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Abstract. In this paper, we establish results of a basic nature for the the

K-theory and G-theory of algebraic stacks, i.e. Artin stacks. At the same

time, we enlarge the framework a bit more so that these results not only hold
for stacks, but also for what are called dg-stacks, i.e. algebraic stacks where

the usual structure sheaf is replaced by a sheaf of dgas.
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1. Introduction.

The purpose of this paper is to present basic material on the K-theory and
G-theory of algebraic stacks so as to serve as a reference. The following should
serve as ample justification for a work like the present one:

• Algebraic stacks have evolved in recent years into an area that has several
important applications. The K-theory of algebraic stacks plays an impor-
tant role in the Riemann-Roch formula and the study of vector bundles
and coherent sheaves on algebraic stacks.

• There has been a recent reworking of the foundations based on issues with
the smooth site and the lisse-étale site. In view of this, it seems important
to carefully rework some of the basic results on the K-theory and G-theory
of Artin stacks in this somewhat modified framework.

• At the same time, we have tried to extend the basic framework to include
dg-stacks, which are Artin stacks where the structure sheaf has been re-
placed by a sheaf of commutative dgas. Such dg-stacks have proven quite
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useful in the study of virtual phenomena, for example, and are being stud-
ied actively in the context of DG-Algebraic Geometry.

It needs to be perhaps also pointed out that we have chosen deliberately not to
extend these results to the true new frontiers in derived algebraic geometry where
even the basic notions like schemes have to be replaced by derived schemes which
are built by gluing derived affine schemes using quasi-isomorphisms. Several reasons
justify this decision: (i) The background material needed to develop the foundations
of K-theory and G-theory in this context seems formidable. (ii) Dg-stacks and dg-
schemes as considered in this paper are already sufficient for many applications
(and already sufficiently esoteric enough). (iii) The main goal of the present paper,
as pointed out above, is more modest: it is simply to provide a suitable reference
for basic results in the area which is currently lacking in the literature.

Several applications of the results in this paper are discussed in forthcoming
papers of the author: see [J4] and [J5]. For example, in [J4] and [J5], following
upon the work in [J2], we have established various push-forward and localization
formulae for the virtual structure sheaves and virtual fundamental classes on certain
stacks.

Here is an outline of the paper. We begin section 2 by considering the K-theory
and G-theory of Artin stacks, i.e. where the structure sheaf is the usual structure
sheaf. After discussing a few key results in this context, we proceed to consider
the basics of DG-stacks in section 3. We begin this section by recalling some of
the key results on dg-stacks already established in [J2, section 2]. The main new
results in this section start with Proposition 3.13 where we discuss several equivalent
characterizations of perfect and pseudo-coherent complexes on dg-stacks. The next
section (section 4) is devoted to a detailed proof of the projective space bundle
theorem for the K-theory of dg-stacks. While the proof is based on Thomason’s
proof of a corresponding result for schemes (see [T]), it needs to be pointed out that
our proof works mainly because of the carefully chosen definition of the K-theory
of a dg-stack.

Section 5 is a detailed discussion of the G-theory of dg-stacks, establishing key
properties like, devissage, localization and a form of homotopy property. It needs
to be pointed out that this G-theory is not the K-theory of any abelian category,
but the K-theory of the Waldhausen category of quasi-coherent A-modules over
the sheaf of dgas A with cartesian coherent cohomology sheaves. Therefore, it
is far from obvious (though perhaps reasonable to expect) that the techniques of
Quillen (see [Q]) can indeed be extended to establish these results. We conclude
the paper by discussing forms of cohomology (homology) theories on dg-stacks
that come equipped with a multiplicative Chern-character map (a Riemann-Roch
transformation, respectively).

As has been already observed in [J3, section 2], the K-theory and G-theory of
algebraic stacks are much better studied in the framework of Waldhausen K-theory.
This justifies our focus on Waldhausen style K-theory and G-theory. Appendix A
summarizes the definitions and a few basic results on Waldhausen K-theory, so as
to serve as a reference for the rest of the paper while Appendix B discusses briefly
injective resolutions of dg-modules.
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2. Fundamentals of the K-theory and G-theory of algebraic stacks

Definition 2.1. An algebraic stack S will mean an algebraic stack (of Artin
type) as in [LM, Definition (4.1)] which is Noetherian and finitely presented over a
Noetherian base scheme. In particular, algebraic stacks will be quasi-compact and
quasi-separated. An action of a group scheme G on a stack S will mean morphisms
µ, pr2 : G×S → S and e : S → G×S satisfying the usual relations. (This implies,
that we are only considering left-actions.)

It may be shown readily that if G is a smooth group scheme acting on an
algebraic stack S, a quotient stack [S/G] exists as an algebraic stack. To see this
one may proceed as follows. First one defines the stack [S/G] as follows. Given
a scheme T , the objects of the category [S/G](T ) are pairs (T̃ → T, ψ : T̃ → S)
where T̃ → T is a principal G-bundle and ψ is a G-equivariant map. The morphisms
are isomorphisms of such pairs. It is straight-forward to verify that this a stack.
Let η be an object of S(T ). Then η corresponds to a map T → S and defines
a unique G-equivariant map η′ : G × T → S, where G acts by multiplication on
the left-factor G. Sending η to the pair (G × T → T, η′ : G × T → S) defines
a map of stacks S → [S/G]. Since T̃ is a principal G-bundle, after pull-back
to some smooth covering T ′ of T , T̃ becomes trivial, i.e. will be isomorphic to
G× T ′. Any G-equivariant map G× T ′ → S is determined by the composite map
e × T ′ → G × T ′ → S. Using these observations, one may show that if X → S is
an atlas for S, then the composite map X → S → [S/G] is a smooth map which
is surjective, thereby proving that [S/G] is an algebraic stack. In this case, there
is an equivalence between the category of G-equivariant OS -modules on S and the
category of O[S/G]-modules. (See [J1, Appendix].) Therefore, one may incorporate
the equivariant situation into the following discussion by considering quotient stacks
of the form [S/G].

Starting with [LM, Chapter 12], the lisse-étale site has become more commonly
used than the smooth site. Therefore, we will also use this site throughout the
paper. Observe that if S is an algebraic stack, the underlying category of Slis−et is
the same as the underlying category of the smooth site Ssmt which are smooth maps
u : U → S, with U an algebraic space. The coverings of an object u : U → S are
étale surjective maps {ui : Ui → U |i}. We will provide Slis−et with the structure
sheaf OS . One defines a sheaf of OS -modules M on Slis−et to be cartesian as in
[LM, Definition 12.3], i.e. for each map φ : U → V in Slis−et, the induced map
φ−1(M|Vet

)→M|Uet
is an isomorphism. In fact it suffices to have this property for



4 ROY JOSHUA

all smooth maps φ. In this paper, we will restrict to complexes of OS-modules M
whose cohomology sheaves are all cartesian.

Definition 2.2. A bounded complex of OS -modules M is strictly perfect if
locally on the site Slis−et, M is a bounded complex of locally-free coherent OS -
modules and the cohomology sheaves are all cartesian. M is perfect if locally on
the site Slis−et, M is quasi-isomorphic to a strictly perfect OS -module and the
cohomology sheaves are all cartesian. M is pseudo-coherent if it is locally quasi-
isomorphic to a bounded above complex of locally free OS -modules with bounded
coherent cohomology sheaves which are cartesian. (One may readily prove, in view
of the hypotheses, that if M is perfect, it is pseudo-coherent. Observe that, the
usual definition of pseudo-coherence as in [SGA6] does not require the cohomology
sheaves to be bounded; we have included this hypothesis in the definition of pseudo-
coherence mainly for convenience.)

Let S ′ denote a closed algebraic sub-stack of S. Then the category of all perfect
(pseudo-coherent, strictly perfect) complexes with supports contained in S ′ along
with quasi-isomorphisms forms a bi-Waldhausen category (see [TT, 1.2.4 Defini-
tion]): the cofibrations are those maps that are degree-wise split monomorphisms,
the fibrations are those maps that are degree-wise split epimorphisms and the
weak-equivalences are those maps that are quasi-isomorphisms.

Definition 2.3. The category of all perfect (pseudo-coherent, strictly perfect)
complexes with supports contained in S ′ provided with the above structure of
a bi-Waldhausen category will be denoted PerfS′(S) (PseudoS′(S), StPerfS′(S),
respectively). Given a Waldhausen category A, N•wS•A will denote the nerve
in each degree of the simplicial category wS•A. One lets the K-theory space of
A to be Ω|N•wS•A|. We will denote this by K(A) or K(A, w) when the choice
of the subcategory w(A) needs to be specified. The K-theory space (G-theory
space) of S with supports in S ′ will be defined to be the K-theory space of the
Waldhausen category PerfS′(S) (PseudoS′(S), respectively) and denoted KS′(S)
(GS′(S), respectively).

Let Perffl,S′(S) (Pseudofl,S′(S)) denote the full sub-category of PerfS′(S)
(PseudoS′(S)) consisting of complexes of flat OS -modules in each degree. (The
existence of functorial flat resolutions is shown in [J2, Appendix 10.2].)

Remarks 2.4. (i) Observe from [Ill, Chapitre I, Théorème 4.2.1.1] that flatOS -
modules have the additional property that they are direct limits of finitely generated
flat (in fact free) submodules at each stalk. (Observe that the existence of flat
resolutions and the Waldhausen approximation theorem (see Theorem 7.2) imply
that one obtains a weak-equivalence K(PerfS′(S)) ' K(Perffl,S′(S)).)

(ii) There are several equivalent bi-Waldhausen category structures that one
may put on the category of all perfect (pseudo-coherent, strictly perfect) complexes
with supports contained in S ′. In all of these the weak-equivalences will be given
by quasi-isomorphisms. One could take fibrations to be degree-wise epimorphisms
instead of degree-wise split epimorphisms and similarly one could take cofibrations
to be degree-wise monomorphisms as we chose above. One could also choose a
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Waldhausen category structure by omitting either the subcategory of cofibrations
or the subcategory of fibrations. These all give the same K-theory spectra as shown
in [TT, 1.9.2 Theorem] and [TT, 1.5.5].

Corollary 2.5. Let S denote a smooth algebraic stack. Then the natural map
K(S) → G(S) is a weak-equivalence. In case S ′ is a closed algebraic sub-stack of
S, the natural map KS′(S)→ G(S ′) is a weak-equivalence.

Proof. The hypothesis that S is smooth, implies every complex ofOS -modules
which is pseudo-coherent is perfect. (See [J3, section 2] for details; it is shown there
the same proof as in [TT, 3.21 Theorem] for schemes works.) This proves the first
assertion and the second follows similarly. �

Often it is convenient to compute G(S) using the category of coherent sheaves
which are defined as follows.

Definition 2.6. We define a sheaf of OS -modules on Slis−et to be quasi-
coherent with respect to a given atlas if its restriction to the étale site of the given
atlas for S is quasi-coherent. Coherent sheaves and locally free coherent sheaves are
defined similarly. (Observe that this is slightly different from the usage in [LM],
where a quasi-coherent sheaf is also assumed to be cartesian as in [LM] Definition
12.3. However, such a definition would then make it difficult to define a quasi-
coherator that converts a complex of OS -modules to a complex of quasi-coherent
OS -modules. This justifies our choice. Since we always restrict to complexes of OS -
modules whose cohomology sheaves are cartesian the present definition works out
in practice to be more or less equivalent to the one in [LM].) An OS -module will
always mean a sheaf of OS -modules on Slis−et. Mod(S,OS) (or Mod(Slis−et,OS)
to be more precise) will denote the category of OS -modules.

Let Mod(S,OS) (QCoh(S,OS), Coh(S,OS)) denote the category of all OS -
modules (all quasi-coherent OS -modules, all coherent OS -modules, respectively).
Given any of the above abelian categories A, let Cbcc(A) (Cbcart(A)) denote the
category of all bounded complexes of objects in A with cohomology sheaves that
are cartesian and coherent (cartesian, respectively). Similarly we will Cbcc(A) de-
note the full sub-category of complexes in A with cohomology sheaves that are
cartesian and coherent and vanish in all but finitely many degrees. These are
all bi-Waldhausen categories with same structure as above, i.e. with co-fibrations
(fibrations) being maps of complexes that are degree-wise split monomorphisms
(degree-wise split epimorphisms, respectively) and weak-equivalences being maps
that are quasi-isomorphisms.

Proposition 2.7. The obvious inclusion functors

Cbcart(Coh(S,OS))→ Cbcc(A)→ Cbcc(A)→ Pseudo(S)

induce weak-equivalence on taking the corresponding K-theory spaces.

Proof. Recall that all the stacks we consider are Noetherian. Therefore, this
is clear in view of the Waldhausen approximation theorem (see Theorem 7.2 in the
appendix ) and the results of [J2, Appendix B]. �

We let Knaive(S) = K(StPerf(S)). (Recall StPerf(S) is the category of strictly
perfect complexes on S.)
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Proposition 2.8. Assume that every coherent sheaf on the algebraic stack S
is the quotient of a vector bundle. Then the obvious map Knaive(S) → K(S) is a
weak-equivalence.

Proof. The proof follows along the same lines as in [TT, 3.8 Lemma] and
[TT, 2.3.1 Proposition] making repeated use of the Waldhausen approximation
theorem: see Theorem 7.2 in the appendix. However, we sketch an outline for the
sake of completeness. First one may establish the following:

(∗) given any pseudo-coherent complex F • and a map p : P • → F •, with P • a
bounded above complex of vector bundles, there exists a bounded above complex
of vector bundles Q•, and maps p′ : P • → Q•, q : Q• → F • so that p = q ◦ p′ and
q is a quasi-isomorphism.

Now it remains to show that if F • is perfect and P • is a bounded complex of
vector bundles, then Q• can be chosen to be a bounded complex. We may assume
that F • is bounded. Let Q• be as in (*). It is perfect and let k be so that
Hn(Q•) = 0, Fn = 0, n ≤ k. We will show Qp/Bp(Q•) = Qp/Im(d : Qp−1 →
Qp) = coker(dp−1 : Qp−1 → Qp) is a vector bundle for some p << 0 so that
τ≥p(Q•) is a bounded complex of vector bundles. (If K• is a complex, τ≥p(K•) is
the complex given by 0 in degrees ≤ p − 1, Coker(dp−1 : Kp−1 → Kp) in degree
p and Ki in degrees > p.) Clearly P • → Q• → τ≥p(Q•) → τ≥p(F •) = F •.
Now, assume Bk(Q•) has finite tor dimension N . Then the short-exact sequence
0 → Bn(Q•) → Qn → Bn+1(Q•) → 0, n ≤ k, shows that Coker(dn−1 : Qn−1 →
Qn) ∼= Bn+1 for all n ≤ k. The same short-exact sequence also shows, by an
argument using Tor, that Bk−N (Q•) ∼= Coker(dk−N−2 : Qk−N−2 → Qk−N−1) is
flat. It is locally finitely presented and hence locally free, i.e. a vector bundle.
Therefore, τ≥k−N−1(Q•) is a bounded complex of vector bundles. Therefore, it
suffices to show that Bk(Q•) is of finite tor dimension:

Consider α : σ≥k+1(Q•)(= 0 → Qk+1 → Qk+2 → · · · → Qn → · · · ) → Q•. Then
Cone(α)[−1] is perfect since Q• and σ≥k+1(Q•) are perfect. But

Hi(Cone(α)[−1]) =

{
0, for i 6= k + 1,
Qk/Im(dk−1), for i = k + 1.

So Im(dk−1) = Bk(Q•) is of finite tor dimension. �

Remark 2.9. The results of [J2, Appendix B] show that K-theory is a con-
travariant functor for arbitrary maps between algebraic stacks. In fact, we have
taken considerable effort in our basic framework so that this property holds. In the
case of quotient stacks of the form [X/G], one could adopt the simpler set-up in
[T] where one uses the Zariski site of X to define equivariant sheaves. In this case,
none of the complications due to the smooth site appear.

Example 2.10. Assume the base scheme is a field k and that G is a linear
algebraic group over k. On a quotient stack [X/G], when the scheme X is G-quasi-
projective (i.e. X admits a G-equivariant locally closed immersion into a projective
space Pn on which G acts linearly), every coherent sheaf is the quotient of a vector
bundle. This follows from the work of Thomason: see [T].



