Intersection Cohomology of reductive varieties

Outline

- The (generalized) h-vectors of Stanley.
- Brief review of equivariant intersection cohomology
- The basic framework and the key theorems
- An outline of the proof of the key theorems
- Reductive varieties and group compactifications
- Examples

The h-vectors of Stanley

Intersection cohomology and the generalized h-vectors

- A few key properties of intersection cohomology
- The generalized h-vectors as the intersection cohomology Betti numbers
- Equivariant intersection cohomology

The basic frame work

- Slices for algebraic group actions
- Attractive slices, links

• The Poincaré series in equivariant intersection cohomology

Key Theorem 1 (B- , 2001)

X a G-variety with finitely many orbits, each having an attractive slice.

Then:

i) The $H^*(BG)$ -module $IH^*_G(X)$ admits a filtration with subquotients $IH^*_{\mathcal{O},G}(X)$

ii) For $\mathcal{O} = Gx$, $IH^*_{\mathcal{O},G}(X) \cong H^{*+2dim(\mathcal{O})}(BG_x) \otimes IH^*_x(X)$ if G_x connected

Corollary X a projective spherical variety with connected stabilizers. Then $IH^i(X) = 0$ and $\mathcal{H}^i(IC(X)) = 0$ for all *odd i*. Key Theorem 2 (B- , 2004) (The algorithm)

 \boldsymbol{X} projective, as in the last theorem and with connected stabilizers

 $IP_X(t)$: the Poincaré polynomial for $IH^*(X)$

 $IP_{X,x}(t)$: the Poincaré polynomial for $\mathcal{H}^*(i_x^*IC(X))$

 $P_{G/T}(t), \ P_{G_x/T_x}(t)$: the Poincaré polynomial for $G/T, \ G_x/T_x$

Then: (i) $IP_X(t)$

$$= \sum_{x} (1 - t^2)^{r - r_x} \frac{P_{G/T}(t)}{P_{G_x/T_x}(t)} t^{2d_x} IP_{X,x}(1/t)$$

where r = dim(T), $r_x = dim(T_x)$.

(ii) $IP_{X,x}(t) = \tau_{\leq d_x - 1}((1 - t^2)IP_{\mathbb{P}(\mathcal{S}_x)}(t))$

Proofs of Key Theorems:outline

• Proof of Key Theorem 2 assuming Key Theorem 1

• Proof of Key Theorem 1

Step 1: $\dots \to IH^n_{G,\mathcal{O}}(X) \to IH^n_G(X) \to IH^n_G(X - \mathcal{O}) \to \dots$ breaks up after localizing at the prime $\mathfrak{p} = ker(H^*(BG) \to H^*(BG_x))$

Step 2: reduction to showing $IH^*_{G,\mathcal{O}}(X) \to IH^*_{G,\mathcal{O}}(X)_{\mathfrak{p}}$ is injective

Step 3: $IH^*_{G,\mathcal{O}}(X) \cong \mathbb{H}^*(BT_x, Ri^!_x IC^{T_x}(X))^{W_x}$

Step 4: The latter $\cong (H^{*+2dim(\mathcal{O})}(BT_x) \otimes IH_x^*(X))^{W_x}$

Reductive varieties

• G: connected reductive group, B, B⁻: opposite Borels, $T = B \cap B^-$

• $\Lambda = \chi(T)$, $\Lambda_{\mathbb{R}} = \Lambda \otimes \mathbb{R}$, W: the Weyl group of (G,T)

• Definition: X is reductive if (i) X normal and spherical for $G \times G$, (ii) there exists an $x \in X$ fixed by diag(T) with $(B^- \times B)x$ dense and (iii) $(G \times G)_x$ connected

• Simple examples

(W-admissible rational convex polyhedral cones in $\Lambda_{\mathbb{R}}) \simeq$ (affine reductive varieties for G)

(*W*-admissible convex polytopes in $\Lambda_{\mathbb{R}}$) \simeq (projective reductive varieties for *G*)

Theorem(B- , 2004) The class of projective reductive varieties is closed under links. The same holds for projective compactifications of reductive groups.

Corollary (B- , 2004) The algorithm considered earlier applies to the class of projective reductive varieties and to the class of projective compactifications of reductive groups.

A few examples

• Toric varieties

 $X \to a$ rational convex polytope $\delta \subseteq \Lambda_{\mathbb{R}}$

 $T\text{-}\mathrm{orbits}{\rightarrow}$ faces of δ

The *T*-orbit \mathcal{O}_{ϕ} has an open *T*-invariant nbd $\simeq \mathcal{O}_{\phi} \times \mathcal{S}_{\phi}$. \mathcal{S}_{ϕ} = the slice and $\mathbb{P}(\mathcal{S}_{\phi})$ = the link

The formula in Key Theorem 2:

 $IP_X(t) = \Sigma_{\phi}(1-t^2)^{dim(\phi)}t^{2d_x}IP_{X,x_{\phi}}(1/t)$ - known formula for toric varieties

• Rank 1 case

The polytope: a line segment $[\lambda, \mu]$, $\lambda, \mu \epsilon \Lambda$

Wlog λ dominant : λ corresponds to a closed $G \times G$ -orbit $\mathcal{O}_{\lambda} = G/P_{I(\lambda)} \times G/P_{I(\lambda)}^{-}$, $I(\lambda) =$ all simple roots orthogonal to λ

The slice S_{λ} = the affine reductive variety for $L_{I(\lambda)}$ and the link is $P_{I(\lambda)}/P_{I(\delta)} \times P_{I(\lambda)}^{-}/P_{I(\delta)}^{-}$, $I(\delta) = I(\mu) \cap I(\lambda)$.

Further cases: μ also dominant: three orbits. In case μ not dominant, only two orbits • Compactifications of $GL_2 \wedge = \mathbb{Z}^2$, B=upper triangular matrices, $B^-=$ lower triangular matrices. The unique simple root $\alpha = (1, -1)$. $W = \mathbb{Z}/2$:reflections about the diagonal. $\Lambda_{\mathbb{R}}^+=$ the pos. Weyl chamber = points below the diagonal

(projective compactifications) \simeq (convex rational polytopes in $\Lambda_{\mathbb{R}}$ symmetric with respect to the diagonal)

Case 1: ϕ an edge below the diagonal. Slice: A¹ and link =Spec k

Case 2: ϕ an edge symmetric with respect to the diagonal. Again slice: \mathbb{A}^1 and link = Spec k

Case 3: ϕ a vertex below the diagonal. Slice of dimension 2 and link = \mathbb{P}^1

Case 4: ϕ a vertex on the diagonal. Link is \mathbb{P}^3 .

References

M. Brion and R. Joshua: Vanishing of odd dimensional intersection cohomology II, Math. Annalen, **321**, 399-437, (2001)

M. Brion and R. Joshua: Intersection cohomology of reductive varieties, Journ. European Math Soc, **6**, 465-481, (2004)

http://www.math.ohio-state.edu/~joshua/pub.html