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Abstract. In this paper, we develop a theory of Spanier-Whitehead duality in the context of motivic homotopy
theory. Notable among the applications of this theory is a variant of the classical Becker-Gottlieb transfer in the

framework of motivic homotopy theory, with several potential applications, and which will be dealt with in detail

in a sequel. A variant of this theory in the context of étale homotopy theory was already developed by the second
author several years ago: we will explore the connections between these two theories as well.
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1. Introduction

Spanier-Whitehead duality in algebraic topology is a classical result formulated and established by E. H. Spanier
and J. H. C. Whitehead in the 1950s (see [SpWh55], [SpWh58] and [Sp59]): it was shown there that finite CW
complexes have dual complexes if one works in the stable category. This lead to the theory of spectra and much
of stable homotopy theory followed. In the 60s, Atiyah (see [At]) showed that the Thom-spaces of the normal
bundles associated to the imbedding of compact C∞-manifolds in high dimensional Euclidean spaces provided a
Spanier-Whitehead dual for the manifold. A key application of this classical Spanier-Whitehead duality is the
notion of a transfer map for fibrations which need not be covering spaces, due to Becker and Gottlieb, see [BG76].
The transfer turned out to be a versatile tool in algebraic topology: see for example, [BG75], [Seg] and [Sn].

Though the homotopy theory of algebraic varieties in the context of motives and algebraic cycles started only
with the work of Voevodsky and Morel (see [MV]), a closely related theory that only considers algebraic varieties
from the point of view of the étale topology has been in existence for over 40 years starting with [AM]. David
Cox in his thesis (see [Cox]) and Eric Friedlander (see [Fr]) developed the very important notion of étale tubular
neighborhoods in the context of étale homotopy. The second author’s Ph. D thesis (see [JT], [J86], [J87]) developed
the theory of Spanier-Whitehead duality in the context of étale homotopy theory, following upon the work of Cox
and Friedlander. He also used this to construct a transfer map as a map of stable étale homotopy types for proper
smooth maps between algebraic varieties over algebraically closed fields.

In recent years there has been renewed interest in the homotopy theory of algebraic varieties due to the work of
Voevodsky (see [Voev], [MV]) on the Milnor conjecture which introduced several new techniques and the framework
of motivic homotopy theory as in [MV]. It is therefore, natural to ask if a suitable theory of Spanier-Whitehead
duality exists in the framework of motivic homotopy theory and if it could be used to construct an analogue
of classical Becker-Gottlieb transfer. The first author meanwhile has been interested in descent questions for
algebraic K-theory and formulated a possible approach to understanding these questions using a motivic variant
of the Becker-Gottlieb transfer.

The present paper is the second in a series of papers devoted to exploring these descent questions for algebraic
K-theory. In [CJ1], we had already built the frame-work of equivariant stable motivic homotopy theory: all our
results in this paper and subsequent ones will be stated in this framework. In the present paper, we establish a
general theory of Spanier-Whitehead duality and apply this to produce a Becker-Gottlieb type transfer for certain
classes of algebraic varieties which are closely related to the linear varieties studied in [Tot] and [J01]. A general
framework for constructing the Becker-Gottlieb transfer using a variant of Spanier-Whitehead duality was discussed
in [DP] long before stable motivic homotopy theory was invented. A key idea needed here is the notion of objects
that are finite in a suitable sense so that they are strongly dualizable.

A theory of Atiyah-style duality in the motivic context already appears in [Voev, Proposition 2.7]. However,
this requires the schemes considered be projective and smooth and therefore does not apply to schemes of the
form G/N(T ), where G is a reductive group and N(T ) the normalizer of a maximal torus in G. We prove the
required finiteness by first introducing the notion of stable motivic homotopy type for schemes in general and then
by showing that the stable motivic homotopy types of linear schemes and schemes like G/N(T ) after completion
away from the residue characteristic are closely related to the completion of the corresponding étale topological
types. We then observe that these completed stable étale homotopy types are finite.

We will adopt the following terminology throughout.

• We will restrict to separated schemes of finite type over a base field k0. For such a scheme X, Xmht (Xeht)
will denote the pro-object of simplicial sheaves given by the rigid hypercoverings of X in the Nisnevich
topology (étale topology, respectively). Xet will denote the usual étale topological type which is obtained
from Xeht by applying the connected component functor. Then ΣP̄1

et
X̄et,+, ΣS2X̄et,+ will denote the stable

étale topological types defined with respect to the Galois-equivariant suspension spectra given by ΣP̄1
et

and
ΣS2 as defined in 2.1: see also 3.4. ΣP1Xmht,+ will denote the corresponding Galois-equivariant stable
motivic homotopy type defined in section 3.

• Let l denote a fixed prime different from char(k0) and let Z/l∞ and Z̃/l∞ denote the Z/l-completions in
the sense of [CJ1, section 4]. hNis (het) will denote the generalized (equivariant) cohomology spectrum
computed on the Nisnevich site (étale site, respectively) as defined in section 5 and H denotes a subgroup of
Gal of finite index. hNis and het will denote the corresponding generalized (equivariant) homology spectra.
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One of our main results may now be summarized in the following theorem. The version of the theorem given
below is stated in the context of equivariant stable homotopy theory, equivariant with respect to the action of the
Galois group Gal of an algebraic closure k̄ of the given field k0: see section 2. For several applications it suffices
to consider the non-equivariant version of this theorem. Therefore, the reader may omit the Galois group actions
(and hence the subgroup H), at least on first reading. Moreover, even when allowing the Galois group action, we
let it act only on the suspension coordinates as explained in Example 2.1.

