Equivariant Intersection Cohomology

Recall the definition of the intersection cohomology complex

Throughout the talk we will restrict to algebraic varieties defined over a field, which we may assume (for the sake of simplicity) is \mathbb{C}; much of our work will also hold in positive characteristic.

X: a possibly singular variety provided with a filtration:

$$U_1 \xrightarrow{j_1} U_2 \ldots U_n \xrightarrow{j_n} U_{n+1} = X, \dim_k X = n$$

so that each j_i is an open immersion and each $U_{i+1} - U_i$ is smooth and of codimension $= i$ in X.

\mathcal{L}: a local system on U_1
\(p \): (non-negative even integers) \(\rightarrow \) (integers) is a non-decreasing function so that

\[
p(2k + 2) - p(2k) = 0, 1 \text{ or } 2, \quad p(2) = -n + 1.
\]

Now \(IC_p(\mathcal{L}) \) is characterized in the derived category by:

i). \(IC_p(\mathcal{L})|_{U_0} \cong \mathcal{L}[n] \)

ii). \(\mathcal{H}^i(\mathcal{L})|_{U_{k+1} - U_k} \cong 0 \) if \(i \geq p(2k) \)

iii). \(\mathcal{H}^i_{U_{k+1} - U_k}(IC_p(\mathcal{L})) \cong 0 \) if \(i \leq p(2k) \)

iv). \(\mathcal{H}^i(\mathcal{L}) = 0 \) if \(i > n \) or if \(i < -n \)

Now Deligne’s construction:

\[
IC_p(\mathcal{L}) = \sigma_{<p(2n)}Rj_\ast\sigma_{<p(2)}Rj_1\ast(\mathcal{L}[n])
\]

\[
IH^*_p(X; \mathcal{L}) = \mathbb{H}^*(X; IC_p(\mathcal{L})){/eq}
Incorporate a group action

Let G act on X. (Now $\mu, pr_2 : G \times X \to X$, $\sigma : X \to G \times X$.) Now we obtain the simplicial space $EG \times X$ given by: $(EG \times X)_n = G^n \times X$,

$$d_i (g_0, \ldots, g_{i-1}, g_i, g_{i+1}, \ldots, g_n, x) = (g_1, \ldots, g_{n-1}, x) \text{ if } i = 0$$

$$= (g_0, \ldots, g_{i-1}, g_i, g_{i+1}, \ldots, g_n, x) \text{ if } 0 < i < n$$

$$= (g_0, \ldots, g_{n-2}, g_{n-1}, x) \text{ if } i = n$$

$$s_i (g_0, \ldots, g_{i-1}, g_i, \ldots, g_n, x) = (g_0, \ldots, g_{i-1}, e, g_i, \ldots, g_{n-2}, x), 0 \leq i \leq n - 1$$

$Top(EG \times X)_n = \text{the Grothendieck topology with}$

$objects: \ U_n \text{ in } Top((EG \times X)_n)$

$morphisms: \text{ given } U_n \text{ in } Top((EG \times X)_n) \text{ and } U_m \text{ in } Top((EG \times X)_m) \text{ a map } U_n \to U_m \text{ is a map lying}$

$\text{over some structure map } (EG \times X)_n \to (EG \times X)_m.$
A sheaf F on $\text{Top}(EG \times X)_G$ is a collection of sheaves $\{F_n|n\}$ so that each F_n is a sheaf on $\text{Top}((EG \times X)_n)_G$ and provided with maps $\phi_\alpha : \alpha^*(F_m) \to F_n$ for each structure map α. (These are required to satisfy a compatibility condition.)

Such a sheaf is G-equivariant if each of the maps ϕ_α is an isomorphism. The category of G-equivariant sheaves is an abelian sub-category closed under extensions: therefore one defines $D^G_b(X; \mathbb{Q})$ (= the equivariant derived category) to be the full sub-category of $D_b(EG \times X; \mathbb{Q})$ consisting of complexes whose cohomology sheaves are G-equivariant.

Note: if $f : X \to Y$ is a G-equivariant map, the induced map $EG \times X_G \to EG \times Y_G$ is denoted f^G. This is given by $(f^G)_n = f \times id^n$. Now one may de-
fine the derived functors Rf^*_G: observe that $Rf^*_G = \{R(f^G)_{n*}|n\}$.

