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1. Introduction

Throughout the paper Fq will denote the finite field with q elements, where q is a power 
of a prime number, p. Moreover, we will restrict to schemes of finite type defined over such 
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a finite field. Let X denote the Grassmann variety of l-dimensional subspaces of a fixed 
m-dimensional vector space V . One way to obtain the projective variety structure on X
is via the Plücker embedding p : X ↪→ P (ml )−1. The corresponding Grassmann code is 
obtained by evaluating sections of the line bundle on X obtained as the restriction of the 
canonical line bundle on P (ml )−1 at the Fq-rational points on X. Originally introduced by 
Ryan in [16], and investigated by Ryan and Ryan in [17], the Grassmann codes are natural 
generalizations of the well-known Reed-Müller codes (see, for example, [13]). A significant 
advantage in efficiency is gained by considering these geometric codes. Indeed, already 
in the case of projective spaces, the performance of the projective Reed-Müller codes, 
compared to the classical generalized Reed-Müller codes, are much better [11, Section 
3]. The parameters for a general Grassmann code over Fq was computed later in [14], 
with much of these calculations later extended to some other important subvarieties of 
Grassmannians [5,6] as well as to some other partial flag varieties [15] (see [7] also).

In the present context, by a projective embedding of an algebraic variety or a scheme 
X, we mean a closed immersion of X into a projective space Pm in the sense of [8, §3, 
Chapter II]. One may consider many other projective embeddings of the Grassmannian 
other than the Plücker embedding. For example, let ι : Gr(l, V ) → P ((

∧l
V )⊗r) denote 

the projective embedding of Gr(l, V ) that is obtained by composing the diagonal Plücker 
embedding with the r-fold Segre embedding of 

∏r P (
∧l

V ). The resulting code is ob-
tained by evaluating the global sections of the restriction of the canonical line bundle on 
the corresponding projective space to the Grassmannian, at the Fq-rational points of the 
Grassmannian. The goal of the present paper is to explicitly determine the parameters of 
all such codes obtained from the Grassmannian. This is part of a larger effort to compute 
parameters of codes produced from the large class of algebraic varieties called projective 
spherical varieties, which contain as special cases the class of all projective embeddings 
of Grassmannians, flag varieties as well as toric varieties.

It may be also worth pointing out that [11, Theorem 2] had considered such higher 
dimensional embeddings of the projective space and computed the parameters of the 
resulting Reed-Muller codes. More precisely, when l = 1, the Grassmann variety Gr(l, V )
is equal to the projective space of lines in V , that is, P (V ) ∼= Pm−1. In this case we get 
the projective Reed-Müller codes; for every r ∈ N, the relevant embedding is provided 
by the r-th symmetric power of V . The parameters of such codes were determined by 
Lachaud in [11, Theorem 2]. Thus the results of the present paper may be also viewed 
as an extension of [11] to all Grassmannians. This also explains why we chose the title 
of our paper as the Higher Grassmann Codes; we consider higher dimensional projective 
spaces to embed the Grassmann variety, such as via the composition of the diagonal 
Plücker embedding with the Segre embedding.

Let x denote a variable, and let a be a positive integer. Then the a-th rising factorial 
of x, denoted by x(a), is the product x(a) = x(x + 1) · · · (x + a − 1).

Let q denote a power of a prime number p. It is convenient to denote by [m]q the 
polynomial 1 +q+· · ·+qm−1 = qm−1

q−1 , which is often called the q-analog of m since its eval-
uation at q = 1 is m. The q-factorial of m is defined by [m]q! := [m]q[m − 1]q · · · [2]q[1]q. 
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As convention, we set [0]q := 1. For l ∈ {0, . . . , m}, the q-binomial coefficient 
[
m
l

]
q

is 
defined by [

m

l

]
q

:= [m]q!
[m− l]q![l]q!

.

It is well-known that, if q is a power of a prime number, then 
[
m
l

]
q

is the Fq-rational points 
of the Grassmann variety of l-dimensional subspaces of an m-dimensional vector space. 
Also, there is an elementary combinatorial interpretation of 

[
m
l

]
q

in terms of partitions 
of integers.

Moreover, one may recall the following standard terminology used in coding theory. 
A k-dimensional vector subspace W in an n-dimensional vector space V defined over Fq

is called an [n, k, d]q-code. Here, d is defined as the minimum of the distances between 
distinct elements of W ; the distance is defined by the number of coordinates where two 
vectors differ from each other. The integer n is often called the length of the code, and k
is called the dimension of the code.

Let {e1, . . . , en} denote the standard basis for Fn
q , and let x1, . . . , xn denote the 

corresponding coordinate functionals on Fn
q . An [n, k, d]q-code W ⊂ Fn

q is said to be 
nondegenerate if W is not contained in any of the following coordinate hypersurfaces:

Hi := {v ∈ Fn
q : xi(v) = 0} ∼= Fm−1

q (i ∈ {1, . . . , n}).

In the language of [21], there is a 1-1 correspondence between the set of equivalence 
classes of nondegenerate [n, l, d]q-codes and the set of equivalence classes of projective 
[n, k, d]q-systems, which are defined as follows.

Let X be an algebraic variety with n Fq-rational points. Let ϕ : X → Pm−1 be an 
embedding, and let x1, . . . , xn denote the images of the Fq-rational points of X in Pm−1. 
Let E denote the Fq-vector space Fm

q , and let y1, . . . , yn denote (arbitrary) liftings of 
x1, . . . , xn to E \ {0} in the given order. Then we get an evaluation map on the linear 
forms of E,

ev : E∗ −→ Fn
q

f �−→ (f(y1), . . . , f(yn)). (1.1)

The image of ev, denoted by C, is the projective [n, k, d]q-system associated with ϕ. Note 
that the length of C is n, its dimension is k = m −dim ker(ev), and its minimum distance 
is given by

d = min{|X(Fq)| − |X(Fq) ∩ ker(f)| : f ∈ E∗ and X(Fq) �⊂ ker(f)}.

Example 1.2. As before, let V be an m dimensional vector space over Fq. The points in 

the image of the Plücker embedding p : Gr(l, V ) → P (ml )−1 can be viewed as projective 
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[n, k, d]q-systems, where n =
[
m
l

]
q

and k =
(
m
l

)
. These projective systems (or rather the 

codes corresponding to these projective systems) are called the (classical) Grassmann 
codes.

Adopting the above notation, we now present a special case of our main theorem, 
which is recorded as Theorem 4.1 in the sequel.

