Equivariant Intersection Cohomology

Recall the definition of the intersection cohomology complex

Throughout the talk we will restrict to algebraic varieties defined over a field, which we may assume (for the sake of simplicity) is \mathbb{C} ; much of our work will also hold in positive characteristic.

X: a possibly singular variety provided with a filtration:

$$U_1 \xrightarrow{j_1} U_2...U_n \xrightarrow{j_n} U_{n+1} = X, dim_k X = n$$

so that each j_i is an open immersion and each $U_{i+1}-U_i$ is smooth and of codimension = i in X.

 \mathcal{L} : a local system on U_1

p:(non-negative even integers) \rightarrow (integers) is a non-decreasing function so that

$$p(2k+2) - p(2k) = 0$$
, 1 or 2, $p(2) = -n + 1$.

Now $IC_p(\mathcal{L})$ is characterized in the derived category by:

i).
$$IC_p(\mathcal{L})_{|U_0} \simeq \mathcal{L}[n]$$

ii).
$$\mathcal{H}^i(IC_p(\mathcal{L}))_{|U_{k+1}-U_k} \cong 0 \text{ if } i \geq p(2k)$$

iii).
$$\mathcal{H}_{U_{k+1}-U_k}^i(IC_p(\mathcal{L})) \cong 0 \text{ if } i \leq p(2k)$$

iv).
$$\mathcal{H}^i(IC_p(\mathcal{L})) = 0$$
 if $i > n$ or if $i < -n$

Now Deligne's construction:

$$IC_p(\mathcal{L}) = \sigma_{\langle p(2n)} R j_{n*} ... \sigma_{\langle p(2)} R j_{1*} (\mathcal{L}[n])$$

$$IH_p^*(X; \mathcal{L}) = \mathbb{H}^*(X; IC_p(\mathcal{L}))$$

Incorporate a group action

Let G act on X. (Now $\mu, pr_2: G \times X \to X$, $\sigma: X \to G \times X$.) Now we obtain the simplicial space $EG \underset{G}{\times} X$ given by: $(EG \underset{G}{\times} X)_n = G^n \times X$, $d_i(g_0, ..., g_{i-1}, g_i, g_{i+1}, ..., g_{n-1}, x) = (g_1, ..., g_{n-1}, x)$ if i = 0

$$= (g_0, ..., g_{i-1}.g_i, g_{i+1}, ..., g_{n-1}, x) \text{ if } 0 < i < n$$

$$= (g_0, ..., g_{n-2}, g_{n-1}.x) \text{ if } i = n$$

$$s_i(g_0, ..., g_{i-1}, g_i, ..., g_{n-2}, x) = (g_0, ..., g_{i-1}, e, g_i, ..., g_{n-2}, x),$$

 $0 \le i \le n-1$

 $Top(EG \times X) =$ the Grothendieck topology with $objects: U_n \text{ in } Top((EG \times X)_n)$

morphisms: given U_n in $Top((EG \times X)_n)$ and U_m in $Top((EG \times X)_m)$ a map $U_n \to U_m$ is a map lying over some structure map $(EG \times X)_n \to (EG \times X)_m$.

A sheaf F on $Top(EG \times X)$ is a collection of sheaves $\{F_n | n\}$ so that each F_n is a sheaf on $Top((EG \times X)_n)$ and provided with maps $\phi_\alpha : \alpha^*(F_m) \to F_n$ for each structure map α . (These are required to satisfy a compatibility condition.)

Such a sheaf is G-equivariant if each of the maps ϕ_{α} is an isomorphism. The category of G-equivariant sheaves is an abelian sub-category closed under extensions: therefore one defines $D_b^G(X; \mathbb{Q})$ (= the equivariant derived category) to be the full sub-category of $D_b(EG \times X; \mathbb{Q})$ consisting of complexes whose cohomology sheaves are G-equivariant.

Note: if $f: X \to Y$ is a G-equivariant map, the induced map $EG \underset{G}{\times} X \to EG \underset{G}{\times} Y$ is denoted f^G . This is given by $(f^G)_n = f \times id^n$. Now one may de-

fine the derived functors Rf_*^G : observe that $Rf_*^G = \{R(f^G)_{n*}|n\}$.

