven in [IJ20, Theorem 1.2].

Recall that Br(Y) = 0 if Y is a connected projective smooth variety that is rational: this follows from

the well-known fact that the Brauer group is a stable birational invariant for connected projective smooth

varieties. The last statement follows from this observation. �

9. Appendix A: Motivic cohomology over regular Noetherian base schemes

First one may observe that the higher cycle complex may be defined over any base scheme B: if X is a

scheme of finite type over B, and c ≥ 0 is a fixed integer, one defines Zc(X, .) to be the chain complex defined

in degree n, by

(9.1) {Z = a pure codim c cycle on X×B ∆B[n] |Z intersects the faces of X×∆B[n] properly}.

Definition 9.1. We let Z(c) denote the co-chain complex Zc(X, .)[−2c] in cohomological degree m, that is,

Z(c) = Zc(X, 2c−m). (Observe that Z(c) is contravariantly functorial for flat maps.) If X denotes a smooth

scheme of finite type over B, we will let ZX(c) denote the restriction of the complex Z(c) to the small Zariski

or Nisnevich site of X. We call the complex Z(c) the motivic complex of weight c. If c < 0 is an integer, we

define Z(c) to be {0}.
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Next we will assume that B = Spec R, where R is a Dedekind domain.

Proposition 9.2. Assume in addition that X denotes a smooth scheme of finite type over B. Then ZX(1)[1]

identifies with GX
m, which denotes the restriction of the sheaf Gm to the small Nisnevich site of X.

Proof. This is discussed in [Bl, section 6], where the discussion does not assume the base scheme is a field. �

Definition 9.3. (Motivic cohomology) Let X denote a scheme of finite type over B. We let Hi,j
M(X) =

Hi
Zar(X,Z(j)), where HZar denotes the hypercohomology on the Zariski site.

It is observed in [Geis, Corollary 3.3], that one obtains the identification Hi
Zar(X,Z(j)) ∼= HZar(B, π∗(Z(j))),

where π : X→ B denotes the structure map.

Let X denote a scheme of finite type over B and let Z denote a closed subscheme of X of pure codimension

c with open complement U. Let i : Z→ X and j : U→ X denote the corresponding immersions. Then it is

shown in [Geis, Corollary 3.3] that one obtains the distinguished triangle

(9.2) 0→ i∗ZZ(n− c)[−2c]→ ZX(n)→ j∗ZU(n)

in the derived category of Zariski sheaves on X. In particular, this provides the identification of the terms

in the long-exact sequence forming the top row in the diagram:

(9.3) Hi
Z(X,Z(n))

//

∼=
��

Hi(X,Z(n))
//

∼=
��

Hi(U,Z(n))

∼=
��

Hi
Zar(X, i∗ZZ(n− c)[−2c])

//
Hi

Zar(X,ZX(n))
//
Hi

Zar(X, j∗ZX(n))

Proposition 9.4. Assume the above situation. If n < c = codimX(Z), where codimX(Z) denotes the

codimension of Z in X, then Hi
Z(X,Z(n)) = 0. A corresponding result also holds when Z(n) is replaced by

Z/m(n), when m is invertible in R.

Proof. The first statement is clear from the identification of the first terms in the commutative diagram (9.3),

since when n < c, the complex ZZ(n− c) is trivial. This proves the first statement.

To obtain the second statement, one first tensors the localization sequence in (9.2) with Z/m (i.e., the ring

of integers modulo m) to obtain the corresponding localization sequence involving the motivic complexes

Z/m(n). This then provides the commutative diagram corresponding to the one in (9.3) where the integral

motivic complex Z(n) is replaced by Z/m(n). �

10. Appendix B: Brauer groups of smooth split toric schemes

We would like to point out that most of the current paper is self-contained and the only place we invoke

results of [JL] are in Theorems 1.9 and 5.8 as well as Corollary 5.9. For the convenience of the reader, here

we will provide a quick review of some of the key results and techniques of [JL] on the Brauer groups of toric

schemes. One of the main results in [JL] is the following theorem, describing the Brauer group of a split

torus. Throughout B = Spec R, for an excellent Dedekind domain R.

Theorem 10.1. (See [JL, Theorem 2, Corollary 2.3(iv) and (iii)].) Let T = Gr
m denote a split torus defined

over the base B and let X denote a smooth scheme of finite type over B. Then:
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(1)

(10.1) mBr(X×Gr ) ∼= mBr(X)⊕ (⊕rH1
et(X, µm(0)))⊕ (⊕

(
r
2

)
H0

et(X, µm(−1))),

with the understanding that

(
r
2

)
= 0 for r = 1, where mA denotes the m-torsion part of the abelian

group A. Here µm(0) is identified with the constant sheaf Z/m.

(2) One also obtains the following isomorphisms for étale cohomology with respect to µm(i), where µm(0)

is identified with the constant sheaf Z/m:

H1
et(X×G×rm , µm(1)) ∼= H1

et(X, µm(1))⊕ (⊕r
i=1H0

et(X, µm(0))).