Theorem 1.1. (See Theorem 7.3 and Corollary 7.4.) Let X denote a linear scheme over the base field k0 (see
Definition 4.4) which is also smooth and where the strata are isomorphic to product of affine spaces and split tori
over k0. We may also let X = G/N(T ) where N(T ) is the normalizer of a maximal torus in G, with G a split
connected reductive group G, split over k0 and T ( B) is a fixed maximal torus of G ( B a Borel subgroup containing
T , respectively). Let X̄ denote the scheme X ×

Spec k0

Spec k, where k is the algebraic closure of k0. Let the derived

smash product of spectra be defined as in (2.1.2).

(i) Then there exists a weak-equivalence of completed spectra Z/l∞(ΣS2) ' Z/l∞(ΣP̄1
et

) and a natural map

ΣP̄1
et
X̄et,+

L
∧

ΣP̄1
et

ΣP1 → ΣP1Xmht,+

that induces weak-equivalences

hNis(X, Z̃/l∞(ΣP1), H) '→het(X̄, Z/l∞(ΣP̄1
et

), H)
L
∧

Z/l∞(ΣP̄1
et

)H
Z̃/l∞(ΣP1)H .

(ii) Next let X denote linear schemes of the following form: (a) G/B or (b) G/T where G is a split connected
reductive group G, split over k0 and T ( B) is a fixed maximal torus of G ( B a Borel subgroup containing T ,
respectively). We may also let X = G/N(T ) where N(T ) is the normalizer of a maximal torus in G, with G as
above. Then one obtains the weak-equivalences:

Z/l∞(ΣP̄1
et
X̄et,+)H

L
∧

Z/l∞(ΣP̄1
et

)H
Z̃/l∞(ΣP1)H ' het(X̄, Z/l∞(ΣP̄1

et
), H)

L
∧

Z/l∞(ΣP̄1
et

)H
Z/l∞(Σ∞P1)H

' hNis(X, Z̃/l∞(ΣP1)H) ' (Z̃/l∞(ΣP1)
L
∧

ΣP1
ΣP1X+)H

of spectra in Spts(k0,Gal,P1). Here we have used Z/l∞ΣP̄1
et
X̄et,+ to denote the homotopy limit of the obvious

pro-object denoted by the same symbol.

(iii) If X is any one of the schemes as in (ii), then it admits a lifting to a linear scheme X̄C̄ defined over C and
one also obtains the weak-equivalences:

Z/l∞(ΣS2X̄C) ' Z/l∞(ΣS2X̄C)et

This theorem shows that the motivic stable homotopy types of the schemes appearing above, when completed
at l is finite and hence strongly dualizable by taking their function-spectra mapping into appropriately completed
sphere-spectra. We make use of the above theorem to construct the stable transfer map (see Definition 8.6)

tr(f) : Z̃/l∞(ΣP1) ∧ ΣP1(BG+)→ Z̃/l∞(ΣP1) ∧ ΣP1(EG×
G
G/N(T )+) ' Z̃/l∞(ΣP1) ∧ ΣP1(BN(T )+)

so that the composition π ◦ tr(f) identifies with the identity map in the stable motivic homotopy category, where
π : ΣP1(EG×

G
G/N(T )+)→ ΣP1(BG+) is the obvious projection.

An important corollary of the last theorem and the stable transfer map is the following.

Theorem 1.2. Let G denote a split connected reductive group G, split over k0 and let T denote a maximal torus
with N(T ) denoting its normalizer. Then the map Z̃/l∞(ΣP1BN(T )) → Z̃/l∞(ΣP1BG) is a split epimorphism in
Sptmot(k0,Gal,P1). In particular, the above map induces a split injection on any contravariant functor defined on
Sptmot(k0,Gal,P1).
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The above theorem, in fact enables, one to restrict the structure group from G to N(T ) (and then to T by
ad-hoc arguments) in several situations. Taking G = GLn, this becomes a splitting principle reducing problems on
vector bundles to corresponding problems on line bundles. Such applications are explored fully in [CJ2].

Recall that in [Voev, Proposition 2.7], it is shown that for every projective smooth variety X, there exists a
vector bundle N together with a Thom-Pontrjagin collapse map: TP : T d+n → Th(N ). Here T d+n is a T-sphere of
dimension d+n (and identified with the projective space Pd+n

k0
) and Th(N ) is the Thom-space of the vector bundle

N . As another application of the theory developed in this paper, we are able to provide an independent proof that
this collapse map provides a version of Atiyah-duality (see [At]) in the motivic context when X is assumed to be
both linear and smooth projective. This is independent of [Voev] which contains a (rather difficult to follow) proof
for general smooth projective schemes.)

Theorem 1.3. Let X denote a projective smooth linear scheme over a field k0. Then there exists a vector bundle
N over X together with a map This provides a map µ : Σ∞T T

d+n → Σ∞X+ ∧ Th(N ). This map induces a map
from the stable T-homotopy of X+ to the stable T-cohomotopy of Th(N ) which induces a weak-equivalence after
smashing with the completed sphere spectrum Z̃/l∞(ΣP1).