Theorem 1.3. Let ι : Gr(l, V ) → P ((
∧l

V )⊗r) denote the projective embedding of Gr(l, V )
that is obtained by composing the diagonal Plücker embedding with the r-fold Segre em-
bedding of 

∏r P (
∧l

V ). If C is the projective [n, k, d]q-system corresponding to ι, then 
for every sufficiently large prime characteristic p > 0, the parameters of C satisfy the 
following conditions:

1. n =
[
m
l

]
q

= [m]q [m−1]q···[m−l+1]q
[1]q [2]q···[l]q ,

2. k = m(r) (m−1)(r) ··· (m−l+1)(r)
1(r) 2(r) ··· l(r) ,

3. ql(m−l) − rql(m−l)−1 ≤ d ≤ ql(m−l) − (r − 1)ql(m−l)−1.

We know that the upper bound for the minimum distance is achieved for r = 1 by [14]
as well as for l = 1 by [11]. We conjecture that the upper bound is always achieved. Note 
that as a polynomial in q, the leading term of n in Theorem 1.3 is ql(m−l). Also, the 
coefficient of ql(m−l)−1 in n is 1. (We will justify these statements in Section 2 by using 
a simple, well-known combinatorial argument.) Then the leading term of the difference 
n − d is given by rql(m−l)−1. It follows that, if we fix r, then for every sufficiently big 
q, the difference n − d is greater than k. In other words, our codes satisfy the Singleton 
bound for sufficiently large values of q. Let us point out that there is an effective way, 
due to Jantzen, to check how small the characteristic p can be in order for our theorem 
to hold; it is explained in Remark 2.10.

Next, we want to point out some facts about the parameters of our codes. First of all, 
for r > 1, it is easy to see by an inductive argument that the dimensions of our codes 
are all greater than 

(
m
l

)
, which is the dimension of Grassmann codes obtained from the 

Plücker embedding as shown in [14]. On the other hand, it is already apparent from the 
r = 2 case of Theorem 1.3 that our codes may have smaller minimum distance compared 
to the ordinary Grassmann codes (r = 1). Nevertheless, as q → ∞, the dominating term 
of the minimum distance of our code is also given by ql(m−l). Therefore, on finite fields 
with big characteristic exponents, our codes become more advantageous compared to the 
ordinary Grassmann codes.

The paper is structured as follows. In Section 2, we setup our notation, and we review 
some basic representation theory and algebraic geometry facts regarding Grassmann 
and Schubert varieties. In Section 3, we analyze the Białynicki-Birula decomposition 
of Gr(l, V ) in relation with that of P (

∧l
V ). In Section 4, we prove our main result 

by giving a lower bound for the dimension of C for small prime characteristics. By 
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applying Weyl’s dimension formula to calculate this lower bound, we conclude our paper 
by proving Theorem 1.3 in Section 4.1.

Acknowledgments. At the time of writing this paper, the first author was partially sup-
ported by a grant from Louisiana Board of Regents (no. 555596). The authors thank the 
referees for their careful reading of the paper and for their constructive comments.

2. Preliminaries

In this section we will introduce the most basic objects and notation for our paper. 
We recall that we will restrict to schemes of finite type defined over a fixed finite field 
Fq.

For a positive integer m ∈ Z, we will use the notation [m] to denote the finite set 
{1, . . . , m}. For l ∈ [m], the set of all l-element subsets of [m] is denoted by 

([m]
l

)
. We 

view 
([m]

l

)
as a chain, where the total order is given by the lexicographic ordering. More 

precisely, we view the elements of 
([m]

l

)
as increasing sequences of l-tuples of integers 

from [m], and we order them lexicographically. The lexicographic order on 
([m]

l

)
will be 

denoted by �. In particular, whenever 
([m]

l

)
appears as an indexing set of some vector, we 

always assume that its elements are ordered according to �. We will refer to an element 
of 

([m]
l

)
as an l-subset.

An integer partition of m is a non-increasing sequence of positive numbers λ =
(λ1, . . . , λs) such that 

∑s
i=1 λi = m. The Young diagram of λ is a top-left justified ar-

rangement of the boxes with λi boxes in the i-th row. For example, the Young diagram 
of the integer partition λ = (7, 3, 3, 2, 1) of 16 is shown in Fig. 2.1.

The coefficient of the monomial qa in 
[
m
l

]
q

is given by the number of integer partitions 
of a whose Young diagram fit into an l× (m − l) grid [20, Proposition 1.7.3]. This well-
known combinatorial fact is a direct consequence of the decomposition of the Grassmann 
variety Gr(l, Fm

q ) into Schubert cells, which we will review in the sequel. By abuse of 
notation, let us use λ ⊆ l × (m − l) to indicate that the Young diagram of the integer 
partition λ fits inside the l×(m − l) grid. Then we have the following polynomial identity 
which summarizes our discussion:[

m

l

]
q

= 1 +
∑

λ⊆l×(m−l)

q# of boxes in λ.

Fig. 2.1. The Young diagram of (7, 3, 3, 2, 1).
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Fig. 2.2. The Young diagrams of the integer partitions whose Young diagram fits in a 2 × 2 grid.

Thus, the coefficients of the monomials ql(m−l) and ql(m−l)−1 in 
[
m
l

]
q

are equal to 1. 
In particular, the leading term of 

[
m
l

]
q

is ql(m−l). We used this fact to justify (in the 
introduction) the fact that our codes in Theorem 4.1 satisfy the Singleton bound.

Example 2.1. Let m = 4, l = 2. Then, there are 5 integer partitions whose Young diagram 
fits into 2 ×2 grid. We depicted the Young diagrams of these integer partitions in Fig. 2.2.

It follows from the list of Young diagrams in Fig. 2.2 that[
4
2

]
q

= 1 + q + 2q2 + q3 + q4.

We finish this subsection by introducing another commonly used notation. The mul-
tiplicative group of nonzero entries in F×

q will be denoted by Gm.

2.1. The Grassmann varieties

Let K be a field. Let SLm denote the group of m ×m matrices with determinant 1 with 
entries from K. The diagonal maximal torus in SLm, denoted by Tm, is a split torus. The 
Borel subgroup of upper triangular matrices in SLm, denoted by Bm, contains Tm. We 
denote by X(Tm) the group of rational characters of Tm, and the dual of X(Tm), that 
is HomZ(X(Tm), Z), is denoted by Y (Tm). The nondegenerate bilinear pairing between 
X(Tm) and Y (Tm) will be denoted by 〈, 〉. The Weyl group of SLm is isomorphic to Sm, 
the symmetric group of permutations of the set [m]. It acts on Tm by conjugation, hence, 
it acts on the groups X(Tm) and Y (Tm). However, the pairing 〈, 〉 is Sm-invariant. The 
root system of the pair (SLm, Tm) will be denoted by R. Explicitly, it is given by the set of 
vectors R = {εi−εj : 1 ≤ i, j ≤ m}, where {ε1, . . . , εm} is the standard basis for the m-
dimensional Euclidean Q-vector space. The system of positive roots determined by Bm, 
denoted by R+, is given by R+ = {εi−εj : 1 ≤ i < j ≤ m}. The subset of simple roots in 
R+ will be denoted by S; it is given by S = {αi : αi = εi−εi+1, 1 ≤ i ≤ m −1}. The duals 
of the basis vectors αi (1 ≤ i ≤ m − 1) are denoted by α∨

i , and the fundamental weights

�i (1 ≤ i ≤ m −1) are defined by equations 〈�i, α∨
j 〉 =

{
1 if i = j

0 otherwise
for αj ∈ S. Note 

that the i-th fundamental weight �i is the highest weight vector of the i-th fundamental 
representation ∧ik of SLm. The submonoid generated by �i (1 ≤ i ≤ m − 1) in X(Tm), 
denoted by X(Tm)+, is the monoid of dominant weights. Then we have,