The proof makes intrinsic use of the results of Appendix A, on the motivic cohomology of schemes over

Dedekind domains. We also provide an interpretation of the summands on the right in Theorem 10.1 in

terms of cyclic algebras. We will assume that X and Z are smooth schemes over B; in addition to assuming

the integer m is invertible in OB, we will further assume OB has a primitive m-th root of unity. We first

consider the following external product pairing, where µm(0) is identified with the constant sheaf Z/m:

(10.2) x : H1
et(Z, µm(1))⊗H1

et(X, µm(0))→ H2
et(Z×X, µm(1)).

One can also interpret the above pairing in terms of the following well-known construction of cyclic algebras.

Observe that the boundary map

δ : cokernel(Γ(Z,Gm)
m→Γ(Z,Gm))→ H1

et(Z, µm(1))

(obtained from the Kummer sequence) is always injective. (In case Pic(Z) ∼= 0, for example, if Z is the

spectrum of a local ring or a Noetherian unique factorization domain, then the above map is an isomorphism,

but we do not need to assume this.)

Let a ∈ Γ(Z,Gm) and let Y → X denote a Z/m-torsor corresponding to a class in H1
et(X, µm(0)). Let σ

denote the generator of AutX(Y)) ∼= Z/m. Associated to Y and the class a (identified with a⊗1 ∈ OZ⊗OY
∼=

OZ×Y), one defines the cyclic algebra OZ×Y[x ]σ/(xm − a), where x .y ′ = σ(y ′).x , for all y ′ ∈ OY×Z. This

defines a class in mBr(Z×X) and identifies with the class defined as the image of δ(a) ∈ H1
et(Z, µm(1)) and

Y under the external product pairing in (10.2).

Next we take Z = Gm, the multiplicative group scheme defined over B. Now OGm
= OB[t, t−1]. Let

Y → X denote a Z/m-torsor corresponding to a class in H1
et(X, µm(0)) as in the last paragraph. Then, one

may verify that the mapping Y 7→ OY×Gm
[x ]σ/(xm − t), is an injection H1

et(X,Z/m)→ mBr(X×Gm), with

inverse defined by the residue map associated to the divisor obtained by setting t = 1 in Gm: see [CTS,

p. 32]. (To be able to invoke [CTS, p. 32], one needs to first pull back classes in H1
et(Gm, µm(1)) and in

H1
et(X, µm(0)) to classes in H1

et(K(Gm×X), µm(1)) and H1
et(K(Gm×X), µm(0)). Observe that the composite

map p∗2 : H1
et(X, µm(0))→ H1

et(Gm ×X, µm(0))→ H1
et(K(Gm ×X), µm(0)) is an injection.)

Next one may take X = Gm to obtain the external product pairing:

(10.3) x : H1
et(Gm, µm(1))⊗H1

et(Gm, µm(0))→ H2
et(Gm ×Gm, µm(1)).

We proceed to interpret this pairing also in terms of cyclic algebras, under the assumption the base scheme B

has the property that m is invertible in OB = R and that it has a primitive m-th root of unity ζ. Therefore,

the sheaf µm(1) identifies the with the constant sheaf Z/m. Given a unit b ∈ Γ(Gm,Gm), let Y → Gm denote
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the Z/m-torsor given by Spec (OGm [x ]/(xm − b)) → Gm : we equip this torsor with the automorphism σ

given by sending x 7→ xζ. Therefore, given two units a, b ∈ Γ(Gm,Gm), one may define a cyclic algebra

(a, b)ζ , by applying the construction in the last paragraph with X = Gm, and the torsor Y → X given by

the torsor Spec (OX[x ]/(xm − b))→ X = Gm.

At this point if X is any smooth scheme of finite type over B, pre-composing the external product pairing

in (10.3) with the cup-product with H0
et(X,Z/m) defines classes in H2

et(X × G2
m;µm(1)), and hence classes

in mBr(X×G2
m). In terms of cyclic algebras this corresponds to letting a = t1 and b = t2 in the discussion

in the last paragraph, and where OG2
m

= R[t1, t2, t
−1
1 , t−1

2 ]. This defines the summand (⊕2H1
et(X, µm(0)))⊕

H0
et(X, µm(−1)) in mBr(X×G2

m) appearing on the right-hand-side of Theorem 10.1 with r = 2.

Now we take Z = G×rm , where G×rm = Spec R[t1, t
−1
1 , · · · , tr , t−1r ]. We may take ti ∈ Γ(Z,Gm) =

Hom(Z,Gm): observe that the latter identifies with the ring of characters of Z. We will also take X = Spec R.

If b ∈ Γ(Spec K,Gm) = R∗, b corresponds to a Z/m-torsor Y = Spec (R[x]/(xm − b)) over Spec R. Thus

b corresponds to a class in H1
et(Spec K, µm(0)). Now we may form the cyclic algebra (b, t)ζ . These cyclic

algebras as b varies over the units in R and t varies among the characters ti, i = 1, · · · , r of the split torus

T = Gr
m correspond to the sum ⊕rH1

et(Spec R, µm(0)) in the right hand side of (10.1).