Equivariant intersection cohomology:

$$IC^G_p(\mathcal{L}) = \sigma_{<p(2)}Rj_{n*}^G\ldots\sigma_{<p(2)}Rj_{1*}^G(\mathcal{L}[n]), \quad \mathcal{L} - a$$

G-equivariant local system on $EG \times U_1$

$$IH^*_{G,p}(X; \mathcal{L}) = \mathbb{H}^*(EG \times X; IC^G_p(\mathcal{L}))$$

Main results on equivariant intersecton cohomology

Proposition 1. $IH^*_{G,p}(X; \mathcal{L})$ is a module over $H^*(BG; \mathbb{Q})$

Theorem 1. There exists a Leray-spectral sequence:

$$E_2^{s,t} = H^s(BG; R^t\pi_*(IC^G_p(\mathcal{L}))) \Rightarrow IH^{s+t}_{G,p}(X; \mathcal{L})$$
where \(\pi : EG \times X \rightarrow BG \) is the obvious map. Moreover if \(\tilde{x} \in (BG)_n \),

\[
(R^t \pi_* IC^G_p(\mathcal{L})) \cong IH^t_p(X; \mathcal{L})
\]

Theorem 2. The above spectral sequence with \(\mathcal{L} = \mathbb{Q} \) degenerates in the following cases and provides the isomorphism:

\[
IH^*_{G,p}(X; \mathbb{Q}) \cong H^*(BG; \mathbb{Q}) \otimes IH^*_p(X; \mathbb{Q})
\]

(a) \(G \) acts trivially on \(X \) and \(p \) is arbitrary

(b) \(G \) is connected, \(p = m \) and \(X \) is projective

Next we consider torus actions. Let \(G = T, i : X^T \rightarrow X \). \(S = H^*(BT; \mathbb{Q}) \rightarrow 0 \).

Theorem 3. \(S^{-1} IH^*_{T,p}(X; \mathbb{Q}) \cong S^{-1} H^*(BT; \mathbb{Q}) \otimes \mathbb{H}^*(X^T; Ri^! IC^T_p(\mathbb{Q})) \)
Next we consider the action of a complex reductive group G.

Theorem 4. Assume that G acts on X with finite stabilizers and so that a geometric quotient X/G exits as a scheme. Then

$$IH^*_G(X; \mathbb{Q}) \cong IH^*_p(X/G; \mathbb{Q})$$

Next we consider equivariant derived categories in more detail. Let $D^G_{b,c}(X; \mathbb{Q})$ denote the full subcategory of $D^G_b(X; \mathbb{Q})$ with constructible cohomology sheaves.

Theorem 5. For each fixed perversity p, there exists a non-standard t-structure on $D^G_{b,c}(X; \mathbb{Q})$ whose heart will be called the category of G-equivariant perverse sheaves on X and denoted $C^G_p(X)$.

7
The simple objects in the above abelian category $C^G_p(X)$ are given by the complexes $IC^G_p(\mathcal{L}_C)[d_C]$, where C is a G-stable locally closed smooth sub-variety of X of dimension d_C and \mathcal{L} is an irreducible G-equivariant local system on $EG \times C$.

Theorem 6. The category $C^G_m(X)$ is equivalent to the subcategory of $C_m(X)$ consisting of perverse sheaves F on X provided with the following data:

there exists an isomorphism $\phi : \mu^*(F) \to \text{pr}_2^*(F)$ (of perverse sheaves on $G \times X$) so that $\sigma^*(\phi) = id$ and there exists a cocycle condition between the pull-backs $d_0^*(\phi), d_1^*(\phi)$ and $d_2^*(\phi)$ as perverse sheaves on $G \times G \times X$. Morphisms are maps of perverse sheaves on X that preserve the above structure.
Connections with the theory of D-modules

Assume X is a smooth algebraic variety and $X_{an} = \text{the associated analytic space}$. An algebraic (left) D_{X}-module M is strongly G-equivariant if there exists an isomorphism $\phi : \mu^{*}(M) \rightarrow pr_{2}^{*}(M)$ (as $D_{G \times X} \cong D_{G} \boxtimes D_{X}$-modules) so that $\sigma^{*}(\phi) = id$ and there exists a co-cycle condition between the pull-backs $d_{0}^{*}(\phi)$, $d_{1}^{*}(\phi)$ and $d_{2}^{*}(\phi)$ as $D_{G \times G \times X}$-modules.

Now the De-Rham functor DR induces an equivalence of categories:

$$Mod_{r.h}^{s-G}(D_{X}) \xrightarrow{\sim} C_{m}^{G}(X_{an})$$

where the left hand side = the category of strongly G-equivariant regular holonomic D_{X}-modules. Under this correspondence the equivariant intersection cohomology complexes associated to G-stable locally closed
smooth sub-varieties \(C\) of \(X\) and \(G\)-equivariant irreducible local systems on \(EG \times C\) correspond to simple objects in the category on the left.