X(Tm)+ = {λ ∈ X(Tm) : 〈λ, α∨
i 〉 ≥ 0 for every αi ∈ S}.
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(
∧l V ) \ {0}

p : Gr(l, V ) P
(
m

l

)
−1

Fig. 2.3. The Plücker coordinates of Gr(l, V ) come from the coordinates on
∧l V .

It is well-known that for every finite dimensional irreducible representation W of SLm, 
there is a unique dominant weight λ ∈ X(Tm)+ called the highest weight of W , see [10, 
Chapter II.2]. In other words, simple SLm-modules are parametrized by the elements of 
X(Tm)+.

Since it is the point of departure for our paper, we will briefly review the definition 
of the Plücker embedding. Let V be an m-dimensional vector space. We fix a basis 
{e1, . . . , em} of V . Note that an l-dimensional subspace M of V can be identified with 
an l ×m matrix A = A(M), where the rank of A is l. Indeed the rows of such a matrix 
span an l-dimensional vector subspace; two such matrices A1, A2 span the same vector 
subspace if and only if there exists g ∈ GLl such that A1 = gA2.

Let Matl,m denote the space of l ×m matrices (over a field) and let Mat0
l,m denote 

the Zariski open subset consisting of rank l matrices. Then GLl acts by the left matrix 
multiplication on Mat0

l,m, and the quotient is precisely the Grassmann variety Gr(l, V ). 
In this interpretation, the elements of Gr(l, V ) are the equivalence classes of matrices 
[A] where A ∈ Mat0

l,m. The Plücker embedding of Gr(l, V ) is defined by p : Gr(l, V ) →
P (ml )−1, [A] �→ (detAI)I∈([m]

l ), where AI is the l × l-minor of A determined by the 
columns indexed by I.

Finally, let us point out the fact that Gr(l, V ) is a homogeneous space for SLm as 
well as for GLm:

Gr(l, V ) ∼= SLm/StabSLm(〈e1, . . . , el〉) ∼= GLm/StabGLm(〈e1, . . . , el〉).

Here, 〈e1, . . . , el〉 is the l-dimensional subspace spanned by e1, . . . , el in V .

2.2. Projective embeddings of Gr(l, V )

Let V denote the m-dimensional K-vector space Km with the standard basis 
{e1, . . . , em}. The l-th fundamental representation of SLm is given by the l-th exte-
rior power of V . It is well-known that the Picard group of Gr(l, V ) is generated by the 
ample line bundle L(�l).

The dual of the space of global sections, that is H0(Gr(l, V ), L(�l))∗, is isomorphic 
to ∧lV . Therefore, the Plücker coordinates on Gr(l, V ) are given by the restrictions of 
the coordinate functions on the affine space A(ml ) ∼= ∧lV .

Next, we will consider the space of global sections of the line bundle L(r�l), where r
is a positive integer. Since L(r�l) is very ample, it gives a closed embedding,

τr : Gr(l, V ) ↪→ P (H0(Gr(l, V ),L(r�l))∗). (2.2)



8 M.B. Can et al. / Finite Fields and Their Applications 76 (2021) 101905
The analogs of Plücker coordinates for (2.2) are called the standard monomials. In this 
section, we will compute the parameters of the codes that we will construct from (2.2). 
Since the underlying idea of computations is the same for every r > 1, we will present 
the simplest case, that is r = 2.

To identify the projective space in (2.2), we first embed Gr(l, V ) into P s ×P s, where 
s =

(
m
l

)
− 1; this embedding is given by the composition of the diagonal embedding of 

Gr(l, V ) into Gr(l, V ) ×Gr(l, V ) followed by the doubled Plücker embedding. Then we 
use the Segre embedding to embed the doubled projective space into a bigger projective 
space. We denote the morphism defined by these compositions by ι. In summary, we 
have the following diagram:

ι : Gr(l, V ) diag−−→ Gr(l, V ) ×Gr(l, V ) p×p−−−→ P s × P s Segre−−−→ P s2+2s. (2.3)

We will describe explicitly the image of (2.3).
Let M be a point from Gr(l, V ), and let (m1, m2, . . . , ms+1) denote its image under 

the Plücker embedding. Then we have

ι : M
diag�−→ (M,M) (p,p)�−→ ((m1, . . . ,ms+1), (m1, . . . ,ms+1))
Segre�−→ (mimj)i=1,...,s+1

j=1,...,s+1
. (2.4)

Equivalently, (mimj)i=1,...,s+1
j=1,...,s+1

is the point that is represented by the tensor product 

M ⊗M in P (
∧l

V ⊗
∧l

V ).
We will show that ι is very useful for understanding the embedding (2.2). We proceed 

with some general remarks.
Let G be a connected reductive group, and let B be a Borel subgroup. Let P be a 

standard parabolic subgroup, that is, P is a parabolic subgroup and B ⊂ P . We assume 
that all of these (sub)groups are defined over K := Fq.

There is a canonical projection map π : G/B → G/P , and for every locally free sheaf 
S on G/P , there is an isomorphism

H0(G/P,S) −̃→ H0(G/B, π∗S). (2.5)

In our special case, if P is the maximal parabolic subgroup in G = SLm corresponding 
to the fundamental weight �l, and B is the Borel subgroup Bm, then we have the 
isomorphism

H0(G/P,L(r�l)) −̃→ H0(G/B, π∗L(r�l)) (2.6)

for every r ∈ Z+. Therefore, as far as our embedding (2.2) concerned, we can work with 
the SLm module H0(G/B, π∗L(r�l)). To be precise, we will work with the dual of this 
module.
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Definition 2.7. Let T be a maximal torus such that T ⊂ B. For every λ ∈ X(T ), we 
will use the abbreviation H0(r�l) := H0(G/P, L(r�l)). If λ is a dominant weight from 
X(T )+, then the G-module, V (λ) := H0(−w0λ)∗, where w0 is the longest element of the 
Weyl group W , is called the Weyl module associated with λ.

We have several remarks in order.

Remark 2.8. The formal characters of V (λ) and H0(λ) are always equal, see [10, Chapter 
II.2.13].