K-THEORY AND G-THEORY OF DG-STACKS 7

3. Fundamentals of DG-stacks

We have already developed much of the basic material in [J2, section 2]: there-
fore, we will only recall the main definitions and basic results here.

Definition 3.1. (a) A DG-stack is an algebraic stack S as in Definition 2.1
which is also defined over a field of characteristic 0, and provided with a sheaf of
commutative dgas A in Mod(S,OS), so that the following conditions are satisfied:
(i) Ai = 0 for i > 0 or i << 0, (ii) each Ai is a coherent OS -module and the
cohomology sheaves Hi(A) are all cartesian. (iii). We will further require that
A0 = OS .

(b) The above definition is often a bit too restrictive. It will be often convenient
to modify the hypotheses on A so that A satisfies the following alternate hypotheses
in addition to being a sheaf of commutative dgas in Mod(S,OS) : (i) Ai = 0 for
i > 0, (ii) each Ai is a flat OS -module, the cohomology sheaves Hi(A) are coherent,
cartesian and trivial for i << 0 and (iii) H0(A) defines a closed sub-stack of S.
(The last condition means that H0(A) is isomorphic as a sheaf of algebras to a
quotient of OS by a sheaf of ideals.)

Throughout the paper, a dg-stack by default will mean one in the sense of (b);
we will explicitly mention when the dg-stack is in the sense of (a).

3.0.1. One may replace a dga A in the sense of Definition 3.1(a), by a flat
resolution Ã → A, i.e. a complex of flat OS -modules, trivial in positive degrees so
that Ã is a commutative dga and provided with a quasi-isomorphism Ã → A. See
[J2, 10.2] where it is shown that one can find such flat resolutions. Starting with a
dga as in Definition 3.1(a), this will produce a dga in the sense of Definition 3.1(b):
the dg-structure sheaves as in Definition 3.1(b) will be typically obtained this way.
In this case, we will also use A to denote the resolution Ã unless we need to be
more specific. We will use this only in section 5, while considering devissage for
G-theory. Since, we show G-theory is invariant under quasi-isomorphism, it will
follow that one could replace A by Ã when considering G-theory. Observe also that
our hypotheses imply that H∗(A) is a sheaf of graded Noetherian rings.

The need to consider dg-stacks should be clear in view of the applications to
virtual structure sheaves and virtual fundamental classes: see example 3.9.

For the purposes of this paper, we will define a DG-stack (S,A) to have prop-
erty P if the associated underlying stack S has property P : for example, (S,A) is
smooth if S is smooth. Often it is convenient to also include disjoint unions of such
algebraic stacks into consideration.

Remark 3.2. The restriction to characteristic 0 while considering dg-stacks is
simply because commutative dgas are not well-behaved in positive characteristics.
It needs to be perhaps pointed out also that, all the main results proved in this
paper hold in arbitrary characteristics, when the dg-structure sheaf is the usual
structure sheaf, i.e. they hold for general Artin stacks satisfying the hypotheses as
in Definition 2.1.

3.0.2. Morphisms and quasi-isomorphisms of dg stacks. A 1-morphism
f : (S ′,A′)→ (S,A) of DG-stacks is a morphism of the underlying stacks S ′ → S
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together with a map A → f∗(A′) of sheaves compatible with the map OS →
f∗(OS′). Such a morphism will have property P if the associated underlying 1-
morphism of algebraic stacks has property P . Clearly DG-stacks form a 2-category.

When (S,A) is a dg-stack as in Definition 3.1(a) or (b), let S̄ denote the closed
sub-stack of S defined by H0(A). We let ī : S̄ → S denote the corresponding
closed immersion. Observe that H∗(A) identifies with a sheaf of graded modules
on (S̄,H0(A)). A morphism f : (S ′,A′) → (S,A) of DG-stacks will be called a
quasi-isomorphism if the following conditions are satisfied: (i) The map f : S ′ → S
induces isomorphisms f̄ : S̄ ′ → S̄, f̄−1(H∗(A))

∼=→H∗(A′) and (ii) the square

(3.0.3) S̄′
f̄ //

i′

��

S̄

i

��
S ′

f //
S

is cartesian.

Observe as a consequence that the induced map

f−1(i∗(H∗(A)))→ i′∗f̄
−1(H∗(A))→ i′∗(H∗(A′))

is an isomorphism. (The square (3.0.3) being cartesian is necessary for the first
map to be an isomorphism in general.)

If (S,A) and (S ′,A′) are two DG-stacks, one defines their product to be the
product stack S × S ′ endowed with the sheaf of DGAs A�A′.

3.0.4. Coherent and Perfect A-modules. A left A-module is a complex M of
sheaves of OS -modules, bounded above and so that M is a sheaf of left-modules
over the sheaf of dgas A (on Slis−et) and so that the cohomology sheaves Hi(M)
are all cartesian. The category of all left A-modules and morphisms will be de-
noted Modl(S,A). We define a map f : M ′ → M in Modl(S,A) to be a quasi-
isomorphism if it is a quasi-isomorphism of OS -modules: observe that this is equiv-
alent to requiring that H∗(Cone(f)) = 0 in Mod(S,OS). This is in view of the
fact that the mapping cone of the given map f : M ′ → M of A-modules taken
in the category of OS -modules has an induced A-module structure. A diagram
M ′

f→M → M ′′ → M [1] in Modl(S,A) is a distinguished triangle if there is a map
Cone(f) → M ′′ in Modl(S,A) which is a quasi-isomorphism. Since we assume A
is a sheaf of commutative dgas, there is an equivalence of categories between left
and right modules; therefore, henceforth we will simply refer to A-modules rather
than left or right A-modules.

Definition 3.3. An A-module M is perfect if the following holds: there
exists a non-negative integer n and distinguished triangles FiM → Fi+1M →
Fi+1M/FiM → FiM [1] in Mod(S,A), for all 0 ≤ i ≤ n−1, so that F0M ' A

L
⊗
OS

P0,

Fi+1M/FiM ' A
L
⊗
OS

Pi+1 with each Pi a perfect complex of OS -modules and there is

given a quasi-isomorphism FnM →M of A-modules. The morphisms between two
such objects will be just morphisms of A-modules. This category will be denoted
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Perf(S,A). M is coherent if H∗(M) is bounded and finitely generated as a sheaf
of H∗(A)-modules. Again morphisms between two such objects will be morphisms
of A-modules. This category will be denoted Coh(S,A). A left-A-module M is flat
if M⊗

A
− : Mod(S,A) → Mod(S,A) preserves quasi-isomorphisms. If S ′ is a given

closed sub-algebraic stack of S, PerfS′(S,A) will denote the full sub-category of
Perf(S,A) consisting of objects with supports contained in S ′.

Remark 3.4. Recall that all A-modules M we consider are required to have
cartesian cohomology sheaves. Therefore, when A = OS , the category Coh(S,A)
identifies with Cbcc(Mod(S,OS)).

We proceed to define the structure of bi-Waldhausen categories with cofibra-
tions, fibrations and weak-equivalences on the categories Coh(S,A), Perf(S,A)
and PerfS′(S,A). Let f : M → N denote a map of A-modules. A collection of
maps g = {gn : Nn → Mn|n}, not necessarily a chain-map, but which commutes
with the A-action (i.e. g(a.bn) = ag(bn), aεΓ(U,A), bnεΓ(U,Nn), UεSlis−et.) will
be called an A-compatible right splitting to f , if fn ◦ gn = idNn , for all n. One
defines A-compatible left splitting to f similarly. Now one defines a map f : M → N
in Coh(S,A), Perf(S,A) or PerfS′(S,A) to be a cofibration (fibration) if f has
an A-compatible left splitting (right splitting, respectively). In particular, observe
that each cofibration is a degree-wise split monomorphism and each fibration is a
degree-wise split epimorphism.

The main examples of such cofibrations (fibrations) arise as follows. Let f :
M → N denote a map of A-modules and let Cyl(f) (Cocyl(f)) denote the mapping
cylinder (mapping cocylinder, respectively) defined as follows:

Cyl(f)n = Mn+1 ⊕Nn ⊕Mn with the boundary map
δ(m′, n,m) = (−δ(m′), δ(n)− f(m′), δ(m) +m′)

Cocyl(f)n = Nn ⊕Nn−1 ⊕Mn with the boundary map
δ(n′, n,m) = (δ(n′),−δ(n) + n′ − f(m), δ(m))

Then the induced map i : M → Cyl(f) has an A-compatible left-inverse and the
induced map p : Cocyl(f) → N has an A-compatible right-inverse. (Similarly, the
obvious map N → Cone(f) has an A-compatible left-inverse.)

Definition 3.5. (K-theory and G-theory of dg-stacks.) We will let the fi-
brations (cofibrations) be the those maps M → N of A-modules that have an
A-compatible right-splitting (left-splitting, respectively) and weak-equivalences to
be maps of A-modules that are quasi-isomorphisms. To see this defines the struc-
ture of a bi-Waldhausen category, see [TT]: observe that it suffices to verify the
cofibrations, fibrations and weak-equivalences are stable by compositions and sat-
isfy a few easily verified extra properties as in [TT, Definitions 1.2.1 and 1.2.3]. We
will let Coh(S,A) (Perf(S,A), PerfS′(S,A)) denote the above category with this
bi-Waldhausen structure. The K-theory (G-theory) space of (S,A) will be defined
to be the K-theory space of the Waldhausen category Perf(S,A) (Coh(S,A), re-
spectively) and denoted K(S,A) (G(S,A), respectively). When A = OS , K(S,A)
(G(S,A)) will be denoted K(S) (G(S), respectively). Let Perffl(S,A) denote the
full sub-category of Perf(S,A) consisting of flat A-modules. This sub-category
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inherits a bi-Waldhausen category structure from the one on Perf(S,A) where
a map f : M → N of A-modules is a cofibration (fibration) if and only if it is
a cofibration (fibration, respectively) in Perf(S,A) and cokernel(f) (kernel(f),
respectively) is a flat A-module.

Remark 3.6. In view of the existence of the cylinder and co-cylinder functors
as above, [TT, 1.9.2 Theorem] shows that one may also define cofibrations (fibra-
tions) to be degree-wise monomorphisms (degree-wise epimorphisms) and that the
resulting K-theory will be the same.

Proposition 3.7. (See [J2, Proposition 2.9].) (i)If M is perfect, it is coherent.

(ii) Let MεPerf(S,A). Then there exists a flat A-module M̃εPerf(S,A) together
with a quasi-isomorphism M̃ →M .

(iii) Let M ′ → M → M ′′ → M ′[1] denote a distinguished triangle of A-modules.
Then if two of the modules M ′, M and M ′′ are coherent (perfect) A-modules, then
so is the third.

(iv) Let φ : (S ′,A′) → (S,A) denote a map of dg-stacks. Then one obtains an
induced functor φ∗ : Perffl(S,A) → Perffl(S ′,A′) of bi-Waldhausen categories
with cofibrations, fibrations and weak-equivalences.

(v) Assume in addition to the situation in (iii) that S ′ = S and that the given
map φ : A′ → A is a quasi-isomorphism. Then φ∗ : Perf(S,A) → Perf(S,A′)
defines a functor of bi-Waldhausen categories with cofibrations, fibrations and weak-
equivalences. Moreover, the compositions φ∗ ◦ φ∗ and φ∗ ◦ φ∗ are naturally quasi-
isomorphic to the identity.

(vi) There exists natural pairing

( )
L
⊗
A

( ) : Perf(S,A)× Perf(S,A)→ Perf(S,A)

so that A acts as the unit for this pairing.

Proof. This is proved in detail in [J2, Proposition 2.9]. However, there we
only considered the structure of Waldhausen categories with fibrations and weak-
equivalences, where fibrations were only required to be degree-wise epimorphisms.
Therefore, the only differences are in the last 3 statements. We will only consider
(iv) as the modifications required for the other should be the same. It is clear that
the functors in (iv) and (v) preserve quasi-isomorphisms and that the bi-functor
in (vi) preserves quasi-isomorphisms in each argument. Since we have defined cofi-
brations to be those of maps of A-modules that have an A-compatible left-inverse,
it is easy to see that φ∗ preserves such cofibrations; similarly, since fibrations are
those maps of A-modules that have an A-compatible right inverse, it follows read-
ily that φ∗ preserves fibrations. These prove (iv). Since the functor φ∗ sends an
A-module M to the same object, but viewed as an A′-module, using the map
φ : A′ → A, it follows readily that φ∗ preserves cofibrations and fibrations. (Recall
the cofibrations (fibrations) are degree-wise monomorphisms (epimorphisms) of A-
modules with A-compatible left inverse (right inverse, respectively) in the sense of
Definition 3.5.) �
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Remarks 3.8. 1. Observe that the above K-theory spectra, K(Perf(S,OS))
and K(Perf(S,A)) are in fact E∞-ring spectra and the obvious augmentation
OS → A makes K(S,A) a K(S)-algebra. Given two modules M and N over A,

one may compute H∗(M
L
⊗
A
N) using the spectral sequence:

Es,t2 = Tor
H∗(A)
s,t (H∗(M),H∗(N))⇒ H∗(M

L
⊗
A
N)

If M and N are coherent and one of them is also a perfect A-module, then they
both have bounded cohomology sheaves and the above spectral sequence is strongly
convergent. It follows that, if M and N are coherent A-modules and one of them

is perfect, then M
L
⊗
A
N is coherent. It follows from this observation that G(S,A) is

a module spectrum over K(S,A).

2. Assume f : (S ′,A′) → (S,A) is a proper map of DG-stacks so that Rf∗ :
D+(Mod(S ′,OS′)) → D+(Mod(S,OS)) has finite cohomological dimension. Now
Rf∗ induces a map Rf∗ : G(S ′,A′)→ G(S,A).

3. Assume that the dg-structure sheaf A is in fact the structure sheaf O and the
stack S is smooth. Then we proved in section 1 that the obvious map K(S)→ G(S)
is a weak-equivalence. If S ′ is a closed sub-stack of S, then the obvious map
KS′(S)→ G(S ′) is also a weak-equivalence where KS′(S) denotes the K-theory of
the Waldhausen category PerfS′(S).

Example 3.9. Algebraic stacks provided with virtual structure sheaves The
basic example of a DG-stack that we consider will be an algebraic stack (typically
of the form Mg,n(X,β)) provided with a virtual structure sheaf provided by a perfect
obstruction theory. Here X is a projective variety over a field k of characteristic 0,
β is a one dimensional cycle and Mg,n(X,β) denotes the stack of stable curves of
genus g and n-markings associated to X. The virtual structure sheaf Ovirt is the
corresponding sheaf of dgas. Since this is the key-example of dg-stacks we consider,
we will discuss this example in some detail.

Let S denote a Deligne-Mumford stack (over k) with u : U → S an atlas
and let i : U → M denote a closed immersion into a smooth scheme. Let CU/M
(NU/M ) denote the normal cone (normal bundle, respectively) associated to the
closed immersion i. (Recall that if I denotes the sheaf of ideals associated to the
closed immersion i, CU/M = Spec⊕

n
In/In+1 and NU/M = SpecSym(I/I2). Now

[CU/M/i∗(TM )] ([NU/M/i∗(TM )]) denotes the intrinsic normal cone denoted CS
(the intrinsic abelian normal cone denoted NS , respectively).

Let E• denote a complex of OS -modules so that it is trivial in positive degrees
and whose cohomology sheaves in degrees 0 and −1 are coherent. Let L•S denote
the cotangent complex of the stack S over k. A morphism φ : E• → L•S in the
derived category of complexes of OS -modules is called an obstruction theory if φ
induces an isomorphism (surjection) on the cohomology sheaves in degree 0 (in
degree −1, respectively). We call the obstruction theory E• perfect if E• is of
perfect amplitude contained in [−1, 0] (i.e. locally on the étale site of the stack, it
is quasi-isomorphic to a complex of vector bundles concentrated in degrees 0 and
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−1). In this case, one may define the virtual dimension of S with respect to the
obstruction theory E• as rank(E0)−rank(E−1): this is a locally constant function
on S, which we will assume (as customary), is in fact constant. Moreover, in this
case, we let ES = h1/h0(E•) = [E1/E0] where Ei = SpecSym(E−i). We will denote
Ei also by C(E−i).