Here is a summary of the paper. We will freely make use of the framework of Galois equivariant motivic
homotopy theory developed in [CJ1]. For the reader’s convenience, we recall the main features of this theory in
section two. The third section explores the connection between étale topological type and the motivic homotopy
type of algebraic varieties, the key link being provided by hypercoverings. (In fact the notion of motivic homotopy
type introduced here seems to be new.) The fourth section explores the relation between cellular objects in the
motivic stable homotopy category and linear varieties. This is followed by a detailed definition and study of the
basic properties of generalized motivic cohomology and homology in section 5. In section 6, we discuss the general
theory of Spanier-Whitehead duality in the context of function spectra. Section 7, which is a key section, is devoted
to a proof that the motivic stable homotopy type of many algebraic varieties (for example linear varieties) is finite.
This is used in section 8 to construct a special case of the Becker-Gottlieb transfer and we conclude in section 9
by discussing the variant of Atiyah-duality as in Theorem 1.3

2. A quick review of Galois equivariant motivic stable homotopy theory

We will fix a field k0 and let Gal denote the Galois group of an algebraic closure k̄ over k0. Then PSh(Sm/k0) will
denote the category of simplicial presheaves on the category Sm/k0 of smooth schemes of finite type over k0. The
projective model structure on PSh(Sm/k0) is where the fibrations and weak-equivalences are defined object-wise
and the cofibrations are defined using the left-lifting property with respect to trivial fibrations. We next localize
PSh(Sm/k0) by inverting maps associated to an elementary distinguished square in the Nisnevich topology. The
resulting category will be PSh(Sm/k0)mot. If instead one inverts maps of the form U• → U where U ε Sm/k0 and
U• → U is a hypercovering in the given topology, the resulting category will be PSh(Sm/k0)des. The objects of
the categories PSh(Sm/k0)mot and PSh(Sm/k0)des will often be called sheaves upto homotopy for obvious reasons.
The topology will always be one of the following: the Zariski, the étale or the Nisnevich topology.

Next one considers the orbit category OGal = {Gal/H | |Gal/H| < ∞}. A morphism Gal/H → Gal/K

corresponds to γ εGal, so that γ.Hγ−1 ⊆ K. One may next consider the category PShO
o
Gal

mot of OoGal -diagrams
with values in PSh(Sm/k0)mot and also the category PShO

o
Gal

des of OoGal -diagrams with values in PSh(Sm/k0)des.
Let C denote either PShO

o
Gal

mot or PShO
o
Gal

des .

Let C′ denote a C-enriched full-subcategory of C consisting of objects closed under the monoidal product ∧, all
of which are assumed to be cofibrant and containing the unit S0. Let C′0 denote a C-enriched sub-category of C′,
which may or may not be full, but closed under the monoidal product ∧ and containing the unit S0. Then the
basic model of equivariant motivic stable homotopy category will be the category [C′0, C]. This is the category whose
objects are C-enriched covariant functors from C′0 to C: see [Dund1, 2.2].

We let Sph(C′0) denote the C-category defined by taking the objects to be the same as the objects of C′0 and
where HomSph(C′0)(TU , TV ) = TW if TV = TW ∧TU and ∗ otherwise. Since TW is a sub-object of HomC(TU , TV ), it
follows that Sph(C′0) is a sub-category of C′0. Now an enriched functor in [Sph(C′0), C] is simply given by a collection
{X(TV )|TV ε Sph(fC0)} provided with a compatible collection of maps TW ∧ X(TV ) → X(TW ∧ TV ). We let
Spectra(C) = [Sph(C′0), C].
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Several possible choices for the category C′0 are discussed in detail in [CJ1, Examples 3.3]. However, for the
purposes of this paper it seems preferable to restrict to the following choices.

Example 2.1. The main choice of the subcategory C′ above is the following.

(i)Let T = P1
k for some fixed, not necessarily finite extension k of k0. Let K denote a normal subgroup of Gal

with finite index. Let TK denote the ∧ of Gal/K copies of T with Gal/K acting by permuting the various factors
above. We let C′ denote the full sub-category of C generated by these objects under finite applications of ∧ as
K is allowed to vary subject to the above constraints. This sub-category of [C′, C] will be denoted [C′, C]P1

k
and

the corresponding category of spectra will be denoted Spectra(C,P1
k). If we fix the normal subgroup K of Gal, the

resulting category of P1
k-spectra will be denoted Spectra(C, Gal/K,P1

k): here the subcategory C′ will denote the
full sub-category of C generated by these objects under finite applications of ∧.

More generally, given any object P ε C together with an action of Gal/K for some finite quotient group of Gal,
one may define the categories [C′, C]P and the category, Spectra(C, P ) of P -spectra similarly by replacing P1

k above
by P . (For example, P could be F (P1

k) for a functor F : C → C

(ii) Under the same hypotheses as in (i), we may also define C′ as follows. Let T = Sn (for some fixed positive
integer n) denote the usual simplicial n-sphere. Let TK denote the ∧ of Gal/K copies of T with Gal/K acting by
permuting the various factors. In case K = Gal and n = 1, we obtain a spectrum in the usual sense and indexed by
the non-negative integers. Such spectra will be called ordinary spectra: when the constituent simplicial presheaves
are all simplicial abelian presheaves, such spectra will be called ordinary abelian group spectra.