Sample of some of the applications

1. *Vanishing of odd dimensional intersection cohomology*

Theorem 7. Assume \(X\) is a projective variety provided with the action of an algebraic torus \(T\). Assume further that \(X\) is provided with a \(T\)-stable stratification \(\{S\}\) so that

a) each \(S\) is connected

b) each \(H^i(IC_m(\mathbb{Q}))\) is locally constant on each stratum \(S\)
c) each stratum S has at least one fixed point for the T-action and X^T is discrete

Now:

(i) $IH^i_m (X; \mathbb{Q}) = 0$ for all odd i if and only if $H^i (IC_m (\mathbb{Q})) = 0$ for all odd i

(ii) Moreover $IH^i_m (X; \mathbb{Q}) = 0$ for all odd i, if there exists a T-equivariant resolution of singularities $\tilde{X} \rightarrow X$ so that $(\tilde{X})^T$ is also discrete.

Corollary. The conclusions of the above theorem hold for Schubert varieties and the varieties $\tilde{O}(w)$ (= the closure of the orbit $O(w)$ for the diagonal action of a reductive group G on the flag-manifold $G/B \times G/B$.

2. Applications to geometric invariant theory.

Let X be reductive acting on the projective variety X. $X^{ss} (X^s) =$ the set of semi-stable (stable, re-
respectively) points with respect to a G-linearized ample line bundle.

Theorem (Kirwan)

(i) There exists a G-stable stratification of X indexed by a partially ordered set \mathcal{B} where the open stratum is X^{ss}. The closure of a stratum S_β is contained in the union of $\{S_\gamma | \gamma \geq \beta\}$. One can write $\mathcal{B} = \{\beta_0, \beta_1, \ldots, \beta_s\}$ so that, for $0 \leq j \leq s$, $U_j = S_{\beta_0} \cup \ldots \cup S_{\beta_j}$ is open in X and S_{β_j} is closed in U_j.

(ii) If X is also smooth, one obtains:

$$0 \to H^n_G(U_j, U_{j-1}; \mathbb{Q}) \to H^n_G(U_j; \mathbb{Q}) \to H^n(U_{j-1}; \mathbb{Q}) \to 0$$

(iii) In general:

$$0 \to IH^n_{G,m}(U_j, U_{j-1}; \mathbb{Q}) \to IH^n_{G,m}(U_j; \mathbb{Q}) \to$$

$$IH^n_{G,m}(U_{j-1}; \mathbb{Q}) \to 0$$
(iv) Moreover $H^*_G(X; \mathbb{Q})(in\,(ii)) \cong H^*(BG; \mathbb{Q}) \otimes H^*(X; \mathbb{Q})$ and $IH^*_{G,m}(X; \mathbb{Q})(in\,(iii)) \cong H^*(BG; \mathbb{Q}) \otimes IH^*_m(X; \mathbb{Q})$. If $X^{ss} = X^s$ also, (see Theorem 4), $IH^*_{G,m}(X^{ss}; \mathbb{Q}) \cong IH^*_m(X//G; \mathbb{Q})$.

Therefore one may compute the Poincaré series for $IH^*(X//G; \mathbb{Q})$ using the Poincaré-series in equivariant intersection cohomology of the various pairs (U_j, U_{j-1}). (The Poincaré series in equivariant intersection cohomology of a pair (U_j, U_{j-1}) with a G-action is:

$$IP_t^G(U_j, U_{j-1}) = \Sigma_i dim IH^i_{G,m}(U_j, U_{j-1}; \mathbb{Q}) t^i$$

Let $T = a$ maximal torus in G. Now the Hilbert-Mumford criterion for semi-stability implies:

$$X^{ss} = \bigcap_{g \in G} gX^{ss}_T$$

X^{ss}_T = the semi-stable points for the T-action.
Theorem (B-J)

\[IH_{G,m}^*(X^{ss}; \mathbb{Q}) \cong (IH_{T,m}^*(X_T^{ss}; \mathbb{Q}))^a \]

where \(a \) denotes the anti-invariant part = the part corresponding to the sign-representation of \(W \). To see the \(W \)-action on \(IH_{T,m}^*(X_T^{ss}; \mathbb{Q}) \) observe:

\[H^*(BT; \mathbb{Q}) \cong H^*(G/T; \mathbb{Q}) \otimes H^*(BG; \mathbb{Q}). \]

Now \(IH_{T,m}^*(X_T^{ss}; \mathbb{Q}) \) is a module over \(H^*(BT; \mathbb{Q}) \).

In particular if \(X^{ss} = X^s \), then:

\[IH_m^*(X//G; \mathbb{Q}) \cong (IH_{T,m}^*(X_T^{ss}; \mathbb{Q}))^a \]

Home-page: http://www.math.ohio-state.edu/~joshua