Now the morphism φ defines a closed immersion φ∨ : NS → ES . Composing
with the closed immersion CS → NS one observes that CS is a closed cone sub-
stack of ES . Let the zero-section of S in ES be denoted 0S . Now we define the
virtual structure sheaf OvirtS with respect to the given obstruction theory to be
L0∗S(OCS ). It is shown in [J2, p. 15] that then (S,OvirtS ) is a dg-stack in the sense
of Definition 3.1.

Remark 3.10. The dg-structure sheaf OvirtS may also be defined as L0!
S(OC) =

OC ⊗
OES

K(OS) where K(OS) is the canonical Koszul-resolution of OS by OES -

modules provided by the obstruction theory. This has the dis-advantage that it
will not be a complex of OS -modules but only of OES -modules. In fact, both def-
initions provide the same class in the ordinary G-theory of the stack S: see [J4]
Theorem 1.2.

In the above example, we only considered the absolute case; there is relative
variant of this, where the given stack S, in addition to being Deligne-Mumford over
k will be relative Deligne-Mumford over a base which can in fact be an Artin stack.
In this case the cotangent complex L•S will denote the relative cotangent complex
over the given base.

Proposition 3.11. (See [J2, Proposition 2.13].) Let (S,A) denote a DG-stack
in the above sense and let f : (S ′,A′)→ (S,A) denote a map of dg-stacks.

(i) An A-module M is coherent in the above sense if and only if it is pseudo-
coherent (i.e. locally on Slis−et quasi-isomorphic to a bounded above complex of
locally free sheaves of OS-modules) with bounded coherent cohomology sheaves of
OS-modules.

(ii) One has an induced map f∗ : K(S,A)→ K(S ′,A′) and if f is proper and
of finite cohomological dimension one also has an induced map f∗ : G(S ′,A′) →
G(S,A).

(iii) If H∗(A′) is of finite tor dimension over f−1(H∗(A), then one obtains an
induced map f∗ : G(S,A)→ G(S ′,A′).

(iv) If f∗ sends Perf(S ′,A′) to Perf(S,A), then it induces a direct image map
f∗ : K(S ′,A′)→ K(S,A).

Convention 3.12. DG-stacks whose associated underlying stack is of Deligne-
Mumford type will be referred to as Deligne-Mumford DG-stacks.

We end this discussion on the K-theory of dg-stacks with the following results
that give various avatars for the K-theory. The first result is on the K-theory of
perfect complexes of O-modules quoted from [TT] section 3.
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Proposition 3.13. Let S denote an algebraic stack as in Definition 2.1. Then
the following bi-Waldhausen categories of OS-modules are equivalent, where the bi-
Waldhausen structure is given as follows: weak-equivalences are quasi-isomorphisms
of OS-modules and fibrations (cofibrations) are maps of complexes that are degree-
wise split epimorphisms (degree-wise split monomorphisms, respectively).

• perfect complexes of OS-modules
• perfect strict bounded complexes of OS-modules
• perfect bounded above complexes of flat OS-modules
• perfect bounded below complexes of injective OS-modules
• perfect complexes of quasi-coherent OS-modules
• perfect complexes of injective objects in the category of quasi-coherent OS-

modules
• perfect complexes of coherent OS-modules
• perfect strict bounded complexes of coherent OS-modules

Proof. The equivalences of the first four categories may be obtained as in
[TT] section 3, 3.5 Lemma. The equivalence of categories between these and the
last four follow making use of the quasi-coherator discussed in [J2, Appendix B].
(See also [TT, 3.6 Lemma and 3.7 Lemma].) Moreover, one may observe that, since
the stack is assumed to be Noetherian, the category of quasi-coherent sheaves is
a Grothendieck category and hence has enough injectives. (See [J2, Appendix B]
again for details.) �

Lemma 3.14. Assume the dg-stack (S,A) is as in Definition 3.1(a). Then any
A-module M which in each degree is a quasi-coherent OS-module is the filtered
colimit of a direct system of A-modules that are bounded complexes and in each
degree a coherent OS-module.

Proof. Clearly M = lim
→
α

Mα, where each Mα is a bounded complex of coherent

OS -modules, with each Mn
α an OS submodule of Mn in each degree n. Let M̃α =

the image of the natural map A⊗Mα →M . Recall that A is a bounded complex
of coherent OS -modules by assumption. Therefore, each M̃α is a bounded complex
of coherent OS -modules; clearly each M̃α is also an A-module. This proves the
lemma. �

3.1. Coherent Approximation. Throughout this subsection a dg-stack will
mean one in the sense of Definition 3.1(a). Next we proceed to show that if M
is coherent as an A-module, then M is quasi-isomorphic to an A-module (not
necessarily an A-submodule of M) which is a bounded complex and in each degree
a coherent OS -module. This is proved in Theorem 3.16.

We next let M denote an A-module and n an integer. We let τ≤n−1M denote
the subcomplex of M defined by

(τ≤n−1M)i = M i, i < n,(3.1.1)

= Im(dn−1 : Mn−1 →Mn), i = n,

= 0, i > n.



14 ROY JOSHUA

The observation that Ai = 0 for i > 0 and = OS for i = 0 shows that τ≤n−1M gets
an induced structure as an A-module. (To see this observe that Ai.M j → M i+j .
In view of the above hypotheses on A, i ≤ 0, so that i+ j ≤ j. The differentials of
the complex M are OS -linear maps, so that A0.(Im(d : Mn−1 → Mn)) ⊆ (Im(d :
Mn−1 → Mn)).) Therefore, τ≥nM = M/(τ≤n−1M) also gets the structure of an
A-module. Observe that τ≥n is the functor that kills all the cohomology in degrees
< n. These observations prove the following lemma.

Lemma 3.15. Next suppose M is an A-module where M has bounded coherent
cohomology sheaves and let n denote an integer so that Hi(M) = 0 for all i < n.
Then the map M → τ≥nM is a quasi-isomorphism of A-modules and τ≥nM is
bounded below. If M is bounded above, then τ≥nM is also bounded.

Next we consider killing cohomology classes for A-modules by attaching A-
cells: basically we show that the usual construction carries over to the setting
of A-modules. Therefore let M denote an A-module and let α = αN : CN →
ZN (M) ⊆ MN denote a map where CN is an OS -module and ZN (M) denotes
the N -cycles of M . We let A.α : A ⊗ CN [−N ] → M denote the induced map of
A-modules, where A⊗CN [−N ] has the obvious A-module structure where A acts
on the left. We let Cone(A.α) denote the corresponding mapping cone. Observe
that this is the A-module defined by

Cone(A.α)n = An+1−N ⊗ CN ⊕Mn(3.1.2)

with the differential δ(a ⊗ c,mn) = (δ(a) ⊗ c, δ(mn) − a.α(c)), mεMn. Then it
follows from the above definition that Cone(A.α)n = Cone(α)n for all n ≥ N − 1.
(Recall Cone(α)n = Mn, n 6= N − 1 and = CN ⊕MN−1, if n = N − 1.) Therefore

(3.1.3) Hi(Cone(A.α)) ∼= Hi(Cone(α)), for all i ≥ N.

In particular if α is such that the composition CN → ZN (M) → HN (M) is an
epimorphism, then the long exact sequence in cohomology sheaves for CN [−N ]→
M → Cone(α) shows that HN (Cone(α)) = 0. Therefore, HN (Cone(A.α)) = 0, i.e.
we have killed the cohomology in degree N of the A-module M by attaching the
A-cell, A⊗ CN [−N ]. Observe also that Cone(A.α)n = Mn for all n ≥ N , so that

(3.1.4) Hn(Cone(A.α)) ∼= Hn(M), for all n > N.

Theorem 3.16. Let M be an A-module with bounded coherent cohomology
sheaves. Then there exists an A-module P (M), which is a bounded complex of
coherent OS-modules together with a quasi-isomorphism P (M)→M .

Proof. In view of the quasi-coherator discussed in [J2, Appendix B], we may
assume without loss of generality that M consists of quasi-coherent OS -modules
in each degree. Assume that N0 is an integer so that Hi(M) = 0 for all i > N0.
Denoting by ZN0(M) = ker(d : MN0 → MN0+1), the map ZN0(M) → HN0(M)
is an epimorphism. Then, there is a coherent OS -submodule, CN0 , of ZN0(M), so
that the composite map CN0 → ZN0(M) → HN0(M) is also an epimorphism. We
let αN0 : CN0 [−N0] → M denote the corresponding map, where CN0 [−N0] is the
complex of OS -modules concentrated in degree N where it is CN0 . Next we obtain
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an induced map of A-modules:

(3.1.5) A.αN0 : A⊗OS CN0 [−N0]→M

so that the composite map CN0 [−N0] = OS ⊗OS CN0 [−N0]→ A⊗OS CN0 [−N0]→
M is the map corresponding to CN0 → ZN0(M) → MN0 . By our choice of CN0 ,
the map CN0 = HN0(CN0 [−N0]) → HN0(M) is an epimorphism. Therefore, so is
the induced map HN0(A.αN0) : HN0(A⊗OS CN0 [−N0])→ HN0(M). Observe also
that A⊗OS CN0 [−N0] is a bounded complex of coherent OS-modules in each degree.
We will denote this complex by PN0(M) and let pN0 = A.αN0 .

Observe that one has the distinguished triangle PN0(M)
pN0→M → Cone(pN0)→

PN0(M)[1] which results in the long-exact sequence:

(3.1.6) · · · → Hi(PN0(M))→ Hi(M)→ Hi(Cone(pN0))→ Hi+1(PN0(M))→ · · ·

Since HN0+k(PN0(M)) = 0 for all k > 0 and HN0(PN0(M)) → HN0(M) is a
surjection by our choice of PN0(M), it follows that

(3.1.7) Hi(Cone(pN0)) = 0, i ≥ N0.

i.e. The map pN0 : PN0(M)→M is an N0-quasi-isomorphism.
3.1.8. We will construct a sequence of complexes Pk(M), k ≤ N0, which are A-

modules, consisting of coherent OS -modules in each degree, are bounded complexes,
trivial in degrees > N0, and are provided with compatible maps pk : Pk(M)→ M
which are k-quasi-isomorphisms, i.e. induce an isomorphism on Hi for i > k and an
epimorphism on Hk. In order to construct these inductively, we will assume that
N is an integer for which such a PN (M) has been already constructed. To start
the induction, we may let N = N0 and let PN (M) denote the complex constructed
above. Observe that Cone(pN ) has bounded coherent cohomology sheaves and that
Hi(Cone(pN )) = 0 for all i ≥ N . Therefore, we will now replace M by Cone(pN )
and find a coherent OS -submodule CN−1 of ZN−1(Cone(αN )) = ZN−1(Cone(pN ))
so that the composite map CN−1 → ZN−1(Cone(pN )) → HN−1(Cone(pN )) is
an epimorphism. This provides us with a map CN−1[−N + 1] → Cone(αN ) →
Cone(A.αN ) = Cone(pN )→ PN (M)[1], i.e. a map αN−1 : CN−1[−N ]→ PN (M).

We let PN−1(M) = Cone(A.αN−1). We now observe that the induced map

qN−1 = A.αN−1 : A⊗ CN−1[−N ]→ PN (M)

also factors through Cone(A.αN )[−1] = Cone(pN )[−1], which is the homotopy
fiber of the obvious map pN : PN (M) → M . This shows that the composition
pN ◦ qN−1 is chain homotopically trivial. Therefore, one obtains an induced map
pN−1 : PN−1(M) = Cone(A.αN−1)→M making the triangle

PN (M)
pN //

��

M

PN−1(M) = Cone(A.αN−1)

pN−1

66lllllllllllllll
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commute. Observe also that the induced map

(3.1.9) HN−1(A⊗ CN−1[−N + 1])→ HN−1(Cone(pN ))

is an epimorphism by the assumptions on CN−1.

Since A⊗ CN−1[−N ] is the homotopy fiber of the map PN (M) → PN−1(M),
a comparison of the long exact sequences in cohomology associated to the dis-
tinguished triangles PN (M)

pN→M → Cone(pN ) → PN (M)[1] and PN−1(M) =
Cone(qN−1)

pN−1→ M → Cone(pN−1)→ PN−1(M)[1] shows that the homotopy fiber
of the induced map Cone(pN ) → Cone(pN−1) identifies with A.CN−1[−N + 1].
In view of (3.1.9) and the observation that Hi(A ⊗ CN−1[−N + 1]) = 0 for all
i > N − 1, it follows that HN−1(Cone(pN−1)) = 0. Therefore, Hi(pN−1) is an epi-
morphism for i = N −1. By construction, one may readily see that Hi(pN−1) is an
isomorphism for i ≥ N . Therefore, pN−1 is an N − 1-quasi-isomorphism. By con-
struction PN−1(M) is an A-module which in each degree is a coherent OS -module
and is trivial in degrees > N0.

We may therefore, continue the inductive construction and define Pk(M) as
an A-module, consisting of coherent OS -modules in each degree and provided
with a map pk(M) : Pk(M) → M , k ≤ N0 which is a k-quasi-isomorphism, i.e.
where Hi(pk(M)) is an isomorphism for i > k and an epimoprhism for i = k.
Finally one lets P (M) = lim

k→∞
Pk(M) along with the map p(M) : P (M) → M

defined as lim
k→∞

pk(M). One verifies immediately using (3.1.4) that p(M) is a quasi-

isomorphism: clearly P (M) is an A-module. Since Ai = 0 for i > 0, the con-
struction shows that Pk−2(M) and Pk(M) differ only in degrees < k. Therefore,
it follows that P (M) consists of coherent OS -modules in each degree. Since each
Pk(M) is trivial in degrees above N0, P (M) is bounded above. But, P (M) is pos-
sibly unbounded below. However, one may apply Lemma 3.15 to replace P (M) by
a quasi-isomorphic A-module which is also bounded below and consists of coherent
OS -modules in each degree. This proves the theorem. �

Corollary 3.17. Let (S,A) denote a dg-stack as in Definition 3.1(a). Then
the following bi-Waldhausen categories define weakly-equivalent K-theory spaces
(where the bi-Waldhausen structure is given as follows: weak-equivalences (fibra-
tions, cofibrations) are quasi-isomorphisms of A-modules (degree-wise epimorphisms
of A-modules with A-compatible right-inverses, degree-wise monomorphisms of A-
modules with A-compatible left-inverses respectively).

• perfect A-modules
• perfect A-modules that are strict bounded complexes of OS-modules
• perfect and flat A-modules that are bounded above complexes of OS-mod-

ules, where an A-module M is flat if the functor

M⊗
A
− : Mod(S,A)→Mod(S,A)

preserves quasi-isomorphisms
• perfect A-modules that are quasi-coherent OS-modules in each degree
• perfect A-modules that are bounded complexes of coherent O-modules
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Proof. Recall that A is a bounded complex of coherent OS -modules. The
definition of the quasi-coherator as in [J2, Appendix B: 10.0.4] shows that it sends
A-modules to quasi-coherent A-modules. This readily proves that the first and
fourth categories produce weakly-equivalent K-theory spaces. Next any perfect A-
module is coherent as an A-module. Therefore Theorem 3.16 shows that it is quasi-
isomorphic to an A-module which consists of coherent O-modules in each degree.
These observations readily prove that the the first, second and fifth categories
produce weakly-equivalent K-theory spaces. The weak-equivalence of the K-theory
spaces produced by the first and third categories is clear in view of the functorial
flat resolutions as in [J2, Appendix B]. �

3.2. Behavior under quasi-isomorphisms. In this section we consider the
behavior of G-theory of dg-stacks under 1-morphisms that are quasi-isomorphisms
in the sense of 3.0.2. Here we may let the dg-structure sheaves be defined as in
Definition 3.1(a) or (b).

Proposition 3.18. Let f : (S ′,A′)→ (S,A) denote a map of dg-stacks that is
a quasi-isomorphism. Then the following hold:

(i) f∗ : Mod(S ′,A′) → Mod(S,A) is exact in the sense it preserves quasi-
isomorphisms and therefore identifies with Rf∗.