Definition 2.2. P1-motivic and étale spectra. (i) If C = PShO
o
Gal

mot and C′0 is chosen as in Examples 2.1(i), the
resulting category of spectra, Spectra(C), with the stable model structure will be called P1-motivic spectra and
denoted Sptmot(k0,Gal,P1).

(ii) If C = PShO
o
Gal

des with the étale topology and C′0 chosen as in Examples 2.1(ii), the resulting category of spectra,
Spectra(C) with with the stable model structure will be called P1-étale spectra and denoted Sptet(k0,Gal,P1). In
case F : C → C is a functor as in 2.1 (i), Sptmot(k0,Gal,F(P1)) (Sptet(k0,Gal,F(P1)) will denote the corresponding
category. Observe from Examples 2.1(i), that there are several possible choices for the sub-categories C′0.

If Sn for some fixed positive integer n is used in the place of P1 above, the resulting categories will be denoted
Sptmot(k0,Gal,Sn) and Sptet(k0,Gal,Sn).

The Galois group Gal will be suppressed when we consider spectra with trivial action by Gal.

At this point, it is important to recall the identification in [CJ1, 3.3.3] that identifies spectra in the above
categories with diagrams of spectra indexed by OoGal. If X belongs to any of the above categories of spectra and
K denotes a normal subgroup of Gal with finite index, XK will denote the diagram X evaluated at G/K.

Remark 2.3. Clearly it is possible to use any of the categories C = PShc(Sm/k0, Gal) PShA1,c(Sm/k0, Gal), or
PShO

o
Gal

des with C′0 chosen as in 2.1(i) or as in 2.1(ii). However, the simplicial presheaves forming the terms of these
spectra are not sheaves upto homotopy. Hence the reason for adopting the above definitions. Clearly, for certain
applications, it may be enough to consider such spectra.

Definition 2.4. HSptmot(k0, Gal,P1) (HSptet(k0, Gal,P1)) will denote the corresponding stable homotopy cat-
egory of P1-motivic (étale) spectra.

The Galois group Gal will be suppressed when we consider spectra with trivial action by Gal.

2.1. Key properties of Sptmot(k0,Gal,F(P1)) and Sptet(k0,Gal,F(P1)). We summarize the following properties
which have already been established above. Similar properties also hold for the categories Sptmot(k0,Gal,Sn) and
Sptet(k0,Gal,Sn) for any n ≥ 1 though we do not state them explicitly.

(i) Weak-equivalences and fibration sequence A map f : A → B in any one of the above categories of Gal-
equivariant spectra is a weak-equivalence if and only if the induced map fH : AH → BH is a weak-equivalence
of spectra for all subgroups H ⊆ Gal of finite index. A diagram F → E → B is a fibration sequence in any
one of the above categories of Hal-equivariant spectra if and only if the induced diagrams FH → EH → BH

are all fibration sequences of spectra for all subgroups H of finite index in Gal.
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(ii) Stably fibrant objects. A spectrum E is fibrant in the above stable model structure if and only if each
E(TV ) is fibrant in C= the appropriate unstable category of simplicial presheaves and the induced map
E(TV )→ HomC(TW , (E(TV ∧ TW ))) is a weak-equivalence of Galois-equivariant spaces for all TV , TW ε C′0.

(iii) Cofiber sequences A diagram A → B → B/A is a cofiber sequence if and only if the the homotopy fiber of
the map B → B/A is stably weakly-equivalent to A.

(iv) Finite sums. Given a finite collection {Eα|α} of objects, the finite sum VαEα identifies with the product
ΠαEα up to stable weak-equivalence.

(v) Additive structure. The corresponding stable homotopy categories is an additive category.
(vi) Shifts. Each TV ε C′0 defines a shift-functor E → E[TV ], where E[TV ](TW ) = E(TV ∧ TW ). This is an

automorphism of the corresponding stable homotopy category. The inverse of this automorphism will be
denoted E → E[−TV ], where E[−TV ](TV ∧ TW ) = E(TW ).

(vii) Cellular left proper simplicial model category structure. All of the above categories of spectra have the structure
of cellular left proper simplicial model categories. The category Sptmot(k0,Gal,F(P1)) and the corresponding
category of spectra on the étale site are weakly finitely generated. The above categories are locally presentable,
so that the corresponding model categories are combinatorial.

(viii) Symmetric monoidal structure. There is a symmetric monoidal structure on all the above categories of spectra,
where the product is denoted ∧. The sphere spectrum, (i.e. the inclusion of C′0 into C) is the unit in this
symmetric monoidal structure. Given a fixed spectrum E, the functor F 7→ E ∧ F has a right adjoint which
will be denoted Hom or often Hom. This is the internal hom in the above categories of spectra. The derived
functor of this Hom denoted RHom may be defined as follows. RHom(F,E) = Hom(C(F ), Q(E)), where
C(F ) is a cofibrant replacement of F and Q(E) is a fibrant replacement of E.