Next we take Z = Gm and X = Gm, so that we may take a = t1, and b = t2, where

G2
m = Spec R[t1 , t2 , t

−1
1 , t−1

2 ]. We will view b as corresponding to the Z/m-torsor Spec (OGm [x]/(xm − b))

over Gm. Now, corresponding to the pair of coordinates t1, t2, we form the cyclic algebra (t1, t2)ζ . One may

now repeat this construction taking two factors of Gm corresponding to the coordinates ti, tj , i < j and

form the cyclic algebras (ti, tj)ζ . As we vary ti, tj over all ordered pairs of coordinates, we obtain

(
r
2

)
such

cyclic algebras. These will account for each of the

(
r
2

)
summands H0

et(Spec R, µm(−1))). Consequently, we

obtain the following Corollary to Theorem 10.1:

Corollary 10.2.

(10.4) mBr(Gr
m) = mBr(B)

⊕ A︷ ︸︸ ︷( ⊕
i≤i<j≤r

Z/mZ · (ti, tj)ζ
)⊕ B︷ ︸︸ ︷( r⊕

i=1

∑
bi∈k∗

Z/mZ · (bi, ti)ζ
)

In order to proceed with the computation of the Brauer group of a toric variety or toric scheme, we also

need localization sequences.

Proposition 10.3. (See [JL, Corollary 2.8 and Proposition 2.9].) Assume X is a smooth scheme of pure

dimension over B, with Z a closed subscheme of pure codimension in X with open complement U.

(i) Then, we obtain the exact sequence:

0→ mBr(X)→ mBr(U)−→H3
Z,et(X, µm(1)),

and in case Z has pure codimension 1 in X and is also regular, one has the identification H3
Z,et(X, µm(1)) ∼=

H1
et(Z, µm(0)).

(ii) In case Z is of pure codimension 1, but only generically smooth, we obtain the exact sequence:

0→ mBr(X)→ mBr(U)−→H1
et(Z− Zs, µm(0)),
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where Zs denotes the singular locus of Z.

(iii) In case the Z has pure codimension > 1 in X, we obtain:

mBr(X)
∼=→mBr(U).

(iv) The above localization sequence is functorial in X, U and Z in the following sense: if X′ → X is a

map of smooth schemes and U′ = U×X X′, Z′ = Z×X X′, then one obtains a commutative diagram of

localization sequences:

0
//
mBr(X)

//

��

mBr(U)
//

��

H1
et(Z, µm(0))

//

��
0

//
mBr(X′)

//
mBr(U′)

//
H1

et(Z
′, µm(0))

//
.

(v) Assume that X is a smooth scheme of finite type over the given base scheme B provided with the action

of a smooth affine group scheme G with finitely many orbits. Let U denote the open G stable subscheme

which is the (disjoint) union of the open orbits and let {Oi|i = 1, · · · , n} denote the codimension 1-orbits.

Let Z = ∪n
i=1Ōi. Then there exists a localization sequence:

0→ mBr(X)→ mBr(U)→ ⊕n
i=1H1

et(Oi, µm(0)).

Moreover, the last map may then be identified with the residue map.

In view of Proposition 10.3(v), taking X to be the given toric scheme, and U = T = Gr
m, it suffices to

determine the kernel of the map mBr(U)→ ⊕n
i=1H1

et(Oi, µm(0)).

We will make the following simplifying assumption to deal with toric schemes over Dedekind domains R:

the toric scheme X is smooth, contains as an open dense subscheme the split torus T ∼= G×r
m (defined over

(10.5)

Spec R), and that all the orbits of T on X are schemes that are smooth and faithfully flat over Spec R.

Making use of the localization sequence above, we then obtain the following key result.

Theorem 10.4. (See [JL, Theorem 4.1].) Let R denote a Dedekind domain, which we assume is an excellent

ring. We will also assume that the positive integer m is a unit in R and that R contains a primitive m-th

root of unity ζ. Then, under the assumption (10.5) the following hold:

(i) mBr(X) ∩ A = the subgroup generated by {Λ = Πi<j(ti , tj )
ei,j
ζ |m > ei,j ≥ 0} satisfying the following

conditions: for each s = 1, . . . ,min{u, r − 1}, if ms = hcf{m, e1,s, e2,s, · · · , es−1,s, es,s+1, · · · , es,r},
then ( mms

)|as. In view of the assumption the toric scheme X is smooth, all as = 1, and hence hence the

last condition translates to ms = m for all s.

(ii) mBr(X) ∩ B is the subgroup generated by {Λ = Πr
i=1(bi, ti)

ei
ζ | m > ei ≥ 0}, as bi ∈ R∗ varies among

the corresponding classes in H1
et(Spec R, µm(0)) so that the following conditions are satisfied: for each

s = 1, · · · , u, if ms = hcf{m, es, ordm(bs)}, then ( ordm(bs)
ms

)|as. In view of the assumption the toric

scheme X is smooth, all as = 1, and hence hence the last condition translates to ordm(bs) = ms, for all

s.

(iii) Moreover, mBr(X) ∼= mBr(Spec R)⊕ (mBr(X) ∩A)⊕ (mBr(X) ∩ B).
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