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Let X denote a quasi-projective variety over a field on which 
a connected linear algebraic group G acts with finitely many 
orbits. Then, the G-orbits define a stratification of X. We 
establish several key properties of the category of equivari-
ant perverse sheaves on X, which have locally constant co-
homology sheaves on each of the orbits. Under the above 
assumptions, we show that this category comes close to being 
a highest weight category in the sense of Cline, Parshall and 
Scott and defines a quasi-hereditary algebra. We observe that 
the above hypotheses are satisfied by all toric varieties and 
by all spherical varieties associated to connected reductive 
groups over any algebraically closed field.
Next we show that the odd dimensional intersection coho-
mology sheaves vanish on all spherical varieties defined over 
algebraically closed fields of positive characteristics, extend-
ing similar results for spherical varieties defined over the field 
of complex numbers by Michel Brion and the author in prior 
work. Assuming that the linear algebraic group G and the ac-
tion of G on X are defined over a finite field Fq , and where 
the odd dimensional intersection cohomology sheaves on the 
orbit closures vanish, we also establish several basic properties 
of the mixed category of mixed equivariant perverse sheaves 
so that the associated terms in the weight filtration are fi-
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nite sums of the shifted equivariant intersection cohomology 
complexes on the orbit closures.

© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

It was a few years ago, while exploring the literature for something else, that we 
came upon the work of Cline, Parshall and Scott on highest weight categories and quasi-
hereditary algebras. (See for example, [13], [32].) Soon it became clear that many nice 
properties for the category of perverse sheaves on a space needed to construct quasi-
hereditary algebras are shared by the category of equivariant perverse sheaves on a 
scheme provided with the action of a linear algebraic group, under some fairly mild 
conditions on the group action. In fact, in the literature, (for example, [32, section 5]), 
many of the nice properties for the category of perverse sheaves are shown to hold only 
for stratified schemes, where the strata are acyclic.1 When a linear algebraic group acts 
on a scheme, the orbits form a particularly nice stratification; however, they are seldom 
acyclic. The goal of the present paper is to show that, nevertheless, the category of 
equivariant perverse sheaves on a scheme provided with the action of a linear algebraic 
group has many of these nice properties, when there are only finitely many orbits.

In particular, we show that it is possible to adapt the machinery in [32] this way, to 
provide an abundant supply of quasi-hereditary algebras, under fairly mild conditions 
on the group action. For example, we show that this construction applied to all toric 
varieties or spherical varieties associated to connected reductive groups defined over 
any algebraically closed field, or all complex spherical varieties associated to complex 
connected reductive groups, produces quasi-hereditary algebras. See Theorem 1.2 for 

1 There is a separate construction of highest weight categories due to van der Kallen (see [41]) using 
Schubert varieties and the cohomology of line bundles on them, but the relation between the construction 
of [32] and [41] is not clear.
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more details. This theorem, together with Theorem 1.1, forms the first main result of 
the paper.

The remainder of the paper discusses various related results on equivariant perverse 
sheaves. The point is that the category of perverse sheaves on a stratified scheme seems 
unlikely to be the category of modules over a Koszul algebra, unless the strata are 
acyclic. However, as observed earlier, the orbit stratification on a scheme where there 
are only finitely many orbits for the action of a linear algebraic group rarely satisfies 
this condition, except in very special cases like that of Schubert varieties. Therefore, 
the goal of the remainder of the paper is to derive other interesting properties of the 
category of equivariant perverse sheaves under weaker hypotheses, like the vanishing of 
odd dimensional intersection cohomology sheaves. We also prove the above vanishing for 
all spherical varieties over algebraically closed fields of positive characteristics, extending 
earlier results due to Brion and the author for complex spherical varieties: see [9].

Notations and Conventions. Throughout the paper, k will denote a fixed field, which will 
always be a perfect field of arbitrary characteristic p ≥ 0, and of finite �-cohomological 
dimension for any prime � �= p. We will also assume that the following condition holds:

Hi
et(Spec k,Z/�n) is finite for each i and each � �= p. (1.0.1)

Clearly these hypotheses are satisfied by any algebraically closed field or any finite field.
We will then restrict to quasi-projective, separated and reduced schemes of finite type 

over k: note that we are not requiring the schemes to be irreducible or connected. (The 
assumption they are of finite type over k automatically implies there are only finitely 
many connected and irreducible components.) Such schemes may often be referred to 
as quasi-projective schemes, schemes, and/or (quasi-projective) varieties defined over k.
k will be called the base field. The only base fields of characteristic 0 that we allow 
will be the ones that admit imbeddings into the field of complex numbers. Therefore, 
without loss of generality, we may assume the base fields k that are of characteristic 0 and 
algebraically closed, identify with the field of complex numbers C: the main observation 
here is that by the smooth base change theorem in étale cohomology (see [28, Chapter 
VI,Corollary 4.3]) the étale cohomology of a scheme X over k and the etale cohomology 
of the induced scheme XC over C are isomorphic with respect to torsion sheaves.

All the results of the first four sections hold over any algebraically closed base field, and 
all the results of section 5 hold over any algebraically closed field of positive characteristic. 
Section 6 discusses the weight filtration, and therefore it becomes necessary to assume 
there that the base field is a finite field Fq: this also makes it necessary to carry out some 
of the discussion in sections 2 and 3 also over finite fields. As a result, we will assume in 
general that the base field in sections 2 and 3 is either algebraically closed (of arbitrary 
characteristic) or a finite field, with any necessary further restrictions spelled out clearly 
for each key result discussed there. We will assume it is algebraically closed throughout 
sections 4 and 5.
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Let X denote a quasi-projective scheme provided with an action by a linear alge-
braic group G, all defined over k. Then the derived category of sheaves on X needs to 
be replaced by the equivariant derived category Db

G,c(X) of complexes of sheaves with 
bounded, equivariant and constructible cohomology sheaves.

The key to defining the equivariant derived category is a suitable form of the Borel 
construction EG ×G X, associated to the action of G on the scheme X. There are two 
alternate constructions here:

(i) that produces the simplicial scheme EG ×G X discussed in section 2.2, where one 
obtains BG (the classifying space of G) on taking X = Spec k, and

(ii) that produces EG ×G X as an ind-scheme (that is, a direct system of schemes) 
{EGgm,m ×G X|m ≥ 1}, with BGgm,m =EGgm,m ×G (Spec k) a finite degree ap-
proximation to the classifying space of G, and EGgm,m →BGgm,m its universal 
principal G-bundle. These are defined in Definition 7.1.

In view of its functoriality, we choose to work exclusively with the simplicial model 
discussed in section 2.2. A discussion of the construction {EGgm,m ×G X|m ≥ 1} and a 
comparison between the two constructions is left to the Appendix.

The equivariant derived category Db
G,c(X) is then defined as a certain full subcategory 

of the derived category of the Borel construction EG ×G X, or of EGgm,m ×G X for m
sufficiently large: see section 2.2 and the Appendix for more details. The equivariant 
derived category Db

G,c(X) incorporates the group action, whereas the ordinary derived 
category Db

c (X) does not.
Different variants of equivariant derived categories. When k = C or an algebraically 

closed field of characteristic 0, the derived category Db
G,c(X, Q) (Db

G,c(X, C)) is made up 
of complexes of sheaves of Q-vector spaces (C vector spaces, respectively). One may ob-
serve that the derived category Db

c (X, Q) (Db
c (X, C)) is Q-linear (C-linear, respectively) 

in this case, meaning the Hom-sets are all Q-vector spaces (C-vector spaces) and the 
composition of morphisms is Q-linear (C-linear, respectively). In positive characteristics, 
the derived category Db

c (X, Q�) (Db
c (X, Q̄�), where Q̄� denotes a fixed algebraic closure 

of Q�) with � prime to char(k) is defined in Definition 2.1. In this case, the derived 
category Db

G,c(X, Q�) is Q�-linear, meaning the Hom-sets are Q�-vector spaces and the 
composition of morphisms is Q�-linear. Similarly the derived category Db

G,c(X, Q̄�) is Q̄�-
linear. We will use the generic notation Db

G,c(X) to denote any one of the four derived 
categories: Db

G,c(X, Q), Db
G,c(X, C), Db

G,c(X, Q�) or Db
G,c(X, Q̄�), when the statements 

we consider hold for all of them. In fact, all the results of sections 2 and 3 hold for any 
one of the above derived categories.

It is essential to work with the derived category Db
G,c(X, C) when k = C and with 

Db
G,c(X, Q̄�) in positive characteristics for the construction of quasi-hereditary algebras. 

The derived category Db
G,c(X, Q̄�) also plays an important role in section 6.

The equivariant derived category comes equipped with a canonical t-structure (defined 
using the middle perversity function) so that its heart identifies with the abelian category 



R. Joshua / Journal of Algebra 591 (2022) 289–341 293
of equivariant perverse sheaves. The simple objects of this category are the equivariant 
intersection cohomology complexes defined on G-stable subvarieties and studied exten-
sively by the author, in collaboration with Michel Brion, in several earlier papers: see 
for example, [23], [9], [10]. This construction is also recalled in section 2.4.

In the present paper, we will restrict to the case where a linear algebraic group G acts 
on a scheme X with finitely many orbits. �

Here is a sample of the main results in this paper. Let S denote the stratification 
by G-orbits on X and let SG denote the induced stratification of the Borel construc-
tion EG ×G X. As discussed in section 2.5, Db

G,c(X, SG) denotes the full subcategory 
of Db

G,c(X) consisting of complexes K whose cohomology sheaves are bounded, G-
equivariant and locally constant (that is, lisse in the sense of [16, I.-Pureté], in the 
étale setting) on the strata: see sections 2.3, 2.5 for more details.

Theorem 1.1. Let G denote a connected linear algebraic group acting on scheme X with 
finitely many orbits. Assume that the base field is an algebraically closed field of arbitrary 
characteristic or it is a finite field k. Then there is a canonical t-structure on the equiv-
ariant derived category Db

G,c(X, SG) whose heart is the category PG(X, SG) of equivariant 
perverse sheaves defined in (3.1). Moreover, the following hold:

(i) PG(X, SG) is an Artinian and Noetherian category.
(ii) The simple objects in PG(X, SG) are the equivariant intersection cohomology com-

plexes, ICG(L), which denotes the equivariant intersection cohomology complex 
obtained by starting with the irreducible G-equivariant local system L on some 
stratum S as in (2.4.1).

(iii) Assume next that the base field is algebraically closed. Then the category PG(X, SG)
has enough projectives and every object has a projective cover.

The proof of this theorem is spread out and distributed over several Propositions 
proven in section 3 and follows roughly along the same lines as in the non-equivariant 
case (that is, when the group G is trivial).

Next we consider the category of pairs

SL = {(O,LO)|O εS,LO a G − equivariant irreducible local system on O}.

By replacing the above category by its skeleton category, we may assume that for each 
fixed orbit O, the distinct objects (O, LO) belong to distinct isomorphism classes of G-
equivariant irreducible local systems on the orbit O and that SL is a finite set. We show 
in Proposition 3.10, that one may define a partial order on the set SL.

Theorem 1.2. Let G denote a connected linear algebraic group acting on a scheme X
with finitely many orbits and all defined over an algebraically closed field k of arbitrary 



294 R. Joshua / Journal of Algebra 591 (2022) 289–341
characteristic. Let S denote the stratification of X by the G-orbits. Then the following 
hold:

(a) The category PG(X, SG) contains a full subcategory C, which is closed under exten-
sions, and with the Grothendieck group isomorphic to that of PG(X, SG).

(b) There exists an Artinian highest weight category C̄ with the weight poset the partially 
ordered finite set SL so that the category C is equivalent to the full subcategory filtered 
by objects jpO,G!(LO) (which is the standard G-equivariant perverse sheaf defined in 
Definition 3.4), as O varies among the G-orbits on X, and LO varies among the 
irreducible G-equivariant local systems on O.

Definition 1.3. Throughout the paper we will adopt the following convention regarding 
the stabilizers. Let G denote a linear algebraic group scheme acting on a scheme X. Then 
for each point x ∈ X, the stabilizer at x, denoted Gx , will denote the reduced subscheme
of the schematic stabilizer at x.

Remark 1.4. A point that may be worth mentioning is that, since the G-stable strata on 
a given scheme are all G-orbits, at least for complex varieties, one obtains the isomor-
phism: π1(EG ×G S, x) ∼= π1(BGx) ∼= Gx/G0

x (where Gx is the stabilizer at the point x
on the orbit S). The corresponding �-completed fundamental group classifies �-adic G-
equivariant local systems on S in positive characteristics, with � �= char(k), k being the 
base field. Since Gx/G0

x is finite, it follows that the category of G-equivariant �-adic local 
systems on S is a semi-simple category and every object is projective. (A corresponding 
result holds for complex varieties with Q� (Q̄�) replaced by Q (C, respectively).)

Examples 1.5. Any toric variety or any spherical variety defined over an algebraically 
closed field of arbitrary characteristic provides examples where the last two theorems 
apply. However, one can also restrict to various subcategories, for example, the class 
of simply connected complex spherical varieties considered in [10] to obtain classes of 
varieties where the last two theorems apply: these examples are discussed in detail in 
Proposition 3.14.

Construction of Quasi-Hereditary Algebras from Equivariant Perverse Sheaves. Under 
the assumptions of Theorem 1.2, we may now construct the associated Quasi-Hereditary 
Algebra as follows. First, we may recall that one of the basic hypothesis in [32, (5.9) 
Theorem], is to start with a triangulated category that is F -linear over an algebraically 
closed field F . Therefore, when the base field is the field of complex numbers (or of 
characteristic 0), we will start with the equivariant derived category Db

G,c(X, C). When 
the base field k is of positive characteristic p, we will start with Db

G,c(X, Q̄�), with � a 
prime different from p. We will denote the resulting equivariant derived categories by

Db

G,c(X). (1.0.2)
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Next we consider the category of pairs SL again: we will view this as a finite partially 
ordered set. We will denote the standard objects jpO,G!(LO) by V (O): clearly these are 
indexed by the elements of the above set SL, with O a G-orbit and LO an irreducible G-
equivariant local system on O. Now each V (O) has a projective cover by Theorem 1.1(iii), 
which we will denote by P(O).

Then we let T = ⊕OP(O) and A = HomDb
G,c(X)(T, T). Propositions 3.10 and 4.1

verify that the hypotheses of [32, (5.9) Theorem] are satisfied, so that this is a quasi-
hereditary algebra. The highest weight category C̄ in the above theorem is given by the 
category of all finitely generated modules over A. We also point out that, despite the 
above constructions, it is far from clear that the category of equivariant perverse sheaves 
with respect to a fixed G-stable stratification is a highest weight category, that is, unless 
the group G is trivial. See Remark 4.2.

The next result we establish is the vanishing of odd dimensional intersection co-
homology for all spherical varieties defined over algebraically closed fields of positive 
characteristics, extending such results in [23, (19) Theorem, (20) Corollary] for all Schu-
bert varieties and in [9, Theorem 4] for all complex spherical varieties.

Theorem 1.6. Assume the base field k is algebraically closed and of characteristic p > 0. 
Let G denote a connected reductive group, X a G-spherical variety defined and of finite 
type over Spec k and L a G-equivariant �-adic local system on the open dense G-orbit, 
with � �= p.

Then Hi(ICG(X;L)) = 0 for all odd i.
In case X is also projective, IHi(X;L) = 0 for all odd i as well. (Here ICG(X;L) de-
notes the equivariant intersection cohomology complex with the middle perversity whose 
restriction to the open G-orbit is L and IH∗(X;L) denotes the corresponding intersection 
cohomology groups.)

Remark 1.7. In the setting of [2, 4.0, p. 102], one begins with L[dO], where dO is the 
dimension of the open orbit O, (that is, instead of L), and applies a perverse exten-
sion to define the equivariant intersection cohomology complex ICG(X;L[dO]). Then the 
vanishing condition above becomes Hi(ICG(X;L[dO])) = 0 for i + dO odd.

In the remainder of the paper we consider the category of mixed equivariant perverse 
sheaves defined on schemes of finite type over finite fields, and provided with an action 
by a linear algebraic group scheme G. For the remainder of the paper, the schemes that 
are defined and of finite type over a finite field will be usually indicated by a subscript o. 
It is well-known that unless the strata are all acyclic, one cannot expect to show that the 
category of mixed perverse sheaves on a scheme Xo with respect to a given stratification, 
whose associated terms in the weight filtrations are semi-simple, is Koszul. As observed 
above, when a linear algebraic group Go acts on a scheme Xo (all defined over the finite 
field Fq), the orbit stratification will seldom have all the strata acyclic. Nevertheless, the 
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following theorem shows that one can recover certain nice properties for this category 
under the following assumptions.

Assume one of the following situations: (i) either Go is a linear algebraic group acting 
on the given scheme Xo, the strata are the Go-orbits and the geometric stabilizers at 
points on Xo are all connected or the extension of a geometrically connected subgroup 
by a finite abelian subgroup, or (ii) the group is trivial, the induced strata on X are all 
simply connected, but not necessarily affine.

Let ICGo(LSo
[dSo

]) denote the Go-equivariant intersection cohomology complex on the 
closure of the stratum So of dimension dSo

obtained by starting with the Go-equivariant 
local system LSo

on So. Then we will assume the following condition holds for any 
stratum So and any Go-equivariant �-adic local system Lo on So (with � �= char(Fq)):

Hi(ICGo(L
o
[dSo

])) = 0 if i + dSo
is odd and ICGo(LSo

[dSo
]) is pure of weight dSo

.

(1.0.3)
The last purity condition above means one in the sense of [2, section 5]. The above 

conditions, and parts of them, have been verified for large classes of spherical varieties 
in [23, (19) theorem, (20) Corollary] and [9, Theorem 4]: for example, all of them hold 
for all toric varieties as well as Schubert varieties (associated to reductive groups) in 
any characteristic and the vanishing of cohomology sheaves as in (1.0.3) has been shown 
to hold for all spherical simply connected complex varieties. Moreover, Theorem 1.6
extends such vanishing results to spherical varieties over algebraically closed fields of 
positive characteristics.