Remark 2.9. In characteristic 0, Weyl modules give irreducible representations of G, and 
furthermore, V (λ) is isomorphic to H0(λ). However, in characteristic p �= 0, they (the 
Weyl modules) are in general non-simple. Nevertheless, the isomorphism V (λ) ∼= H0(λ)
holds if V (λ) is simple. This follows from [10, Chapter II.6, Proposition 6.16]. In this case, 
we can compute the dimension of V (λ) via Weyl character formula, see [10, Chapter II.5, 
Corollary 5.11]. Since this is a formal computation, it can be performed over Z (hence 
over C) as well.

Remark 2.10. For every field K and positive integer m ∈ N, the exterior powers 
∧l

Km

(1 ≤ l ≤ m) are simple SLm-modules, see [10, Chapter II.2.15]. More generally, (over a 
finite field K = Fq) there is an explicit characterization of the weights λ such that V (λ)
is simple, see [9, pg. 113]. It goes as follows: Let p denote the characteristic of K, and 
let ρ denote the weight �1 + · · · + �m−1. Then V (λ) is simple over K if and only if for 
each positive root α = εi − εj ∈ R+ with 1 ≤ i < j ≤ m the following property holds: 
Let 〈λ +ρ, α∨〉 = aps + bps+1, where a, b, s are nonnegative integers such that 0 < a < p. 
Then there should exist β0, β1, . . . , βb ∈ R+ with 〈λ + ρ, β∨

i 〉 = ps+1 for 1 ≤ i ≤ b and 
〈λ +ρ, β∨

0 〉 = aps with α =
∑b

i=0 βi and with α−β0 ∈ R. Equivalently, there exist integers 
i = i0 < i1 < · · · < ib < ib+1 = j such that {βi : 0 ≤ i ≤ b} = {εiv − εiv+1 : 0 ≤ v ≤ b}
and β0 ∈ {εi−εi1 , εib −εj}. Notice that for every sufficiently big prime number, we have 
b = s = 0, hence, 〈λ + ρ, α∨〉 = a < p. In this case, all of the subsequent conditions 
automatically hold. Therefore, V (λ) is a simple SLm(K)-module. This observation is 
exploited in the paper [2] as well.

2.3. Schubert varieties in Gr(l, V )

Let G be an algebraic group, and let B be a Borel subgroup of G. Let G/P be a 
projective homogeneous space, where P is a parabolic subgroup such that B ⊆ P . To 
a large extent, the geometry and the topology of G/P is determined by its Schubert 
subvarieties. By definition, a Schubert variety in G/P is the Zariski closure of a B-orbit 
in G/P . In the case of Grassmann varieties, they can be defined quite explicitly.

For a subset J ⊂ [m], we will denote by EJ the subspace 〈ej : j ∈ J〉. In particular, 
we will denote by E[j] (j ∈ [m]) the subspace 〈e1, . . . , ej〉. Let I = {i1, . . . , il} be an 
element of 

([m]). The Schubert cell associated with I in Gr(l, V ) is the affine space
l
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X{1,2} = pt.

X{1,3}

X{2,3} X{1,4}

X{2,4} X{1,5}

X{3,4} X{2,5}

X{3,5}

X{4,5} = Gr(2, V )

Fig. 2.4. The Grassmann variety Gr(2, V ) and its Schubert varieties, where dimk V = 5.

CI := {W ∈ Gr(l, V ) : dim(W ∩ E[j]) = |I ∩ [j]| for every j ∈ [m]}. (2.11)

It is not difficult to verify that if I �= I ′, then CI ∩ CI′ = ∅. It is also not difficult to 
check that the union of all Schubert cells is equal to Gr(l, V ). The decomposition

Gr(l, V ) = �
I∈([m]

l )
CI (2.12)

is called the Bruhat-Chevalley decomposition of Gr(l, V ).
The Zariski closure of CI in Gr(l, V ), called the Schubert variety associated with I, is 

given by

XI := CI = {W ∈ Gr(l, V ) : dim(W ∩ E[j]) ≥ |I ∩ [j]| for every j ∈ [m]}.

The intersection ring (the Chow ring) of Gr(l, V ) is completely determined by the classes 
of Schubert varieties. For I = {i1, . . . , il}, J = {j1, . . . , jl} from 

([m]
l

)
, the inclusion 

relationship between XI and XJ is given by the entry-wise comparisons:

XI ⊆ XJ ⇐⇒ ir ≤ jr for every r ∈ [l]. (2.13)

We have an example of the Hasse diagram of this partial order in Fig. 2.4.

Remark 2.14. It is not difficult to check from (2.13) that the Schubert cell
C{m−l+1,m−l+2,...,m} is open and dense in Gr(l, V ), and that, there is a unique one-
codimensional Schubert subvariety X ′ in Gr(l, V ). The indexing set of X ′ is given by 
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{m − l, m − l+ 2, m − l+ 3, . . . , m}. This divisor of Gr(l, V ) is precisely the intersection 
of the image of the Plücker embedding (Fig. 2.3) with the hypersurface of P (

∧l
V ) that 

is given by the vanishing of the last coordinate variable with respect to �. This remark 
will be justified in Section 4.

2.4. Tsfasman-Serre theorem

In this section, to simplify our notation and to be consistent with our references, we 
will denote by πm the q-analog of m +1, where q is a power of a prime number. In other 
words, we set

πm := [m + 1]q =
[
m + 1

1

]
q

.

If X is a variety defined over Fq, then by X(Fq) we will denote the set of Fq-rational 
points of X.

As we mentioned before in our discussion of the Grassmann varieties, πm is the car-
dinality of the projective space Pm(Fq). The following theorem about the number of 
zeros of a homogeneous polynomial on a projective space was originally conjectured by 
Tsfasman; it was first proved by Serre [18] and then by Sørensen [19]. More recently, 
Datta and Ghorpade [3] found a conceptual proof of it.

Theorem 2.15. Let P be a nonzero homogeneous polynomial of degree r from
Fq[x0, . . . , xm]. If r ≤ q + 1, then

|{x ∈ Pm(Fq) : P (x) = 0}| ≤ rqm−1 + πm−2. (2.16)

Remark 2.17. Let a1, . . . , ar be distinct elements of Fq. If r ≤ q, then it is easy to check 
that the polynomial

Gr(x0, . . . , xm) := (x1 − a1x0) · · · (x1 − arx0)

has exactly rqm−1 + πm−2 zeros in Pm(Fq). Likewise, it is easy to check that the poly-
nomial

gr(x1, . . . , xm) = (x1 − a1) · · · (x1 − ar),

has exactly rqm−1 zeros in Am(Fq). It is well-known that this is the maximum of the 
number of Fq-rational points on a hypersurface of degree r in Am(Fq), [12, Theorem 
6.13].
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3. Some helpful lemmas

In this section, K denotes a finite field with q elements; all of our algebraic groups 
are defined over K.