(ii) Lf∗ : Mod(S ′,A′)→ Mod(S,A) defined by M 7→ A′
L
⊗

f−1(A)
f−1(M) identifies

with f−1.
(iii) Moreover the natural transformations M → Rf∗f

−1(M) and f−1Rf∗(N) →
N are quasi-isomorphisms for MεMod(S,A) and NεMod(S ′,A′). Therefore
f∗ : G(S ′,A′) → G(S,A) induces a weak-equivalence with inverse defined by
Lf∗ = f−1, i.e. G-theory for dg-stacks depends on the dg-stack only up to
quasi-isomorphism.

Proof. We will make use of the cartesian square in (3.0.3) throughout this
proof. Let MεMod(S ′,A′). Then H∗(M) identifies with a sheaf of graded mod-
ules over H0(A′). Therefore Rf∗Ht(M) ' Rf∗i

′
∗(Ht(M)) ' i∗Rf̄∗(Ht(M)) '

i∗f̄∗(Ht(M)) since f̄ is an isomorphism. It follows that the spectral sequence Es,t2 =
Rsf∗Ht(M) ⇒ Rs+tf∗(M) degenerates providing the identification Rf∗(M) '
f∗(M).

Under these hypotheses, the map f−1(H∗(A)) → H∗(A′) identifies with the
map f−1(i∗(H∗(A))) = i′∗f̄

−1(H∗(A)) → i′∗H∗(A′) which is clearly an isomor-
phism. Therefore, we obtain the identification up to quasi-isomorphisms, for
MεMod(S,A):

f−1(A) ' A′, Lf∗(M) = A′
L
⊗

f−1(A)
f−1(M) ' f−1(M)

This follows from a corresponding spectral sequence for Lf∗,

E2
s,t = Tor

H∗(f−1(A))
s,t (H∗(A′),H∗(f−1(M)))⇒ Hs+t(Lf∗(M)),

which degenerates providing the identification Lf∗(M) ' f−1(M).

Under these circumstances, it is straightforward to check that the natural maps
M → Rf∗f

−1(M) and f−1Rf∗(N)→ N are quasi-isomorphisms for MεMod(S,A)
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and NεMod(S ′,A′). Therefore f∗ : G(S ′,A′) → G(S,A) induces a weak-equiva-
lence with inverse defined by Lf∗ = f−1. These prove the proposition. �

Remark 3.19. It seems unlikely that K-theory is invariant under
quasi-isomorphisms of dg-stacks in general.

4. K-Theory of projective space bundles

Throughout this section a dg-stack will be as in of Definition 3.1(a). Let (S,A)
denote a given dg-stack and let E denote a vector bundle of rank r on S. Let
π : Proj(E) → S denote the obvious projection. Let P = Proj(E) provided with
the dg-structure sheaf π∗(A). Clearly the functor π∗( )⊗OP(−i) defines a functor
Perf(S,A) → Perf(P, π∗(A)), for each i. The aim of this section is to prove the
following result.

Theorem 4.1. (Projective space bundle theorem for dg-stacks) Assume the
above situation. Then the map

(x0, x1, ..., xr−1) 7→ Σr−1
i=0π

∗(xi)⊗ [OP(−i)]
induces a weak-equivalence of K-theory spectra: Πr−1

i=0 K(S,A)→ K(P, π∗(A)).

The case A = OS follows essentially as in Thomason - see [T] section 4. The
proof we provide for the case of dg-stacks below will be an extension of this: as it
will become clear in the proof, the definition of perfection for A-modules, we have
adopted in 3.0.4 seems appropriate enough for this proof to work.

Proposition 4.2. (Basic properties of the derived functor Rπ∗ for O-modules)
The functor Rπ∗ : D+(Mod(P,OP))→ D+(Mod(S,OS)) has the following proper-
ties:

(1) Rπ∗ preserves perfection. For all integers q ≥ 0, Rqπ∗ preserves quasi-
coherence and coherence. If MεMod(P,OP) is cartesian so is each Rqπ∗(M).

(2) For q > rank(E), Rqπ∗(F) = 0, where F is any quasi-coherent sheaf on
Proj(E).

(3) For any coherent OP-module F on Proj(E), there is an integer n0(F) = n0

so that for all n ≥ n0 and all q ≥ 1, Rqπ∗(F ⊗OP(n)) = 0.
(4) For F a quasi-coherent OP-module on Proj(E) and forM a complex of quasi-

coherent OS-modules, there is a canonical isomorphism:

Rqπ∗(F ⊗ π∗M) ∼= Rqπ∗(F)⊗M.

(5) For all integers n, there are natural isomorphisms

Rqπ∗(OP(E)(n)) = 0, q 6= 0, r − 1

= Sn(E), q = 0,

Rqπ∗(OP(E)(n)) = (S−r−nE)∨ ⊗ (ΛrE)∨, q = r − 1,

where SkE is the k-th symmetric power of E, considered to be 0 for k ≤ −1,
Λr(E) is the maximal exterior power of E and ( )∨ sends a vector bundle to
its dual, ( )∨ = Hom( ,OS).

(6) On Proj(E), there is a canonical map π∗(E) ⊗ OP(−1) → OP(E) that is an
epimorphism.

(7) The Koszul sequence 0 → π∗(ΛrE) ⊗ OP(−r) → π∗(Λr−1E) ⊗ OP(1 − r) →
· · · → π∗(Λ2(E))⊗OP(−2)→ π∗(E)⊗OP(−1)→ OP → 0 is exact.
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(8) The dual sequence 0→ OP → π∗(E∨)⊗OP(1)→ π∗(Λ2(E∨))⊗OP(2)→ · · · →
π∗(ΛrE∨)⊗OP(r)→ 0 is also exact.

Proof. In order to prove the assertion that Rqπ∗ sends cartesian OP-modules
to cartesian OS -modules, it suffices to show that for each smooth map φ : U → V in
Slis−et, φ∗(Rqπ∗(M)|Vet

) ' Rqπ∗(M)|Uet
: see [LM, Chapter 12]. This now follows

readily using flat base change. Since the map π is representable, the remaining
assertions follow readily from the corresponding assertions proven for schemes as
in [TT, 4.5 and 4.6]. �

One may define the derived functor

Rπ∗ : Db(Mod(P, π∗(A)))→ Db(Mod(S,A))

making use of the injective resolutions discussed in Appendix B. One defines the
derived categories Db(Perf(S,A)) ( Db(Perf(P, π∗(A))) ) by inverting maps that
are quasi-isomorphisms in the category Perf(S,A) (Perf(P, π∗(A)), respectively).
(Observe that each perfect complex has bounded cohomology sheaves, which ac-
counts for the subscript b.) Next one observes that Rπ∗ induces a functor Rπ∗ :
Db(Perf(P, π∗(A)))→ Db(Perf(S,A)). To see this, first consider Rπ∗ applied to
a complex of the form π∗(A)⊗F•, where F•εDb(Perf(P,OP)). Now the projection
formula and the observation that Rπ∗ sends perfect complexes of OP-modules to
perfect complexes of OS -modules shows that Rπ∗(π∗(A) ⊗ F•)εDb(Perf(S,A)).
Recall from Definition 3.3 that, in general, an object M in Perf(P, π∗(A)) is quasi-
isomorphic to a π∗(A)-module provided with a finite sequence of maps FiM →
Fi+1M so that each successive mapping cone and F0M is of the form π∗(A)⊗ F•
as above. Therefore, it follows that Rπ∗ induces a functor Db(Perf(P, π∗(A))) →
Db(Perf(S,A)). Let IPerf(P, π∗(A)) (IPerf(S,A)) denote the Waldhausen cat-
egory of perfect π∗(A) -modules consisting of injective OP-modules in each degree
(perfect A-modules consisting of injective OS -modules in each degree, respectively).
Here the fibrations and cofibrations are defined as in Definition 3.5. Then it is easy
to see that π∗ induces an exact functor π∗ : IPerf(P, π∗(A))→ IPerf(S,A).

Next we recall the notion of regularity defined by Mumford : see [M, Lecture
14] and [Q, Section 8]. Recall that a quasi-coherent sheaf F on P is said to be
m-regular in the sense of Mumford, if Rqπ∗(F(m − q)) = 0 for all q ≥ 1. Observe
that, if F is m-regular, then F(n) is (m− n)-regular. Moreover, if F is a coherent
sheaf of OP-modules on P, then there exists an integer m0 so that F is n-regular for
all n ≥ m0. We will say a complex of OP-modules M• is m-regular if each M i is
m-regular as before. A π∗(A)-module M will be called m-regular if it is a complex
of quasi-coherent sheaves of OP-modules which is m-regular in the above sense.

Proposition 4.3. (See [TT] 4.7.1.) Let 0 → F ′ → F
β→F ′′ → 0 denote an

exact sequence of quasi-coherent OP-modules. Then the following hold:

(i) If F is m-regular, F (k) is m− k regular.

(ii) If F ′ and F ′′ are n-regular, then so is F .

(iii) If F is n-regular and F ′ is (n+ 1)-regular, then F ′′ is n-regular.
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(iv) If F is n + 1-regular and F ′′ is n-regular and if π∗F (n) → π∗F
′′(n) is an

epimorphism, then F ′ is n+ 1-regular.

(v) Given any object FεPerf(P, π∗(OS)) that is a strictly bounded complex of co-
herent O-modules, there exists an integer n so that F is n-regular.

(vi) If F is n regular, then F is m-regular for all m ≥ n.

(vii) The product map π∗(F (k))⊗E = π∗(F (k))⊗ π∗(OP(1))→ π∗(F (k+ 1)) is an
epimorphism for each k ≥ m if F is m-regular.

(viii) π∗π∗(F (k))→ F (k) is an epimorphism for each k ≥ m, if F is m-regular.

(ix) If F is 0-regular, then Rqπ∗(F ) = 0 for all q ≥ 1.

(x) If MεMod(S,OS), then π∗(M) is 0-regular.

Proof. (i) is clear from the definition while (ii), (iii) and (iv) may be proved
readily using the long-exact sequence obtained on applying the derived functors
{Rqπ∗|q ≥ 0}. Our definition of regularity above along with the observation that
any coherent sheaf is n-regular for some n >> 0 along with (vi) (proven below)
readily proves (v). (vi) may proven using ascending induction on m − n, making
use of the exact sequence in Proposition 4.2(7): see [Q, section 8]. It suffices to
show this for m = n+ 1. We tensor the exact sequence in Proposition 4.2(7) with
F (n) to obtain

0→ π∗(ΛrE)⊗ F (n− r)→ π∗(Λr−1E)⊗ F (n+ 1− r)→
· · · → π∗(Λ2(E))⊗ F (n− 2)→ π∗(E)⊗ F (n− 1)→ F (n)→ 0

Then break this into short-exact sequences: 0 → Zp → π∗(ΛpE) ⊗ F (n − p) →
Zp−1 → 0 where the Zp are the kernels of the maps in the long-exact sequence
above. Now an application of the projection formula and the hypothesis that F is
n−regular, show that π∗(ΛpE) ⊗ F is n− regular. Therefore, π∗(ΛpE) ⊗ F (n − p)
is p-regular. By using descending induction on p, starting with the r + 1-regular
object 0 = Zr and applying Proposition 4.3(iii) to the short-exact sequence above,
one sees that Zp−1 is p−regular. In particular, Z0 = F (n) is 1−regular, i.e. F is
n+ 1-regular. This completes the proof of (vi).

Clearly the maps in (vii) and (viii) are natural and hence extend to algebraic
stacks. To check that these maps are epimorphisms, one may reduce to schemes
where these two assertions are proven in [TT, 4.7.2 Lemma]. To prove (ix), we
use (vi) to conclude that F is 0-regular implies F is 1-regular and hence that
R1π∗F = R1π∗F (1 − 1) = 0. Similarly F is 0-regular implies that it is m-regular
for all m ≥ 1, and hence (with m = q) that Rqπ∗(F (0)) = Rqπ∗(F (q − q)) = 0 for
all q ≥ 1.

To prove (x), observe that by Proposition 4.2(4), with F = OP(−q),

Rq(π∗(π∗(M))(−q)) = Rqπ∗(OP(−q)⊗ π∗(M)) = Rqπ∗(OP(−q))⊗M.

By Proposition 4.2(5), it suffices to consider the case q = r − 1 if it is positive. In
this case we may let n in Proposition 4.2(5) = −q so that n = −r+ 1 > −r so that
−r − n < 0 and hence Rqπ∗(OP(−q)) = 0 thereby proving (x). �
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Given a π∗(A)-module M , we let M(s) = M⊗
OP
OP(s). Observe this identifies with

M ⊗
π∗(A)

π∗(A)(s).

Quillen (see [Q] section 8.1.11) defined certain functors Tn : Mod(P,OP) →
Mod(S,OS) that send coherent sheaves to coherent sheaves, in the case of schemes.
Thomason showed the existence of corresponding functors for perfect complexes of
O-modules. We will show the same general strategy works to prove the projective
space bundle theorem for dg-stacks. First we recall the definition of these functors,
which are defined using ascending induction on n making use of certain auxiliary
functors denoted Zn. We let Z−1 = id : Perf(P,O)→ Perf(P,O). Having defined
the functor Zn−1, we will let Tn be defined by Tn(M) = π∗(Zn−1(M)(n)) and let
Zn(M) = kernel(π∗Tn(M)(−n) → Zn−1(M)) where the map π∗Tn(M)(−n) →
Zn−1(M) is the obvious map. Clearly the Zn and Tn are additive functors and
they preserve coherence. The following result is an extension to algebraic stacks
and dg-stacks of results proven in [TT] 4.8.4 and 4.8.5 for schemes:

Proposition 4.4. (i) There exist functors Ti: (0-regular OP-modules) → (OS-
modules), i = 0, · · · , r − 1. For every 0-regular coherent sheaf F on P there is an
exact sequence:

0→ O(−r + 1)⊗ π∗Tr−1(F )→ · · · → O ⊗ π∗T0(F )→ F → 0

The functors Ti, i = 0, · · · , r − 1 are exact in the sense they preserve quasi-
isomorphism between complexes of OP-modules that are 0-regular. They also send
short exact sequences of 0-regular OP-modules to short exact sequences of OS-
modules.

(ii) If F • is a bounded complex of 0-regular coherent sheaves on P, there is an exact
sequence of complexes for each k = 0, · · · , r − 1(i.e. it is exact for each fixed F i):

0→ Tk(F •)→ E ⊗ Tk−1(F •)→ S2E ⊗ Tk−2(F •)→

· · · → SkE ⊗ T0(F •)→ π∗(F •)→ 0

(iii) Each of the functors Zn sends π∗(A)-modules to π∗(A)-modules. Similarly
each of the functors Tn sends π∗(A)-modules to A-modules.

(iv) If M is an A-module and K is an OS-module, then M ⊗
OS
K is an A-module.

Similarly, if M is a π∗(A)-module and K is an OP-module, then M⊗
OP
K is a π∗(A)-

module.

Proof. The first step is to prove inductively that if F is a 0-regular coherent
OP-module on P, then Zn−1(F )(n) is also 0-regular, or equivalently that Zn−1(F )
is n-regular. This will be proven using ascending induction on n, the case n = 0
being clear since Z−1 = id. The inductive step follows from the exact sequence:

(4.0.1) 0→ (Zn(F ))(n)→ π∗Tn(F )→ Zn−1(F )(n)→ 0

whenever F is a 0-regular coherent OP-module on P. The surjectivity follows
from the assertion (viii) in Proposition 4.3 using the assumption that Zn−1(F )
is n-regular. The exactness of the above sequence at other places follows readily
from the definition of Zn(F ). One may also readily observe that π∗π∗Tn(F ) →
π∗Zn−1(F )(n) is an epimorphism (in fact an isomorphism since π∗π

∗ = id) so
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that Proposition 4.3(iv) applies to prove Zn(F )(n) is 1-regular, or equivalently
that Zn(F )(n + 1) is 0-regular. This completes the inductive step and shows that
Zn−1(F )(n) is 0-regular for all n ≥ 0 whenever F is 0-regular. Now Proposi-
tion 4.3(ix) shows that Rπ∗(Zn−1(F )(n)) = π∗(Zn−1(F )(n)) if F is 0-regular and
hence that Tn is an exact functor on 0-regular coherent OP-modules on P.