We will let P̃Go

mixed denote the full subcategory of the above category of Go-equivariant 
perverse sheaves consisting of those Po so that for each j εZ, grdjW (Po), (that is, the 
associated graded term in the weight filtration with weight j) is a finite sum of equivariant 
intersection cohomology complexes ICGo(LSo

[dS ])((dSo
− j)/2) if (dSo

− j) is even and 
trivial otherwise.

Theorem 1.8. In the situation above, let So denote the given strata on Xo. Let Po de-
note an object in PGo

(Xo, So,Go), so that the associated object P in PG(X, SG) is an 
indecomposable projective.

(i) Then Po can be lifted to P̃Go

mixed, that is, there exists an object P̃o ε P̃Go

mixed so that 
its underlying equivariant perverse sheaf is Po.

(ii) Moreover, P̃o is a projective object in P̃Go

mixed.

Here is a quick outline of the paper. In positive characteristics, we will always work 
on the étale site and consider cohomology with respect to �-adic sheaves (with � differ-
ent from the characteristic), while we will work on the transcendental site for complex 
algebraic varieties with respect to sheaves of Q or C vector spaces.

The next section is devoted to a quick review of Equivariant Derived Categories as-
sociated to actions of linear algebraic groups on algebraic varieties. We conclude that 
section with a discussion of t-structures, the heart of which is the category of Equivariant 
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Perverse Sheaves. As pointed out already, there are at least two distinct competing mod-
els for equivariant derived categories: one using a simplicial construction, corresponds 
to the derived category of the associated quotient stack, whereas the geometric model is 
defined by using finite degree approximations to the classifying spaces: see for example, 
[5, Part I, section 2], [30, 4.2] and [39, section 1]. Each has its own advantages, so we 
have included an appendix that recalls basic comparison results between the two models 
of equivariant derived categories from [26, section 5].

The next four sections discuss the main results of the paper. Section 3 discusses basic 
properties of the category of Equivariant Perverse Sheaves concluding with a proof of 
Theorem 1.1. Section 4 discusses a proof of Theorem 1.2 and the construction of Quasi-
Hereditary Algebras from the category of equivariant perverse sheaves on a scheme on 
which a connected linear algebraic group acts with finitely many orbits. In section 5, we 
prove Theorem 1.6, and thereby establish the vanishing of odd dimensional intersection 
cohomology sheaves on all spherical varieties defined over the algebraic closed fields 
of positive characteristic. Section 6 is devoted to weight filtrations on the Equivariant 
Derived Category associated to actions of linear algebraic groups over the algebraic 
closure of finite fields concluding with a proof of Theorem 1.8. An appendix discusses 
background material on equivariant derived categories.

Acknowledgments. The author wishes to thank Michel Brion for several discussions and 
correspondence related to this paper. In fact, this paper originated in a joint project with 
Michel Brion on equivariant derived categories associated to spherical varieties and which 
appears in [26]. Moreover, the discussion in section 5 owes a great deal to discussions with 
Brion, who explained the local structure of spherical varieties in positive characteristics 
to the author. He also thanks Leonard Scott for patiently and quickly answering many of 
his questions on the work of Cline, Parshall and Scott on highest weight categories and 
also for suggesting improvements to an earlier version of this paper. Finally, the author 
also thanks the referee for undertaking a careful reading of the paper and making several 
valuable suggestions that surely have improved the paper.

2. Basic framework: review of equivariant derived categories

Though for the most part, we will only need to consider schemes of finite type defined 
over algebraically closed fields, the need to consider weight filtrations makes it necessary 
to adopt a slightly more general framework to begin with. Therefore, we will always 
let k denote a field which will be either algebraically closed or a finite field Fq. Over a 
field of characteristic 0, it is easy to obtain derived categories of complexes of sheaves 
which are C-linear, that is, where the Hom-sets are C-vector spaces and where the 
pairing induced by composition of morphisms is C-bilinear: we simply take the derived 
categories of sheaves of C-vector spaces. To do this in positive characteristics, is more 
involved: it needs the machinery of adic-sheaves as in [16, I.-Pureté], [17], [21] and [22]
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(see also [24, section 3] which closely follows [16, I.-Pureté]). See also [34] and [40] for 
related results. We proceed to discuss this next following the approach in [16, I.-Pureté].

2.1. The adic formalism

The following discussion is necessary only to consider the case where the base field 
k is of positive characteristic. Recall our standing assumption that it is perfect and of 
finite étale cohomological dimension for any prime � �= char(k) = p, and that it satisfies 
the basic assumption in (1.0.1). Let � denote a fixed prime different from char(k) = p, 
let E denote a finite extension of Q�, let R denote the integral closure of Z� in E and 
m the maximal ideal in R. In view of our assumptions, for each scheme U of finite type 
over k, the cohomology groups

Hi
et(U,R/mν) (2.1.1)

are finite for all i and ν > 0, and there exists a large enough integer N , dependent on U
so that Hi

et(U, R/mν) = 0 for all i > N .

2.1.2. Sheaves
Next let X• denote a simplicial scheme over k. Recall this means, we are given schemes 

Xn, n ≥ 0, of finite type over k, for each n ≥ 0 and face maps di : Xn →Xn−1, i = 0, · · · , n
and degeneracies si : Xn−1 →Xn, i = 0, · · · , n − 1, satisfying certain relations as in [4, p. 
230]. Given a scheme Y, Yet will denote the small étale topology on Y: see [28, Chapter 
II, section 1]. Then the étale topology on a simplicial scheme X• consists of objects 
Un ∈Xn,et, for some n. Given U in Xn,et and V in Xm,et, a morphism uα : U →V will 
denote a map lying over some structure map α : Xn →Xm of the simplicial scheme. The 
coverings of such a U will be the étale coverings in Xn,et. This Grothendieck topology 
will be denoted Et(X•). A sheaf F on Et(X•) is a contravariant functor from Et(X•)
to an abelian subcategory of the category of abelian groups satisfying the sheaf axiom. 
This data then means a sheaf F consists of a collection of sheaves {Fn|n}, with Fn a 
sheaf on Xn,et, together with structure maps φα : α∗(Fm) → Fn, for each structure map 
α : Xn →Xm, satisfying certain compatibility conditions. Such a sheaf F = {Fn|n} is 
constructible if each of the sheaves Fn is constructible. Moreover, we say such a sheaf is 
cartesian (or has descent) if the maps φα are isomorphisms for all structure maps α of 
the simplicial scheme X•.

Let � be a prime number different from the residue characteristics. For each ν > 0, 
we let Cb

c(Et(X•), Z/�ν) denote the category of bounded complexes of sheaves of Z/�ν-
modules on Et(X•) with constructible cohomology sheaves. Cb

ctf (Et(X•), Z/�ν) will de-
note the full sub-category Cb

c(Et(X•), Z/�ν) of complexes that are of finite tor dimension. 
If E is a finite extension of Q� and R is the integral closure of Z� in E, we obtain 
the categories Cb

c(Et(X•), R/mν) and Cb
ctf (Et(X•), R/mν) in a similar manner. A map 

f : K −→ L of complexes in the above categories is a quasi-isomorphism if it in-
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duces an isomorphism of the cohomology sheaves. We obtain the derived categories 
Db

c (Et(X•), Z/�ν), Db
c (Et(X•), R/mν), Db

ctf(Et(X•), Z/�ν), (Db
ctf(Et(X•), R/mν) by in-

verting the quasi-isomorphisms.
Assume the above situation. Observe that the full abelian sub-category of sheaves with 

descent on Et(X•) is closed under extensions in the category of all sheaves on Et(X•). 
Therefore (see [20, p. 47]), we may let Ddes

c (Et(X•), R/mν) denote the full subcategory 
of Dc(Et(X•), R/mν) consisting of complexes K so that each of the cohomology sheaves 
Hi(K) is a sheaf with descent. The category Db,des

ctf (Et(X•), R/mν) will be defined to be 
the full subcategory of Db

ctf(Et(X•), R/mν) satisfying a similar condition.
One defines

Db
c (Et(X•),Z�) = 2 − lim

∞←ν
Db

ctf(Et(X•),Z/�ν)

(Db
c (Et(X•),R) = 2 − lim

∞←ν
Db

ctf(Et(X•),R/mν))
(2.1.3)

(See [16, p. 148].) (Recall this means the objects of Db
c (Et(X•), R) are inverse systems 

{νK}, with νKε Db
ctf(Et(X•), R/mν) so that R/mν

L
⊗

R/mν+1
(ν+1K) 	 νK. Given two such 

inverse systems {νK}, {νL},

Hom({νK}, {νL}) = lim
←−
ν

Hom(νK,ν L)). (2.1.4)

Definition 2.1. (i) Db
c (Et(X•), Q�) (Db

c (Et(X•), E)) is the quotient of Db
c (Et(X•), Z�)

(Db
c (Et(X•), R), respectively) by the thick (that is, closed under extensions, as well as 

sub- and quotient objects) subcategory of torsion sheaves.
(ii) Finally we define the derived category

Db
c (Et(X•), Q̄�) = 2 − lim

→
E

Db
c (Et(X•),E), (2.1.5)

where the colimit is over all finite extensions E of Q�. (Recall this means the objects of 
Db

c (Et(X•), Q̄�) are direct systems {KE|E}, where KE ε Db
c (Et(X•), E)) and that given 

two such systems K = {KE|E} and L = {LE|E},

Hom(K,L) = lim
→
E

Hom(KE, LE). (2.1.6)

Assuming the above situation one defines Db,des
ctf (Et(X•), R) (Db,des

c (Et(X•), E), 
Db,des

c (Et(X•), Q̄�)) to be the full-subcategory of Db
ctf(Et(X•), R) (Db

c (Et(X•), E), 
Db

c (Et(X•), Q̄�) respectively) consisting of complexes whose cohomology sheaves have 
descent.

Let ν > 0 be a fixed integer and let R be the integral closure of Z� in a finite extension 
E of Q�. We now observe the existence of spectral sequences
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Ep,q
1 (ν) = Extq(νKp, νLp) ⇒ Extp+q(νK, νL), (2.1.7)

where Extn is the n-th right derived functor of Hom in Cb
c(Xp,et, R/mν).

Observe that (2.1.7) is a right-half-plane spectral sequence. Therefore, if νK and 

νL are bounded complexes with constructible cohomology sheaves (with �-torsion, � as 
always different from the residue characteristics), it follows that each Extn(νK, νL) is 
finite (with �-torsion), since the base field satisfies the finiteness conditions as in (1.0.1). 
Therefore taking the inverse limit of the spectral sequences in (2.1.7) over ν > 0 provides 
strongly-convergent spectral sequences

Ep,q
1 = lim

←−
ν

Extq(νKp, νLp) ⇒ lim
←−
ν

Extp+q(νK, νL) (2.1.8)

The finiteness of the Ext-groups in (2.1.7) shows (in view of [2, Proposition 2.2.15]) 
that the categories Db

c (Et(X•), Z�) and Db
c (Et(X•), R) (and Db,des

c (Et(X•), Z�) and 
Db,des

c (Et(X•), R) are triangulated categories, where the distinguished triangles are in-
verse systems of distinguished triangles in Db

ctf(Et(X•), Z/�ν) and Db
ctf(Et(X•), R/mν))

respectively. We then obtain the following result (whose proof is skipped, as it can be 
deduced readily from the above observations):

Proposition 2.2. The derived category Db,des
c (Et(X•), Q̄�) is Q̄�-linear.

2.2. Equivariant derived categories

We choose to work with the simplicial model discussed in detail in [15, sections 5 
and 6], and also in [24, section 6] or [25]. One reason for choosing this model is that the 
simplicial model is clearly functorial in the group action. In addition, we are able to freely 
invoke the discussion of the étale fundamental group of simplicial schemes discussed 
in [18, Proposition 5.6] and [24, (A.3.0) through (A.3.3)]. A detailed comparison of 
equivariant derived categories defined this way, with the equivariant derived categories 
constructed using approximations of EG and BG by schemes (as in [39, section 1] or 
[30, 4.2]: see also [5, Part I, section 2]) appears in [26, section 5]: this is recalled in the 
appendix. We proceed to briefly recall the derived categories defined using the simplicial 
model for EG and BG.

Given a linear algebraic group G acting on a scheme X, EG ×G X will now denote the 
simplicial scheme defined by letting (EG×

G
X)n = G×n × X with the face maps induced 

by the group action μ : G × X →X, the group multiplication G × G → G and the 
obvious projection G ×X →X. The i-th degeneracy is induced by sticking in the identity 
element of the group G in the i-th place. Given a Grothendieck topology, Top, on schemes 
over k, one defines an induced Grothendieck topology Top(EG ×G X) whose objects are 
Un → (EG ×G X)n in Top((EG ×G X)n) for some n ≥ 0. The maps between two such 
objects, and coverings for this topology are defined as in the étale case: see 2.1.2. When 
one chooses the étale topology, this site will be denoted Et(EG ×G X).
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2.2.1. Sheaves F on the site Top(EG×
G

X) may be defined just as in the étale case: 
see 2.1.2. This means, F = {Fm|m ≥ 0} with Fm a sheaf on Top((EG×

G
X)m), provided 

with structure maps α∗(Fm) → Fn for each structure map α : (EG×
G

X)n → (EG×
G

X)m
satisfying certain obvious compatibility conditions. We say that a sheaf F is equivariant
if it has descent (or is cartesian), that is, if the above maps α∗(Fm) → Fn are all isomor-
phisms. Db

c(EG ×G X) will denote the derived category of complexes of sheaves of Q or 
C vector spaces on the simplicial space EG ×G X with bounded constructible cohomol-
ogy sheaves when everything is defined over the complex numbers, and will denote one 
of the derived categories: Db

c (Et(EG ×G X), Q�) or Db
c (Et(EG ×G X), Q̄�), in general. In 

this framework, Db
G,c(X) will denote the full subcategory of Db

c (EG×
G

X) consisting of 
complexes of sheaves so that the cohomology sheaves are equivariant. Moreover, for each 
finite or infinite interval I = [a, b] of the integers, DI

G,c(X) will denote the full subcate-
gory of DG,c(X) consisting of complexes K for which Hi(K) = 0 for all i /∈ I. We will 
define a local system on EG ×G X to be a sheaf F = {Fn|n} so that (i) F0 is locally 
constant and constructible (lisse in the �-adic case: see section 2.3 below) on X and (ii) 
it is equivariant.

Terminology 2.3. We will adopt following terminology throughout the rest of the paper. 
If G is a linear algebraic group acting on a scheme X, EG ×G X will always denote 
the simplicial scheme defined above. In particular BG will denote the corresponding 
simplicial scheme when X = Spec k. In positive characteristics, we will only consider 
the derived categories Db

G,c(X, Q�) or Db
G,c(X, Q̄�), whereas over the field of complex 

numbers, we will consider Db
G,c(X, Q) or Db

G,c(X, C).

2.3. Local systems and G-equivariant local systems

A local system will denote a locally constant constructible sheaf of Q or C-vector 
spaces of finite dimension on schemes over C, while it will denote a constructible lisse
Q�-sheaf or Q̄�-sheaf (in the sense of [16, I.-Pureté]) in positive characteristics. (Recall 
that an �-a-dic sheaf is lisse, if each sheaf in the corresponding inverse system is locally 
constant and constructible.) In characteristic 0, the G-equivariant local systems on a 
G-scheme X correspond to representations of the fundamental group π1(EG×G X, x) in 
C or Q-vector spaces where x is a fixed point of X. In positive characteristics, the G-
equivariant �-adic local systems on a G-scheme X correspond to �-adic representations of 
the étale fundamental group π1(EG×G X, x). Similarly local systems on a variety X cor-
respond to representations (�-adic representations) of the fundamental group π1(X, x)
which is the usual fundamental group in characteristic 0 (the étale fundamental group 
in positive characteristics, respectively). (See [33].)

When the scheme X itself is an orbit for the G-action on a larger scheme, X ∼= G/Gx , 
where x denotes a fixed point on X and Gx denotes the stabilizer at x. In this case, 
π1(EG ×G X, x) ∼= π1(BGx). When Gx is connected, π1(BGx) will be a quotient of 
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Galk(k̄) which is trivial if k = k̄ is algebraically closed and is Ẑ if k = Fq. In either case, 
when Gx is connected, the G-equivariant irreducible local systems on the orbit G/Gx
are constant and 1-dimensional, induced from representations of Galk(k̄). (Here one may 
make use of the techniques in the proof of [26, Theorem 1.6] to show that one obtains 
the usual long-exact sequence involving the completed étale fundamental groups of EGx , 
BGx and Gx which will provide the above conclusions. The completion will be at a prime 
� �= char(k).)

We will often make the following assumption on G-equivariant local systems L on a 
scheme X provided with a G-action.

π1(EG×
G

X, x) acts on the stalk Lx through a finite quotient group F. (2.3.1)

Proposition 2.4. (i) Under the above assumption (2.3.1), every G-equivariant local system 
is semi-simple.

(ii) The assumption (2.3.1) holds if the base field is algebraically closed and X has a 
transitive action by G, so that X identifies with an orbit for the G-action.