(ix) Smash products and Ring spectra. First we recall the construction of smash products of enriched functors
from [Dund1, 2.3]. Given F ′, F ε [C′0, C], their smash product F ′ ∧F is defined as the Kan-extension along the
monoidal product ◦ : C′0 × C′0 → C′0 of the C-enriched functor F ′ × F ε [C′0 × C0, C]. Given spectra X and Y in

[Sph(C′0), C], this also defines their smash product X ∧ Y. One also defines the derived smash product X
L
∧Y

by C(X ) ∧ Y, where C(X ) is a cofibrant replacement of X in the stable model structure on Spectra(C). An
algebra in [C′0, C] is an enriched functor X provided with an associative and unital pairing µ : X ∧X → X , i.e.
for TV , TW ε C′0, one is given a pairing, X (TV ) ∧ X (TW ) → X (TV ∧ TW ) which is compatible as TW and TV
vary and is also associative and unital.

A ring spectrum in Spectra(C) is an algebra in [Sph(C′0), C] for some choice of C′0 satisfying the above
hypotheses. A map of ring-spectra is defined as follows. If X is an algebra in [Sph(C′0), C] and Y is an algebra
in [Sph(D′0), C] for some choice of subcategories C ′0 and D′0, then a map φ : X → Y of ring-spectra is given by
the following data: (i) an enriched covariant functor φ : C′0 → D′0 compatible with ∧ and (ii) a map of spectra
X → φ∗(Y ) compatible with the ring-structures. (Here φ∗(Y ) is the spectrum in Spectra(C, C′0) defined by
φ∗(Y )(TV ) = Y (φ(TV )).

Given a ring spectrum A, a left module spectrum M over A is a spectrum M provided with a pairing
µ : A ∧M →M which is associative and unital. One defines right module spectra over A similarly. Given a
left (right) module spectrum M (N , respectively) over A, one defines

(2.1.1) M∧
A
N = coequalizer(M ∧A ∧N→→M ∧N)

where the coequalizer is taken in the category of spectra and the two maps correspond to the module structures
on M and N , respectively. Let Mod(A) denote the category of left module spectra over A with morphisms
being maps of left module spectra over A. Then the underlying functor U : Mod(A) → Spectra(C) has a
left-adjoint given by the functor FA(N) = A ∧ N . The composition T = FA ◦ U defines a triple and we let
TM = hocolim

∆
{TnM |n}. Since a map f : M ′ → M in Mod(A) is a weak-equivalence of spectra if and only

if U(f) is, one may observe readily that TM is weakly-equivalent to M . Therefore, one defines

(2.1.2) M
L
∧
A
N = TM∧

A
N = coequalizer(TM ∧A ∧N→→M ∧N)

Definition 2.5. (Stable homotopy groups). Let E denote a fibrant spectrum in any of the above categories of
spectra and let TV ε C′ denote any given object. Then TV = TK1∧· · ·∧TKn withKi, i = 1, · · · , n a normal subgroup
of Gal of finite index. Clearly, K = ∩ni=1Ki is a normal subgroup of Gal with finite index in Gal and it acts trivially
on TV . Recall that since E is fibrant, the obvious map E(TV )→ ΩTW (E(TV ∧ TW )) = HomC(TW , E(TV ∧ TW ))
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is a weak-equivalence. Therefore, the k-th iteration of the above map, E(TV ) → ΩkTW (E(TV ∧ T∧
k

W )) is also a
weak-equivalence. Therefore, we define

πKs+2|TV |,TV (E(U)) = [Σs+2|TV |,TV U+, E
K
|U ] = lim

n→∞
[TV ∧ T∧

n

W ∧ Ss ∧ U+, E
K
|U (T∧

n

W )], U ε (Sm/k0,Gal)?.

Here [A,B] denotes Hom in the homotopy category associated to the corresponding category of Gal-equivariant
spectra.

Hs+2|TV|,TV,K(U+,E) = HomSp,Gal/K(Σs+2|TV|,TVU+,EK
|U) =

= lim
n→∞

HomSp,,Gal/K(TV ∧ T∧
n

W ∧ Ss ∧ U+, E
K
|U (T∧

n

W )), U ε (Sm/k0,Gal)?

where HomSp denotes the internal hom-functor defined in [CJ1, 3.1.6 Mapping spectra] for Gal/K-equivariant
objects and ? denotes either the Nisnevich or the étale sites. We will use the notation Hs+2|TV|,TV,K

mot (U+,E)
(Hs+2|TV|,TV,K

et (U+,E)) to denote the corresponding hypercohomology when E ε Sptmot(k0,Gal,T) (E ε Sptet(k0,Gal,T),
respectively).

When the Galois actions are ignored (or trivial), a general TW ε C′0 is a finite iterated smash product of P1, so that
in this case the above stable homotopy groups may be just indexed by two integers.

3. Motivic and étale homotopy types

3.1. Nisnevich hypercoverings vs. étale hypercoverings. We will briefly recall the definition of rigid cov-
erings from [CJ1, Definition 2.11]. Let X ε Sm/k0? denote a fixed scheme. Let X̄ denote a chosen conservative
family of points of X appropriate to the site. Then a rigid covering of X in the topology ? then is a disjoint union
of pointed separated maps Ux, ux → X,x in the chosen site with each Ux connected and indexed by x ε X̄.