The exact sequence in (i) is obtained by tensoring the exact sequences in (4.0.1)
with OP(−n) and splicing together. The exact sequence in (ii) is obtained by
tensoring the exact sequence in (i) with OP(k), 0 ≤ k ≤ r − 1 and applying π∗.
Therefore the maps in the complex in (ii) are defined for algebraic stacks; that it is
exact follows now by working locally on the stack and hence reducing to the case
of schemes.

Next we consider (iii). Clearly Z−1 being the identity functor sends π∗(A)-
modules to π∗(A)-modules. Now the definition of T0 = π∗ shows it sends π∗(A)-
modules to A-modules. One may now complete the proof of the third assertion by
ascending induction on n.

The last assertion is clear since A is a sheaf of commutative dgas. �

Remark 4.5. Assume MεMod(P, π∗(A)) which is a complex of coherent 0-
regular OP-modules on P. Then the exact sequence in (i) in the last Proposition
provides a quasi-isomorphism

{O(−r + 1)⊗ π∗Tr−1(M)→ · · · → O ⊗ π∗T0(M)}'→M

of π∗(A)-modules.

Let A denote the category of perfect π∗(A)-modules which are strict bounded
complexes of 0-regular coherent OP-modules on P.

Let B denote the category of perfect π∗(A)-modules which are strict bounded
complexes of coherent OP-modules on P. We provide both these categories with the
structure of bi-Waldhausen categories in the obvious manner: weak-equivalences are
weak-equivalences in Perf(P, π∗(A)) and cofibrations (fibrations) are those maps
whose cokernel (kernel, respectively) also belongs to the same sub-category. There
is an obvious inclusion functor I : A→ B of Waldhausen categories.

Proposition 4.6. The functor I induces a weak-equivalence on K-theory spec-
tra. More specifically, for every BεB, there is an AεA and a quasi-isomorphism
(of π∗(A)-modules) B '→A.

Proof. Let BεB. By Proposition 4.3(v), we may assume that there is an
integer n so that B is n-regular. If n < 0, then B is 0-regular by Proposition 4.3(vi).
Next suppose n > 0. In this case we will use ascending induction on n. To do the
induction step, we may assume the result is known for BεB that is (n− 1)-regular.
Then, for any k ≥ 1, B(k) is n−1-regular by Proposition 4.3(i) and (vi). Tensoring
the (locally split) exact Koszul sequence in Proposition 4.2(8) with B gives an exact
sequence of complexes. One may view this as a quasi-isomorphism of B with the
rest of the complex, i.e.

B → Tot(π∗(E)∨ ⊗B(1)→ · · · → π∗(
r
∧E∨)⊗B(r)) = B′
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Now we observe: (i) the complex on the right is n−1-regular, (ii) the maps there are
maps of π∗(A)-modules, so that the Total complex produces a π∗(A)-module. (This
follows from the following observation. Let the complex of OP-modules provided
by all-but the starting term of the exact Koszul sequence in Proposition 4.2(8) be
denoted M . Then we took the double complex B ⊗

OS
M , and then its total complex.

The formation of the total complex, Tot is associative, so that we obtain induced
pairings: Tot(π∗(A)⊗

OS
Tot(B ⊗

OS
M)) ∼= Tot(Tot(π∗(A)⊗

OS
B)⊗
OS
M) → Tot(B ⊗

OS
M),

where the last map is obtained using the observation that B is a π∗(A)-module.) By
the same observations the map from B to the Total complex of this complex is also
a map of π∗(A)-modules. Now we apply the inductive hypothesis, to conclude there
is a complex AεA and a quasi-isomorphism B′

'→A of π∗(A)-modules . Composing
this with the quasi-isomorphism B

'→B′ provides the required quasi-isomorphism.
�

Proposition 4.7. The functors Tk, for k = 0, · · · , r − 1, preserve perfection
for π∗(A)-modules that are 0-regular.

Proof. These statements are proved using ascending induction on k. Since
T0 = π∗, we need to first show π∗ sends perfect π∗(A)-modules that are 0-regular
to perfect A-modules. Let F0M → F̃0M denote a quasi-isomorphism to a complex
of 0-regular A-modules chosen as above. Let P1 denote the canonical homotopy
pushout defined by the square:

F0M
//

��

F1M

��
F̃0M

//
P1

Since the maps in the top row and left column are maps of π∗(A)-modules, the in-
duced maps forming the other sides of the square are also maps of π∗(A)-modules.
Now we let P1 → F̃1M denote a quasi-isomorphism to a π∗(A)-module which is 0-
regular. There is an induced map from Cone(F0M → F1M) → Cone(F̃0M →
F̃1M): this is a quasi-isomorphism. Moreover, the definition of the mapping
cone shows that the complex Cone(F̃0M → F̃1M) is also 0-regular. Therefore
π∗(Cone(F̃0M → F̃1M)) ' Rπ∗(Cone(F̃0M → F̃1M)) ' Rπ∗(Cone(F0M →

F1M)) ∼= Rπ∗(π∗(A)
L
⊗
O
Q1) ' A

L
⊗
OS
Rπ∗(Q1) for some perfect complex ofOP-modules

Q1. Similarly, π∗(F̃0M) ' Rπ∗(F0M) ' Rπ∗((π∗(A)
L
⊗
O
Q0) ' A

L
⊗
OS
Rπ∗(Q0) for

some perfect complex of OP-modules Q0. Since Rπ∗ sends perfect complexes of
OP-modules to perfect complexes of OS -modules, it follows that π∗(F̃1M) is per-
fect.

Now one may repeat the above construction to obtain a commutative diagram:

F0M
//

��

F1M
//

��

· · · //
Fn−1M

//

��

FnM = M

��
F̃0M

//
F̃1M

// · · · //
F̃n−1M

//
F̃nM



24 ROY JOSHUA

where the vertical maps are all quasi-isomorphisms of π∗(A)-modules and the
bottom row consists of π∗(A)-modules that are 0-regular. Since M itself is 0-
regular, the induced map π∗(M) → π∗(F̃nM) is a quasi-isomorphism. Since each
F̃iM is 0-regular, π∗ applied to the bottom row provides distinguished triangles
π∗(F̃i−1M) → π∗(F̃iM) → π∗(Cone(F̃i−1M → F̃iM)), i = 1, · · · , r. Moreover,
the argument for the case i = 1 above shows that π∗(Cone(F̃i−1M → F̃iM)) '

Rπ ∗ (π∗(A)
L
⊗
OP
Qi) ∼= A

L
⊗
OS
Rπ∗(Qi) for some perfect complex of OS -modules Qi.

These arguments, therefore show that T0 = π∗ sends perfect π∗(A)-modules that
are 0-regular to perfect A-modules.

To prove the corresponding assertion for the higher Tis, we will use ascending
induction on n and the following exact-sequence considered in Proposition 4.4(ii):

(4.0.2) 0→ Tk(M)→ E ⊗ Tk−1(M)→ S2E ⊗ Tk−2(M)→

· · · → SkE ⊗ T0(M)→ π∗(M)→ 0.

This sequence exists for all 0 ≤ k ≤ r − 1. Assuming we have proved that T0,...
Tk−1 preserve perfection, we may show Tk preserves perfection as follows. Recall
from Proposition ( 3.7)(iii) that if two terms in a distinguished triangle are perfect,
so is the remaining term. Therefore, it suffices to show the image of the map
E ⊗ Tk−1(M)→ S2E ⊗ Tk−2(M) is perfect. Since the sequence in ( 4.0.2) is exact,
one may identify this with the kernel of the map S2E⊗Tk−2(M)→ S3E⊗Tk−3(M).
By Proposition ( 3.7), it again suffices to show that the image of the same map
is perfect. One may now identify this with the kernel of the next map in the
exact sequence ( 4.0.2) and continue. Eventually we reduce to the fact that both
SkE ⊗ T0(M) and π∗(M) = T0(M) are perfect. �

With the above propositions at our disposal, the proof in [TT] 4.9- 4.11 may
be modified as follows to complete the proof of theorem 4.1.

Let C denote the category of perfect A-modules which are strict bounded com-
plexes of coherent OS -modules provided with the obvious bi-Waldhausen structure.
We have established the following results in the above discussion:

• There is an obvious inclusion functor I : A → B of bi-Waldhausen cate-
gories.

• There are functors Tk : A→ C of bi-Waldhausen categories, k = 0, ..., r−
1.

• There are functors of bi-Waldhausen categories O(−k)⊗ π∗( ) : C→ B
for k = 0, ..., r − 1.

• There is a natural quasi-isomorphism in B

(4.0.3) I(M)'←Tot(O(−r + 1)⊗ π∗Tr−1(M)→ · · · → O ⊗ π∗T0(M)), MεA.

Now the proof of the theorem reduces to showing that the functor

(4.0.4) ⊕r−1
k=0O(−k)⊗ π∗( ) : Πr−1

i=0 C→ B
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induces a weak-equivalence on K-theory spectra. In fact we will show it induces
a map that is a split monomorphism and a split epimorphism in the homotopy
category of spectra.

Lemma 4.8. The map in ( 4.0.4) is a split monomorphism up to homotopy.

Proof. Here the proof in [TT] 4.10 applies verbatim. The key observations
are contained Proposition 4.2. However, here are some details for the sake of com-
pleteness. The formulae in Proposition 4.2 show that Rπ∗(O(n − k) ⊗ π∗M) = 0
for all 0 ≤ n < k ≤ r − 1 and that Rπ∗(O ⊗ π∗M) = Rπ∗π

∗(M) = M for any
quasi-coherent complex of O-modules M on S. Now consider the map K(B) →
Πr−1
i=0K(C) induced by M → (Rπ∗M,Rπ∗M(1), · · · , Rπ∗M(r−1)). Pre-composing

this map with the map Πr−1
i=0K(C) → K(B) induced by the map in ( 4.0.4), we

obtain an endomorphism of Πr−1
i=0K(C) represented by an (r × r)-matrix of maps

Πr−1
i=0K(C)→ Πr−1

i=0K(C) which has 1s along the diagonal and 0s above the diago-
nal. Therefore this matrix is invertible and therefore the composite endomorphism
of Πr−1

i=0K(C) is a weak-equivalence. This proves the lemma. �

To show the map Πr−1
i=0K(C) → K(B) induced by the map in ( 4.0.4) is a

split epimorphism on taking homotopy groups, we use the functors Tns. By (4.0.3)
above, The map I : K(A) → K(B) is homotopic to the map induced by the
functor M 7→ I(M) = Tot(O(−r + 1) ⊗ π∗Tr−1(M) → · · · → O ⊗ π∗T0(M)).
Using the additivity theorem in K-theory, one sees that this map is homotopic to
the map Σr−1

k=0(−1)kO(−k) ⊗ π∗Tk. This shows the map induced by the functor I
factors through the map on K-theory induced by the map in ( 4.0.4) via the map
K(A)→ Πr−1

i=0K(C) given by (K(T0),−K(T1), · · · , (−1)r−1K(Tr−1)).

Recall that we have already showed the map induced by the functor I is a
weak-equivalence on K-theory spectra: see Proposition 4.6. Therefore, this proves
the map Πr−1

i=0K(C)→ K(B) induced by the map in ( 4.0.4) is a split epimorphism
on taking homotopy groups. This completes the proof of Theorem 4.1.

5. G-theory of dg-stacks: devissage, localization and homotopy
property

In this section, we will extend all the basic results on G-theory, for e.g. devis-
sage, localization and homotopy property, to the G-theory of algebraic dg-stacks.

5.1. The basic situation. Let (S,A) denote a dg-stack as in Definition 3.1(a)
or (b). We will need to consider three distinct situations in this context, for all of
which we will prove a devissage theorem. To simplify the discussion, we will consider
these situations together. In all three cases we have a sheaf of graded Noetherian
rings R = ⊕

n≥0
Rn on Slis−et with R0 = OS and each Rn a coherent OS -module.

We will let n be called the weight of Rn.
(1) The first case is when Ri = 0 for all i > 0.
(2) The second case is when R = OS [t], with t an indeterminate. In this case

each Ri = OSti.
(3) To state the third case we proceed as follows. Let W denote the graded

ring R as in (2). We let W be provided with the filtration Fn(W) =
{p(t)|deg(p(t)) ≤ n, p(t)εOS [t]}. Now we let R in the third case denote
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the graded ring defined by R = ⊕n≥0Rn, where Rn = Fn(W)zn and z is
another indeterminate.

Let B = A⊗
OS
R. Now B has a natural grading induced by the grading on R, so that

B = ⊕
n≥0

Bn. One may observe that B is a sheaf of graded dgas, i.e. if Bn = A⊗
OS
Rn,

then there is an induced pairing Bn ⊗ Bm → Bn+m of chain complexes that is
associative. Moreover since A was assumed to be a sheaf of commutative dgas,
and U(R) is strictly commutative in all of the above cases, U(B) = A⊗

OS
U(R) is a

commutative dga with the degree 0 part, B0 = the sheaf of graded rings R. (Here
U denotes the functor forgetting the gradation. The superscript on B is induced
from the superscript on A, which denotes the part of the complex in degree 0.)

5.1.1. Notation. In the above situation, since R (and therefore, B) have a non-
trivial gradation only in the last two cases, we will distinguish these two by denoting
the graded objects there in boldface. i.e. Henceforth R = ⊕

n≥0
Rn and B = ⊕

n≥0
Bn

will denote the objects considered in the last two situations in 5.1.

Definition 5.1. A graded B-module M will mean a U(B)-module M , so that
the following hypotheses are satisfied: M is provided with a gradation so that
M = ⊕

n≥0
Mn, (i) each Mn is an A-module so that the underlying complex of

OS -module has bounded quasi-coherent cohomology uniformly in n (i.e. M has
bounded cohomology and each Hi(Mn) is quasi-coherent) and (ii) the above grada-
tion on M is compatible with a graded B-module structure. i.e. The multiplication
B ⊗M → M sends Bn ⊗Mm → Mn+m. (iii) Moreover we require that each Mn

has cartesian cohomology sheaves. We will let n be called the weight of Mn.

The category of all such graded modules over B will be denoted QCohgr(S, B):
a morphism f : M ′ = ⊕nM ′n →M = ⊕nMn of such graded modules means that (i)
f preserves the gradation and induces a mapM ′n →Mn ofA-modules for each n ≥ 0
and that (ii) f is compatible with the graded multiplications Bn ⊗M ′m → M ′n+m

and Bn ⊗Mm →Mn+m. In this situation we will let
(5.1.1)

Homgr−B(M ′,M) = {fεHomU(B)(U(M ′), U(M) | f(M ′n) ⊆Mn, for all n}

This is the external Hom in the category QCohgr(S, B) while

HomU(B)(U(M ′), U(M))

denotes the external hom in the category of U(B)-modules.

For a graded B-module M as above, we let Fp(M) denote the graded B-
submodule generated by the Mn, 0 ≤ n ≤ p.

Definition 5.2. We will say a graded B-module is coherent if (i) each H∗(Mn)
is a finitely generated H∗(A)-module, which is in fact bounded and cartesian and
(ii) the inclusion Fp(M) → M induces a quasi-isomorphism of U(B)-modules for
some p ≥ 0.

When A is a dga as in Definition 3.1(a), then we may adopt a stronger definition
where a graded B-module is coherent if (i) each Mn is a coherent A-module, which
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is in fact bounded (see Theorem 3.16), with cartesian cohomology sheaves and (ii)
the inclusion Fp(M)→M induces a quasi-isomorphism of U(B)-modules for some
p ≥ 0.

When A is a dga as in Definition 3.1(a), we obtain the following graded version
of Theorem 3.16 which may be proved in exactly the same manner with the dga A
replaced by the graded dga B.

Proposition 5.3. Assume the dga A is as in Definition 3.1(a) and assume
the situation in 5.1.1. Let M be a complex of graded B-modules with bounded
cohomology sheaves that are coherent as graded modules over the graded ring R.
Then there exists a graded B-module P (M), so that P (M) is a bounded complex
which in each degree is coherent as a graded module over the graded ring R together
with a quasi-isomorphism P (M)→M of graded B-modules.

The sub-category of coherent B-modules will be denoted Cohgr(S, B). The
category Cohgr(S, B)) has the obvious structure of a bi-Waldhausen category with
weak-equivalences being maps of complexes of graded B-modules that are quasi-
isomorphisms and cofibrations (fibrations) f : M → N being maps of complexes
of graded B-modules so that U(f) is a monomorphism with a U(B)-compatible
left-inverse (epimorphism with a U(B)-compatible right inverse, respectively in
the sense of Definition 3.5). The corresponding K-theory spectrum will be denoted
K(Cohgr(S,B))).