Proof. Under the assumption (2.3.1), the local system L defines a representation of F
on the Q�-vector space (or Q̄�-vector space) associated to Lx. Since F is finite, this splits 
up into the sum of irreducible representations of F on Q�-vector spaces (or Q̄�-vector 
spaces). One may show by standard arguments that each of the summands corresponds 
to an irreducible �-adic representation of F and therefore to a G-equivariant irreducible 
local system on EG×

G
X. This proves (i) in positive characteristics and a similar argument 

proves it over the field of complex numbers.
Next we will consider (ii). Let x denote a fixed point of X and let Gx denote the 

corresponding stabilizer at x. Then EG ×G X ∼= BGx . Since G0
x is connected, BG0

x is 
simply connected. One may then readily see that π1(EG×

G
X, x) ∼= Gx/G0

x in charac-

teristic 0 (π1(EG×
G

X, x) ̂� ∼= (Gx/G0
x)̂�, in positive characteristic p, respectively, with 

̂� denoting the completion at � �= p.). Since Gx/G0
x is a finite group, we see that the 

assumption (2.3.1) holds. �
2.4. Equivariant intersection cohomology: see [23, (11)]

If L is a local system on an open G-orbit, IH∗(X;L) will denote the corresponding 
intersection cohomology with the middle perversity. In case L is also G-equivariant, we 
will denote by H∗

G(X;L) (IH∗
G(X;L)) the corresponding equivariant cohomology (the 

equivariant intersection cohomology with the middle perversity, respectively: see [23, 
(11)] or [9, (1.4.1)]). We quickly recall this construction for the convenience of the reader. 
Let U0

j0→U1
j1→· · · jn→Un =X denote a filtration of the given scheme by G-stable open 

subschemes. Then one may apply the Borel construction to each term of the above 
sequence of schemes to obtain the diagram:
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EG ×G U0

jG0

EG ×G U1

jG1

· · ·
jGn

EG ×G X (2.4.1)

all provided with a structure map to the classifying space BG. One starts with a G-
equivariant local system L on EG ×G U0 and applies a perverse extension to obtain the 
corresponding equivariant intersection cohomology complex ICG(L). The hypercohomol-
ogy of EG ×G X with respect to ICG(L) will be denoted IH∗

G(X;L).
Both H∗

G(X) and IH∗
G(X;L) are modules over H∗(BG), the cohomology ring of BG. If 

L is a local system, L∨ will denote its dual with respect to Q (Q�).

2.5. The role of stratifications

Next we will consider the role of stratifications. A G-stratification of the scheme X is 
a decomposition of X into finitely many locally closed smooth and G-stable subschemes 
called strata so that the closure of a stratum is the union of lower dimensional strata. 
Let the stratification be denoted S = {Sα|α}. Since the Borel construction is functorial, 
such a stratification of X defines a stratification {EG×

G
Sα|α} of the Borel construction 

EG×
G
X. This stratification of EG ×G X will be denoted SG.

Given a G-stratification, and an interval I as above, we let DI(EG×
G

X, SG) denote the 

full subcategory of DI(EG×
G

X) consisting of

{K εDI(EG×
G

X,SG)|Hi(K) are local systems on each of the strata Sα and for all i}.

(2.5.1)
A perversity function p defined on a stratified scheme Y will be defined as a non-

decreasing function on codimension of the strata, so that the value on the open stratum 
will be 0. We will view p as defined on the strata themselves. (We will only consider the 
middle perversity, which is defined by m(S) = the codimension of S in Y.) Recall that 
the standard t-structure on a derived category of complexes with bounded cohomology 
is one whose heart consists of complexes that have non-trivial cohomology only in degree 
0. Then one may start with standard t-structures defined on each of the strata S, shifted 
by the perversity p(S), and obtain a non-standard t-structure on the bounded derived 
category, Db(Y) by gluing as in [2, 1.4 Recollement].

Next we discuss how the t-structures on the equivariant derived category Db
G(X, SG)

behave as one varies the stratifications.
Given a G-stratification S = {Sα|α} of X, let iSα

= id×
G
i : EG×

G
Sα → EG×

G
X denote 

the induced closed immersion.

Proposition 2.5. Let S denote a fixed G-stratification of the G-scheme X and let SG
denote the induced stratification on EG×

G
X for the action of G on X. Let T = {Tβ} denote 

a G-stratification which is a refinement of the G-stratification S. Then, any complex in 
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Db
G(X) whose cohomology sheaves are local systems on each stratum of SG clearly belongs 

to Db(EG×
G

X, TG). This induces the inclusion functor

Db
G(X,SG) →Db

G(X, TG),

and this functor preserves the t-structures on either side obtained by gluing.

Proof. This follows from [2, Proposition 2.1.14]. �
Proposition 2.6. Assume in addition to the above hypotheses that G acts with finitely 
many orbits on the scheme X. Let S denote the stratification of X by the G-orbits. Then 
Db

G(X, SG) =Db
G(X).

Proof. This is clear since any G equivariant sheaf is a local system on each orbit. �
3. Equivariant perverse sheaves: proof of Theorem 1.1

We will work implicitly with the middle perversity throughout the rest of the paper. 
We will assume that one is given a G-stable stratification S of X and let SG denote the 
induced stratification of EG ×G X. In this case, the t-structure obtained by gluing on 
Db

G(X, SG) = Db(EG×
G

X, SG) is such that

Db,≤0
G (X,SG) = {K εDb(X,SG)|Hi(i(m))∗S(K)) = 0, i > codim(S)} and (3.0.1)

Db,≥0
G (X,SG) = {K εDb(X,SG)|Hi(Ri(m))!S(K)) = 0, i < codim(S)}.

The former (the latter) is often called the aisle (the co-aisle, respectively) of the t-
structure.

Definition 3.1. (Perverse sheaves on the Borel construction and Equivariant Perverse 
sheaves)

(i) In the case of a G-stratification S, we let

PG(X,SG) = Db,≤0
G (X,SG) ∩ Db,≥0

G (X,SG)

and call this the category of perverse sheaves on EG×
G

X with respect to the stratifica-
tion SG.

(ii) Assuming that we are given a compatible family of G-stable stratifications S =
{SG,i|i ε I}, one may take the 2-colimit over i to define PG(S). (Here I is assumed to be 
a small filtered category, and key use is made of Proposition 2.5.)
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Remark 3.2. For much of our work in this paper, we need to fix a stratification and 
consider complexes whose cohomology sheaves are local systems on each stratum: hence 
the above definitions. In view of Proposition 2.5, one may take the 2-colimit over all 
stratifications to obtain a category of perverse sheaves that is intrinsically defined, and 
does not depend on the stratification used.

Proposition 3.3. (See [2, Chapters 1 and 2], [24, section 4].) (i) For a fixed G-stable 
stratification SG of X, the category PG(X, SG) is an Artinian and Noetherian abelian 
category.

(ii) For a small filtered category I, and a family of G-stable stratifications S =
{SG,i|i}, the category PG(S) is also an Artinian and Noetherian abelian category.

(iii) For a fixed G-stable stratification S of X,

PG(X,SG) ={P εDb
G(X)|π∗(P) ∼= p∗

2(L),L εP(X,S)}

where P(X, SG) denotes the category of perverse sheaves on X with respect to the G-
stable stratification SG and π : EG × X → EG×

G
X (p2 : EG × X →X) is the quotient for 

the group-action (projection to the second factor, respectively).
(iv) The simple objects in PG(X, SG) are the equivariant intersection cohomology com-

plexes, ICG(L), which denotes the equivariant intersection cohomology complex obtained 
by starting with the irreducible G-equivariant local system L on some stratum S in S.

Proof. The statements in (i), (ii) and (iv) may be deduced readily from the usual results 
on the category of perverse sheaves on a scheme provided with a stratification: see [2], 
making use of the following ideas. One invokes the comparison of equivariant derived 
categories in Theorem 7.2, which shows that one may make use of EGgm,m and BGgm,m, 
with m >> 0, which are approximations to EG and BG to define the equivariant derived 
categories. Then EG×G X gets replaced by the scheme EGgm,m×G X, for m >> 0. Now 
the equivariant derived category Db

G,c(X) corresponds to the derived category considered 
in (7.1.2). Then a G-equivariant perverse sheaf corresponds to a perverse sheaf P on the 
scheme EGgm,m×

G
X, so that its pull-back to EGgm,m×X is isomorphic to the pull-back 

of a perverse sheaf Q on the scheme X by the projection p2,m : EGgm,m×X →X. As 
a result, all the results in [2, Chapters 1 and 2] carry over to the equivariant derived 
category and equivariant perverse sheaves readily, thereby proving statements (i), (ii) 
and (iv).

The definition of the equivariant derived category Db
G(X, SG) as in subsection 2.5

and (7.1.2) proves (iii). It is also possible to readily rework the above properties in the 
simplicial framework as is done in [24, sections 3 and 4]. �
Definition 3.4. (The standard and co-standard objects) (i) Let Y denote a strati-
fied scheme and let jS : S → Y denote the locally closed immersion of a locally 
closed stratum into Y . Let dS = dimk(S). If LS is a local system on S, we let 
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jpS!(LS [dS ]) = τp≥0jS!(LS [dS ]) = pH0(jS!(LS [dS ])) εP(X, S) be called the standard 
perverse sheaf associated to LS [dS ]. We also let jpS∗(LS [dS ]) = τp≤0RjS∗(LS [dS ]) =
pH0(RjS∗(LS [dS ]) εP(X, S) be called the co-standard perverse sheaf associated to 
LS [dS ]. Here the truncation functor τp≤0 (τp≥0) denotes the perverse truncation functor.

(ii) Let X denote a scheme with the action of a linear algebraic group G, let S de-
note a G-stable stratification of X. If jS : S → X denotes the G-equivariant locally 
closed immersion of a locally closed stratum into X, we will let jS,G : EG×

G
S → EG×

G
X

denote the induced map. If L is a G-equivariant local system on S, we let Δ(L) =
jpS,G!(LS [dS ]) = τp≥0jS,G!(LS [dS ]) = pH0(jS,G!(LS [dS ])) εPG(X, SG) be called the stan-
dard equivariant perverse sheaf associated to LS [dS ]. We also let ∇(L) = jpS,G∗(LS [dS ]) =
τp≤0RjS,G∗(LS [dS ]) = pH0(RjS∗(LS [dS ]) εPG(X, SG) be called the co-standard equivari-
ant perverse sheaf associated to LS [dS ]. Here the truncation functor τp≤0 (τp≥0) denotes 
the perverse truncation functor.

Lemma 3.5. Suppose f : X →Y is a G-equivariant map between schemes with actions by 
the linear algebraic group G. If f is affine, so are the induced maps fG,m : (EG×

G
X)m →

(EG×
G

Y)m for all m.

Proof. Recall (EG×
G

X)m = Gm × X and (EG×
G

Y)m = Gm × Y. Therefore the assertion 

in the Lemma is clear. �
Proposition 3.6. Let X denote a scheme provided with an action by a linear algebraic 
group G. Let S = {S} denote a decomposition of X into locally closed smooth subschemes 
(called strata), where each stratum S is G-stable. Assume that jS : S → X and jT : T →
X are the immersions of two strata. Let jS,G : EG×

G
S → EG×

G
X and jT,G : EG×

G
T →

EG×
G

X denote the corresponding induced immersions and let Homn
Db

G(X,SG) denote the 

Hom in the corresponding equivariant derived category. Let L denote a G-equivariant 
local system on any of the strata. Then the following hold.

(i) Homn
Db

G(X,SG)(j
p
S,G!(LS[dS]), jpT,G∗(LT[dT])) = 0, n < 0.

(i’) More generally, Homn
Db

G(X,SG)(P
′, P) = 0, for all n < 0 if P′, P are two G-

equivariant perverse sheaves, or if P′ εDb,≤0
G (X, SG) and P εDb,≥0

G (X, SG).
(ii) HomDb

G(X,SG)(j
p
S,G!(LS[dS]), jpT,G∗(LT[dT])) =HomDb

G(X,SG)(jS,G!(LS[dS]),
RjT,G∗(LT[dT])).

(iii) The canonical map

Hom1
Db

G(X,SG)(j
p
S,G!(LS[dS]), jpT,G∗(LT[dT])) →

Hom1
Db

G(X,SG)(jS,G!(LS[dS]),RjT,G∗(LT[dT]))

is injective.
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(iii’) The canonical map

Homi
Db

G(X,SG)(j
p
S,G!(LS[dS]),P) →Homi

Db
G(X,SG)(jS,G!(LS[dS]),P)

is bijective for i = 0 and injective for i = 1 for any G-equivariant perverse sheaf P.
(iv)

Homn
Db

G(X,SG)(jS,G!(LS[dS]),RjT,G∗(LT[dT]))

∼= Homn
Db

G(X,SG)(LS[dS],Rj!S,GRjT,G∗(LT[dT]))

∼= Homn
Db

G(X,SG)(j
∗
T,G(jS,G!LS[dS]),LT[dT])

This is trivial unless S = T .
(v) Homn

Db
G(X,SG)(j

p
S,G!(LS[dS]), jpT,G∗(LT[dT])) = 0, for S �= T, n ≤ 1.

(vi) Homn
Db

G(X,SG)(j
p
S,G!(LS[dS]), jpS,G∗(LS[dS])) = Homn

Db
G(S)(LS[dS], LS[dS]), n ≤ 0.

(vii) The obvious map

Hom1
Db

G(X,SG)(j
p
S,G!(LS[dS]), jpS,G∗(L′

S[dS])) →Hom1
Db

G(S)(LS[dS],L′
S[dS])

is also an injection.
(viii) Suppose jS : S → X and jT : T → X are both affine maps. Then

Homn
Db

G(X,SG)(j
p
S,G!(LS[dS]), jpT,G∗(LT[dT])) ∼= 0 for all n if S �= T.

Proof. (i) is a basic property of perverse sheaves: see [2, Corollaire 2.1.21]. In fact, this 
holds for any perverse sheaves replacing the standard and co-standard objects as in (i). 
This observation also proves (i’). (A more detailed proof may be obtained by considering 
the spectral sequence:

Eu,v
1 = Homv

Db(EG×
G

Xu ,(SG)u)(P
′
u,Pu) ⇒ Homu+v

Db
G(X,SG)(P

′,P).

Here P′
u (Pu) denotes the restriction of P′ (P) to (EG×

G
X)u. The Eu,v

1 -terms are trivial 
for all v < 0, by [2, Corollaire 2.1.21] since P′

u and Pu are perverse sheaves on (EG×
G

X)u. 
Since v ≥ 0, it follows that for u + v < 0, one needs u < 0. But clearly u ≥ 0.)

(ii) and (iii) follow by diagram chase making use of (i) and the last statement in (i’). 
(One needs to consider the distinguished triangles

τp≤−1jS,G!(LS [dS ]) → jS,G!(LS [dS ]) → jpS,G!(LS [dS ]) = τp≥0jS,G!(LS [dS ])

→ τp≤−1jS,G!(LS [dS ])[1] as well as

jpS,G∗(LS [dS ]) = τp≤0RjS,G∗(LS [dS ]) → RjS,G∗(LS [dS ]) → τp≥1(RjS,G∗(LS [dS ])

→ jpS,G∗(LS [dS ])[1]
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and then make use of (i) as well as the last statement in (i’).)
(iii’) follows from (i’) by a similar diagram-chase. The isomorphisms in (iv) follow 

readily by the adjunctions between the functors there. Here we have to consider two 
cases: in both cases S �= T . In case S ⊆ T̄ or if S ∩ T̄ = φ, the composite functor 
Rj!

S,GRjT,G∗ is identically zero, since S ∩ T = φ. In case T ⊆ S̄ or T ∩ S̄ = φ, the 
composite functor j∗T,GjS,G! is identically zero since again S ∩ T = φ. This proves (iv). 
Now (v) follows readily by combining (ii), (iii) and (iv).

Observe that both the right-hand-side and left-hand-side of (vi) are trivial for n < 0. 
For n = 0, the isomorphism in (vi) follows from (ii) and the adjunction between the 
functors there. (vii) follows from (iii) and the adjunction between the functors there. 
(viii) follows from (iv) and Lemma 3.5, making use of [2, Theorem 4.1.1 and Corollaire 
4.1.2]. �

We will add the following (rather well-known) result here, which will be used several 
times later on.

Lemma 3.7. Let D = Db
G(X, SG) and let C = PG(X, SG) as before. Then given two objects 

K, L ∈ C, the natural map ExtiC(K, L) → ExtiD(K, L) is an isomorphism for i = 0, 1
and is an injection for i = 2.

Proof. For i = 0, this is clear since C being the heart of the triangulated category D, is a 
full subcategory of the latter. For i = 1, this is discussed in [2, Remarque 3.1.17(ii)]. For 
i = 2, this may be then readily deduced from the case i = 1 as in [3, Lemma 3.2.4]. �
3.1. Existence of enough projectives

We begin with the following general result. Let F denote a field and let A denote an 
F -linear abelian category, that is, A is an abelian category, where each Hom between 
two objects is an F -vector space, and the composition HomA(a, b) × HomA(b, c) →
HomA(a, c) is F -linear.

Proposition 3.8. Assume that the following additional hypotheses are satisfied.

(i) Each object in A has finite length.
(ii) There are only finitely many isomorphism classes of simple objects in A.
(iii) The endomorphisms of simple objects in A are reduced to scalars. Let {L(s)|sεS}

represent the simple isomorphism classes in A. Assume a partial order ≤ is given 
on S and S is equipped with the order topology, that is, closed subsets T ⊆ S are 
characterized by sεT, s′ ≤ s ⇒ s′εT . For any closed T ⊆ S, let AT denote the 
full subcategory of A of objects supported on T, that is, all of whose simple sub-
quotients have parameter in T.

Assume we are given for all sεS, objects Δ(s), �(s) and morphisms Δ(s) →
L(s), L(s) → �(s) in A such that
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(iv) whenever T ⊆ S is closed and sεT is maximal, Δ(s) → L(s) is a projective cover 
and L(s) → �(s) is an injective hull of L(s) in AT . (In particular, both Δ(s) and 
�(s) are indecomposable.)

(v) ker(Δ(s) → L(s)) and coker(L(s) → �(s)) lie in A<s, for every sεS.

We call Δ(s) (�(s)) the standard (co-standard, respectively) objects.
Then the abelian category A has enough projectives,

Proof. The proof that the above hypotheses imply the above conclusions is rather well-
known: see, for example, [3, 3.2, also the remarks following the statement of Theorem 
3.2.1]. �

In the remainder of this section we will assume that a not necessarily connected linear 
algebraic group G acts on the scheme X with finitely many orbits. Let S denote the 
corresponding G-stable stratification of X defined by the orbits. Next we consider the 
category of pairs

SL = {(O,LO)|O εS,LO a G − equivariant irreducible local system on O}. (3.1.1)

By replacing the above category by its skeleton category, we may assume that for each 
fixed orbit O, the distinct objects (O, LO) belong to distinct isomorphism classes of G-
equivariant irreducible local systems on the orbit O and that SL is a set. We proceed to 
define an order relation on SL.