Let s denote 
(
m
l

)
− 1, and let {F1, . . . , Fs+1} denote the standard basis for 

∧l
V ; if 

r ∈ {1, . . . , s + 1} corresponds to the subset I = {i1, . . . , il} ∈
([m]

l

)
, then Fr is given 

by Fr = ei1 ∧ · · · ∧ eil . Let x1, . . . , xs+1 denote the corresponding Plücker coordinate 
functionals on 

∧l
V . Thus, xr = F ∗

r for r ∈ {1, . . . , r+1}. Then the coordinate functionals 
on P (

∧l
V ⊗

∧l
V ) are given by xi ⊗ xj , i, j ∈ {1, . . . , s + 1}.

As we mentioned before, we know from Nogin’s work that the minimum distance on 
Gr(l, V ) is given by

d = |{M /∈ Hv : M ∈ Gr(l, V )}| = ql(m−l), (3.1)

where v is any completely decomposable vector from 
∧m−l

V ∼= (
∧l

V )∗, and Hv is the 
hypersurface defined by Hv = {w ∈

∧l
V : w ∧ v = 0} (see [14, Theorem 2, Proposition 

3]). Here, a vector v ∈
∧m−l

V is said to be completely decomposable if there exist m − l

vectors u1, . . . , um−l ∈ V such that v = u1 ∧ · · · ∧ um−l. It is easy to check that the 
Plücker coordinate functions are completely decomposable. In the sequel, we will not 
distinguish between 

∧m−l
V and (

∧l
V )∗.

We set v to be the last Plücker coordinate function with respect to �, that is, v :=
xs+1. Let us write [Hv] for the projectivization of Hv, that is, the image of Hv under 
the canonical projection (

∧l
V ) \ {0} → P (

∧l
V ). Then [Hv] ∩ Gr(l, V ) is the unique 

Schubert divisor of Gr(l, V ). Thus we have the following alternative description of d:

d = |{M ∈ Gr(l, V ) : xs+1(M) �= 0}|

=
[
m

l

]
q

− |{M ∈ Gr(l, V ) : xs+1(M) = 0}|. (3.2)

It follows from our discussion in Subsection 2.3 that d is the number of K-rational points 
on the open the subset {M ∈ Gr(l, V ) : xs+1(M) �= 0}. From a similar vein, we will 
compute the minimum distance of the embedding Gr(l, V ) ↪→ P (H0(r�l)∗). The main 
“novel ingredient” of our computation is the fact that the geometry of a higher twisting 
of the Plücker embedding is essentially determined by the cellular decomposition of the 
relevant projective space.

The action of GLm on V induces an action on 
∧l

V . Let λ : Gm → Tm denote the 
one-parameter subgroup defined by

λ(t) = diag(tv0 , . . . , tvn−1), (3.3)

where v0, . . . , vm−1 are integers such that vi = 2vi+1 for i ∈ {0, . . . , m − 2}. By λ, we get 
an action of Gm on P (

∧l
V ):
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t · [A] := [λ(t) ·A] (t ∈ Gm, A ∈
l∧
V ). (3.4)

Warning: The notation [A] indicates that we are taking the image of the vector A under 
the projection 

∧l
V \{0} → P (

∧l
V ). This should not be confused with [m], which stands 

for the set {1, . . . , m}. We trust that this clash of notation will not cause any confusion 
for the reader.

Lemma 3.5. The fixed point set of the action of Gm is given by P (
∧l

V )Gm =
{[F1], . . . , [Fs+1]}.

Proof. Let [(a0, . . . , as)] be a point in P (
∧l

V ), and let t ∈ Gm. Then we have

t · [(a0, . . . , as)] = [(t
∑l−1

i=0 via0, . . . , t
∑m−1

i=m−l vias)] (t ∈ Gm). (3.6)

The way that we chose the positive integers v0, . . . , vm−1 ensures that the exponents of 
t in on the right hand side of (3.6) are strictly decreasing from left to right. It follows 
that

[(a0, . . . , as)] �= [(t
∑l−1

i=0 via0, . . . , t
∑m−1

i=m−l vias)],

unless all but one of the coordinates is zero. Therefore, the fixed point set of the Gm-
action is given by {[(1, 0, . . . , 0)], [(0, 1, 0, . . . , 0)], . . . , [(0, . . . , 0, 1)]}, which is precisely 
our standard basis {F1, . . . , Fs+1}. �

For i ∈ {1, . . . , s + 1}, the subvariety

F+
i := {(a1, . . . , ai, 1, 0, . . . , 0) : a1, . . . , ai ∈ K} ⊂ P (

l∧
V ) (3.7)

is called the plus-cell corresponding to Fi; it is isomorphic to the affine space Ki. Since 
P (

∧l
V ) = �m

i=0 F
+
i , the plus-cell decomposition is a cellular decomposition of P (

∧l
V )

in the sense of algebraic topology.
Clearly, the Grassmann variety Gr(l, V ) in P (

∧l
V ) is stable under the action (3.4), 

and furthermore, every fixed point of λ is contained in Gr(l, V ). It follows that the 
intersections of the plus-cells (3.7) with Gr(l, V ) give the plus-cell decomposition of 
Gr(l, V ).

Next, we will prove that this plus-cell decomposition of the Grassmann variety agrees 
with its Bruhat-Chevalley decomposition, (2.12).

Lemma 3.8. Let r ∈ {0, . . . , s} correspond to the subset I ∈
([m]

l

)
with respect to �. Then 

F+
r ∩Gr(l, V ) is equal to the Schubert cell CI .

Proof. The Plücker embedding is a GLm-equivariant morphism. Let Bm denote the 
Borel subgroup of upper triangular matrices in GLm. On one hand we have that CI is 
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the Bm-orbit of Fr [1, Proposition 1.1.3]. On the other hand, we see that the Bm-orbit 
of [(0, . . . , 0, 1, 0, . . . , 0)], where 1 appears in the r-th position, is given by F+

r . Indeed, 
the action of Bm on P (

∧l
V ) is obtained from the first fundamental representation of 

GLm on V ∼= Km, whereby, Bm ·er = 〈e1, . . . , er〉. Since the nonzero Plücker coordinate 
functions on F+

r are the ones that correspond to the l-subsets J ∈
([m]

l

)
such that J � I, 

we see the Bm-orbit of Fr in P (
∧l

V ) is contained in F+
r . In particular, we see that 

F+
r ∩Gr(l, V ) = Bm · Fr. This finishes the proof of our lemma. �
We now justify Remark 2.14.

Corollary 3.9. The unique Schubert divisor X{m−l,m−l+2,...,m} is equal the intersection 
of Gr(l, V ) with the hypersurface {xs+1 = 0} of P (

∧l
V ).