A rigid hypercovering of X is then a simplicial scheme U• together with a map U• → X so that U0 is a rigid
covering of X in the given topology ? and so that for each n ≥ 0, the induced map Un → (coskXn−1(U•))n is a rigid
covering. (Here we use the convention that (coskX−1(U•))0 = X. )

Next it is important to observe the following:
(i) If U → X is a rigid covering of the scheme X in the Nisnevich topology, it is also a rigid covering in the étale

topology. To see this, let Ux, ux → X,x be a pointed map from a connected component of U lying over a point
x of X. Since this is a rigid cover in the Nisnevich topology, the induced map k(x)→ k(u) is an isomorphism.
Let the imbedding of k(u) into a separable closure denote the geometric point ū and let the pre-composition
of this imbedding with the isomorphism k(x) → k(u) denote the geometric point x̄. Therefore, we see that
the geometric point corresponding to u lies over the geometric point corresponding to x. Since this holds
for all connected components of U , it follows that U → X is a rigid étale cover. It follows readily that any
hypercover of a simplicial scheme X• in the Nisnevich topology is a hypercover of X• in the étale topology.

(ii) As in the étale case (see [Fr, Proposition 4.1]), one may readily show that there is at most one map between
two rigid coverings of a scheme, when the coverings are in the Nisnevich topology. Therefore, the category of
rigid coverings is clearly a left directed category in both the Nisnevich and étale topology. Given a simplicial
scheme X• with each Xn ε Sm/k0, we will denote by HRR?(X•) the category of rigid hypercoverings of X• in
the topology ?, which denotes either one of the Nisnevich or étale topologies. It follows readily that HRR?(X•)
is a cofiltered category.

We will view each such rigid hypercovering as an object in PSh(Sm/k0).

Definition 3.1. (Motivic and étale homotopy types) Given a simplicial scheme X• as above, we let X•,mht =
{U• ε HRR?(X•)} when ? = Nis and X•,eht = {U• ε HRR?(X•)} when ? = ét.

Remark 3.2. For the case ? = ét, X•,eht is different from the étale topological type as is usually defined, where one
also applies the connected component functor to the hypercoverings to produce an inverse system of simplicial sets.
However, the disadvantage of the latter is that the étale cohomology of X• can recovered from this étale topological
type only with respect to locally constant sheaves. Since one clearly needs to consider cohomology with respect
to complexes of sheaves which are generally not apriori locally constant (for example, the motivic complexes), it
is important define the motivic homotopy type as we have done. A key property of the motivic homotopy type
defined above is the following result.
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LetX denote a scheme in Sm/k and let U → X denote an étale map. Let π0(t(U, ū))∧Spec k̄ = tπ0(t(U,ū))(Spec k̄).
One may map this to t(U, ū) by mapping the component Spec k̄ indexed by ū to ū. Applying this map to each
term in a rigid étale hypercovering of each X one obtains a natural map Xet → Xeht of inverse systems of simplicial
sheaves. Since every rigid Nisnevich hypercovering of X is a rigid étale hypercovering as observed above, one also
obtains a natural map Xeht → Xmht of inverse systems of simplicial sheaves.

Proposition 3.3. Let X ε Sm/k0. If P is a simplicial abelian presheaf belonging to PSh(Sm/k0) which is additive
in the sense that Γ(tiUi, P ) = ΠiΓ(Ui, P ) and Ga(P ) is a fibrant replacement of aP , then the obvious maps

lim
→ HRR?(X)

Γ(U•, P )→ lim
→ HRR?(X)

Γ(U•, GaP )←− Γ(X,GaP )

induce isomorphisms on taking cohomology. Moreover, the map Γ(X,GaP )→ Γ(U•, GaP ) induces an isomorphism
on taking cohomology for every hypercovering U•. In particular, if P is an abelian sheaf on (Sm/k0)et ((Sm/k0)Nis),
there exists a natural quasi-isomorphism hom(Xeht, P ) ' Γ(X,GaP ) (hom(Xmht, P ) ' Γ(X,GaP ), respectively)
where hom denotes hom in the category of abelian presheaves.

Next we proceed to compare between the sphere-spectra and the P1-spectra. First we digress to discuss pro-
objects in model categories some detail.

3.2. Pro-objects in a model category. An example to keep in mind is the following which concerns étale
realizations which we will consider in the next section. Let (simpl.sets)∗ denote the category of pointed simplicial
sets. In view of the imbedding (simpl.sets∗)→ Psh(Sm/k), we will view pro-objects in the former as pro-objects in
the latter. (In fact one may make the following stronger observation. Let PShO

o
Gal

mot denote the category of simplicial
presheaves on the Nisnevich site that are sheaves upto homotopy: see 2. The category of fibrant pointed simplicial
sets will be imbedded in this category in the obvious manner.) This will come in handy for the comparison results
in the next sections.

Much of what is said here also applies in general to the category of pro-objects in any symmetric monoidal
model category C. There are several distinct model category structures put on pro − C, when C is a cellular
model category: see [EH], [Isak] and [F-I]. We will assume the cofibrations (weak-equivalences) are maps which are
essentially level-wise cofibrations (weak-equivalences, respectively). Recall an object X = {Xi|i ε I} in pro−C is
an inverse system of objects in C indexed by a small cofiltered category I. Recall also that a map f : {Xi|i ε I} →
{Yj |j ε J} of pro-objects in C is an essentially level-wise cofibration (weak-equivalence), if after re-indexing the
above pro-objects, the given map is isomorphic in pro − C to a level-map g = {gk : X ′k → Y ′k|k} with each gk a
cofibration (weak-equivalence, respectively) in C. The fibrations are defined using the right-lifting property.