Definition 3.9. We say (O′, L′
O′) ≤ (O, LO) if

(i)O′ ⊆ Ō and (3.1.2)

(ii) there is a map L′
O′ [dim(O′)] → Rj!

O′j
p
O!(LO[dim(O)]) in DG(X,SG)

that induces a monomorphism on cohomology sheaves in degree −dim(O′). (Here j′ :
O′ → X and j : O → X are the obvious immersions.)

Proposition 3.10. The above relation is a partial-order on SL. The set SL is finite.

Proof. It is clear that the above relation is reflexive. Next we proceed to show it is 
transitive. Observe first that if O′ ⊆ Ō and O ⊆ Ō′′, then O′ ⊆ Ō′′.

Next observe that, by adjunction, the existence of the map in (3.1.2)(ii) is equiv-
alent to the existence of a map jO′!(L′

O′ [dim(O′)]) → jp! (LO[dim(O)]) in DG(X, SG). 
However, since jpO! = τp≥0jO!, and jpO′! = τp≥0jO′!, where τp≥0 denotes the perverse trun-
cation, it follows from [2, Proposition 1.3.3] that the last map in fact induces a map 
jpO′!(L′

O′ [dim(O′)]) → jpO!(LO[dim(O)]) in DG(X, SG). Therefore, giving the two maps 
in DG(X, SG):
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L′
O′ [dim(O′)] → Rj!

O′j
p
O!(LO[dim(O)]) and LO[dim(O)] → Rj!

Oj
p
O′′!(L′′

O′′ [dim(O′′)])

correspond to giving maps

jpO′!(L′
O′ [dim(O′)]) → jpO!(LO[dim(O)]) and jpO!(LO[dim(O)]) → jpO′′!(L′′

O′′ [dim(O′′)])

in DG(X, SG). Clearly the last two maps may composed to obtain the map

jpO′!(L′
O′ [dim(O′)]) → jpO′′!(L′′

O′′ [dim(O′′)]) in DG(X,SG).

Since jpO′! = τp≥0jO′! and jpO′′! = τp≥0jO′′!, this is equivalent to giving a map 
jO′!(L′

O′ [dim(O′)]) → jpO′′!(L′′
O′′ [dim(O′′)]) and therefore to giving a map L′

O′ [dim(O′)]
→ Rj!

O′j
p
O′′!(L′′

O′′ [dim(O′′)]).
Moreover, one may see that the last map be obtained by applying Rj!

O′j
p
O! to 

the map LO[dim(O)] → Rj!
Oj

p
O′′!(L′′

O′′ [dim(O′′)]) and precomposing with the map 
L′
O′ [dim(O′)] → Rj!

O′j
p
O!(LO[dim(O)]), since the adjunction jO!Rj!

OK → K factors 
through jpO!Rj!

OK → K, if K ∈ Dp,≥0
G (X, SG). These complete the proof of the transi-

tivity.
Clearly if O′ ⊆ Ō and O ⊆ Ō′, then O′ = O. Then the map in (3.1.2)(ii) corresponds 

to an isomorphism L′
O → LO of irreducible G-equivariant local systems on the G-orbit 

O. Since we have already replaced the category SL by its skeleton, this is the identity, 
proving the anti-symmetry property of the relation ≤ on SL in Definition 3.9.

These prove all but the last statement regarding finiteness of the set SL. Observe that 
there are only finitely many orbits by our assumption. Each orbit has only finitely many 
distinct irreducible G-equivariant local systems, since these correspond to irreducible 
representations of the finite group Gx/Go

x , for a fixed point x in a G-orbit. These prove 
the last statement. �
Remark 3.11. If the stabilizers at all points on X are connected, then the G-equivariant 
local systems are trivial and therefore the corresponding irreducible G-equivariant local 
systems are the one dimensional trivial local systems. In this case, the above partial 
order reduces to the partial order on the G-orbits, given by O′ ≤ O if O′ ⊆ Ō. We 
will see below that there are indeed many examples where this is what occurs: see 
Proposition 3.14.

Theorem 3.12. Let G denote a not necessarily connected linear algebraic group act-
ing on the scheme X with finitely many orbits, all defined over an algebraically closed 
base field k. Let S denote the corresponding G-stable stratification of X defined by the 
orbits.

(i) Then the category of G-equivariant perverse sheaves PG(X, SG) has enough pro-
jectives. Moreover, if S denotes a G-orbit on X, S̄ denotes its closure in X and LS

denotes an irreducible G-equivariant local system on S, then the equivariant perverse 
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sheaf Δ(LS) is a projective cover of ICG(LS [dim(S)]) in PG(S̄, SG), which denotes the 
full subcategory of PG(X, SG) with supports in S̄.

(ii) Assume, in addition, that the strata defined by the G-orbits satisfy the following 
hypotheses:

(a) the inclusion of each stratum S → X is affine, and
(b) H2(EG×

G
(G/Gx), Q�) ∼=H2(BGx , Q�) = 0 in case char(k) = p > 0 and p �= �

(H2(EG×
G

(G/Gx), Q) ∼=H2(BGx , Q) = 0, in case char(k) = 0).
Then every G-equivariant perverse sheaf has a bounded projective resolution. In partic-

ular, if G is the trivial group and H2(S, Q�) = 0 in positive characteristic p (H2(S, Q) = 0, 
in case char(k) = 0) for all strata S, then every perverse sheaf on X has a bounded pro-
jective resolution by projective objects in the category of perverse sheaves.

Proof. We will discuss the proof only in positive characteristics, as the proof in char-
acteristic 0 follows along the same lines. We begin by observing that there are enough 
projective objects in the category PG(S, SG) of G-equivariant perverse sheaves on a 
fixed stratum S. Let x denote a fixed (closed) on the stratum S, so that we may assume 
π1(EG ×G S, x) ̂� ∼= π1(BGx) ̂� ∼= (Gx/G0

x) ̂�. Therefore, the �-adic G-equivariant local 
systems on EG×GS correspond to finite dimensional left modules over the group-algebra 
Q�−((Gx/G0

x) ̂�). Since (Gx/G0
x) is finite, so is (Gx/G0

x) ̂�, and therefore Q�−((Gx/G0
x) ̂�)

is a finite dimensional Q�-algebra. Moreover, this category is semi-simple and therefore 
every module is projective. Therefore, the category of finite dimensional left modules 
over the group-algebra Q�− ((Gx/G0

x) ̂�) has enough projectives. A corresponding result 
holds with Q in the place of Q� when we consider complex varieties.

It suffices to verify the five conditions in Proposition 3.8 to prove (i). The verification 
of the conditions (i) through (iii) and (v) are clear. One may argue as follows to see 
the condition (iv) there is true. Let S denote a G-orbit, S̄ denote its closure and let 
jS : S → S̄ denote the corresponding open immersion.

Taking Δ(LS) (∇(LS)) to denote the standard (co-standard) equivariant perverse 
sheaves associated to a stratum S and an irreducible representation LS of π1(EG×

G
S, s), 

with LS denoting the corresponding G-equivariant local system on EG×
G
S, one needs to 

show that the canonical map α : Δ(LS) → ICG(LS [dim(S)]) is a projective cover. The 
required arguments are exactly as in the non-equivariant case: however, we will provide 
sufficient details, mainly for completeness.

Recall Δ(LS) = τp≥0jS,G!(LS [dim(S)]). Now it suffices to prove the following:

Hom1
Db

G(X,SG)(Δ(LS), ICG(L′
T)) = 0

for all G-equivariant local systems L′
T on a G-orbit T ⊆ S̄ and (3.1.3)

Hom0
Db

G(X,SG)(Δ(LS), ICG(L′
T)) = Q� if T = S and LS = L′

T (3.1.4)

= 0 for T ⊆ S̄, T �= S.
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Then (3.1.3) will prove that Δ(LS) is a projective object in the abelian category 
PG(S̄, SG) while (3.1.4) will show it is a cover of ICG(LS).

In view of Proposition 3.6(iii’), it suffices to prove the corresponding isomorphisms 
after replacing Δ(LS) by jS,G!(LS [dim(S)]). Then the left-hand-side of (3.1.3) identifies 
with

Hom1
Db

G(S,SG)(LS[dS], j∗SICG(L′
T)). (3.1.5)

At this point we need to consider two cases. The first case is when T ⊆ S̄ and T �= S. In 
this case j∗SICG(L′

T ) = 0, so that the group in (3.1.5) is trivial. The next case is when 
T = S. In this case the group in (3.1.5) identifies with H1(BGx , L∨

S ⊗ L′
S) = 0, where x

denotes a point of S: see the proof of Proposition 4.1 for additional details. (One may 
also simply observe that the functor j∗S is exact and that LS [dS ] is a projective object in 
the category of G-equivariant perverse sheaves on the stratum S: see [14, Lemma 4.4].) 
In a similar way, one sees that the left-hand-side of (3.1.4) identifies with

Hom0
Db

G(S,SG)(LS[dS], j∗SICG(L′
T)). (3.1.6)

If T ⊆ S̄ and T �= S, then j∗SICG(LT ) = 0, so that the group in (3.1.6) is trivial. If T = S, 
then it follows that

Hom0
Db

G(X,SG)(j
p
S,G!(LS[dS]), jpT,G!(L′

T[dT])) ∼= Hom0
Db

G(S)(LS[dS], j∗S,GjT,G!(L′
T[dT]))

∼= H0(EG ×G S,Hom(L,L′)),

∼= H0(BG0
x ,Hom(L,L′)Gx/G0

x ) (3.1.7)

since each stratum S is a G-orbit and EG×GS ∼= BGx , where Gx denotes the stabilizer at 
a point x εS. Moreover, Hom denotes the internal Hom in the category of Gx-equivariant 
local systems. Clearly Hom(LS , L′

S)Gx/G0
x ∼= Q� if LS

∼= L′
S and 0 otherwise as LS and 

L′
S are both irreducible G-equivariant local systems on S. Therefore the group in (3.1.6)

is 0 if L′
S �= LS and it is Q� if L′

S = LS , as LS and L′
S are both irreducible G-

equivariant local systems on S. These complete the proof of the statement that Δ(LS)
is a projective cover of ICG(LS) in PG(S̄, SG). By taking Verdier duals, one may prove 
the corresponding statement that ∇(LS) is an injective hull of ICG(LS) in PG(S̄, SG). 
Therefore, these complete the proof of the first statement in the Theorem.

Recall that there is an additional condition (namely (6)) in [3, (3.2)] that says 
Ext2A(Δ(s),∇(t)) = 0, for all s, t ∈ S. This condition translates to
Hom2

PG(X,SG)(j
p
S,G!(LS[dim(S)]), jpT,G∗(L′

T[dim(T)])) = 0 for all irreducible G-equivariant 
local systems LS on S and L′

T on T. That the conditions in statement (ii) of the The-
orem imply the above vanishing condition may be seen by the following argument. By 
Lemma 3.7, the canonical map



R. Joshua / Journal of Algebra 591 (2022) 289–341 313
Hom2
PG(X,SG)(j

p
S,G!(LS[dim(S)]), jpT,G∗(L′

T[dim(T)])) →

Hom2
Db

G(X,SG)(j
p
S,G!(LS[dim(S)]), jpT,G∗(L′

T[dim(T)]))

is an injection. Therefore, it suffices to prove the groups

Hom2
Db

G(X,SG)(j
p
S,G!(LS[dim(S)]), jpT,G∗(L′

T[dim(T)])) (3.1.8)

are trivial. Making use of the assumption that the inclusion maps j : S → X are affine, 
Proposition 3.6(iv), shows the above groups are trivial for S �= T .

Therefore, for S = T , again making use of the assumption that the inclusion maps 
j : S → X are affine, the vanishing of the groups in (3.1.8) reduces to the vanishing of

H2(EG×
G

(G/Gx),Hom(LS,L′
S)) ∼= H2(BGx ,Hom(LS,L′

S))

∼= H2(BG0
x ,Hom(LS,L′

S)Gx/G0
x ),

where Hom denotes the internal hom in the category of G-equivariant local systems on 
S. If LS �= L′

S , then Hom(LS , L′
S)Gx/G0

x ∼= 0 and otherwise it is isomorphic to Q�. This 
completes the proof of (ii). �
Remark 3.13. Observe that the vanishing condition in Proposition 3.12(ii) is not satisfied 
in general: this would need H2(BGx , Q�) in positive characteristic p (and H2(BGx , Q), 
in characteristic 0) to be trivial, which is usually not the case. Therefore, one cannot 
conclude in general, based on the above arguments, that one has a bounded projec-
tive resolution in the category of G-equivariant perverse sheaves, for any G-equivariant 
perverse sheaf.

Proposition 3.14. (Examples.) (i) Assume the base field k is perfect and of arbitrary 
characteristic. If X is a toric variety for a split torus T both defined over k, then there 
are only finitely many T-orbits on X. Similarly, if X is a spherical variety associated 
to the connected reductive groups G, both defined over an algebraically closed field k of 
arbitrary characteristic, there are only finitely many G-orbits on X. (In addition, if B is 
a Borel subgroup of G, it also has only finitely many orbits on X.)

(ii) The stabilizer groups are products of a connected subgroup and a finite abelian 
subgroup for all toric varieties defined over any algebraically closed field k.

(iii) Assume the base field is C. Then the stabilizer groups are all connected for all 
reductive varieties, and more generally for what are called spherical simply connected 
(scs) varieties (in the sense of [10], sections 1 and 5), associated to connected reductive 
groups G, so that the G-equivariant local systems on the orbits are all constant.

(iv) Assume the base field is C. Then the stabilizer groups are all extensions of 
connected groups by finite abelian groups for all spherical varieties. Therefore, the G-
equivariant irreducible local systems on the orbits are 1-dimensional.
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(v) The immersions j : O → X corresponding to the various G-orbits are affine for 
any toric variety defined with respect to a split torus over any field. The same holds for 
all toroidal imbeddings X of spherical imbeddings of homogeneous spaces with respect to 
complex reductive groups.2

(vi) Let G denote a connected reductive group and B a Borel subgroup in G. Let X
denote a Schubert variety on the flag variety G/B provided with the left action by B on 
X (induced by the Bruhat decomposition of G). Then the B-orbits on X form a B-stable 
stratification of X, with each stratum being an affine space.

Proof. The statements in (i) are well-known: see [31, 1.2] for toric varieties and [7, 
Chapter 2] or [38, p. 26] for spherical varieties. Let X denote a toric variety for the split 
torus T = Gn

m. Then clearly the stabilizers are all of the form Gk
m×F, where F is a finite 

subgroup of T, and k ≤ n. This proves (ii). For any imbeddings of reductive groups G, 
or more generally for reductive varieties, as well as for spherical simply connected (scs) 
varieties the stabilizer groups are all connected, so that G-equivariant local systems on 
the orbits are in fact constant. (See [10, section 5].) This proves (iii).

In (iv), G0
x is then a spherical subgroup of Gx , and hence its normalizer NG(G0

x)/G0
x

is diagonalizable (in particular, abelian). So the subgroup Gx/G0
x is abelian. There-

fore, the corresponding G-equivariant local systems are 1-dimensional. This proves 
(iv).

For toroidal imbeddings, the local structure (see [7, 2.4], [38, Theorem 29.1] or [6, 
6.2.2]) shows the immersions j : O → X, corresponding to the G-orbits O are all affine. 
These observations then prove the statements in (v). The last statement on Schubert 
varieties is well-known. �

Proof of Theorem 1.1. Proposition 3.3 establishes all the statements except for the ex-
istence of projectives, projective covers, and their properties. Theorem 3.12 establishes 
the existence of projectives and projective covers for the simple objects. To see that 
every object has a projective cover, one needs to make use of the fact that the abelian 
category PG(X, SG) is Artinian, so that every object has finite length, and therefore is 
what is called a length category: then one invokes Proposition 3.8 and an argument as in 
[19, 8.2] to show such a length category is equivalent to the category of all finite length 
left-modules over an Artinian ring. (One may also readily adapt the arguments in [14, 
Theorem 4.6] which establishes a corresponding result for perverse sheaves on a stratified 
topological space, so that the fundamental group of each stratum is finite. Note that the 
above cited Theorem itself is based on the arguments in [3, Theorem 3.2.1].) This will 
show the existence of projective covers in general. �
2 The last statement in fact extends to toroidal imbeddings over algebraically closed fields of positive 

characteristics: this is in fact proven in 5.1.4.



R. Joshua / Journal of Algebra 591 (2022) 289–341 315
4. Highest weight categories and quasi-hereditary algebras from equivariant perverse 
sheaves: proof of Theorem 1.2

Let k denote an algebraically closed field, � a prime �= char(k), G a not necessarily 
connected linear algebraic group and X a scheme of finite type so that G acts on X with 
finitely many G-orbits. Let S denote the stratification of X by the G-orbits.

Proposition 4.1. Assume the above situation.
Then the following hold, where LS (LT ) is an irreducible G-equivariant local system 

on the orbit S (T , respectively) and assuming the characteristic of the base field is p > 0:

Homn
Db

G(X,SG)(j
p
S,G!(LS[dS]), jpT,G!(L′

T[dT])) = 0, if n ≤ −1, (4.0.1)

= 0, if n = 0, unless S ⊆ T̄ ,

= 0, if n = 1, unless S ⊆ T̄ and S �= T,

= Q�, if n = 0, S = T, and LS = L′
T

= V, if n = 0 or n = 1

where V is a finite dimensional vector space over Q�.
In case the base field is the complex numbers, the corresponding result holds with Q�

replaced by Q everywhere.
The corresponding results with Q (Q�) replaced by C (Q̄�, respectively) hold when the 

above equivariant derived categories are replaced by the ones in (1.0.2).