Proof. As we already pointed out in Remark 2.14, the uniqueness of the one-
codimensional Schubert subvariety is easy to check from the Bruhat-Chevalley order 
(2.13). The Plücker coordinate function xs+1 corresponds to the subset {m −l+1, . . . , m}
which is maximal with respect to �. In other words, by Lemma 3.8, {xs+1 �= 0} ∩Gr(l, V )
is the open Schubert cell in Gr(l, V ). Therefore, its complement, also called the bound-
ary, is Bm-stable. In particular, the boundary of the open cell is a union of Schubert 
subvarieties. Since there is a unique codimension one Schubert subvariety (hence, all 
other proper Schubert subvarieties are contained in this one), the boundary is equal 
to X{m−l,m−l+2,...,m} as claimed. But the complement is equal to the intersection 
{xs+1 = 0} ∩Gr(l, V ). This finishes the proof of our claim. �
4. The main theorem

Recall that the dimension of an algebraic geometric [n, k, d]q-code C on a projective 
variety X ↪→ P r is given by the “dimension” of the image of the evaluation map ev : E∗ →
Fn
q , that is, l = m −dim ker(ev). Here, we view E∗ as the vector space homogeneous linear 

forms on P r = P (E). If the projective embedding of X is E is an equivariant embedding 
with respect to an action of an affine group G, then the kernel of the evaluation map 
has the structure of a finite dimensional G-module. In the case of Grassmann codes that 
we discussed earlier (Example 1.2), the Plücker embedding of Gr(l, V ) is given by the 
SLm-representation 

∧l
V , which is well-known to be a simple SLm-module, hence, the 

corresponding evaluation map is injective. This is essentially the reason why one does not 
need to mention anything further about l; it is simply the dimension of the irreducible 
representation 

∧l
V . However, for all other projective embeddings of Gr(l, V ), the kernel 

of the evaluation map is not trivial since the corresponding SLm-module may not be 
simple. In general, the simpleness of the corresponding Weyl module strongly depends 
on the characteristic of the base field Fq.

We are now ready to prove our main theorem.



M.B. Can et al. / Finite Fields and Their Applications 76 (2021) 101905 15
Theorem 4.1. Let C denote the projective [n, k, d]-system associated with the closed em-
bedding obtained from the composition

ι : Gr(l, V ) −→ P (
r∏

(∧lV )) −→ P ((
l∧
V )⊗r).

Then the parameters of C satisfy

1. n =
[
m
l

]
q
,

2. ql(m−l) − rql(m−l)−1 ≤ d ≤ ql(m−l) − (r − 1)ql(m−l)−1,
3. dim socSLm

(H0(r�l)) ≤ k ≤ dimH0(r�l),

where socSLmH0(r�l) is the unique simple submodule of H0(r�l). Moreover, the upper 
bound for k is achieved if H0(r�l) is a simple SLm-module.

Before we give the proof of our main theorem, we have a remark in order.

Remark 4.2. First, let us point out that if the characteristic of the underlying field is big 
enough, then H0(r�l) is a simple SLm-module. In this case, we have k = dimH0(r�l). 
As we will show in the sequel, the dimension of H0(r�l) can be calculated by the well-
known Weyl dimension formula. These observations show that Theorem 1.3 follows from 
Theorem 4.1 when p is sufficiently big.

Secondly, even if H0(r�l) is not simple, in lower ranks, the formal character of 
socSLn

(H0(r�l)), hence its dimension, is not so difficult to compute; see [10, Chapter 
II.8].

Proof. By our discussion from Subsection 2.2, the image of ι is contained in the pro-
jective subspace P (H0(r�l)∗) in P ((

∧l
V )⊗r); for r = 2, the corresponding embedding 

of Gr(l, V ) is explicitly given by the assignment (2.4). The case of an arbitrary r ∈ N

is a straightforward generalization of this special case. Also, we already know that the 
number of Fq-rational points of Gr(l, V ) is 

[
m
l

]
q
. This is the length of our code. We now 

proceed to compute the minimum distance.
Let OP((

∧l V )⊗r)(1) denote the first Serre twist of the structure sheaf of P ((
∧l

V )⊗r). 
The pullback of this line bundle under the Segre embedding is equal to the r-fold tensor 
product OP(

∧l V )(1) � · · ·�OP(
∧l V )(1). The restriction of this product to the diagonal, 

which is isomorphic to P (
∧l

V ), is given by the multiplication of the sections of the 
factors; it lands in OP(

∧l V )(r). Therefore, we notice that a degree one hypersurface in 

P ((
∧l

V )⊗r) determines a degree r hypersurface in P (
∧l

V ). Since our goal is to compute 
the minimum distance, we will work with the hypersurfaces in P ((

∧l
V )⊗r) having the 

highest number of Fq-rational points. Therefore, in light of Remark 2.17, we will consider 
the following degree r polynomial:
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P := xs+1(xs+1 − b1xs) · · · (xs+1 − br−1xs) ∈ Fq[xi1 · · ·xir : 1 ≤ i1 ≤ · · · ≤ ir ≤ s + 1],
(4.3)

where b1, . . . , br−1 are distinct nonzero elements of Fq. In particular, the number of Fq-
rational points of the hypersurface UP := {P = 0} in P (

∧l
V ) is equal to rqs−1 + πs−2.

Next, we intersect UP with the Grassmann Gr(l, V ); we will determine the number of 
Fq-rational points of the intersection. In other words, we want to determine the number

|{M ∈ Gr(l, V ) : (xs+1(xs+1 − b1xs) · · · (xs+1 − br−1xs))(M) = 0}|. (4.4)

We split our analysis of the defining equation in (4.4) into three major cases:

1. xs+1(M) = xs(M) = 0 and M ∈ Gr(l, V );
2. xs+1(M) = 0, xs(M) �= 0 and M ∈ Gr(l, V );
3. xs+1(M) �= 0, ((xs+1 − b1xs) · · · (xs+1 − br−1xs))(M) = 0, and M ∈ Gr(l, V ).

In the first case, that is {M ∈ P (
∧l

V ) : xs+1(M) = xs(M) = 0} ∩ Gr(l, V ), we get 
every point M from Gr(l, V ) which is not contained in the Schubert cells of codimension 
≤ 1. Since Gr(l, V ) has a unique Schubert divisor, we see that

|{M ∈ P (
l∧
V ) : xs+1(M) = xs(M) = 0} ∩Gr(l, V )| =

[
m

l

]
− ql(m−l) − ql(m−l)−1.