It is shown in [AM] and also [EH, (2.1.5) Proposition] that any finite diagram D in pro−C with no loops can
be replaced upto isomorphism in pro−C by a level-diagram, i.e. where the vertices and maps in the diagram are
all indexed by the same small cofiltered category. Moreover it is shown in [EH, Chapter 2] that one may replace
such a diagram upto isomorphism in pro − C by one which is indexed by a small cofinite strongly directed set.
Now the fibrations in the above model structure have the following interpretation: (see [EH, (3.2.2) Theorem] and
also [Isak, section 4]) a map f : X → Y in pro−C is a fibration in the above sense if and only if, after replacing f
by a level map indexed by a cofinite strongly directed set, it satisfies a matching space condition as in [EH, (3.2.2)
Theorem]. In particular it follows that every constant object, i.e. an object of C which is fibrant in C, when viewed
as a pro-object is fibrant in the above model structure.

Let J denote a cofinite strongly directed set. Then one may put a model structure on CJ where the cofibrations
and weak-equivalences are defined level-wise and the fibrations are defined by the lifting property. Then the same
matching space conditions characterize fibrations, so that the constant objects in C that are fibrant in C are fibrant
in this model structure on CJ . Moreover, in this setting, the inverse-limit lim

J
: CJ → C is a right-Quillen functor

right adjoint to the constant functor C→ CJ . Therefore, it is shown in [EH, Chapter 4], that one may define the
homotopy inverse limit functor

(3.2.1) holim
J

: CJ → C as lim
J
◦Q

where Q is a fibrant replacement functor. It is also shown in [EH, Chapter 4] that this homotopy inverse limit is
weakly-equivalent to the Bousfield-Kan homotopy inverse limit which is defined using the projective model structure
on CJ .
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Next we let C = (simpl.sets)∗. We will imbed this into PSh(Sm/k0). Let Z/l∞ denote the completion functor
considered earlier in this section. Let T = P1

k for some fixed finite Galois extension of k0, (often just k0 itself)
T̄ = P1

k̄
, where k̄ is a fixed algebraic closure of k0 and let T̄W (k) = P1

W (k̄)
, where W (k̄) denotes the ring of Witt

vectors of k̄. Let T̄C = P1
C denote the 1-dimensional complex projective space. One then has an imbedding of

W (k̄) into C and the residue field of W (k̄) = k̄, permitting a comparison of the Z/l-completed étale topological
types of T̄k, T̄W (k) and the Z/l-completion of T̄C. For a scheme X, Xet will denote the étale topological type as in
[Fr, Definition 4.4]. Then we obtain the maps of pro-simplicial sets that induce isomorphism on the corresponding
pro-homotopy-groups πk for k ≥ 1 and on the corresponding pro-homotopy sets π0:

(3.2.2) Z/ln(T̄∧
m

C,et)
'→Z/ln(T̄∧

m

W (k),et)
'←−Z/ln(T̄∧

m

k̄,et)

for all n,m ≥ 1. (One may prove this using ascending induction on m and n.) By considering these pro-objects
as indexed by a cofinite strongly directed set J , and using the injective model structure on (simpl.sets)J∗ , we may
take their holim

J
using lim

J
◦Q as shown above. We will let

Z/l∞(T̄∧
m

C )et = holimZ/l∞(T̄∧
m

C,et), Z/l∞(T̄∧
m

W (k))et = holimZ/l∞(T̄∧
m

W (k),et) and

Z/l∞(T̄k̄)∧
m

et )et = holimZ/l∞(T̄∧
m

k̄,et
)

so that we obtain the maps Z/l∞(T̄∧
m

C )et
'→Z/l∞(T̄∧

m

W (k))et
'←−Z/l∞(T̄∧

m

k̄
)et.

It is also shown in [Fr, Theorem 8.4] that if one lets T̄C,s.et = {Sing(U•(C))|U• εHRR(T̄C}, then one has maps

ρ : Z/l∞(T̄∧
m

C,s.et)→ Z/l∞(T̄∧
m

C,et) and τ : Z/l∞(T̄∧
m

C,s.et)→ Z/l∞Sing(T̄C(C)∧
m

) ∼= Z/l∞((S2)∧m)

that induce isomorphism on the corresponding pro-homotopy-groups πk for k ≥ 1 and on the corresponding pro-
homotopy sets π0. (This is in fact shown there only for the case m = 1, but the general case may be deduced
readily using similar arguments.) Therefore, we may take their homotopy inverse limits in the same manner as
above to obtain maps holimρ : Z/l∞(T̄∧

m

C )s.et = holimZ/l∞(T̄∧
m

C,s.et) → Z/l∞(T̄∧
m

C )et = holimZ/l∞T̄∧
m

C,et) and
holim τ : Z/l∞(T̄∧

m

C )s.et = holimZ/l∞(T̄∧
m

C,s.et)→ Z/l∞(Sing(T̄C(C))∧
m

) ∼= Z/l∞((S2)∧
m

).