Example 5.4. Assume A = OS . Now B = R. We may assume first that the
B-module M is a single graded R-module concentrated in degree 0 (as a complex).
In this case the M is coherent as a B-module if and only if each Mn is a coherent
OS -module which is cartesian and the inclusion Fp(M) → M is an isomorphism
for some n ≥ 0. Therefore, in this case, our notion of coherent B-modules agrees
with the usual notion of coherent graded B-modules as in [Q, section 6] adapted
to algebraic stacks. Next one may consider the situation where A = OS still, but
the B-module M is a bounded complex of graded R-modules. In this case M is
coherent as a graded B-module if and only if each Mn is a bounded complex of
OS -modules with coherent cartesian cohomology sheaves and the obvious inclusion
Fp(M)→M is a quasi-isomorphism for some p ≥ 0.

Remarks 5.5. For the most part all our graded rings and modules will be
graded by non-negative integers. The only exception to this appears in the proof of
Theorem 5.17, where we need to consider graded rings of the form C[z, z−1] which
is the ring of Laurent series over a ring or dga C and graded by powers of z. In
this case the graded modules over such a ring will also be graded by Z: however,
we do not consider the K-theory or the G-theory of such graded modules.

Assume the situation of (5.1.1). Then we define
(5.1.2)
HomB(M ′,M)n = {fεHomU(B)(U(M ′), U(M))|f(M ′p) ⊆Mn+p, for all p}

where HomU(B)( , ) denotes the sheaf-hom for U(B)-modules. This defines a
graded object HomB(M ′,M) = ⊕nεZHomB(M ′,M)n. Next assume B = R, i.e.
let A = R0. Then we make the following observations (that follow readily from
[N-O, 2.4.5 and 2.4.7 Corollaries]):
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• Suppose M ′ is a complex concentrated in one degree (i.e. when M ′ is
viewed as a complex, it is given by M̄ ′[n] for a coherent graded R-module
M̄ ′ in the usual sense). Then M ′ is coherent as a graded R-module if and
only if U(M ′) is coherent as a U(R)-module.

• If M ′ is a coherent graded R-module in the above sense, then

HomR(M ′,M) = HomU(R)(U(M ′), U(M)).

A corresponding identification upto quasi-isomorphism holds for the the
derived functors of the above Hom-functors.

• If M ′ is a graded R-bi-module, (i.e. U(M ′) is a U(R)-bi-module with the
left and right multiplication by Rn taking M ′m to M ′n+m), then
HomR(M ′,M) has the structure of a graded module over R.

• HomR(R/I,M)n = 0 for all n < 0. (This is because the unit 1εR0

and therefore if f sends 1 to mεMm, f will send Rp to Mm+p. By our
assumption we consider only graded modules M for which Mq = 0 for
q < 0, so that m above must be non-negative.)

5.2. Coherent sheaves with supports in a sub-dg-stack and devissage.
All through this subsection, except in Proposition 5.12 and Corollary 5.13, we will
assume that the dga A is as in Definition 3.1(b). There are two distinct situations
that fit into this context. The first is when R = OS with the trivial gradation, i.e.
Ri = OS if i = 0 and = 0 if i > 0. Then Bi = A if i = 0 and = 0 if i 6= 0. We
will assume that in this case, each Mn = 0 for n > 0 as well, so that in this case,
we will be considering simply A-modules. In this case we let I denote a sheaf of
ideals in OS and S ′ will denote the corresponding closed algebraic sub-stack. We let
A′ = i∗(A) = O/I⊗

O
A. We will need to assume that the closed immersion i and the

dga A are such that A′ is a dga satisfying the hypotheses in Definition 3.1(b) on the
stack S ′. (For example, this is always true if A = OS , in which case i∗(A) = OS′
for any closed immersion i.)

We say that a bounded complex of sheaves F of A-modules on S has supports in
S ′, if the cohomology sheaves, H∗(F ), have supports in S ′. We let GS′(S,A) denote
the K-theory of the Waldhausen category of bounded complexes of A-modules with
cohomology sheaves that have supports in S ′. This situation will then enable us to
prove the devissage weak-equivalence: G(S ′) ' GS′(S) as in Corollary 5.11.

The second situation is where R is the sheaf of graded rings defined above
in 5.1(3). In this case I will denote the principal ideal (z). This situation will
be considered in Theorem 5.17 and will enable us to prove the homotopy property
for G-theory of dg-stacks. However, Theorem 5.17 will still need to invoke Theo-
rem 5.10, but in this new context. Therefore, in order to avoid having to prove two
different versions of the results in Lemma 5.6 through Theorem 5.10, we state the
results up to Corollary 5.11 in a general setting so that they are applicable in both
contexts. In particular, a graded B-module will mean one in the first sense through
Corollary 5.11 and will mean one in the second sense thereafter in Proposition 5.15
and Theorem 5.17: in fact, as pointed out above, we will use B to denote B in this
context so that the difference in meaning should be clear.

We will also consider the second case in 5.1 in the proof of Proposition 5.15:
here too B will be used to denote B.
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Lemma 5.6. Let R denote one of the sheaves of graded rings on Slis−et con-
sidered in 5.1. Let I denote a sheaf of ideals in R as above, i.e. either a sheaf of
ideals in R0 = OS or the ideal (z). Let FεQCohgr(S,R) so that all Hn(F ) are
killed by Ik for some fixed integer k. Then the natural map RHomR(R/Ik, F )→ F
is a quasi-isomorphism, i.e. ExtnR(R/Ik, F ) ∼= Hn(F ) for all n. Moreover for any
FεQCohgr(S, R) with bounded cohomology sheaves that are each killed by some
power of I, there exists an integer k for which the above isomorphism holds for all
n.

Proof. Recall that

HomR(M,N) = Equalizer( HomOS (M,N)
m∗ //
n∗

// HomOS (R⊗M,N) )

where m∗ and n∗ are the obvious maps induced by λM : R ⊗M → M and λN :
R⊗N → N which are the given module structures.

Working locally on Slis−et we reduce to the case where the stack is an affine
Noetherian scheme. By our hypothesis, R, R/Ik are quasi-coherent and F has
quasi-coherent cohomology sheaves. Therefore, we reduce to proving the corre-
sponding assertion where R is a graded ring, I a graded ideal in R and F is a
complex of R-modules whose cohomology groups are killed by some power k of the
ideal I. Now one has the spectral sequence

Es,t2 = ExtsR(R/Ik,Ht(F ))⇒ Exts+tR (R/Ik, F )

with Es,t2 = 0 for all s > 0 and ∼= Ht(F ) for s = 0.

See, for example, [Hart, proof of Theorem 2.8]. Therefore, ExtnR(R/Ik, F ) ∼=
HomR(R/Ik,Hn(F )) for all n. Since H∗(F ) has bounded cohomology sheaves and
S is quasi-compact, the last statement is clear. This proves the lemma. �

Corollary 5.7. Let FεQCohgr(S, B) and let I denote a sheaf of ideals as in
the Lemma. Assume that all Hn(F ) are killed by Ik for some fixed integer k. Then
the natural map RHomB(B/Ik, F )→ F is a quasi-isomorphism.

Proof. In view of the last lemma, it suffices to observe the isomorphism

RHomB(B/Ik, F ) = RHomB(B⊗
R
R/Ik, F ) ∼= RHomR(R/Ik, For(F )),

where For : Mod(S, B)→Mod(S, R) is the obvious forgetful functor. TheRHoms
denote the derived functors of the internal Hom for graded modules. Here the
derived functor RHomB is defined using the injective resolutions in Appendix B.
The last identification follows from the observation that since the dga A is assumed
to be flat over R0 = OS , B is flat over R and therefore, the forgetful functor
For : Mod(S, B) → Mod(S, R) preserves injectives. (It is precisely here that we
need to use the hypothesis that A is flat over OS .) �

Remark 5.8. One can interpret the conclusions of the above corollary in the
two distinct cases considered above. Observe that when one considers the first
situation above, then the last corollary shows the following: let F denote a bounded
complex of A-modules with coherent cohomology sheaves that have supports in S ′.
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Then the obvious map lim
k→∞

RHomA(A/Ik, F )→ F is a quasi-isomorphism. In the

second situation, the last corollary shows the following instead: let FεCohgr(S,B)
so that the cohomology sheaves of F are killed by some power of zεW[z]. Then the
obvious map lim

k→∞
RHomB(B/Ik, F )→ F is a quasi-isomorphism.

For each integer k ≥ 0, let Cohgr(S, B/Ik) denote the full sub-category of
Cohgr(S, B) which are killed by Ik. This category gets the obvious induced struc-
ture of a Waldhausen category from the one on Cohgr(S, B). Let Cohgr,B/Ik(S, B)
denote the full sub-category of Cohgr(S, B) of complexes whose cohomology sheaves
are killed by Ik.

Lemma 5.9. The obvious map K(Cohgr(S, B/Ik)) → K(Cohgr,B/Ik(S, B)) is
a weak-equivalence for all k.

Proof. For each fixed k, clearly there is a natural functor Cohgr(S, B/Ik)→
Cohgr,B/Ik(S, B)). It suffices to show this induces a weak-equivalence on K-theory
spaces.

Let ICohgr,B/Ik(S, B) denote the full sub-category of Cohgr,B/Ik(S, B) con-
sisting of complexes of graded injective B-modules. Similarly, let ICohgr(S, B/Ik)
denote the full sub-category of Cohgr(S, B/Ik) consisting of complexes of graded
injective B/Ik-modules. Now RHomB(B/Ik, ) may be replaced by the functor
HomB(B/Ik, ) on ICohgr,B/Ik(S, B) so that it is strictly functorial. The last
corollary shows that, for any FεICohgr,B/Ik(S, B), the natural map

HomB(B/Ik, F )→ F

is a quasi-isomorphism. One may also readily see that the functor HomB(B/Ik, )
preserves cofibrations and fibrations. Therefore, the Waldhausen approximation
theorem (see Theorem 7.2) applies readily to the obvious inclusion functor

ICohgr(S, B/Ik)→ ICohgr,B/Ik(S, B)

to prove it provides a weak-equivalence on taking the associated K-theory spaces.
This proves the lemma. �

Theorem 5.10. (Devissage) Assume the above situation. Then the obvious
inclusion

Cohgr(S, B/I)→ lim
k→∞

Cohgr(S, B/Ik))

of Waldhausen categories induces a weak-equivalence on taking the associated K-
theory spaces.

Proof. Now we will fix an integer k0 > 0 and consider the functor

Fk0 = HomB(B/Ik0 , ) : ICohgr(S, B/Ik0)→ ICohgr(S, B/Ik0)

Clearly, the above functor induces the identity on the associated derived cate-
gories. One may now observe that, the functors Fj = HomB(B/Ij , ), 1 ≤ j ≤ k0

define functors ICohgr(S, B/Ik0) → ICohgr(S, B/Ik0) ; since they preserve weak-
equivalences as well as cofibrations and fibrations, they induce maps of the corre-
sponding K-theory spaces. Moreover one has a distinguished triangle Fi−1(M) →
Fi(M) → Fi(M)/Fi−1(M) = HomB(Ii−1/Ii,M), MεICohgr(S, B/Ik0). One may
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in fact replace the above distinguished triangle with another where the middle term
is the mapping cylinder of Fi−1(M) → Fi(M) and the third term is its mapping
cone. Therefore, the map Fi−1(M)→ Fi(M) will be a cofibration.

One may show that each FjM has bounded cohomology sheaves that are carte-
sian as follows. Let For : Cohgr(S, B/Ij) → Cohgr(S, R/Ij) denote the obvious
forgetful functor. Then one observes that

For ◦ RHomB(B/Ij , ) = RHomR(R/Ij , ) ◦ For
and therefore, it suffices to prove that F̄jM = RHomR(R/Ij , For(M)) has bounded
cohomology sheaves that are cartesian. Given a graded R-module M , one may filter
it byMk = IkM = all elements inM killed by Ik. In case j ≥ k, F̄j(Mk) 'Mk. One
may utilize the distinguished triangle F̄j(Mk−1) → F̄j(Mk) → F̄j(Mk/Mk−1) →
F̄j(Mk−1)[1] and ascending induction on k to prove F̄j(M) has bounded cohomol-
ogy for all j.

Recall that to prove the cohomology sheaves of F̄j(M) are all cartesian, it
suffices to show the map φ∗(F̄j(M)|Uet

)) → F̄j(M)|Vet
is a quasi-isomorphism for

each smooth map φ : V → U of affine schemes in Slis−et. We do this by con-
sidering the two cases in 5.2 separately. In the first case R = OS and I is a
sheaf of ideal defining a closed sub-stack S ′ in S. Since φ is smooth, one re-
duces now to showing that φ∗(RHom(OS/Ij ,M)|Uet

) → RHom(OS/Ij ,M)|Vet
is

a quasi-isomorphism if M is a coherent OS -module which is cartesian. By taking
a resolution of (OS/Ij)|Uet

by a complex of locally free OU -modules, one read-
ily shows that φ∗(RHom(OS/Ij ,M)|Uet

) ' RHom(φ∗((OS/Ij)|Uet
), φ∗(M|Uet

)) '
RHom((OS/Ij)|Vet

,M|Vet
) = RHom(OS/Ij ,M)|Vet

. In the second case R is the

graded ring ⊕n≥0Fn(W)zn and I = (z), so one may use the resolution 0→ R
zj

→R→
R/(zj) → 0 and the resulting distinguished triangle on applying RHomR( ,M)
to reduce to the statement φ∗(M|Uet

) 'M|Vet
.

By additivity (see Theorem 7.4 in the appendix), it follows that the identity
map of K(Cohgr(S, B/Ik0)) factors as

ΣiFi/Fi−1 : K(Cohgr(S, B/Ik0))→ K(Cohgr(S, B/I))

followed by the obvious map of the latter into K(Cohgr(S, B/Ik0)). Moreover,
the composition K(Cohgr(S, B/I)) → K(Cohgr(S, B/Ik0)) → K(Cohgr(S, B/I)),
where the first map is induced by the obvious inclusion

Cohgr(S, B/I)→ Cohgr(S, B/Ik0)

and the last map is ΣiFi/Fi−1, is the identity. It follows, therefore, that the obvious
map K(Cohgr(S, B/I)) → K(Cohgr(S, B/Ik0)) is a weak-equivalence. Taking the
direct limit as k0 →∞, one obtains the required weak-equivalence. �

Corollary 5.11. Let (S,A) denote a dg-stack as in Definition 3.1(b) and let
i : S ′ → S denote the closed immersion of an algebraic sub-stack so that A′ = i∗(A)
is a dga on S ′ satisfying the hypotheses in Definition 3.1(b). Then the obvious map
G(S ′,A′) = K(Coh(S ′,A′))→ K(CohS′(S,A)) = GS′(S,A) is a weak-equivalence
where CohS′(S,A) denotes the full sub-category of Coh(S,A) of complexes whose
cohomology sheaves have supports in S ′. In particular, the obvious map G(S ′) =
K(Coh(S ′))→ K(CohS′(S)) = GS′(S) is a weak-equivalence.
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Proof. Here we let B = A with the trivial gradation, i.e., Bi = A if i = 0
and = 0 if i > 0. Since, by our convention, a graded module M = ⊕n≥0Mn in this
case means one with Mn = 0 for all n > 0, the category Cohgr(S, B/I) identifies
with Coh(S ′,A′) while Cohgr,B/Ik(S, B) identifies with CohA/Ik(S,A). Moreover
the category lim

k→∞
Cohgr,B/Ik(S, B) identifies with CohS′(S,A). �

Proposition 5.12. Let φ : (S,A′) → (S,A) denote a quasi-isomorphism of
dg-stacks as in Definition 3.1(a) or (b) with the same underlying stack. Let R
denote a sheaf of graded rings as in 5.1 and let B′ = A′ ⊗

OS
R, B = A⊗

OS
R and let I

denote a sheaf of ideals in R as in 5.2. Then the obvious maps K(Cohgr(S, B′))→
K(Cohgr(S, B)), K(Cohgr,B′/Ik(S, B′)) → K(Cohgr,B/Ik(S, B) and therefore the
induced map

K( lim
k→∞

Cohgr,B′/Ik(S, B′))→ K( lim
k→∞

Cohgr,B/Ik(S, B)

are all weak-equivalences.