Proof. The first equality follows from Proposition 3.6(i’). To obtain the second equality, 
first one invokes Proposition 3.6(iii’) with P there replaced by jpT,G!(LT[dT]). Then we 
obtain (just as in (3.1.4)), for i = 0 and i = 1:

Homi
Db

G(X,SG)(j
p
S,G!(LS[dS]), jpT,G!(L′

T[dT])) ∼= Homi
Db

G(X,SG)(jS,G!(LS[dS]), jT,G!(L′
T[dT])),
(4.0.2)

∼= Homi
Db

G(S)(LS[dS],Rj!S,GjT,G!(L′
T[dT])),

∼= 0 unless S ⊂ T̄

since Rj!
S,GjT,G!(L′

T[dT]) = 0, unless S ⊆ T̄ . Taking i = 0, this proves the second equality 
on the right.

The remaining statements are proven exactly as in the proof of Theorem 3.12. In case 
S = T , for i = 0, 1, it follows that

Homi
Db

G(X,SG)(j
p
S,G!(LS[dS]), jpT,G!(L′

T[dT])) ∼= Homi
Db

G(S)(LS[dS], j∗S,GjT,G!(L′
T[dT]))

(4.0.3)
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∼= Hi(EG ×G S,Hom(LS,L′
S)),

∼= Hi(BG0
x ,Hom(LS,L′

S)Gx/G0
x ),

since each stratum S is a G-orbit and EG×GS ∼= BGx , where Gx denotes the stabilizer at 
a point x εS. Moreover, Hom denotes the internal Hom in the category of Gx-equivariant 
local systems. Clearly Hom(LS , L′

S)Gx/G0
x ∼= Q� if LS

∼= L′
S and 0 otherwise. Taking 

i = 0, this proves the fourth equality.
The fifth equality follows by identifying the right hand side of (4.0.2) for i = 1 with 

H1(EG ×G S, RHom(LS , Rj!S,G(jT,G!(L′
S[dS][−dT])), which is clearly a finite dimensional 

vector space over Q� (Q) in positive characteristic (over k = C, respectively).
Next we consider the third equality. Observe that if S = T , then (S, LS) ≤ (T, L′

T )
only if LS = L′

T . Then the right hand side (4.0.2) with i = 1 identifies with

H1(BGx ,Hom(LS,L′
T)) ∼= H1(BG0

x ,Hom(LS,LS)Gx/G0
x )

∼= H1(BG0
x ,Q�) =H1(BTx ,Q�)Wx = 0,

where Tx denotes a maximal torus in G0
x with Wx denoting the corresponding Weyl 

group. Moreover, as observed above, Rj!
S,GjT,G!(LT[dT]) = 0, unless S ⊆ T̄ . Therefore, 

this proves the third equality as well, thereby completing the proof of all but the last 
statement in the Proposition. We skip the proofs of the last two statements as they are 
clear. �
Proof of Theorem 1.2. Let Db

G,c(X) denote the G-equivariant derived category of X, pro-
vided with the t-structure, whose heart is the category of equivariant perverse sheaves. 
Let D̄b

G,c(X) denote the corresponding derived category considered in (1.0.2).
Recall that we defined a partial order on the (skeletal) category SL of pairs 

{(O, LO)|O εS, LO a G − equivariant irreducible local system on O}. (In case the sta-
bilizers on each G-orbit are connected, then the irreducible G-equivariant local systems 
reduce to 1-dimensional trivial local systems, and the above partial order reduces to the 
partial order on the orbits, where O′ ≤ O, if O′ ⊆ Ō.)

Let PG(X, SG) denote the category of equivariant perverse sheaves on X with respect 
to the stratification S. Then, Propositions 3.10 and 4.1 show that the hypotheses of [32, 
(5.9) Theorem] hold, so that [32, (5.9) Theorem] readily provides a proof of both state-
ments in Theorem 1.2. The following statements describe the associated quasi-hereditary 
algebra and the highest weight category. �
4.1. The associated quasi-hereditary algebra and the highest weight category

We will denote the standard objects jpO,G!(LO) by V (LO). Now each V (LO) has 
a projective cover by Theorem 1.1(iii), which we will denote by P(LO). Then we let 
T = ⊕LOP(LO) and A = HomD̄b (X)(T, T). Propositions 3.10 and 4.1 verify that the 
G,c
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hypotheses of [32, (5.9) Theorem] are satisfied, so that by [32, (5.9) Theorem], this is a 
quasi-hereditary algebra. The highest weight category C̄ in the above theorem is given 
by the category of all finitely generated modules over A. (One may also want to consult 
the discussion on this in the introduction.)

Remark 4.2. It is worth pointing out that, unless the group G is trivial (or finite), it is far 
from clear that the category of equivariant perverse sheaves is a highest weight category. 
One may see this as follows. Observe from Proposition 3.10 that the set SL is a partially 
ordered finite set. The co-standard objects are the equivariant perverse sheaves defined as 
jpO,G!(LO[dO]) for an irreducible local-system LO on the orbit O and the standard objects 
are their duals, defined as jpO,G∗(LO[dO]). These objects are thus indexed by the partially 
ordered set SL, and belong to the category of equivariant perverse sheaves PG(X, SG). 
We may further assume that the stabilizer groups on each orbit is connected, so that the 
G-equivariant fundamental group on each orbit is trivial, and the G-equivariant local 
systems on each orbit are the trivial 1-dimensional local systems. Therefore, the weight 
poset identifies with the set of orbits partially ordered by inclusion. Then, [32, (5.17)(b)]
applies to show that PG(X, SG) is a highest weight category if and only if the group

Hom2
PG(X,SG)(j

p
O,G!(LO[dO]), jpO′,G!(LO′ [dO′ ])) = 0 (4.1.1)

for all pairs of orbits O, O′ and irreducible G-equivariant local systems LO and LO′ . By 
Lemma 3.7, the canonical map

Hom2
PG(X,SG)(j

p
O,G!(LO[dim(O)]), jpO′,G∗(L′

O′ [dim(O′)]))

→ Hom2
Db

G(X,SG)(j
p
O,G!(LO[dim(O)]), jpO′,G∗(L′

O′ [dim(O′)]))

is an injection. Therefore, it suffices to prove the groups

Hom2
Db

G(X,SG)(j
p
O,G!(LO[dim(O)]), jpO′,G∗(L′

O′ [dim(O′)])) (4.1.2)

are trivial.
We may assume (for the sake of simplicity), that the immersions jO : O → X as-

sociated to each orbit O is affine. Then the above groups are trivial for O �= O′ by 
Proposition 3.6(iv). Then jO,G!(LO) and RjO,G∗(LO) are G-equivariant perverse sheaves, 
so that a necessary and sufficient condition that the category PG(X, SG) is a high-
est weight category is that Hom2

PG(X,SG)(jO,G!(LO), RjO,G∗(LO)) = 0 for all the orbits 
O. Now, the last group injects into Hom2

DG(X)(jO,G!(LO), RjO,G∗(LO)) ∼=H2
G(O, LO), by 

Lemma 3.7 again. However, the condition that H2
G(O, LO)) is trivial is almost never 

satisfied.
In fact, H2

G(O, LO) ∼=H2(BGx , Q�), which is hardly ever trivial, unless Gx is trivial 
or finite. Since this condition should hold for all the G-orbits, it is hardly ever satisfied 
unless the group G itself is trivial or finite.
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5. Vanishing of odd dimensional intersection cohomology for spherical varieties in 
positive characteristics: proof of Theorem 1.6

Throughout this section we will restrict to schemes of finite type over a base field 
k that is algebraically closed and of positive characteristic p. Throughout this section, 
we will adopt the convention where perverse sheaves on a smooth scheme with a single 
stratum, will be just local systems, without any dimension shift: that is, if X is smooth 
and L is an �-adic local system on X, then L is a perverse sheaf on X. (Note that this 
differs from the convention in [2, 4.0, p. 102], where L[dim (X)] will be the corresponding 
perverse sheaf.)

We begin with the following result.

Theorem 5.1. (Degeneration of the spectral sequence in equivariant intersection coho-
mology). Let X be a projective equi-dimensional G-scheme, where G is connected. Let L
denote a G-equivariant local system on an open dense smooth sub-variety of X such that 
L is semi-simple as a G-equivariant local system. Let ICG(X;L) denote the corresponding 
equivariant intersection cohomology complex. Then the spectral sequence:

Es,t
2 = Hs(BG; Rtπ∗(ICG(X;L))) ⇒ IHs+t

G (X;L)

degenerates, where π : EG×
G

X → BG is the obvious map. Thus, IH∗
G(X;L) ∼=H∗(BG) ⊗

IH∗(X;L).

Proof. This is essentially the same as in [23, Proposition (13)] where only the case G is 
a one dimensional torus is considered. That G be connected is necessary to ensure that 
all local systems on BG are in fact constant. Let U denote an open smooth G-stable sub-
variety of X on which L is a local system. Since X is equi-dimensional, U is the disjoint 
union of its connected components Ui all of which are of the same dimension. Since G
is connected the Ui are stable under the group action. Let Li denote the G-equivariant 
local system on U defined by Li|Uj

= L|Ui if j = i, and = 0 otherwise. Then one may 

see that ICG(X;L) = ⊕iICG(X;Li). Clearly each Li is a semi-simple G-equivariant local 
system. Invoking, Proposition 6.1, we see that each ICG(X;Li) and hence ICG(X;L) is a 
pure perverse sheaf. Therefore the Hard Lefschetz theorem holds for IH∗(X;L) and the 
same proof as in [23, Proposition (13)] applies. �
Theorem 5.2. Let X denote a projective equi-dimensional variety provided with the action 
of a torus T and let L denote a T-equivariant local system on an open smooth T-stable 
sub-variety of X. Assume that L is semi-simple as a G-equivariant local system. Let 
i : XT → X denote the inclusion of the fixed point sub-scheme. Then one obtains the 
following isomorphisms after inverting all non zero elements of H∗(BT) (that is, on 
localization at the prime ideal (0)):

IH∗
T(X;L)(0) ∼=H∗(BT)(0) ⊗ IH∗(X;L) ∼=H∗(BT)(0) ⊗H∗(XT; Ri!IC(X;L)). (5.0.1)
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In particular, if IHi(X;L) = 0 for all odd i and x is an isolated fixed point of T, then 
IHi

x(X;L) = Hi(IC(X;L))x = 0 for all odd i. (Here Hi(IC(X;L))x denotes the stalk of 
the sheaf Hi(IC(X;L)) at x.)

Proof. The first isomorphism follows from Theorem 5.1 by localizing at (0). By the 
localization theorem (see [23, Theorem (17)]), one has the isomorphism:

IH∗
T(X;L)(0) ∼=H∗

T(XT; Ri!ICT(X;L))(0). (5.0.2)

Then H∗
T(XT; Ri!ICT(X;L))(0) ∼=H∗(BT)(0) ⊗ H∗(XT, Ri!ICT(X;L)).

Next let ix : x → XT be the inclusion of an isolated fixed point of T. Then 
Ri!ICT(X;L) breaks up into the sum of complexes one of which is

Ri!xIC
T(X;L) ∼= Di∗xD(ICT(X;L)) 	 (i∗xIC

T(X;L∨))∨[−2d]

where d is the dimension of X. This proves the last assertion of the theorem. �
Next we consider the following proposition which will be used repeatedly in the paper.

Proposition 5.3. Let π : Y →X denote a finite G-equivariant surjective map of G-
varieties. Let X0 denote a G-stable open subscheme of X and let Y0 =X0×

X
Y be its 

inverse image under π. If L is a G-equivariant local system on Y0 and π0 : Y0 →X0
is the map induced by π, after possibly shrinking X0, we may assume that π0∗(L) is a 
G-equivariant local system on X0. Moreover, π∗(ICG(Y;L)) 	 ICG(X;π0∗(L)).

Proof. Since the map π is finite, one may readily show that π∗(ICG(Y;L)) satisfies all the 
axioms of an intersection cohomology complex on X except possibly for the axiom that 
says there exists a dense smooth open G-stable subscheme V of X so that π∗(ICG(Y;L))|V
is a local system. We proceed to show this presently.

Since intersection cohomology is invariant under normalization (see [23, (A-17)]), we 
will normalize all the varieties and assume the varieties are integral. Let y0 and x0 be 
the generic points of Y and X. Assume the characteristic of k(x0) is p. Then either k(y0)
is separable over k(x0) or there exists some positive integer N so that k(y0)p

N
.k(x0) is 

separable over k(x0). If k(y0) is separable over k(x0), we take N = 0, pN = 1; otherwise 
pN is the inseparable degree of k(y0) over k(x0). Let Y(N) be the pull-back of π : Y →X
along the Frobenius FrN : X →X and let Y →Y(N) be the map induced by FrN : Y →Y
and π : Y →X. Then the function field of Y(N) is k(y0)p

N
.k(x0) which is separable over 

k(x0). Thus the projection Y(N) π̄→X induces an étale map of the generic point of Y(N) to 
the generic point of X; therefore there exist open subsets U of Y(N) and V of X so that the 
map π̄|U : U →V is étale. We proceed to show that we may take U = π̄−1(V) =V×

X
Y(N).

Let F = {z εY(N)|π̄ is not étale at z}. This is a proper closed subset of Y(N). Since 
π̄ is induced by base-change from π, it is also finite. Therefore π̄(F ) is a proper closed 
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subset of X. Let V =X − π̄(F) and U = π̄−1(V). Then π̄|U is étale. Moreover, since π̄|U
is also obtained by base-change from π, it is also a finite map. Finally let the inverse 
image of U in Y by the induced map Y →Y(N) be W, that is, W =Y ×

Y(N)
U. The map π

restricted to W factors as the composition of the purely inseparable map W →U and the 
finite étale surjective map U →V. Therefore, if L is a local system on W , the direct image 
π|W∗(L) is a local system on V . The G-equivariance is clear from the above argument; 
therefore π∗(ICG(Y;L)) 	 ICG(X;π|W∗(L)). This completes the proof. �
5.1. Spherical varieties in positive characteristics: local structure and weak-resolution 
of singularities

5.1.1. In positive characteristic, the local structure of spherical varieties is due to 
Knop (see [27]), which we recall presently. Let G denote a connected reductive group, 
X a G-spherical variety and let x εX. After (possibly) replacing X by an open G-stable 
sub-scheme we may assume Gx is the unique closed G-orbit in X and that X is quasi-
projective. Then one can find a G-linearized ample line bundle L, and a global section s
of L which is an eigenvector of a Borel subgroup B of G. Let Xs be the open subset of X
where s is non zero. One needs to choose the line bundle L and the section s as in [27, 
Korollar 2.3] so that the section s vanishes everywhere on Gx −Bx, but not everywhere 
on Gx. Then one can show Xs =XBx ={By|y εX, By ⊇Bx}.

Let P denote the subgroup of G which stabilizes Xs. Then P is a parabolic subgroup 
of G and Gx∩XBx = Bx. The following is then shown in [27]: the unipotent radical Pu of 
P acts properly on Xs, the quotient Xs/Pu exists and there exists a sub-variety Z of Xs

such that the natural maps ρ : Pu × Z →Xs and ρ̄ : Z →Xs/Pu are finite and surjective. 
Moreover, Z is stable under a maximal torus T of P. We may further assume that T is 
contained in B. This provides the following commutative square:

Pu × Z
ρ

π̃

Xs

π

Z
ρ̄

Xs/Pu

(5.1.1)

The map ρ is equivariant for the left-action of Pu. It is also T equivariant when T acts 
on Pu × Z by t.(p, z) = (t.p.t−1, t.z).

When the base field is C, there exists a Z as in (5.1.1) such that the maps ρ and 
ρ̄ are isomorphisms, and so that Z is stable under a Levi subgroup L of P. This may 
fail in positive characteristics, but Xs/Pu still has an action of P/Pu and the latter is 
isomorphic to a Levi subgroup L. Moreover, since X is spherical, Xs contains a dense 
B-orbit and hence Xs/Pu contains a dense orbit of B/Pu so that Xs/Pu is an affine 
spherical L-variety. Moreover the image of Lx is closed in Xs/Pu.
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5.1.2. This closed orbit Lx is a torus (∼= Gc
m, for some c > 0) by the choice of L. This 

follows from the observation that Px = Bx (since Gx ∩ XBx = Bx), and that therefore, 
the stabilizer of x in L contains the derived group of L. Let f1, ..., fc ε k[Lx] be the eigen-
vectors of L (actually of L/Lx) that provide the isomorphism Lx ∼= Gc

m. By standard 
arguments from geometric invariant theory, see for example [MFK] p. 195, there exists 
a large enough q, with q a power of p, so that fq

i , i = 1, ..., c extend to maps φi :
Xs/Pu → Gm which are also eigen-vectors of L/Lx . Let φ = (φ1, ..., φc) : Xs/Pu → Gc

m
be the corresponding induced map. The composition Lx → Xs/Pu → Gc

m is the identity 
map raised to the q-th power. Let S = φ−1(1), 1 = (1, ..., 1) εGc

m. The dimension of S
= dimension of Xs/Pu − c = the codimension of the G-orbit of x.

The observation that the {φi|i} are eigen-vectors of L/Lx shows that S is stable under 
the action of Lx . Then one obtains an induced L-equivariant map r : L × S →Xs/Pu. 
The same observation that the {φi|i} are eigen-vectors of L/Lx shows that the resulting 
induced map

r̄ : L×
Lx
S → Xs/Pu (5.1.3)

is bijective and therefore purely inseparable.

5.1.4. Next assume that X is a toroidal imbedding of a spherical homogeneous space 
G/H. Then one may take Z to be a toric variety for a maximal torus in Lx . We proceed 
to show that then the immersion of any G-orbit O into X is affine. We begin with the 
commutative square:

Pu × (Z ∩ O)
ρ′

π̃

Xs ∩ O

π

Pu × Z
ρ

Xs

(5.1.4)

The fact that the map ρ is equivariant for the left-action of Pu shows that the above 
square is in fact a cartesian square. Since the map ρ is a finite surjective map, it follows 
that the map ρ′ : Pu × (Z ∩ O) →Xs ∩ O is also finite and surjective. Clearly Pu ×
(Z ∩ O) is affine, as Z is now a toric variety and Z ∩ O corresponds to an orbit for the 
corresponding torus on Z. Now [36, Proposition 32.11.1] shows that the scheme Xs ∩ O
is affine, thereby proving the required assertion.