Equivariant intersection cohomolgy:

$$IC_p^G(\mathcal{L}) = \sigma_{< p(2n)} Rj_{n*}^G...\sigma_{< p(2)} Rj_{1*}^G(\mathcal{L}[n]), \mathcal{L} - a$$
 G-equivariant local system on $EG \times U_1$

$$IH_{G,p}^*(X; \mathcal{L}) = \mathbb{H}^*(EG\underset{G}{\times}X; IC_p^G(\mathcal{L}))$$

Main results on equivariant intersecton cohomology

Proposition 1. $IH_{G,p}^*(X; \mathcal{L})$ is a module over $H^*(BG; \mathbb{Q})$

Theorem 1. There exists a Leray-spectral sequence:

$$E_2^{s,t} = H^s(BG; R^t \pi_*(IC_p^G(\mathcal{L}))) \Rightarrow IH_{G,p}^{s+t}(X; \mathcal{L})$$

where $\pi: EG \underset{G}{\times} X \to BG$ is the obvious map. Moreover if $\bar{x} \in (BG)_n$,

$$(R^t \pi_* IC_p^G(\mathcal{L})) \cong IH_p^t(X; \mathcal{L})$$

Theorem 2. The above spectral sequence with $\mathcal{L} = \underline{\mathbb{Q}}$ degenerates in the following cases and provides the isomorphism:

$$IH_{G,p}^*(X;\mathbb{Q}) \cong H^*(BG;\mathbb{Q}) \otimes IH_p^*(X;\mathbb{Q})$$

- (a) G acts trivially on X and p is arbitrary
- (b) G is connected, p = m and X is projective

Next we consider torus actions. Let $G=T,\ i:$ $X^T\to X.\ S=H^*(BT;\ \mathbb{Q})-0.$

Theorem 3. $S^{-1}IH_{T,p}^*(X: \mathbb{Q}) \cong S^{-1}H^*(BT; \mathbb{Q}) \otimes \mathbb{H}^*(X^T; Ri^!IC_p^T(\mathbb{Q}))$

Next we consider the action of a complex reductive group G.

Theorem 4. Assume that G acts on X with finite stabilizers and so that a geometric quotient X/G exits as a scheme. Then

$$IH_{G,p}^*(X;\mathbb{Q}) \cong IH_p^*(X/G;\mathbb{Q})$$

Next we consider equivariant derived categories in more detail. Let $D_{b,c}^G(X; \mathbb{Q})$ denote the full subcategory of $D_b^G(X; \mathbb{Q})$ with constructible cohomology sheaves.

Theorem 5. For each fixed perversity p, there exists a non-standard t-structure on $D_{b,c}^G(X; \mathbb{Q})$ whose heart will be called the category of G-equivariant perverse sheaves on X and denoted $C_p^G(X)$.

The simple objects in the above abelian category $C_p^G(X)$ are given by the complexes $IC_p^G(\mathcal{L}_C)[d_C]$, where C is a G-stable locally closed smooth sub-variety of X of dimension d_C and \mathcal{L} is an irreducible G-equivariant local system on $EG \underset{G}{\times} C$.

Theorem 6. The category $C_m^G(X)$ is equivalent to the subcategory of $C_m(X)$ consisting of perverse sheaves F on X provided with the following data:

there exists an isomorphism $\phi: \mu^*(F) \to pr_2^*(F)$ (of perverse sheaves on $G \times X$) so that $\sigma^*(\phi) = id$ and there exists a cocycle condition between the pullbacks $d_0^*(\phi)$, $d_1^*(\phi)$ and $d_2^*(\phi)$ as perverse sheaves on $G \times G \times X$. Morphisms are maps of perverse sheaves on X that preserve the above structure.

Connections with the theory of \mathcal{D} -modules

Assume X is a *smooth* algebraic variety and X_{an} = the associated analytic space. An algebraic (left) \mathcal{D}_X -module M is strongly G-equivariant if there exists an isomorphism $\phi: \mu^*(M) \to pr_2^*(M)$ (as $\mathcal{D}_{G \times X} \cong$ $\mathcal{D}_G \boxtimes \mathcal{D}_X$ -modules) so that $\sigma^*(\phi) = id$ and there exists a co-cycle condition between the pull-backs $d_0^*(\phi)$, $d_1^*(\phi)$ and $d_2^*(\phi)$ as $\mathcal{D}_{G \times G \times X}$ -modules.

Now the De-Rham functor DR induces an equivalence of categories:

$$Mod_{r,h}^{s-G}(\mathcal{D}_X) \xrightarrow{\simeq} C_m^G(X_{an})$$

where the left hand side = the category of strongly G-equivariant regular holonomic \mathcal{D}_X -modules. Under this correspondence the equivariant intersection cohomology complexes associated to G-stable locally closed

smooth sub-varieties C of X and G-equivariant irreducible local systems on $EG \underset{G}{\times} C$ correspond to simple objects in the category on the left.