Proof. Recall that the functor φ∗ : Cohgr(S, B′)→ Cohgr(S, B) is just send-
ing a graded B′-module to a graded B-module using the map B → φ∗(B′). This
clearly sends graded modules whose cohomology sheaves are killed by a power of
I to graded modules killed by the same power of I. The inverse image functor
Lφ∗ also does the same. It was already observed earlier that the natural maps
M → φ∗Lφ

∗(M) and Lφ∗φ∗(N)→ N are quasi-isomorphisms. These observations
prove the proposition. �

Corollary 5.13. Let φ : (S,A′) → (S,A) denote a quasi-isomorphism of
dg-stacks as in Definition 3.1(a) or (b) with the same underlying stack. Let I
denote a sheaf of ideals in OS defining a closed substack S ′. Then the obvious
maps GS′(S,A′)→ GS′(S,A) and G(S,A′)→ G(S,A) are weak-equivalences.

Proof. This follows readily from the last proposition by taking the sheaf of
graded rings R to be trivially graded as in 5.1(1) with Ri = 0 for i 6= 0 and
R0 = OS . �

5.3. Localization.

Theorem 5.14. (Localization for G-theory) Let i : S ′ → S denote a closed
immersion of algebraic stacks with open complement j : S ′′ → S, where (S,A) is a
dg-stack as in Definition 3.1(a).

(i) Then one obtains the fibration sequence

ΩG(S ′′,A′′)→ GS′(S,A)→ G(S,A)→ G(S ′′,A′′),

where A′′ = j∗(A).

(ii) Let Ã → A denote a flat resolution as in 3.0.1 and assume that the
closed immersion i is such that i∗(Ã) satisfies the hypotheses of a dga as in Defini-
tion 3.1(b). Then one also obtains the weak-equivalence: G(S ′, i∗(Ã)) ' GS′(S, Ã)
' GS′(S,A).
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Proof. (i) follows from Waldhausen’s localization theorem (see Theorem 7.3).
In more detail, one lets v denote the category of weak-equivalences on Coh(S,A) de-
fined by quasi-isomorphisms, while one lets w denote the coarser category of weak-
equivalences on Coh(S,A) given by maps of complexes that are quasi-isomorphisms
after restriction to S ′′. In order to apply the approximation theorem of Waldhausen
(see [Wald, Theorem 1.6.7]) to produce a weak-equivalence K(Coh(S,A), w) '
G(S ′′,A′′), it suffices to show the following: any map

α : j∗(F )→ F ′′, FεCoh(S,A), F ′′εCoh(S′′,A′′),

may be factored as the composition of j∗(c) : j∗(F ) → j∗(F̃ ) and a quasi-isomor-
phism j∗(F̃ )→ F ′′. One may show this as follows.

First we make use of Theorem 3.16 to assume that both F and F ′′ are bounded
complexes consisting of coherent O-modules in each degree. Let For denote the
forgetful functor sending an A-module to the corresponding underlying complex
of O-modules. Then For(j∗(F ′′)) = j∗(For(F ′′)) = colim

α
Nα where each Nα

is a bounded complex of coherent OS sub-modules of j∗(For(F ′′)). Since F ′′ is
bounded, we may assume it is trivial outside a finite interval [a, b], a, bεZ. There-
fore, each N i

α = 0, for i /∈ [a, b]. Since each Nα is a subcomplex of j∗(For(F ′′)), it
follows that there exists an α0 so that For(F ′′) = j∗j∗(For(F ′′)) = j∗(Nα0).

For each N i
α0

, let A.N i
α0

denote the A-submodule of j∗(F ′′) generated by
N i
α0

. Clearly this is a coherent A-module. Now let F̃ = �b
i=aA.N i

α0
denote

the A submodule of j∗(F ′′) generated by A.N i
α0

, i = a, · · · , b. Clearly this is
also a coherent A-submodule of j∗(F ′′). Since A0.N i

α0
= OS .N i

α0
= N i

α0
and

j∗(Nα0) = j∗j∗(For(F ′′)) = For(F ′′), it follows that j∗(F̃ ) = j∗j∗(F ′′) = F ′′.
If α′ : F → j∗(F ′′) is the adjoint of the map α, then one may replace F̃ by the
A-submodule generated by F̃ and Im(α′), and assume that Im(α′) ⊆ F̃ . These
arguments provide the weak-equivalence K(Coh(S,A), w) ' G(S ′′,A′′). There-
fore, the localization theorem of Waldhausen (see Theorem 7.3 in Appendix A)
then provides the fibration sequence GS′(S,A) → G(S,A) → G(S ′′,A′′). Finally
Corollary 5.11 provides the weak-equivalence G(S ′, i∗(Ã)) ' GS′(S, Ã) while Corol-
lary 5.13 provides the weak-equivalence GS′(S, Ã) ' GS′(S,A). This completes the
proof. �

5.4. Homotopy Property. Next we consider the homotopy property for G-
theory. This will follow by suitable modifications of Quillen’s arguments. We need
to invoke Proposition 5.15 in two different contexts during the course of the proof
of Theorem 5.17. Therefore we will state it in rather general terms. We will let
R = ⊕

n≥0
Rn denote a graded ring so that

R0 = OS , where U(R) is commutative,(5.4.1)

U(R) is flat over R0 and

R0 has finite tor dimension over U(R).

Clearly these hypotheses are satisfied in the second and third situations in 5.1.
Observe that, in the second situation in 5.1, U(R) = OS [t] and that R0 = OS ,
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with Ri = OSti. Therefore, U(R) is free over R0 and R0 has tor dimension 1
as a U(R)-module. In the third situation in 5.1, Rn = Fn(W)zn, and Fn(W) =
{p(t)|deg(p(t)) ≤ n, p(t)εOS [t]}, so that U(R) = OS [t][z]. Clearly this is flat over
R0 = OS and R0 has finite tor dimension over U(R).

Proposition 5.15. Assume in addition to the hypotheses in (5.4.1) that B =
R⊗OS A. Then one obtains an isomorphism:

Z[t]⊗
Z
π∗(G(S,A))→ π∗(K(Cohgr(S,B))).

Proof. Recall B = R⊗OS A. Therefore if F (R0)→ R0 is a resolution of R0

by graded flat R-modules, B0

L
⊗

U(B)
M ' (F (R0) ⊗ A) ⊗

(U(R)⊗A)
M ' F (R0) ⊗

U(R)
M

for any MεCohgr(S,B).

Let N = ⊕n≥0NnεCohgr(S,B). Then each Nn is an A-module. Since U(B) is
a commutative dga with B0 = A, it follows the complex of graded R-submodules
of N generated by Nn identifies with the graded B-submodule of N generated by
Nn. Let Fp(N) denote the B-submodule of N generated by N0, · · · , Np and let
T0 : Cohgr(S,B)→Mod(S,A) denote the functor defined by T0(N) = B0 ⊗

U(B)
N ∼=

R0 ⊗
U(R)

N . (This is graded by T0(N)p = Np/(B1Np−1 + · · · + BpN0).) The last

isomorphism shows one may identify T0 ◦ For : Cohgr(S,B) → Cohgr(S,R) →
Cohgr(S,R0) where the last functor is given by N 7→ R0 ⊗

U(R)
N with the composite

functor For◦T0 : Cohgr(S,B)→ Cohgr(S,A)→ Cohgr(S,R0). (Here For denotes
the obvious forgetful functors.)

Now [Q, Lemma 1, section 6], shows that if TorU(R)
1 (R0, U(N)) = 0 for

NεCohgr(S,R), the natural map R(−p)⊗
OS
T0(N)p → Fp(N)/Fp−1(N) is an iso-

morphism of graded R-modules. (Here R(−p)n = Rn−p and Fi(N) denotes the
graded sub- R-module generated by N0, · · · , Ni. We also let B(−p) = R(−p)⊗

OS
A.

) In case NεCohgr(S,B), the natural map B(−p)⊗
A
T0(N)p ∼= R(−p)⊗

OS
T0(N)p →

Fp(N)/Fp−1(N) is seen to be a map of graded B-modules. In view of the above
observations, if TorU(R)

1 (R0, U(Nm)) = 0 for all m, then the above map will be an
isomorphism of graded B-modules.

Next let

N = {NεCohgr(S,B)|TorU(R)
i (R0, U(Nm)) = 0, for all i > 0 and all m}.

This full sub-category inherits the structure of a bi-Waldhausen category with cofi-
brations, fibrations and weak-equivalence. Let MεCohgr(S,B). We will show that
one can find a quasi-isomorphism F (M) → M of graded B-modules with each
term in the complex F (M) a flat graded R-module and with F (M) a bounded
above complex. Let F̃ (M)0 → M denote a quasi-isomorphism of complexes of
graded R-modules with each term of the complex F̃ (M)0 a flat graded R-module.
Now the obvious map d−1 : A ⊗ F̃ (M)0 → M induces a surjection on taking co-
homology sheaves. Clearly F (M)0 = A ⊗ F̃ (M)0 is a flat graded-B-module, in
the sense that F (M)0⊗

B
− preserves quasi-isomorphisms in the second argument.
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Let K0 = Ker(d−1). This is clearly a graded B-module and one may repeat the
same construction with M replaced by K0 to define F (M)1 together with a map
F (M)1 → K0 which will induce a surjective map on cohomology sheaves. Let d0

denote the composite map F (M)1 → K0 → F (M)0. Now one may readily see that
the composition d0 ◦ d−1 = 0. One may, therefore repeat the above construction
to obtain a sequence of graded B-modules {F (M)n|n ≥ 0} together with maps
dn : F (M)n → F (M)n−1 so that the composition di ◦ di−1 = 0 for all i ≥ 0. i.e.
{dn : F (M)n → F (M)n−1|n} is a complex. Since each F (M)n is also a complex of
R0-modules, this is in fact a double complex of R0-modules. In view of our basic
assumptions in Definition 5.2 we may assume M is bounded as a graded B-module.
One may therefore take the total complex of the above complex to obtain a flat
B-module F (M) together with a quasi-isomorphism F (M) → M . Moreover, by
the construction, each term in F (M) is a flat graded R-module.

The finite tor dimension hypothesis on R0 as a U(R)-module along with the
hypothesis that M has bounded cohomology show that

R0 ⊗
U(R)

U(F (M)) = R0

L
⊗

U(R)
U(M)

has bounded cohomology sheaves. Let φ : V → U denote a map between two affine
schemes in Slis−et. Then φ∗ commutes with tensor-products so that

φ∗(R0|Uet
⊗

U(R|Uet
)
U(F (M)|Uet

)) ' φ∗(R0|Uet
) ⊗
φ∗(U(R|Uet

))
(φ∗(U(F (M)|Uet

)))

' R0|Vet
⊗

U(R|Vet
)
U(F (M)|Vet

).

Moreover, since the differentials of the complex M preserve the gradations, these
quasi-isomorphisms also preserve the gradations, showing that each T0(F (M))p has
cartesian cohomology sheaves.

Let p ≥ 0 denote a fixed integer. Let Np denote the full subcategory of N
consisting of flat graded B-modules N so that the obvious map Fp(N) → N is
quasi-isomorphism. This inherits the structure of a bi-Waldhausen category from
N in the obvious manner. Observe, in view of the results above, that the natural
map B(−i)⊗

A
T0(N)i → Fi(N)/Fi−1(N) is in fact an isomorphism of complexes

for all 1 ≤ i ≤ p. Let Coh(S,A)p+1 = tpi=0Coh(S,A) denote the sum of p + 1
copies of the bi-Waldhausen category Coh(S,A). On taking the K-theory of the
above bi-Waldhausen categories, one may define a map b : πi(K(Coh(S,A))p+1 →
πi(K(Np)) by b(F0, · · · , Fp) = ⊕pj=0B(−p)⊗

A
Fj . Similarly, one may define a map

c : πi(K(Np)) → πi(K(Coh(S,A)))p+1 by N 7→ ((T0(N)j)), 0 ≤ j ≤ p. Clearly
c ◦ b = id. Using the additivity for exact functors (see Theorem 7.4 of Appendix
A)), one may also show that b ◦ c = id which shows b is an isomorphism. Taking
the direct limit over all p→∞, one may complete the proof of the proposition. �

Lemma 5.16. Let (S,A) denote a dg-stack as in Definition 3.1(a) and let R
denote a sheaf of graded rings as in 5.1(3). Let Ã→ A denote a quasi-isomorphism
from a dga Ã as in Definition 3.1(b) and let B = A⊗

OS
R/zR, B̃ = Ã ⊗

OS
R/zR. Then

the obvious map K(Cohgr(S, B̃))→ K(Cohgr(S, B)) is a weak-equivalence.
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Proof. It suffices to observe that R/zR ∼= ⊕n≥0OStn is flat over OS . �

We proceed to prove the homotopy property for the G-theory of dg-stacks.

Theorem 5.17. (Homotopy property of G-theory) Let (S,A) denote a dg-stack
as in Definition 3.1(a) and let π : S ×A1 → S denote the obvious projection. Then
π∗ : G(S,A)→ G(S × A1, π∗(A)) is a weak-equivalence.

Proof. Now R = OS [t] = ⊕n≥0OStn. Let C = π∗π
∗(A) = A[t]. The associ-

ated graded dga B = R⊗A = ⊕n≥0Atn. Clearly (S,B) satisfies the hypotheses of
the last proposition.

Consider the filtration of OS [t] by Fp(OS [t]) = the polynomials of degree ≤
p. Clearly F0(OS [t]) = R0 = OS . C gets an induced filtration with Fn(C) =
A⊗
OS
Fn(OS [t]). Let V denote the graded ring ⊕n≥0Fn(OS [t])zn graded by the

degree of the indeterminate z. Then V is flat over V0 = R0 = OS and V/zV ∼=
⊕n≥0Fn(OS [t])/Fn−1(OS [t])
= ⊕n≥0OStn which is OS [t] viewed as a graded ring, graded by the degree of
the polynomials. V/zV has tor dimension 1 over V and OS has tor-dimension 1
over V/zV, so that OS has finite tor dimension over V. Next let C′ = V⊗

R0

A =

⊕n≥0Fn(A[t])zn. Then C′ is a graded dga so that (S,C′) satisfies the hypotheses
of the last proposition if we let R (R0) there be given by V (OS , respectively).
Observe also that C′/z.C′ ∼= ⊕n≥0Atn = B.

Therefore, the obvious pull-back maps induce isomorphisms:

Z[t]⊗
Z
πi(G(S,A)) '→πi(K(Cohgr(S,B)))

Z[t]⊗
Z
πi(G(S,A)) '→πi(K(Cohgr(S,C′)))(5.4.2)

Observe that localizing the sheaf of algebras C′ at S = {zn|n} provides a dga
that is isomorphic to the Laurent polynomials over C, i.e. C[z, z−1]; there is an
equivalence of categories between Modgr(S, C[z, z−1]) = the category of all graded
modules over C[z, z−1] and Mod(S, C) given by the functor M 7→ M/(z − 1)M =
C[z, z−1]/((z − 1)C[z, z−1])⊗M .

Next let Cohgr,fl(S,C′) denote the full-subcategory of Cohgr(S,C′) consisting
of objects that are flat and provided with two sub-categories of weak-equivalences:

v(Cohgr,fl(S,C′)) denoting the quasi-isomorphisms of complexes of sheaves of
graded modules over the sheaf of graded rings C′ and

w(Cohgr,fl(S,C′)) denoting maps that become quasi-isomorphisms after in-
verting z.