5.1.5. Weak resolution of singularities
Let X denote a G-spherical variety. Using the embedding theory of spherical homoge-

neous spaces (which also works in positive characteristics), one can construct a spherical 
variety X̃ along with a proper G-equivariant bi-rational map π : X̃ → X such that X̃
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is covered by open subsets X̃s as above, where the X̃s/Pu are affine toric varieties with 
quotient singularities. In fact, one can take X̃ to be toroidal.

In characteristic zero, this gives a resolution of singularities. In the general case, 
one obtains a rationally smooth X̃. To see this, consider the finite surjective map ρ :
Pu × Z → X̃s as in (5.1.1). The variety Z is rationally smooth since it is a simplicial toric 
variety (that is, a toric variety whose fan is simplicial). Therefore Pu × Z is rationally 
smooth and the local cohomology groups of X̃s with supports in any fixed geometric 
point are trivial in all degrees except the top degree. Since X̃s is irreducible, these local 
cohomology groups may be identified with the cohomology of the stalks of the dualizing 
complex. This, in turn, may be identified with the dual of the sheaves U →H2d

c (U;Q�), 
where d = dim(X̃s) and H2d

c (U;Q�) denotes the �-adic cohomology of U with compact 
supports. (See [8, Proposition (A.1)].) Therefore these are equal to Q� proving X̃s is 
rationally smooth.

5.1.6. Vanishing of odd dimensional intersection cohomology

Lemma 5.4. Let X denote a not-necessarily normal spherical variety and let L denote a 
G-equivariant local system on the open G-orbit. Let π : X̃ → X denote the normaliza-
tion and let π∗(L) = L̃. Let ICG(X;L) (ICG(X̃; L̃)) denote the intersection cohomology 
complex of X with respect to L (of X̃ with respect to L̃, respectively). Then the intersec-
tion cohomology sheaves Hi(ICG(X;L)) vanish for all odd i, if and only if the sheaves 
Hi(ICG(X̃; L̃)) vanish for all odd i.

Proof. First observe that the map π is an isomorphism on the dense G-orbit. There-
fore one may readily show that Rπ∗(ICG(X̃; L̃)) ∼= ICG(X;L). Now consider the Leray 
spectral sequence:

Es,t
2 = Rsπ∗Ht(ICG(X̃; L̃))) ⇒ Rs+tπ∗(ICG(X̃; L̃)) ∼= Hs+t(Rπ∗(ICG(X̃; L̃)))

∼= Hs+t(ICG(X;L)).

Since π is a finite map, Es,t
2 = 0 for all s > 0 in this spectral sequence; therefore one 

obtains the isomorphism π∗Ht(ICG(X̃; L̃)) ∼= E0,t
2

∼= E0,t
∞ = Ht(ICG(X; L̃)). Now the 

lemma follows readily. �
Proposition 5.5. Let X denote a projective G-spherical variety and let L denote a G-
equivariant local system on the open G-orbit. Then IHi(X;L) = 0 for all odd i. The 
same holds for all T-equivariant local systems on the open G-orbit.

Proof. Exactly the same proof as in characteristic 0 applies here in view of the discussion 
on local systems in positive characteristics as in Proposition 2.4. However, we sketch the 
details, for the sake of completeness. We will first use the following technique to reduce 
to the case of the constant local system. We may first assume that X is normal by 
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Lemma 5.4. Next let Gxo ∼= G/Gxo denote the open G-orbit in X. Let X̃ denote the 
normalization of X in the function field k(G/G0

xo
). Then we obtain the cartesian square

G/G0
xo

πo

X̃

π

G/Gxo X

(5.1.5)

where the maps πo and π are finite. Note that G acts on X̃ and that X̃ is a spheri-
cal G-variety. Let Q

�
denote the constant G-equivariant local system on G/G0

xo
. Now 

Rπo∗(Q�
) = πo∗(Q�

). The stalk of this sheaf at xo is the �-adic regular representation of 
the finite group Gxo/G0

xo
. Therefore, by Proposition 2.4, the G-equivariant local system 

πo∗(Q�
) can be written as a sum ⊕

χ
dim(χ)Lχ, where Lχ is the local system correspond-

ing to the irreducible character χ of the finite group Gxo/G0
xo

and the sum varies over 
all such characters. Therefore,

π∗IC(X̃,Q
�
) = ⊕

χ
dim(χ)IC(X,Lχ).

Taking the hyper-cohomology, it follows that

IHi(X̃) = ⊕
χ

dim(χ)IHi(X,Lχ)

for all i. Thus, it suffices to consider X with the constant local system.

Next, let π : X̃ → X denote a G-equivariant weak-resolution of singularities as in 5.1.5. 
Then X̃ is a projective rationally smooth spherical variety and T acts on X̃ with only 
finitely many fixed points. The fixed point formula for torus actions (that is, Theorem 5.2) 
now gives the isomorphism:

H∗
T(X̃;Q

�
)(0) 	H∗(BT)(0)⊗H∗(X̃T; Ri!(Q

�
))

Since X̃ is rationally smooth, it follows that Ri!(Q
�
) 	 Q

�
[−2n] where n is the dimen-

sion of X̃. Since X̃T is finite, it follows that H∗
T(X̃;Q

�
)(0) is trivial in odd degrees. Now it 

follows as in Theorem 5.2 that Hn(X̃;Q
�
) = 0 for all odd n. The decomposition theorem 

in intersection cohomology shows that IHi(X;Q
�
) is a split summand of Hi(X̃;Q

�
) for 

any i. Since the latter is trivial for all odd i, this completes the proof of the Proposition 
for all G-equivariant local systems. The assertion about the T-equivariant local systems 
follows from Proposition 5.7 below. �
Lemma 5.6. Let G denote a linear algebraic group acting on a scheme X and let H denote 
a closed linear algebraic subgroup of G. Let x denote a chosen point of X. Then:
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(i) π1(EG ×G X, x)̂� classifies G-equivariant �-adic local systems on EG ×G X.
(ii) If π1(G/H, ∗)̂� = π0(G/H, ∗)̂� = 0, where ∗ denotes the base point of G/H corre-

sponding to H, then the map EH×
H

X 	 EG ×G (G ×H X) → EG ×G X induces an 

isomorphism on π1( ) ̂�. Here, ̂� denotes the completion at the prime �.

Proof. The proof of (i) reduces to the corresponding statement for schemes, by making 
using of the comparison between the Borel construction defined simplicially and the 
corresponding Borel construction defined using the geometric classifying spaces as in 
Theorem 7.2. The proof of (ii) reduces to the existence of a long-exact sequence:

· · ·π1(G/H, ∗)̂� → π1(EH×
H

X, x)̂� → π1(EG×GX, x)̂� → π0(G/H, ∗)̂� · · ·

The existence of the above long exact sequence often makes use of etale homotopy theory: 
see [1]. We skip the details as they are generally well-known. �
Proposition 5.7. Let G denote a connected reductive group, T a fixed maximal torus, B
a Borel subgroup containing T and P a parabolic subgroup containing B. Let X denote 
a connected scheme with an action by P. Let X denote a G-scheme. Then the following 
hold:

(i) The restriction functor from the category of G-equivariant �-adic local systems on 
X to the category of B (or T)-equivariant �-adic local systems is also an equivalence 
of categories.

(ii) the restriction functor from the category of P-equivariant �-adic local systems on X
to the category of T-equivariant �-adic local systems is an equivalence of categories.

Proof. Throughout the proof, ∗ will denote a chosen fixed base point for the schemes 
considered. The first assertion follows from Lemma 5.6 and the observation that

π1(G/B, ∗)̂� ∼= π0(G/B, ∗)̂� = 0 and π1(B/T, ∗)̂� ∼= π0(B/T, ∗)̂� = 0.

To see the triviality of the completed π1 of G/B, one may consider a lifting of G and B
to over C, where such a result is well-known.

We will next consider the second assertion. Let L denote a Levi subgroup of 
P. Then L∩B is a Borel subgroup of L. Moreover, P/B ∼=L/(L∩B). Therefore, 
π1(P/B, ∗)̂� ∼= π1(L/(L∩B), ∗)̂� ∼= 0 and π0(P/B)̂� ∼= π0(L/L∩B)̂� ∼= 0. Therefore, the 
second assertion follows. �
Remarks 5.8. In view of the above discussion, it suffices to consider T-equivariant local 
systems in the rest of the paper: this is important for us, since the variety Z appearing 
in (5.1.1) is only stable by T and not by G.
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Proposition 5.9. Let X denote a G-spherical variety and let x εX be a fixed point for T. 
Then Hi(IC(X;L))x = 0 for all odd i and all T-equivariant (or equivalently all G-
equivariant) local systems L on the open G-orbit.

Proof. By Lemma 5.4, we may assume that X is normal. Then x admits an open G-stable 
quasi-projective neighborhood Ux (see [37]). Thus, we may replace X by the closure of 
Ux , and assume that X is projective. Now we conclude by Theorem 5.2 together with 
Proposition 5.5. (Observe that the fundamental group of the open orbit, π1(Gxo) acts 
on the stalks of L through its image in π1(EG ×G Gxo) which is finite. Therefore L is 
semi-simple as a local system, and Theorem 5.2 applies.) �
Theorem 5.10. Let X denote a G-spherical variety and let L denote a G-equivariant local 
system on the open dense orbit. Then Hi(IC(X;L)) = 0 for all odd i.

Proof. The proof proceeds by ascending induction on the dimension of the G-spherical 
variety for any connected reductive group G. Since a spherical variety of dimension 1 
may be assumed to be normal and hence non-singular, we may start the induction with 
spherical varieties of dimension 1. Observe that the conclusion is that the stalks of the 
intersection cohomology sheaves vanish in odd dimensions at all points x on the given 
scheme X, and that the case x is a fixed point of G is handled by Proposition 5.9. 
Therefore, we may assume x is a chosen point on a G-orbit of positive dimension: then 
the strategy of our proof is to reduce to showing the corresponding vanishing when the 
scheme X is replaced by a transverse slice S to the G-orbit at x, as the corresponding 
slice is also a spherical variety of lower dimension for a smaller reductive group. This is 
the same strategy used in the proof of the corresponding statement for complex spherical 
varieties (see [9, Theorem 4]): the main difference now is that working with the transverse 
slice takes more effort in positive characteristics.

We recall the commutative square (see (5.1.4)):

Pu × Z
ρ

π̃

Xs

π

Z
ρ̄

Xs/Pu

(5.1.7)

We may replace the varieties Z and Xs/Pu by their normalizations, if necessary and 
assume all the varieties in the diagram in (5.1.7) are normal. Further, we may assume X
is irreducible, that Gx0 denotes the open G-orbit on X, that x0 εXs and that L is a G-
equivariant local system on Gx0; observe that Xs ∩ Gx0 is a union of the open P-orbits on 
Xs. We will denote Xs ∩ Gx0 by Xs(x0). Now L0 = L|Xs(x0) a P-equivariant local system. 
Recall that the map ρ is T equivariant when T acts on Pu ×Z by t.(p, z) = (t.p.t−1, t.z). 
Moreover all the other maps in (5.1.7) are T-equivariant and the same map ρ is also 
Pu-equivariant when Pu acts on Pu × Z by left-translation on the factor Pu. Therefore, 
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the inverse image of Xs(x0) by the map ρ will be of the form Pu ×Z0 for a T-stable open 
subscheme Z0 of Z. Let ρ0 = ρ|Pu×Z0 and ρ̄0 = ρ̄|Z0 .

Now, the pull-back ρ∗0(L0) is both a Pu-equivariant and T-equivariant local system on 
Pu × Z0. ρ∗0(L0) clearly descends to a T-equivariant local system on Z0. Call this local 
system L1.

Next recall that the maps ρ and ρ̄ are finite surjective maps between normal varieties. 
Therefore, one may invoke Proposition 5.3 to show that ρ0∗(ρ∗0L0) is a T-equivariant 
local system on a T-stable open subscheme of Xs; we will denote this by L′

0. Similarly 
ρ̄0∗(L1) is a T-equivariant local system on a T-stable open subscheme of Xs/Pu and

ρ∗(ICT(Pu×Z; ρ∗0(L0))) 	 ICT(Xs,L′
0) while, (5.1.8)

ρ̄∗(ICT(Z;L1)) 	 ICT(Xs/Pu, ρ̄0∗(L1)). (5.1.9)

Moreover one may also observe that L0 is a split summand of the local sys-
tem L′

0 = ρ0∗(ρ∗0(L0)). Therefore it suffices to show the odd dimensional coho-
mology sheaves of ICT(Xs, L′

0) are trivial. Since the map ρ is finite, by (5.1.8)
one may identify Hi(ICT(Xs, L′

0))x̄ with ⊕
ȳ ε ρ−1(x̄)

Hi(ICT(Pu×Z, ρ∗0(L0)))ȳ. Now ob-

serve that the map π̃ in (5.1.7) is evidently smooth with fibers = Pu; therefore 
(ICT(Pu×Z; ρ∗0(L0)) 	 π̃∗(ICT(Z;L1)) and one reduces to showing Hi(ICT(Z;L1)) = 0
for all odd i. Now the finiteness of the map ρ̄ and (5.1.9) show:

Hi(ICT(Xs/Pu; ρ̄0∗(L1)))x̄ ∼= ⊕
ȳ ε ρ̄−1(x̄)

Hi(ICT(Z,L1))ȳ.

Therefore, it suffices to show Hi(IC(Xs/Pu; ρ̄0∗(L1))) = 0 for all odd i.
Let Gx denote the unique closed G-orbit on X. Let r̄ : L×

Lx
S → Xs/Pu de-

note the purely inseparable map as in (5.1.3) and let (Xs/Pu)0 denote an open 
smooth sub-variety of Xs/Pu one which the local system ρ̄0∗(L1) is defined. Let r̄0 :
r̄−1((Xs/Pu)0) → (Xs/Pu)0 denote the map induced by r̄. Then IC(Xs/Pu; ρ̄0∗(L1))x 	
IC(S; ̄r∗0 (ρ̄0∗(L1)|S))x . This follows from Proposition 5.3 applied to the purely insepara-
ble map r̄ : L×

Lx
S → Xs/Pu. Therefore it suffices to prove that Hi(IC(S; L)) = 0 for any 

To
x = T∩Lo

x-equivariant local system on the open Lx-orbit in S. (Observe that Tx is a 
maximal torus in Lx by the choice of L and T.) Since the dimension of S is the codi-
mension of the G-orbit at x, the inductive hypothesis and the correspondence between 
Lo

x-equivariant and To
x-equivariant local systems as in Proposition 5.7 apply to complete 

the proof. (Recall that the dimension of S = the codimension of the G-orbit at x. The 
case x is a fixed point of G is handled by Proposition 5.9.) �
6. The weight filtration on the equivariant derived category: proof of Theorem 1.8

We next discuss the weight filtration on the equivariant derived category. (See [24, 
section 4] for a discussion of these in the setting of the �-adic derived category on algebraic 
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stacks.) We will henceforth assume that the base field k = Fq, k̄ = F̄q is its algebraic 
closure and that Go is a linear algebraic group defined over Fq acting on the scheme 
Xo also defined over Fq. We will also assume that a Go-stable stratification, So of Xo is 
given. Any object in the derived category Db(Xo, Q̄�) will be denoted with a subscript 
o as in Ko. The corresponding objects defined over F̄q will be denoted without the 
subscript o. One may make this more precise as follows. Let ε : Spec F̄q → Spec Fq

denote the obvious map. Then, given an object Ko over Spec Fq, K = ε∗(Ko) will denote 
its pull-back. Similarly, schemes that are defined over Spec F̄q will be denoted without 
the subscript o, while those defined over Spec Fq will be denoted with the subscript o.

Let EGgm,m
o denote a finite degree approximation to the principal Go-bundle over 

the finite degree approximation BGgm,m
o to the classifying space BGo: see Defini-

tion 7.1. (Comparison with the simplicial construction of EG and the resulting equiv-
ariant derived categories is discussed in the Appendix.) A complex of Q̄�-sheaves 
Ko εDb(EGgm,m

o ×
Go

Xo, Q̄�) will be said to be (exactly) pure of weight of w if it satisfies 

the condition as on [2, p. 126]: that is, the eigen-values of the geometric Frobenius Fr

at each stalk of each cohomology sheaf Hi(K) over an Fq-rational point of EGgm,m
o ×

Go

Xo

are of absolute value q(i+w)/2.
A complex Ko is mixed of weight ≤ w (≥ w) if each cohomology sheaf Hi(Ko) has a 

finite ascending filtration by Q̄�-sheaves so that the associated graded pieces are all pure 
of weight ≤ w (≥ w, respectively).

Lisse Q̄�-adic sheaves (as in [16, I.-Pureté]) will be more often called �-adic local 
systems.

Proposition 6.1. (i) Let LSo
denote a Q̄�-adic Go-equivariant local system on the Go-orbit 

Oo. Assume LSo
corresponds to an irreducible Q̄�-representation of π1(EGo×

Go

Oo, xo) ̂�
for some point xo εOo. Then the corresponding equivariant intersection cohomology com-
plex ICGo(LSo

) is pure.
(ii) Every Go-equivariant perverse sheaf that is mixed and simple is pure.

Proof. We show in Theorem 7.2 (see also [26, Theorem 1.6]) that

π1(EGo×
Go

Oo, xo)̂� ∼= π1(EGgm,m
o ×

Go
Oo, xo)̂�

for m large enough. Therefore, by taking an m large enough, the first statement follows 
from the corresponding statement in the non-equivariant case applied to the scheme 
EGgm,m

o ×
Go

Oo.

Next observe that all mixed and simple Go-equivariant perverse sheaves are the equiv-
ariant intersection cohomology complexes on the orbit-closures associated to irreducible 
G-equivariant �-adic local systems on the corresponding orbits. Therefore, (ii) follows. �
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One may observe from our definition above, and the corresponding property for Q̄�-
sheaves on schemes of finite type over k, that the category of Q̄�-sheaves of exact weight 
w is closed under extensions as well as sub- and quotient objects.