In the second case, we get precisely the codimension one Schubert cell in Gr(l, V ), which 
has ql(m−l)−1 elements. Finally, in the third case, the intersection

{M ∈ P (
l∧
V ) : xs+1(M) �= 0, ((xs+1 − b1xs) · · · (xs+1 − br−1xs))(M) = 0} ∩Gr(l, V )

is a hypersurface in the dense Bruhat cell of Gr(l, V ). Since the defining equation of this 
hypersurface is given by (xs+1(M) −b1xs) · · · (xs+1(M) −br−1xs) = 0, where xs+1(M) �=
0, and bi’s are distinct elements from Fq, this hypersurface has exactly (r − 1)ql(m−l)−1

Fq-rational points, see Remark 2.17. Thus, we see that the total number of zeros of the 
homogeneous polynomial xs+1(xs+1 − b1xs) · · · (xs+1 − br−1xs) on Gr(l, V ) is given by([

m

l

]
q

− ql(m−l) − ql(m−l)−1

)
+ ql(m−l)−1 + (r − 1)ql(m−l)−1

=
[
m

l

]
q

− ql(m−l) + (r − 1)ql(m−l)−1.

It follows that an upper bound for the minimum distance on Gr(l, V ) in P ((
∧l

V )⊗r) is 
given by
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[
m

l

]
q

−
([

m

l

]
q

− ql(m−l) + (r − 1)ql(m−l)−1

)
= ql(m−l) − (r − 1)ql(m−l)−1. (4.5)

Next, we will prove our formula for the lower bound for the minimum distance. To 
this end, let Q be a homogeneous degree r polynomial from Fq[x1, . . . , xs+1] such that 
the intersection HQ∩Gr(l, V ) attains the maximum number of Fq-rational points among 
all such intersections. Here, HQ denotes the hypersurface in P (

∧l
V ) defined by Q. It 

follows that the intersection of HQ with the open cell of Gr(l, V ) is nonempty. We assume 
that this intersection attains the maximum number rql(m−l)−1, see Remark 2.17. Under 
these assumptions, we see that

|HQ ∩Gr(l, V )|Fq
≤ rql(m−l)−1 +

[
m

l

]
q

− ql(m−l), (4.6)

where 
[
m
l

]
q
− ql(m−l) is the number of Fq-rational points in the complement of the open 

cell in the Grassmannian. Since (4.6) is an upper bound for the number of zeros of Q on 
Gr(l, V ) over Fq, a lower bound for the minimum distance is given by

[
m

l

]
q

−
([

m

l

]
q

− ql(m−l) + rql(m−l)−1

)
= ql(m−l) − rql(m−l)−1. (4.7)

By combining (4.5) and (4.7), we obtain the following inequalities for the minimum 
distance,

ql(m−l) − rql(m−l)−1 ≤ d ≤ ql(m−l) − (r − 1)ql(m−l)−1. (4.8)

It remains to compute the dimension of our code. Since the image of ι is contained 
in P ((H0(Gr(l, V ), L(r�l))∗), the image of the evaluation map ev : ((

∧l
V )⊗r)∗ → Fn

q

agrees with the image of the (restricted) evaluation map ev : H0(r�l)∗ → Fn
q . On one 

hand, if H0(r�l) is a simple SLm-module, then so is H0(r�l)∗. In this case, the kernel 
of the evaluation map is trivial, hence, k = dimH0(r�l). On the other hand, if our finite 
dimensional module H0(r�l) is not simple, then it is not guaranteed that the kernel of 
the evaluation map is trivial. Nevertheless, it is always true that the sum of all simple 
submodules, namely, the socle of H0(r�l), is not contained in the kernel. Indeed, it is 
well-known that socSLm

H0(r�l) is simple [10, Corollary II.2.3], so, if it were contained 
in the kernel, then the evaluation map has to map the whole vector space to 0, which 
would be absurd. This argument shows that the dimension of the evaluation map is at 
least as big as dim socSLm

H0(r�l). Hence, the proof of our assertion is finished. �
We conclude this subsection by a remark that expands on the last part of the proof 

of our Theorem 4.1. Let λ denote the (dominant) weight r�l. We assume that H0(λ) is 
a simple SLm-module. Then, as we pointed out before in Remark 2.9, the Weyl module 
V (λ) is isomorphic to H0(λ). Since V (λ) is generated, as an SLm-module, by a B-stable 
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1 1 2 2 5
2 2 3 4
3 4 5

Fig. 4.1. A semistandard Young tableau of shape (5, 4, 3).

line of weight λ [10, Ch. II, Lemma 2.13], we see that the SLm-orbit of a nonzero vector in 
the socle of H0(λ)∗ generates the whole module. In our case, the SLm-orbit of a nonzero 
vector on such a line is isomorphic to Gr(l, V ). (This fact is also well-known, [10, Ch II, 
§2.16].) Thus, the projective space on H0(λ)∗ is spanned by the image of the embedding 
of our Grassmann variety.

4.1. Weyl’s character and dimension formulas

Let λ = r�l (r ∈ N) be a dominant weight for SLm. As we mentioned before, 
assuming that H0(r�l) is simple, its character and dimension can be computed as if we 
are working over the field of complex numbers. In particular, in this case we can apply 
the well-known combinatorics of Young tableaux. The purpose of this subsection is to 
briefly explain how this methodology works. A general reference for this material is [4].

Recall that the monoid of dominant weights for (SLm, Bm, Tm) is generated by the 
fundamental weights �i (1 ≤ i ≤ m − 1). Let a1�1 + · · · + am−1�m−1 ∈ X(Tm)+ be a 
dominant weight for some nonnegative integers ai ∈ N (1 ≤ i ≤ m −1), and set λm := 0. 
Then the sequence λ = (λ1, . . . , λm) defined by the equations,

λi − λi+1 = ai for i ∈ [m− 1]

is an integer partition, that is, λ1 ≥ λ2 ≥ · · · ≥ λm. Clearly, if we are given λ, then we can 
solve these equations for ai’s as well. In other words, there is a one-to-one correspondence 
between the integer partitions and the dominant weights for the special linear groups. In 
light of this bijection, a1�1 + · · · + am−1�m−1 � λ, hereafter, for the sake of brevity, 
let us denote by W (λ) the simple module H0(Gr(l, V ), L(a1�1 + · · · + am−1�m−1))∗.

Let λ = (λ1, . . . , λm) be an integer partition. Recall that the Young diagram of λ is a 
top-left justified arrangement of the boxes with λi boxes in the i-th row. A semistandard 
Young tableau of shape λ (or, an SSYT of shape λ, for short) is a filling of the boxes of 
the Young diagram of shape λ with positive integers that is weakly increasing in every 
row and strictly increasing in every column. For example, in Fig. 4.1, we have an SSYT 
of shape (5, 4, 4). Let T be an SSYT of shape λ. Let us define the weight of T as the 
monomial xT := xn1

i1
· · ·xnk

ik
, where the integer ij (1 ≤ j ≤ k) appears in T nj times. 

Then the character of a simple SLm(C)-module W (λ) is given by the Schur function
sλ(x1, . . . , xm) which is defined as the weight generating function of all SSYT of shape 
λ,

sλ(x1, . . . , xm) =
∑

T: SSYT of shape λ

xT .
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(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1) (3, 2) (3, 3)

Fig. 4.2. The coordinates of the boxes of (5, 4, 3).