Sample of some of the applications

1. Vanishing of odd dimensional intersection cohomology

Theorem 7. Assume X is a projective variety provided with the action of an algebraic torus T. Assume further that X is provided with a T-stable stratification $\{S\}$ so that

- a) each S is connected
- b) each $\mathcal{H}^i(IC_m(\mathbb{Q}))$ is locally constant on each stratum S

c) each stratum S has at least one fixed point for the T-action and X^T is discrete

Now:

- (i) $IH_m^i(X; \mathbb{Q}) = 0$ for all $odd\ i$ if and only if $\mathcal{H}^i(IC_m(\mathbb{Q})) = 0$ for all $odd\ i$
- (ii) Moreover $IH_m^i(X; \mathbb{Q}) = 0$ for all odd i, if there exists a T-equivariant resolution of singularities $\tilde{X} \to X$ so that $(\tilde{X})^T$ is also discrete.

Corollary. The conclusions of the above theorem hold for Schubert varieties and the varieties $\bar{O}(w)$ (= the closure of the orbit O(w) for the diagonal action of a reductive group G on the flag-manifold $G/B \times G/B$

2. Applications to geometric invariant theory.

Let X be reductive acting on the projective variety X. X^{ss} (X^s) = the set of semi-stable (stable, re-

spectively) points with respect to a G-linearized ample line bundle.

Theorem (Kirwan)

- (i) There exists a G-stable stratification of X indexed by a partially ordered set \mathcal{B} where the open stratum is X^{ss} . The closure of a stratum S_{β} is contained in the union of $\{S_{\gamma}|\gamma \geq \beta\}$. One can write $\mathcal{B} = \{\beta_0, \beta_1, ..., \beta_s\}$ so that, for $0 \leq j \leq s$, $U_j = S_{\beta_0} \cup ... \cup S_{\beta_j}$ is open in X and S_{β_j} is closed in U_j .
 - (ii) If X is also smooth, one obtains:

$$0 \to H_G^n(U_j, U_{j-1}; \mathbb{Q}) \to H_G^n(U_j; \mathbb{Q}) \to H^n(U_{j-1}; \mathbb{Q}) \to$$

0

(iii) In general:

$$0 \to IH_{G,m}^n(U_j, U_{j-1}; \mathbb{Q}) \to IH_{G,m}^n(U_j; \mathbb{Q}) \to$$
$$IH_{G,m}^n(U_{j-1}; \mathbb{Q}) \to 0$$

(iv) Moreover $H_G^*(X; \mathbb{Q})(in(ii)) \cong H^*(BG; \mathbb{Q}) \otimes$ $H^*(X; \mathbb{Q})$ and $IH_{G,m}^*(X; \mathbb{Q})(in(iii)) \cong H^*(BG; \mathbb{Q}) \otimes$ $IH_m^*(X; \mathbb{Q})$. If $X^{ss} = X^s$ also, (see Theorem 4), $IH_{G,m}^*(X^{ss}; \mathbb{Q}) \cong IH_m^*(X//G; \mathbb{Q})$.

Therefore one may compute the Poincaré series for $IH^*(X//G; \mathbb{Q})$ using the Poincaré-series in equivariant intersection cohomology of the various pairs (U_j, U_{j-1}) . (The Poincaré series in equivariant intersection cohomology of a pair (U_j, U_{j-1}) with a G-action is:

$$IP_t^G(U_j, U_{j-1}) = \sum_i dim IH_{G,m}^i(U_j, U_{j-1}; \mathbb{Q})t^i)$$

Let T = a maximal torus in G. Now the Hilbert-Mumford criterion for semi-stability implies:

$$X^{ss} = \underset{g \in G}{\cap} gX_T^{ss}$$

 X_T^{ss} = the semi-stable points for the *T*-action.

Theorem(B-J)

$$IH_{G,m}^*(X^{ss};\mathbb{Q})\cong (IH_{T,m}^*(X_T^{ss};\mathbb{Q}))^a$$

where a denotes the anti-invariant part = the part corresponding to the sign-representation of W. To see the W-action on $IH_{T,m}^*(X_T^{ss}; \mathbb{Q})$ observe:

$$H^*(BT; \mathbb{Q}) \cong H^*(G/T; \mathbb{Q}) \otimes H^*(BG; \mathbb{Q}).$$

Now $IH_{T,m}^*(X_T^{ss}; \mathbb{Q})$ is a module over $H^*(BT; \mathbb{Q})$.

In particular if $X^{ss} = X^s$, then:

$$IH_m^*(X//G; \mathbb{Q}) \cong (IH_{T,m}^*(X_T^{ss}; \mathbb{Q}))^a$$

Home-page: http://www.math.ohio-state.edu/~joshua