Next let Ko and Lo denote two mixed bounded complexes of Q̄�-sheaves with con-
structible Go-equivariant cohomology sheaves on Xo. One may now readily verify the 
following (local assertions):

(1) If Ko has weights ≤ w′ and Lo has weights ≥ w, then RHom(Ko, Lo) has weights 
≥ w − w′.

(2) If instead Ko has weights ≥ w′ and Lo has weights ≤ w, then RHom(Ko, Lo) has 
weights ≤ w − w′.

(3) If Ko has weights ≤ w′ and Lo has weights ≤ w, then Ko⊗Lo has weights ≤ w+w′.
(4) Let fo : Xo →Yo denote a Go-equivariant map and let Ko (Lo) denote a mixed 

bounded complex of Q̄�-sheaves on EGo×
Go

Xo with weights ≥ w (≤ w, respectively). 

Then Rfo∗Ko (Rfo!Lo, when it is defined) is also mixed and has weights ≥ w (≤ w, 
respectively). Here Rfo! is defined by finding a Go-equivariant compactification of 
fo. Therefore, if in addition fo is also proper, and Ko is pure of weight w, then so is 
Rfo∗Ko.

(5) Let Frqn denote the geometric Frobenius raising the coordinates to the qn-th power. 
One verifies that this induces a Go-equivariant map Xo −→Xo. Let Fo denote a Q̄�-
sheaf on Xo; if F denotes the induced sheaf on X, then one may readily verify that 
there exists an isomorphism (Frqn)∗F → F . (See [2, (5.1.1)].) Then the functor 
Fo −→ (F, (Frq)∗) from the category of Go-equivariant perverse sheaves on Xo to 
the category of G-equivariant perverse sheaves F on X provided with an isomor-
phism (Frq)∗F


→F is fully-faithful. Moreover the image of the above functor is a 
subcategory that is closed under extensions and sub-quotients.

Let σo : EGo
gm,m×

Go
Xo −→ SpecFq denote the obvious structure map for some fixed m

large enough. If Mo εD
b
Go

(EGo
gm,m×

Go
Xo, SGo

o , Q̄�), one obtains the spectral sequence:

Ep,q
2 = Hp

et((SpecFq);Hq(Mo)) = Rpσ0∗(Hq(Mo)) ⇒ Hp+qRΓ(EGgm,m
o ×

Go
Xo,Mo)

(6.0.1)

= Rp+qΓ(SpecFq, Rσ0∗(Mo)).
(6.0.2)

Since Fq is a finite field with q-elements, Gal(F̄q/Fq) ∼= Ẑ; therefore Ep,q
2 = 0 if p �= 0 or 

1. Hence one obtains a short-exact sequence (see [12, Chapter XV, Proposition 5.5]):

0 → E1,n−1
∞ → HnRΓ(EGgm,m

o ×Xo,Mo) → E0,n
∞ → 0. (6.0.3)
Go
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Next, let Ko and Lo denote two bounded complexes of Q̄�-sheaves with constructible 
Go-equivariant cohomology sheaves on EGgm,m

o ×
Go

Xo, and let Mo = RHom(Ko, Lo). 

Let Rhom(K, L) denote the complex RHom(Ko, Lo) pulled back to Spec F̄q, and 
let Hom(Ko, Lo) = H0Rhom(Ko, Lo) as in [2, section 5.1]. The short-exact sequence 
in (6.0.3) now becomes:

0 → (Extn−1(K,L))Fr → Extn(Ko, Lo) → Extn(K,L)Fr → 0, (6.0.4)

where (Extn−1(K, L))Fr (Extn(K, L)Fr) denotes the co-invariants (the invariants, re-
spectively) under the action of the Galois group Gal(F̄q/Fq), or equivalently under the 
Frobenius Frq.

One may now observe from Proposition 3.6(i’) that if K and L are G-equivariant 
perverse sheaves then Exti(K, L) = 0 if i < 0. Therefore, taking n = 0, the short-exact 
sequence in (6.0.4) now provides the isomorphism

Hom(Ko,Lo) ∼= Hom(K ,L)Fr , (6.0.5)

provided Ko and Lo are Go-equivariant perverse sheaves. Taking n = 1, the short-exact 
sequence (6.0.4) also provides the short-exact sequence

0 → (Hom(K ,L))Fr → Ext1 (Ko,Lo) → Ext1 (K ,L)Fr → 0 . (6.0.6)

Finally we make the following important observation: assume in addition that Ko and 
Lo are pure with the weight of Ko less than or equal to the weight of Lo. Then

Ext1(K,L)Fr = 0. (6.0.7)

To see this, first observe that Ext1(K, L) = H1(ε∗RHom(Ko, Lo)). This has strictly 
positive weights. Therefore, the conclusion in (6.0.7) follows.

Next we recall the definition of a mixed category from [3, Definition 4.1.1]. Let M
denote an abelian category which is Artinian. Let Irr(M) denote the isomorphism classes 
of irreducible objects in M. Such a category M is a mixed category if there is given a 
map

w : Irr(M) → Z

called weight, so that for any two objects M, N ε Irr(M),

Ext1M(M,N) = 0 if w(M) ≤ w(N).

Let (M, w) denote a mixed category. An object M ∈ M is pure of weight i, if all its 
irreducible components have weight i. Any such object is semi-simple. It is known (see 
[3, Lemma 4.1.2]) that any object L in M has a unique finite increasing filtration W•, 
so that grWi (L) = WiL/Wi−1L is pure of weight i, for all i εZ.
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Proposition 6.2. Let Go denote a linear algebraic group acting on a scheme Xo (of finite 
type over Fq). Then, the category of mixed Go-equivariant perverse sheaves Po (with 
respect to the given Go-stable stratification, SGo

), so that each grdW
i (Po) is semi-simple, 

is a mixed category.

Proof. Let Po, Qo denote two simple Go-equivariant perverse sheaves with the weight of 
Po < the weight of Qo. Then it is easy to see that both Hom(P, Q)Fr and Ext1(P, Q)Fr are 
trivial so that Ext1(Po, Qo) = 0. Next suppose Po and Qo have the same weights. Since we 
are considering extensions in the above category, an extension 0 → Qo → Ro →Po → 0
will be such that Ro is also pure of the same weight as Po and Qo, so that the above 
extension splits. Therefore, for two simple Go-equivariant perverse sheaves Po and Qo
with the weight of Po ≤ the weight of Qo, Ext1(Po, Qo) = 0 proving the proposition. �
Remark 6.3. The above mixed categories come equipped with the usual Tate-twist (see 
[3, Definition 4.1.4]) as well as the notion of gradings and a degrading functor: see [3, 
4.3]. The Tate-twit (d) has the property that w(M(d)) = w(M) + d, for each simple 
object M .

Henceforth, we will impose the following strong condition:

Hi(ICGo(L
o
[dSo

])) = 0 if i + dSo
is odd and ICGo(LSo

[dSo
]) (6.0.8)

is pure of weight dSo
= dim(So)

Here ICGo(LSo
[dSo

]) denotes the Go-equivariant intersection cohomology complex on 
the closure of the stratum So of dimension dSo

, and obtained by starting with the Go-
equivariant local system LSo

on S.
The above conditions have been verified for large classes of complex spherical varieties 

in [9] and [10] and extended in Theorem 1.6 to positive characteristics.

Remark 6.4. In view of our assumptions that the base field is perfect, the stabilizer 
groups are all defined over the same base field, and so are their connected components: 
see [35, 12.1.1 and 12.1.2].

Definition 6.5. We will let P̃Go

mixed denote the full subcategory of the above category of Go-
equivariant perverse sheaves consisting of those Po so that for each j εZ, grdjW (Po), is a 
finite sum of equivariant intersection cohomology complexes ICGo(LSo

[dSo
])((dSo

−j)/2)
if (dSo

− j) is even and trivial otherwise.

Remark 6.6. Now the functor sending a mixed Go-equivariant perverse sheaf to the 
underlying Go-equivariant perverse sheaf is a degrading functor v : P̃Go

mixed → PGo in 
the sense of [3, 4.3]. All of these readily follow from the well-known results for schemes, 
since we are using the finite degree approximations of EG to define equivariant derived 
categories.
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Proposition 6.7. We will assume as before that Go is a linear algebraic group acting on the 
given scheme Xo with finitely many orbits and provided with the Go-stable stratification 
by orbits.

Let ICGo(Lα[dα]), ICGo(Lβ [dβ ]) denote the Go-equivariant intersection cohomology 
complexes on the strata Sα,o and Sβ,o associated to the irreducible G-equivariant local 
systems Lα and Lβ, respectively. Denoting by ICG(Lα[dα]) and ICG(Lβ [dβ ]), the corre-
sponding equivariant -intersection cohomology complexes on EG ×G X, we obtain:

Ext1(ICG(Lα[dα]), ICG(Lβ [dβ ]) = 0 if dα − dβ is even and

Ext1(ICG(Lα[dα]), ICG(Lβ [dβ ]) is pure of weight dβ − dα + 1 if dα − dβ is odd.

(Here the last statement means that, if dα − dβ is odd, the geometric Frobenius 
acts on Ext1(ICG(Lα[dα]), ICG(Lβ [dβ ])) with the eigen-values having absolute value 
q(dβ−dα+1)/2.)

Proof. Suppose the stratum Sβ,o ⊆ S̄α,o − Sα,o. In this case, observe that

D(ICGo(Lα[dα])) 	 ICGo(L∨
α[dα])(dα) and similarly D(ICGo(Lβ [dβ ]))

	 ICGo(L∨
β [dβ ])(dβ).

Therefore,

Ext1(ICGo(Lα[dα]), ICGo(Lβ [dβ ]) = Ext1(D(ICGo(Lβ [dβ ])),D(ICGo(Lα[dα])))

= Ext1(ICGo(L∨
β [dβ ])(dβ), ICGo(L∨

α[dα])(dα)

= Ext1(ICGo(L∨
β [dβ ]), ICGo(L∨

α[dα]))(dα − dβ).

Therefore, in case Sβ,o ⊆ S̄α,o − Sα,o, one may interchange Sα,o and Sβ,o and assume 
that Sβ,o is not contained in S̄α,o − Sα,o.

Next one may readily prove as in the non-equivariant case that the natural map 
jpSα,Go !(L[dα]) → ICGo(Lα[dα]) is an epimorphism in the category PGo

(Xo, So,Go). Let 
Kα,o = kernel(jpSα,Go !(L[dα]) → ICGo(Lα[dα])). Then the short exact sequence

Kα,o → jpSα,Go !(L[dα]) → ICGo(Lα[dα]))

in the abelian category PGo
(Xo, So,Go) is a distinguished triangle in DGo(Xo, So,Go). Let 

iα,o : S̄α,o−Sα,o → S̄α,o denote the obvious closed immersion. Then Kα,o has supports in 
S̄α,o − Sα,o, so that one may write Kα,o = iα∗(K ′

α,o). Denoting by iα the corresponding 
immersion S̄α − Sα → S̄α, and by Kα the corresponding complex on S̄α, we will prove:

Hom(Kα, ICG(Lβ [dβ ]) = Hom(iα∗(K ′
α), ICG(Lβ [dβ ]) = Hom(K ′

α,Ri !α(ICG(Lβ [dβ ]))) = 0.
(6.0.9)
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To see this, first observe that Kα is a perverse sheaf and so that if iγ : Sγ → S̄α − Sα

is the inclusion of a stratum, then K ′
γ = i∗γ(Kα) εD(Sγ)≤m(Sγ). On the other hand, 

Ri!γ(ICG(Lβ [dβ ])) εD(Sγ)≥m(Sγ)+1, if Sγ ⊆ S̄β . The other case to consider is when Sγ∩S̄β

is empty, in which case Ri!γ(ICG(Lβ [dβ ])) = 0. Therefore, if S̄α,o−Sα,o = Sγ,o is a single 
stratum, we have proven (6.0.9). Since the stratum Sβ,o is not contained in S̄α,o − Sα,o, 
the only possibilities are that S̄β,o ∩ (S̄α,o − Sα,o) is either empty or is a union of strata 
contained in both.

In general, one uses induction on the number of strata contained in S̄α,o − Sα,o. Let 
jγ : Sγ → S̄α − Sα denote the open immersion of a stratum and let iδ : Sδ → S̄α − Sα

denote the closed immersion of its complement. Then one obtains the following exact 
sequence (as part of a long exact sequence):

Hom(K ′
α, iδ∗Ri !δRi !α(ICG(Lβ [dβ ]))) → Hom(K ′

α,Ri !α(ICG(Lβ [dβ ])))

→ Hom(K ′
α,Rjγ∗j∗γRi !α(ICG(Lβ [dβ ]))).

Then one obtains the identifications:

Hom(K ′
α, iδ∗Ri !δRi !α(ICG(Lβ [dβ ]))) ∼= Hom(i∗δK ′

α,Ri !δRi !α(ICG(Lβ [dβ ]))) and

Hom(K ′
α,Rjγ∗j∗γRi !α(ICG(Lβ [dβ ]))) ∼= Hom(j∗γK ′

α, j∗γRi !α(ICG(Lβ [dβ ]))).

Now j∗γ(K ′
α) = j∗γ (i∗α(Kα)) εD(Sγ)≤m(Sγ) while j∗γRi!α(ICGo(Lβ [dβ ])) εD(Sγ)≥m(Sγ)+1 so 

that the last Hom will be trivial. (One may observe here that R(iα ◦ jγ)! = j∗γRi!α.) One 
may prove by ascending induction on the number of strata in S̄α,o − Sα,o that

Hom(i∗δK ′
α,Ri !δRi !α(ICGo(Lβ [dβ ]))) = 0.

Therefore, the middle term, Hom(K ′
α, Ri !α(ICGo(Lβ [dβ ]))) = 0 as well.

Therefore, one observes that the induced map

Ext1(ICG(Lα[dα]), ICG(Lβ [dβ ])) → Ext1(jpSα!(Lα[dα]), ICG(Lβ [dβ ]))

is an injection. Now Proposition 3.6(iii’) shows that there is a natural injective map from 
the last group to Ext1(jSα!(Lα[dα], ICG(Lβ [dβ ]))): observe that ICG(Lβ [dβ ])) is already 
a perverse sheaf. Now one may make use of the adjunction between jSα! and Rj!

Sα
to 

obtain the identification:

Ext1(jSα!(Lα[dα]), ICG(Lβ [dβ ])) ∼= Ext1(Lα[dα], Rj!
Sα

(ICG(Lβ [dβ ]))) (6.0.10)

∼= H1(BG0
x , i∗xHom(Lα,Rj!Sα

(ICG(Lβ [dβ − dα])))Gx/G0
x )

where ix : x → Sα is the immersion of a closed point. Observe that Rj!
Sα

(ICG(Lβ [dβ −
dα])) ∼= Dj∗Sα

D(ICG(Lβ [dβ − dα])) and therefore Hv(Rj!
Sα

(ICG(Lβ [dβ − dα]))) is 
pure of weight dβ − dα + v unless it is trivial. Since taking the Gx/G0

x-invariants 
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is an exact functor, and Lα[dα] is assumed to be pure of weight dα, it follows that 
Hv(i∗xHom(Lα, Rj!

Sα
(ICG(Lβ [dβ − dα])))Gx/G0

x ) is also pure of weight dβ − dα + v unless 
it is trivial.

Next we consider the spectral sequence

Eu,v
2 = Hu(BG0

x ,Hv(i∗xHom(Lα,Rj!Sα
(ICG(Lβ [dβ − dα])))Gx/G0

x )) (6.0.11)

⇒ Hu+v(BG0
x , i∗xHom(Lα,Rj!Sα

(ICG(Lβ [dβ − dα])))Gx/G0
x ).

As G0
x is connected, BG0

x is simply connected, and therefore,

Eu,v
2

∼=Hu(BG0
x ,Q�) ⊗Hv(i∗xHom(Lα,Rj!Sα

(ICG(Lβ [dβ − dα])))Gx/G0
x ).

From this one may derive the following consequences:

(i) Since the differentials in the above spectral sequence dr : Eu,v
r → Eu+r,v−r+1

2 , 
while Hi(BG0

x , Q�) = 0 for all odd i, and the assumption (6.0.8) holds, the spectral 
degenerates at E2.

(ii) As shown in [11, Theorem 1.15], Hi(BG0
x , Q�) is pure of weight i, for i even.

Therefore, it follows that the Eu,v
2 -terms for u +v = 1 are all pure of weight dβ−dα+1 if 

dβ−dα is odd. Therefore, the same conclusion holds for Ext1(jSα!(Lα[dα]), ICG(Lβ [dβ ])). 
The assertion on the vanishing of the Ext1 if dβ − dα is even, now follows from the 
hypothesis (6.0.8). �
Lemma 6.8. (See [3, Lemma 4.2.1].) Let C be any Artinian category. Denote by {L} a col-
lection of representatives of isomorphism classes of irreducible objects in C, and let FL =
End(L). Let PεC denote an object equipped with a filtration P = P0 ⊇P1 ⊇ · · · ⊇PN = 0
for N ≥ 0, with semi-simple successive quotients. Let Irr(C) denote the set of irreducible 
objects in C. Then the following properties are equivalent:

(i) P is a projective object and the filtration is the radical filtration. (This means that 
for each i, Pi/Pi+1 is the largest semi-simple quotient of Pi in C: see [3, 2.4].)

(ii) For any i ≥ 1 and any semi-simple object MεC the map Hom(Pi/Pi+1, M) →
Ext1(P/Pi, M) coming from the short exact sequence Pi/Pi+1 →P/Pi+1 →P/Pi is 
bijective.

(iii) For any i ≥ 1 and L an irreducible object in C, the group Ei(L) = Ext1(P/Pi, L)
is a finitely generated FL -module, Ei(L) = 0 for all but finitely many L, and there 
exists an isomorphism

Pi/Pi+1 → ⊕LεIrr(C)Ei(L)∗ ⊗FL L, where Ei(L)∗ :=HomFL(Ei(L),FL),
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such that under the chain of isomorphisms Ext1(P/Pi, Pi/Pi+1) → Ext1(P/Pi,

⊕LEi(L)∗ ⊗FL L) = ⊕LEi(L)∗ ⊗FL Ei(L) = ⊕LEndFL(Ei(L)), the class of the ex-
tension Pi/Pi+1 →P/Pi+1 →P/Pi goes to ΣLidEi(L).