0 1 2 3 4
−1 0 1 2
−2 −1 0

7 6 5 3 1

5 4 3 1

3 2 1

Fig. 4.3. The contents and the hook lengths of the boxes of (5, 4, 3).

In particular, by specializing the variables xi (1 ≤ i ≤ n) to 1, we get the dimension of 
W (λ),

dimW (λ) = # SSYT of shape λ filled with entries from {1, . . . ,m}.

This number can be calculated in a combinatorial way by the hook length formula. To 
explain this formula, we first put coordinates on the boxes of the Young diagram of 
λ = (λ1, . . . , λm) by identifying it with the set {(i, j) : j ∈ [λi], i ∈ [m]}. For example, 
the coordinates of the integer partition (5, 4, 3) are depicted in Fig. 4.2.

The content of a box u = (i, j) in the Young diagram of λ is defined as c(u) := j − i. 
The hook length of u, denoted by h(u) is defined as the number of boxes directly to the 
right of u and directly below u, counting u itself once. In Fig. 4.3, the diagram on the 
left shows the contents and the diagram on the right shows the hook lengths of the boxes 
of λ.

In this notation we have the following concrete form of the Weyl’s dimension formula,

sλ(1, . . . , 1) =
∏

u∈Young diagram of λ

m + c(u)
h(u) . (4.9)

Example 4.10. Let V be a three dimensional vector space over C. Let l = 2. In this 
case, the partition corresponding to the dominant weight �l is λ = (1, 1), and there-
fore, we have the following SSYT tableaux for the irreducible representation W (λ) ∼=
H0(Gr(2, V ), L(�2)):

1
2

1
3

2
3

Note that, corresponding to each SSYT of shape λ, there is a Plücker coordinate 
function. For the tableaux in the above example, the Plücker coordinate functions are 
given by p12, p13, and p23. In particular, we have
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1 1

2 2

1 1

3 3

1 1

2 3

1 2

2 3

1 2

3 3

2 2

3 3

Fig. 4.4. The set of SSYT of shape (2, 2) with entries from {1, 2, 3}.

dimW (λ) = dimH0(Gr(2, V ),L(�2)) = 3.

Example 4.11. We preserve our notation from Example 4.10. The partition corresponding 
to 2�2 is given by λ = (2, 2). Thus, the SSYT’s corresponding to the “Plücker coordi-
nates” of the embedding for the line bundle L(2�2) are listed in Fig. 4.4. In particular, 
we see that H0(Gr(2, C3), L(2�2)) is six dimensional. Of course, we can get the same 
count by using formula in (4.9).

Before we describe an application of this combinatorics to our main theorem, let us 
point out, by our running example, that for every sufficiently big characteristic p > 0, 
the SLm(Fq)-module H0(rωl) is simple.

Example 4.12. For SL3, ρ denotes �1 + �2. Then 2�2 + ρ = �1 + 3�2. By definition, 
the fundamental dominant weight �i is the dual of the coroot α∨

i . Therefore, we have

〈�1 + 3�2, α
∨
1 〉 = 1,

〈�1 + 3�2, α
∨
2 〉 = 3,

〈�1 + 3�2, (α1 + α2)∨〉 = 4.

Now by Remark 2.10, we see that for every prime characteristic p ≥ 5, the SL3(Fq)-
module W (λ) is simple.

Corollary 4.13. For every sufficiently big prime characteristic p, the dimension of the 
code C defined in Theorem 4.1 is given by

dimH0(r�l) =
∏l−1

i=0(m− i)(r)∏l
i=1(i)(r)

. (4.14)

Proof. Thanks to Remark 2.10, we know that for every sufficiently big prime character-
istic, the SLm-module H0(rωl) is simple. Theorem 4.1 implies that the dimension of our 
code is given by the Weyl’s dimension formula. The integer partition λ = (λ1, . . . , λm)
that corresponds to the dominant weight r�l is given by

λ1 = · · · = λl = r and λj = 0 for j ∈ {l + 1, . . . ,m}.

The contents and the hook lengths of the boxes of λ are depicted in Fig. 4.5.
To finish the proof, we will use the formula in (4.9) by using the content and hook 

length tableaux that are shown in (4.5). To keep track of the products, we multiply 
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0 1 2 . . . r − 1

−1 0 1 . . . r − 2

...
...

...
. . . ...

−(l − 1) −(l − 2) −(l − 3) . . . −(l − r)

l + r − 1 l + r − 2 l + r − 3 . . . l

l + r − 2 l + r − 2 l + r − 3 . . . l − 1

...
...

...
. . . ...

r r − 1 r − 2 . . . 1

Fig. 4.5. The contents and the hook lengths of the boxes of (r, . . . , r, 0, . . . , 0).

the entries row-by-row, from top-to-bottom. We multiply the entries of the rows of the 
content tableau from left-to-right:

Row 1 : m · (m + 1) · · · (m + r − 1) = m(r),

Row 2 : (m− 1) ·m · · · (m + r − 2) = (m− 1)(r),
...

Row l : (m− (l − 1)) · (m− (l − 2)) · · · (m− (l − r)) = (m− (l − 1))(r).

Thus, the numerator of the hook length formula is given by 
∏l−1

i=0(m − i)(r). For the hook 
length tableau, we multiply the entries of the rows from right-to-left:

Row 1 : l · (l + 1) · · · (l + r − 1) = l(r),

Row 2 : (l − 1) · l · · · (l + r − 2) = (l − 1)(r),
...

Row l : 1 · 2 · · · r = (1)(r).

Then the denominator of the hook length formula is given by 
∏l−1

i=0(1 +i)(r). This finishes 
the proof of our corollary. �
Proof of Theorem 1.3. In light of Remark 2.10, we choose a sufficiently large prime char-
acteristic p so that H0(rωl) is a simple SLm-module. Then the dimension k of our 
code is equal to dimH0(rωl). Hence, our theorem follows from Theorem 4.1 and Corol-
lary 4.13. �
Example 4.15. We consider the embedding associated with the highest weight 2�3 of the 
Grassmann variety Gr(3, F5

q ), where the characteristic of Fq is sufficiently large so that 
H0(2�3) is a simple SL5-module. Then the parameters of our code are given by

n =
[
5
3

]
q

= [5]q[4]q[3]q
[3]q[2]q[1]q

= 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6,

k = 5(2)4(2)3(2)

1(2)2(2)3(2) = 5 · 6 · 4 · 5 · 3 · 4
1 · 2 · 2 · 3 · 3 · 4 = 50,
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and

q6 − 2q5 ≤ d ≤ q6 − q5.

Note that, if q > 3, then n − d is significantly bigger than k = 50.
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