Clearly the first is a sub-category of the second. Now consider the map

Cohgr,fl(S,C′)→ Coh(S, C)
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sending a complex of graded C′-modules M• first to M•(zn) = C[z, z−1]⊗
C′
M• and

then to M•(zn)/(z − 1)M•(zn). In view of Proposition 5.3, one may invoke the Wald-
hausen approximation theorem (see Theorem 7.2 of Appendix A) just as in the
proof of Theorem 5.14 : here the forgetful functor For as in the proof of The-
orem 5.14 will be the functor Cohgr(S,C′) → Cohgr(S,R), where R = V =
⊕n≥0Fn(OS [t])zn, sending a graded object M = ⊕Mn to the same object but
viewed as a complex of graded modules over the graded ring R. Observe that
C′ = A⊗

OS
R. The above observations along with the the equivalence between

Modgr(S, C[z, z−1]) and Mod(S, C) enables one to conclude that this functor in-
duces a weak-equivalence wS•(Cohgr(S,C′))→ wCS•(Coh(S, C)) where wC denotes
the maps that are quasi-isomorphisms of sheaves of C-modules. (Similarly, another
application of the Waldhausen approximation theorem shows the obvious functor
Cohgr,fl(S,C′)→ Cohgr(S,C′) induces a weak-equivalence on K-theory spectra.)

Therefore one may apply Waldhausen’s localization theorem with the weak-
equivalences v (w) denoting the weak-equivalences defined above. This localization
theorem provides the long-exact-sequence:

(5.4.3) → πi(K((z)Cohgr(S,C′)))
i∗→πi(K(Cohgr(S,C′)))

j∗→πi(G(S, C))→

where (z)Cohgr(S,C′)) denotes the full subcategory of Cohgr(S,C′) of graded C′-
modules whose cohomology sheaves are killed by some power of z.

Let C̃′ = Ã⊗
OS

R where Ã → A is a quasi-isomorphism from a dga Ã as in

Definition 3.1(b). Let (z)Cohgr(S, C̃′)) denotes the full subcategory of Cohgr(S, C̃′)
of graded C̃′-modules whose cohomology sheaves are killed by some power of z.
Then Proposition 5.12 provides the weak-equivalences:

K((z)Cohgr(S,C′))) ' K((z)Cohgr(S, C̃′)))

and

K(Cohgr(S,C′))) ' K(Cohgr(S, C̃′))).

Then Theorem 5.10 with the ideal I = (z) provides the weak-equivalence
K((z)Cohgr(S, C̃′))) ' K(Cohgr(S, B̃)) where B̃ = C̃′/zC̃′. Finally Lemma 5.16
provides the weak-equivalence K(Cohgr(S, B̃)) ' K(Cohgr(S,B)). (Recall B =
C′/zC′.) Therefore, we may replace the term πi(K((z)Cohgr(S,C′))) in the local-
ization sequence (5.4.3) with πi(K(Cohgr(S,B))).

Let C′(−1) denote the graded dga defined by C′(−1)n = C′n−1. Recall that
F0(C) = A. Therefore, one may compute i∗ exactly as in [Q, Theorem 7, sec-
tion 6] : one observes the existence of a short exact sequence 0 → C′(−1)⊗

A
F →

C′⊗
A
F → B⊗

A
F → 0, FεCoh(S,A) and conclude (using the additivity theorem:

see Theorem 7.4) that i∗ corresponds under the isomorphisms in ( 5.4.2) to mul-
tiplying by 1 − t. Clearly multiplying by 1 − t is injective, so that i∗ is injective
and the above long exact sequence breaks up into short exact sequences. The
cokernel of this map therefore identifies with π∗G(S,A). Therefore, one may
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conclude that the functor F 7→ C′ ⊗
F0(C)

F 7→ A[t]⊗
A
F induces a weak-equivalence

G(S,A) = G(S, F0(C))→ G(S, C) = G(S,A[t]). �

6. Cohomology and Homology theories for Dg-stacks

The material in this section is added mostly as a (rather simple-minded) ap-
plication of the K-theory and G-theory of stacks. We let (stacks) denote a full
subcategory of the category of algebraic stacks considered in section 2, i.e. Noe-
therian stacks which are finitely presented over a given Noetherian base scheme S.
For example, (stacks) could denote all Noetherian Deligne-Mumford stacks finitely
presented over the base scheme S. We will consider different category structures on
(stacks) by putting restrictions on the morphisms: for example, we may consider
all morphisms of finite type, all morphisms that are proper, all representable mor-
phisms etc. Let (bigraded−rings) ((bigraded−Ab)) denote the category of bigraded
commutative rings with 1 (the category of bigraded abelian groups, respectively).
We will assume that we are given

(a) a contravariant functor H∗( , •) : (stacks) → (bigraded − rings), con-
travariant for arbitrary maps of finite type with each Hi( , j) a vector-space over
a field of characteristic 0 and

(b) a covariant functor for proper maps H∗( , •) : (stacks)→ (bigraded−Ab),
covariant for all proper morphisms (or for all proper representable morphisms), with
each Hi( , j) a vector-space over a field of characteristic 0. We will further assume
that homology is a (graded) module over the (graded) cohomology ring.

We will presently show how to define cohomology theories and homology theo-
ries for dg-stacks starting with these theories and satisfying the following properties.
Clearly one can define cohomology and homology theories for dg-stacks by com-
pletely forgetting the dg-structure sheaves. More often, the cohomology of dg-stacks
is defined as the corresponding cohomology of the closed sub-stack S̄ (defined as
in 3.0.2): see [TV], for example. Our general approach is different from both of
these and we define cohomology and homology theories for dg-stacks that also take
into account all of the dg-structure. This depends strongly on the existence of a
Chern-character map as the definitions below show. We will provide a comparison
of the resulting theories with the other variants in the remarks below.

Let (dg−stacks) denote the category of dg-stacks associated to (stacks), i.e. the
underlying stacks are the same as those in the chosen full sub-category (stacks), but
we have replaced their structure sheaves with dg-structure sheaves as in section 3.
Then we define

(a) a contravariant functor H∗dg( , •) : (dg − stacks) → (bigraded − rings),
contravariant for arbitrary maps of finite type with H∗dg( , •) a graded vector-space
over a field of characteristic 0 and

(b) a covariant functor Hdg
∗ ( , •) : (dg− stacks)→ (bigraded−Ab), covariant

for the same class of proper maps of dg-stacks with each Hdg
∗ ( , •) a graded vector-

space over a field of characteristic 0 so that the following properties hold:
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(i) When the dg-structure sheaf is the usual structure sheaf, H∗dg( , •) identifies
with H∗( , •) and Hdg

∗ ( , •) identifies with H∗( , •).
(ii) If Ch : π∗(K( )) → H∗( , •) is a multiplicative Chern-character, then Ch

extends to a multiplicative ring homomorphism on (dg − stacks).
(iii) If τ : π∗(G( )) → H∗( , •) is a Riemann-Roch transformation, then τ ex-

tends to a Riemann-Roch transformation on (dg − stacks).

Definition 6.1. (i) H∗dg(S, •) = π∗(K(S,A)) ⊗
π∗(K(S,O))

H∗(S, •) and

(ii) Hdg
∗ (S, •) = Homπ∗(K(S,O))(π∗(K(S,A)), H∗(S, •))

The multiplicative Chern-character Ch : π∗(K(S,O)) → H∗(S, •), the multiplica-
tive map π∗(K(S,O)) → π∗(K(S,A)) and the pairing H∗(S, •) ⊗ H∗(S, •) →
H∗(S, •) are used in forming the tensor product and Hom above.

When the dg-structure sheaf A = O, these theories reduce to the usual ones.
The map sending rεπ∗(K(S,A)) to r⊗1 defines the required extension of the Chern-
character. The extension of the Riemann-Roch transformation τ : π∗(G(S,A)) →
Hdg
∗ (S,A) is defined as follows. First one starts with the obvious map

π∗(G(S,A)) ⊗
π∗(K(S,O))

π∗(K(S,A))→ π∗(G(S,A)).

Next one composes this with the forgetful map π∗(G(S,A)) → π∗(G(S,O)). Fi-
nally one composes with the given Riemann-Roch transformation

τ : π∗(G(S,O))→ H∗(S, •).

By adjunction, this corresponds to defining a map τdg : π∗(G(S,A))→ Hdg
∗ (S, •).

Remarks 6.2. The theories defined above are not necessarily invariant under
quasi-isomorphism. However, one may obtain a variant of the theory which is
invariant under quasi-isomorphism by replacing the stack (S,O) with (S̄, ŌS =
H0(A)) and by replacing the dg-stack (S,A) with (S̄,H∗(A)) in Definition 6.1.
Here S̄ is the closed sub-stack of S defined as SpecH0(A): see 3.0.2.

We provide a quick comparison with the cohomology theories defined, for ex-
ample, as in [TV]. In [TV], the l-adic étale cohomology of the dg-stack (S,A)
would be defined as H∗et(S̄,Ql). While this definition depends only on the dg-stack
(S,A) up to quasi-isomorphism, it forgets all of the higher cohomology sheaves
Hi(A) which are part of the dg-structure. Depending on the point of view, for
example if the higher cohomology sheaves Hi(A), i < 0, are viewed as some sort of
infinitesimal structure of the dg-stack, this is a perfectly fine definition.

However, we would like to point out that the cohomology theories we have
defined in Definition 6.1 have the advantage that they do not forget this extra
structure and hence seem to be finer invariants of the dg-stack. But, the cohomology
theories that are defined in the above sense are always vector spaces over a field of
characteristic 0, in the above case over Ql. i.e. such cohomology theories cannot
detect torsion.
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7. Appendix A: Key theorems of Waldhausen K-theory

Definition 7.1. (See [TT, 1.2.1].) A category with cofibrations A is a category
with a zero object 0, together with a chosen sub-category co(A) satisfying the
following axioms: (i) any isomorphism in A is a morphism in co(A), (ii) for every
object AεA, the unique map 0→ A belongs to co(A) and (iii) morphisms in co(A)
are closed under co-base change by arbitrary maps in A. The morphisms of co(A)
are cofibrations. A category with fibrations is a category with a zero -object so that
the dual category Ao is a category with cofibrations. A Waldhausen category is
a category with cofibrations, co(A) together with a sub-category w(A) (of weak-
equivalences) so that the following conditions are satisfied :(i) any isomorphism in
A belongs to w(A), (ii) if

B

��

A

��

oo //
C

��
B′ A′oo // C ′

is a commutative diagram with the vertical maps all in w(A) and the horizontal
maps in the left square are cofibrations, then the induced map Bt

A
C → B′t

A′
C ′ also

belongs to w(A). (iii) If f , g are two composable morphisms in w(A) and two of the
three f , g and f ◦g are in w(A), then so is the third. A functor F : A→ B between
Waldhausen categories is exact if it preserves cofibrations and weak-equivalences.

Given a Waldhausen category (A, co(A), w(A)), one associates to it the follow-
ing simplicial category denoted wS•A: see [TT, 1.5.1 Definition]. The objects of the
category wSnA are sequences of cofibrations A1

// // A2
// // · · · // // An in

co(A) together with the choice of a quotient Ai,j for each i < j above. (The
understanding is that wS0A is the category consisting of just the zero object
0.) The morphisms between two such objects A1

// // A2
// // · · · // // An and

B1
// // B2

// // · · · // // Bn are compatible collections of maps Ai,j → Bi,j in

wA. Varying n, one obtains the simplicial category wS•A as discussed in [TT,
1.5.1 Definition].

The only Waldhausen categories considered in this paper are complicial Wald-
hausen categories in the sense of [TT, 1.2.11]: in this situation the category A
will be a full additive sub-category of the category of chain complexes with val-
ues in some abelian category. The cofibrations will be assumed to be maps of
chain complexes that split degree-wise and weak-equivalences will contain all quasi-
isomorphisms. All the complicial Waldhausen categories we consider will be closed
under the formation of the canonical homotopy pushouts and homotopy pull-backs
as in [TT, 1.1.2].

Theorem 7.2. (The Waldhausen approximation theorem :see [TT, 1.9.8].) Let
F : A→ B denote an exact functor between two complicial Waldhausen categories.
Suppose F induces an equivalence of the derived categories w−1(A) and w−1(B).
Then F induces a weak-homotopy equivalence of the associated K-theory spaces,
K(A) and K(B).
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Theorem 7.3. (Localization Theorem :see [TT, 1.8.2] and [Wald, Theorem
1.6.4]) Let A be a small category with cofibrations and provided with two sub-
categories of weak-equivalences v(A) ⊆ w(A) so that both (A, co(A), v(A)) and
(A, co(A), w(A)) are complicial Waldhausen categories (as in [TT, section 1] .)
Let Aw denote the full sub-category of A of objects A for which 0→ A is in w(A),
i.e. are w-acyclic. This is a Waldhausen category with co(Aw) = co(A) ∩Aw and
v(Aw) = v(A) ∩Aw. Then one obtains the fibration sequence of K-theory spaces:
K(Aw, v)→ K(A, v)→ K(A, w).

Theorem 7.4. (Additivity theorem :see [Wald, Proposition 1.3.2, Theorem
1.4.2].) Let A and B be small Waldhausen categories and let F, F ′, F ′′ : A→ B be
three exact functors so that there are natural transformations F ′ → F and F → F ′′

so that (i) for all A in A, F ′(A)→ F (A) is a cofibration with its cofiber ∼= F ′′(A)
and (ii) for any cofibration A′ → A in A, the induced map F ′(A) t

F ′(A′)
F (A′) →

F (A) is a cofibration. Then the induced maps KF , KF ′ and KF ′′ on K-theory
spaces have the property that KF ' KF ′ +KF ′′.

8. Appendix B: Injective resolutions of dg-modules

Let (S,A) denote a dg-stack as before. Let For : Mod(S,A)→ C(Mod(S,OS))
denote the forgetful functor sending an A-module M to itself, but viewed as a
complex of OS -modules. Let MεMod(S,A) so that M has bounded cohomology
sheaves: without loss of generality, we may in fact assume M is bounded below.
Then one may find a complex of injectives J(0) of OS -modules together with a
quasi-isomorphism For(M) → J(0). If M i = 0 for all i < n, then we may choose
J(0) so that J(0)i = 0 for all i < n as well. Now consider HomOS (For(A), J(0))
where HomOS denotes the internal hom in the category of OS -modules. Using the
right A-module structure on A, one sees that this belongs to Mod(S,A). Given
any NεMod(S,A), (where we assume the A-module structure is on the left), one
observes the adjunction isomorphism

HomA(N,HomOS (For(A), J(0))) ∼= HomOS (A⊗
A
N, J(0)) ∼= HomOS (N, J(0))

where HomOS denotes the external hom in the category of OS -modules and HomA
denotes the external hom in the category Mod(S,A). Since J(0) is a complex of
injectives in the former category, it follows that HomA( ,HomOS (For(A), J(0)))
preserves quasi-isomorphisms in the first argument. i.e. HomOS (For(A), J(0)) is
an injective object of Mod(S,A).

Next the obvious augmentation OS → A induces a map HomOS (For(A), J(0))
→ HomOS (OS , J(0)) = J(0). Taking N = M above, the above adjunction shows
that there is a map M → HomOS (For(A), J(0)) of A-modules corresponding to
the map M ∼= A⊗

A
M → J(0). Composing with the map HomOS (For(A), J(0))→

HomOS (OS , J(0)) = J(0) corresponds to the composition M = OS ⊗
OS
For(M) →

A⊗
A
M → J(0) and therefore identifies with the original quasi-isomorphism M →

J(0) of OS -modules. Therefore, the map d−1 : M → I(0) = HomOS (For(A), J(0))
induces an injective map on cohomology sheaves. Now one may replace M with
coker(d−1) and find a map d̄0 : coker(d−1) → I(1) of objects in Mod(S,A), with



42 ROY JOSHUA

I(1) an injective object in Mod(S,A), which will induce an injective map on coho-
mology sheaves. Let d0 : I(0)→ I(1) denote the composition of I(0)→ coker(d−1)
and d̄0. One may repeat this construction to define a collection, {I(n)|n ≥ 0} of
injective objects in Mod(S,A) together with maps di : I(i)→ I(i+1) in Mod(S,A)
so that the compositions di ◦ di−1 = 0 for all i ≥ 1. Moreover, one may choose
these so that I(n)i = 0 for all i < n where n is chosen as in the beginning of this
section. This is a resolution of M in the following sense: the cohomology objects,
ker(di)/Imd(di−1) = 0 for all i > 0 and ∼= M if i = 0. Now {I(n)d

n

→I(n + 1)|n}
forms a double complex in Mod(S,OS), the total complex of which will be quasi-
isomorphic to M in view of the last property. The construction shows that the
total complex will be bounded below and belongs to Mod(S,A).

There are obvious variants of this that apply in the graded situation as in
section 5.1, the details of which are skipped.
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