Proof of Theorem 1.8. The proof makes use of Lemma 6.8, Theorem 3.12 and Proposi-
tion 6.7. We start with the short-exact sequence (6.0.6):

0 → (Hom(K ,L))Fr → Ext1 (Ko,Lo) → Ext1 (K ,L)Fr → 0 . (6.0.12)

Let Po εPGo denote an object so that the associated object P εPG is an indecompos-
able projective. Let Po = P0

o ⊇P1
o ⊇P2

o ⊇ · · · ⊇ denote a descending filtration on Po so 
that the associated graded terms are semi-simple. The goal is to find a lift P̃o of Po so 
that Pi

o is the underlying perverse sheaf associated to P̃i
o which belongs to P̃Go

mixed. We 

do this by inductively lifting Po/Pi
o to P̃o/Pi

o ε P̃Go

mixed so that
(a) the weights of P̃o/Pi

o are ≥ w − i + 1 for some w εZ and so that
(b) ˜Po/Pi+1

o is an extension of P̃o/Pi
o by a pure perverse sheaf ˜Pi

o/Pi+1
o .

We may start the induction, since Po/P1
o is irreducible (that is, simple) and hence 

admits a lifting to P̃o/P1
o εPGo

mixed: see Proposition 6.1 (ii). Let w denote the weight of 
P̃o/P1

o and assume we have found a lifting P̃o/Pi
o so that its weights are ≥ w − i + 1.

Recall that we omit subscript o to denote an object defined on EG ×G X. Next we 
consider the isomorphism

Pi/Pi+1 → ⊕αExt1(P/Pi, ICG(Lα[dα]))∗ ⊗Q̄�
ICG(Lα[dα]) (6.0.13)

from Lemma 6.8(iii). It follows from Lemma 6.8(ii) that the map

Hom(Pi−1/Pi, ICG(Lα[dα])) → Ext1(P/Pi−1, ICG(Lα[dα]))

coming from the exact sequence Pi−1/Pi →P/Pi →P/Pi−1 is an isomorphism. Therefore, 
one has a long-exact sequence:

Hom(Pi−1/Pi, ICG(Lα[dα])
∼=→Ext1(P/Pi−1, ICG(Lα[dα])) → Ext1(P/Pi, ICG(Lα[dα]))

→ Ext1(Pi−1/Pi, ICG(Lα[dα])).
(6.0.14)

Since the first map is an isomorphism, the second map must be the zero map and 
therefore, the last map must be an injection.

By our inductive hypotheses, ˜Pi−1
o /Pi

o is pure and therefore semi-simple as an object 
of P̃Go

mixed and of weight w−i +1. By Proposition 6.7, Ext1(Pi−1/Pi, ICG(Lα[dα])) is zero 
if dα−w+ i is odd and is pure of weight dα−w+ i if this is even. In view of the injection 
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in (6.0.14), it follows that the same conclusion holds for Ext1(P/Pi, ICG(Lα[dα])). There-
fore, ⊕αExt1(P/Pi, ICG(Lα[dα]))∗ ⊗Q�

ICG(Lα[dα]) defines a pure object in P̃Go

mixed of 
weight w−i. Using the identification in (6.0.13), this defines a pure structure ˜Pi

o/Pi+1
o on 

Pi
o/Pi+1

o of weight w − i. Finally, one concludes using Lemma (6.8)(iii) that the class of 
the extension Pi/Pi+1 →P/Pi+1 →P/Pi is invariant under the action of the Frobenius on 

Ext1(P/Pi, Pi/Pi+1) defined by the mixed structures on P̃i/Pi+1 and P̃/Pi and therefore 

comes from an extension ˜Pi
o/Pi+1

o → ˜Po/Pi+1
o → P̃o/Pi

o. (See, for example, the proof of 
[3, Lemma 4.4.8].) Moreover, by our assumption, the weight of P̃o/Pi

o ≥ w− i + 1, while 
˜Pi
o/Pi+1

o is pure of weight w− i. Therefore, ˜Po/Pi+1
o ε P̃Go

mixed, so that Po has been lifted 
to P̃o ∈ P̃Go

mixed and this completes the inductive step and therefore the proof of (i) in 
Theorem 1.8.

We will next prove the second statement in Theorem 1.8, that is, we prove P̃o ∈ P̃Go

mixed

is a projective object. Recall that P̃Go

mixed denotes the subcategory of mixed G-equivariant 
perverse sheaves so that the objects are mixed objects and so that the associated graded 
terms are semi-simple. Therefore Ext1P̃Go

mixed
(P̃o, ICGo(Lα[dα])) consists of extensions 

which are also mixed perverse sheaves whose associated graded terms are also semi-
simple. Therefore,

Ext1P̃Go
mixed

(P̃o, ICGo(Lα[dα])) ⊆ Ext1(P̃o, ICGo(Lα[dα]))

where the last Ext is taken in the category of all equivariant perverse sheaves.
Observe that it suffices to prove the first group is trivial for all intersection coho-

mology complexes ICGo(Lα[dα]). In view of the above injection it suffices to prove that 
the last Ext group above is trivial. Clearly Ext1 computed in the abelian category of 
equivariant perverse sheaves on EG×

G
X identifies with the Ext1-computed in the G-

equivariant derived category on EG×
G

X: see [2, Remarque 3.1.7(ii)]. Since P is assumed 

to a projective object in PG, it follows that Ext1(P, ICG(Lα[dα])) = 0 and therefore, 
Ext1(P, ICG(Lα[dα]))Fr = 0. Now the short-exact sequence (6.0.12) shows that one has:

Ext1
P̃Go

mixed
(P̃o, ICGo(Lα[dα])) ⊆ Ext1(Po, ICGo(Lα[dα])) ∼=Hom(P, ICG(Lα[dα]))Fr

But one observes that Hom(P, ICG(Lα[dα]))Fr ∼=Hom(P/P1, ICG(Lα[dα]))Fr since
ICG(Lα[dα]) is a simple perverse sheaf and any map from P → ICG(Lα[dα]) factors 
through its largest semi-simple quotient P/P1. But then the above Hom is nonzero if 
and only if P̃o/P1

o = Po/P1
o
∼= ICGo(Lα[dα]), and in this case, we have an extension

0 → ICGo(Lα[dα]) → Q̃o → P̃o → 0.

The condition that this extension is taken in P̃Go

mixed means that grdW(Q̃o) ∼=
ICGo(Lα[dα]) ⊕ P̃o/P1

o. Let w denote the weight of ICGo(Lα[dα]). Then Q̃o → grdW (Q̃o)
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is a surjection, since w is the highest weight appearing in the mixed perverse sheaf 
Q. The fact that grdW (Q̃o) ∼= ICGo(Lα[dα]) ⊕ P̃o/P1

o implies that the compos-
ite map ICGo(Lα[dα]) → Q̃o → grdW (Q̃o) is a split monomorphism, so that the 
map ICGo(Lα[dα]) → Q̃o is also a split monomorphism. This shows that the exten-
sion 0 → ICGo(Lα[dα]) → Q̃o → P̃o → 0 is a split extension, and hence trivial 
in Ext1

P̃Go
mixed

(P̃o, ICGo(Lα[dα])). It follows that Ext1
P̃Go

mixed
(P̃o, ICGo(Lα[dα])) is trivial, 

thereby proving that P̃o is a projective object in P̃Go

mixed. �
Remark 6.9. It is important to point out that the above proof holds without requiring 
that the strata are acyclic and also in the equivariant context. Observe that the corre-
sponding non-equivariant version is in fact [3, Lemma 4.4.8] (see also [3, Lemma 4.4.7]), 
which is proven only for the case the strata are indeed affine spaces. Clearly such an as-
sumption is not possible in our situation, since one of the key examples of a G-equivariant 
stratification is where the strata are the G-orbits, and such orbits are seldom acyclic, 
except in very special cases such as that of Schubert varieties.

7. Appendix: comparison of equivariant derived categories

We summarize the following comparison results proved in detail in [26, section 5]. The 
equivariant derived categories associated to the action of a group G on a space are usually 
defined as certain full subcategories of the derived category on the Borel construction 
associated to the group action. Different models for the Borel construction, therefore 
provide one with different models for the equivariant derived categories. The geometric 
model which has been introduced in [5], and in the scheme-theoretic framework in [39]
and [30], complements the simplicial model which was discussed in [15], [18] and [24], 
each with its own advantages and dis-advantages.

However, the geometric model is perhaps more suited for handling properties like the 
weight filtration as in section 4, and also more commonly used in the literature dealing 
with equivariant derived categories, whereas the simplicial model is more functorial and 
suited for comparison between derived categories defined with respect to different group 
actions.

7.1. Equivariant derived categories: version I

Presently we proceed to discuss briefly a model for the equivariant derived category 
that is valid in all characteristics, making use of a geometric model for the classify-
ing space BG for a linear algebraic group due to Totaro: see [39]. (There is a similar 
construction also due to [30].)

Definition 7.1. We will often use EGgm,m to denote the m-th term of an admissible 
gadget {Um|m}: the superscript gm stands for geometric. This is discussed below in 7.4.
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Making use of EGgm,m we may now define a characteristic free algebraic model for 
the equivariant derived category.

7.1.1. Convention
Throughout the rest of the paper, we will adopt the following conventions. If X is a 

scheme defined over k, we will consider �-adic sheaves (that is either Q�-adic or Q̄�-adic 
sheaves as discussed in Definition 2.1 on Xet, which denotes the étale site of X.) If X is a 
scheme defined over the complex numbers, we may consider sheaves of Q-vector spaces 
or C-vector spaces on the transcendental site of X(C) or �-adic sheaves on Xet. We will 
denote by D(X) (D+(X), Db(X)) the unbounded derived category (the bounded below 
derived category, the bounded derived category, respectively) of complexes of sheaves of 
Q-vector spaces or C-vector spaces on X(C) or �-adic sheaves on Xet depending on the 
context.

Observe that, if k is algebraically closed,

Hi
et(EGgm,m,Q�) = 0 for all 0 < i ≤ 2m − 2 and H0

et(EGgm,m,Q�) = Q�.

This follows from the fact that EGgm,m = Um, which is an open G-stable sub-
scheme of a G-representation of codimension at least m > 1. (It may be de-
duced from the hypothesis in the definition of the admissible gadgets in (7.4) that 
codimWm (Wm\Um) = m(codimW(Z)).) The corresponding results also hold with Z or 
Q-coefficients over an algebraically closed field of characteristic 0. (Here we apply 
Lemma 7.3 with c = m.) Therefore, for each fixed finite interval I = [a, b] of the in-
tegers, a ≤ b, and each integer m ≥ 0, we now define

DI(EGgm,m×
G

X) ={K εD(EGgm,m×
G

X))|Hi(K) = 0, i /∈ I}.

For each I, with 2m − 2 ≥ |I| = b − a, we then let

DI,gm
G,m (X) = the full subcategory of DI(EGgm,m×

G
X) consisting of those K

such that there exists an L εD(X) so that π∗
m(K) 
←p∗

2,m(L).
(7.1.2)

Here πm : EGgm,m×X → EGgm,m×
G

X is the quotient map and p2,m : EGgm,m×X →X is 
the projection. In case we need to clarify the choice of the geometric classifying spaces, we 
will denote DI,gm

G,m(X) by DI
G(EGgm,m×

G
X). One observes that if I ⊆J, then one obtains a 

fully faithful imbedding DI,gm
G,m(X) → DJ,gm

G,m (X), so that varying I, one obtains a filtration 

of Db,gm
G,m (X), which is defined similarly, except that the vanishing of the cohomology 

sheaves Hi(K) is for all i outside of some finite interval I depending on K. One may 
then take the 2 − limit over m as m → ∞, to define an equivariant derived category 
that is independent on the choice of the finite degree approximation.
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7.2. Equivariant derived categories: version II

This is already discussed in section 2 and this model corresponds to the derived 
category of the corresponding quotient stack.

Then we have the following comparison theorem.

Theorem 7.2. (See [26, Theorem 1.6].) For each fixed m ≥ 0, we obtain the diagram of 
simplicial schemes (where p1 is induced by the projection EGgm,m × X →X and p2 is 
induced by the projection EG × (EGgm,m × X) → EGgm,m × X):

EG ×G (EGgm,m × X)

p1 p2

EG×
G

X EGgm,m×
G

X

(7.2.1)

(i) For each interval I = [a, b] of the integers, with 2m − 2 ≥ b − a, p∗1 :
DI

G(X) → DI
G(EGgm,m × X) and p∗2 : DI,gm

G,m (X) → DI
G(EGgm,m × X) are equivalences of 

categories. Moreover, in positive characteristics, both the functors p∗1 and p∗2 send com-
plexes that are mixed and pure to complexes that are mixed and pure. There exists an 
equivalence of derived categories:

Db,gm
G (X) 	Db

G(X)

which is natural in X and G. The above equivalences hold in all characteristics with the 
derived categories of complexes of �-adic sheaves on the étale site and hold in character-
istic 0 with the derived categories of complexes of sheaves of Q-vector spaces or C-vector 
spaces.

(ii) Moreover, both the maps pi, i = 1, 2, induce isomorphisms on the fundamental 
groups completed away from the characteristic.

7.3. Admissible gadgets

Next we consider the following background material needed for the definition of the 
geometric classifying spaces. We start with the following lemma.

Lemma 7.3. Let V denote a representation of the linear algebraic group G, all defined 
over a perfect field k of finite �-cohomological dimension for some prime � �= char(k). Let 
U ⊆V denote an open G-stable subscheme so that the complement V−U has codimension 
c > 1 in V.

(i) Then denoting by k̄ the algebraic closure of k,

Hn
et(U × Spec k̄,Z/�ν) = 0 for all 0 < n < 2c − 1 and H0

et(U × Spec k̄,Z/�ν) = Z/�ν .

Spec k Spec k
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(ii) For any scheme X,

Rnf∗(Z/�ν) = 0 for all 0 < n < 2c− 1, and R0f∗(Z/�ν) = Z/�ν

where f : U×X →X denotes the projection.
(iii) In case the field k = C, the corresponding results also hold for Z and Q in the 

place of Z/�ν .

Proof. (i) It suffices to consider the case k is algebraically closed. Then (i) follows from 
the long-exact sequence

· · · → Hn
et,V−U(V,Z/�ν) →Hn

et(V,Z/�ν) →Hn
et(U,Z/�ν) →Hn+1

et,V−U(V,Z/�ν) · · · →

and the fact that Hi
et,V−U(V, Z/�ν) = 0 for all i < 2c while Hi

et(V, Z/�ν) = 0 for all i > 0, 
H0

et(V, Z/�ν) = Z/�ν . These complete the proof of (i).
The assertion Hi

et,V−U(V, Z/�ν) = 0 for all i < 2c is a cohomological semi-purity 
statement. (See [26, Proof of Lemma 6.1].)

(ii) follows readily from (i). We skip the proof of (iii) which follows along the same 
lines as the proofs of (i) and (ii). �

Since different choices are possible for such geometric classifying spaces, we proceed 
to consider this in the more general framework of admissible gadgets as defined in [30, 
section 4.2]. The following definition is a variation of the above definition in [30].

7.4. Admissible gadgets associated to a given G-scheme

We shall say that a pair (W, U) of smooth schemes over k is a good pair for G if W
is a k-rational representation of G and U �W is a G-invariant non-empty open subset 
on which G acts freely and so that U/G is a scheme. It is known (cf. [39, Remark 1.4]) 
that a good pair for G always exists.

Definition 7.4. A sequence of pairs {(Wm, Um)|m ≥ 1} of smooth schemes over k is called 
an admissible gadget for G, if there exists a good pair (W, U) for G such that Wm =W×m

and Um �Wm is a G-invariant open subset such that the following hold for each m ≥ 1.

(1) (Um×W) ∪ (W×Um) ⊆ Um+1 as G-invariant open subschemes.
(2) {codimUm+1 (Um+1 \ (Um×W)) |m} is a strictly increasing sequence,

that is, codimUm+2 (Um+2 \ (Um+1×W)) >codimUm+1 (Um+1 \ (Um×W)).
(3) {codimWm(Wm \ Um)|m} is a strictly increasing sequence, that is, codimWm+1(Wm+1

\ Um+1) >codimWm(Wm \ Um).
(4) Um has a free G-action, the quotient Um/G is a smooth quasi-projective scheme over 

k and Um →Um/G is a principal G-bundle.
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Lemma 7.5. Let U denote a smooth quasi-projective scheme over a field K with a free 
action by the linear algebraic group G so that the quotient U/G exists as a smooth quasi-
projective scheme over K. Then if X is any locally linear scheme over K, the quotient 
U×

G
X ∼= (U ×

Spec K
X)/G (for the diagonal action of G) exists as a scheme over K.

Proof. This follows, for example, from [29, Proposition 7.1]. �
An example of an admissible gadget for G can be constructed as follows, starting with 

a good pair (W, U) for G. The choice of such a good pair will vary depending on G, but 
may be made as follows. Choose a faithful k-rational representation R of G of dimension 
n, that is, G admits a closed immersion into GL(R). Then G acts freely on an open 
subset U of W =R⊕n = End(R) so that U/G is a scheme. (For example, U = GL(R).) 
Let Z =W\U.

Given a good pair (W, U), we now let

Wm =W×m,U1 =U and Um+1 = (Um×W) ∪ (W×Um) for m ≥ 1. (7.4.1)

Setting Z1 =Z and Zm+1 =Um+1 \ (Um×W) for m ≥ 1, one checks that Wm\Um =Zm

and Zm+1 =Zm×U. In particular, codimWm (Wm\Um) = m(codimW(Z)) and
codimUm+1 (Zm+1) = (m + 1)d − m(dim(Z)) − d = m(codimW(Z)), where d = dim(W). 
Moreover, Um → Um/G is a principal G-bundle and the quotient Vm =Um/G exists as 
a smooth quasi-projective scheme.
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