3.2.3. Common ring spectra that play a role in the paper. Next we briefly recall the definition of ring-
spectra from [CJ1, 3.2]. An algebra in [C′0, C] is an enriched functor X provided with an associative and unital
pairing µ : X ∧ X → X , i.e. for TV , TW ε C′0, one is given a pairing, X (TV ) ∧ X (TW ) → X (TV ∧ TW ) which is
compatible as TW and TV vary and is also associative and unital.

A ring spectrum in Spectra(C) is an algebra in [Sph(C′0), C] for some choice of C′0 satisfying the above hypotheses.
A map of ring-spectra is defined as follows. If X is an algebra in [Sph(C′0), C] and Y is an algebra in [Sph(D′0), C]
for some choice of subcategories C ′0 and D′0, then a map φ : X → Y of ring-spectra is given by the following data:
(i) an enriched covariant functor φ : C′0 → D′0 compatible with ∧ and (ii) a map of spectra X → φ∗(Y ) compatible
with the ring-structures. (Here φ∗(Y ) is the spectrum in Spectra(C, C′0) defined by φ∗(Y )(TV ) = Y (φ(TV )).

Next we will list a small collection of ring-spectra that will play a major role in the paper. In all these examples,
the category C used in the definition of spectra (see section 2) will be PShO

o
Gal

mot . Using the observation that any
constant sheaf is clearly A1-local, the category of pointed simplicial sets will be imbedded in this category in the
obvious manner. Let T = P1

k for some finite Galois extension of k0, T̄ = P1
k̄
, where k̄ is a fixed algebraic closure

of k0 and let T̄W (k̄) = P1
W (k̄)

, where W (k̄) denotes the ring of Witt vectors of k̄. In this situation, one may define
pro-objects, Teht, Tmht, T̄eht and (T̄W (k))eht as in the next section.

Examples 3.4. (i) The sphere spectrum ΣSn . Here we take C′0 be the full subcategory generated by ∧
Gal/K

Sn

by taking iterated smash products. The value of ΣSn on ∧
Gal/K

Sn is ∧
Gal/K

Sn.

(ii) Z/l∞(ΣSn). In this case the subcategory C′0 is the same as in the last example, but Z/l∞(ΣSn)( ∧
Gal/K

Sn) =

Z/l∞( ∧
Gal/K

Sn). Clearly the map ΣSn → Z/l∞(ΣSn) is a map of ring-spectra.
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(iii) The spectrum Z/l∞(Σ(T̄W (k̄)et
)). Here k̄ is assumed to be separably closed and W (k̄) is its ring of Witt

vectors. The residue field at the generic point is of characteristic 0 which we imbed into the complex num-
bers. In this case the subcategory C′0 is the full subcategory with objects { ∧

Gal/K
Z/l∞((T̄W (k̄)et

))|Gal/K}.

Z/l∞(Σ(T̄W (k̄)et
)( ∧
Gal/K

Z/l∞((T̄W (k̄)et
))) = Z/l∞( ∧

Gal/K
(T̄W (k̄)et

)). The maps

∧
Gal/K

S2 → ∧
Gal/K

Z/l∞((T̄W (k̄)et
) induce a map of ring spectra ΣS2 → Z/l∞(ΣS2)→ Z/l∞(Σ(T̄W (k̄)et

)).

(iv) The spectrum Z/l∞(Σ(T̄et)). Here k̄ is assumed to be again separably closed. This spectrum is defined as in
the last example above, with T̄k replacing T̄W (k̄). Since the residue field of W (k̄) is k̄, we obtain an obvious
map of ring spectra Z/l∞(Σ(T̄k)et)→ Z/l∞(Σ(T̄W (k̄))et

).

(v) The spectra Z̃/l∞(ΣT̄eht) and Z̃/l∞(ΣTeht). For any pointed scheme X, Xeht is as defined above and as
observed above, comes equipped with a map Xet → Xeht viewed as a map of inverse systems of simplicial
sheaves. In this case the subcategory C′0 is the full subcategory with objects { ∧

Gal/K
Z̃/l∞(T̄eht)|Gal/K}.

Z̃/l∞(Σ(T̄eht))( ∧Gal/K
Z̃/l∞(T̄eht)) = Z̃/l∞( ∧

Gal/K
(T̄eht)). The spectrum ΣTeht is defined similarly using

Teht in the place of T̄eht. The maps T̄et → T̄eht → Teht induce maps of ring spectra Z/l∞(ΣT̄et) →
Z̃/l∞(ΣT̄eht)→ Z̃/l∞(ΣTeht).

(vi) The spectrum Z̃/l∞(ΣTmht). This is defined as in the last example with Tmht replacing Teht. There is an
obvious map of ring spectra Z̃/l∞(ΣTeht) → Z̃/l∞(ΣTmht) induced by the map Teht → Tmht. Observe also
that the map of hypercoverings of T to the scheme T induces a map Tmht → T which induces a map of
ring spectra Z̃/l∞(Tmht) → Z̃/l∞(T). (The existence of this map is clear in view of the definition of the
homotopy inverse limit of a pro-object as in 3.2.1.)

Proposition 3.5. Assume the above situation. Then one obtains maps of spectra

ΣS2 → Z/l∞ΣS2 → Z/l∞ΣTW (k)et
← Z/l∞ΣTet

→ Z̃/l∞ΣTeht
→ Z̃/l∞ΣTmht

→ Z̃/l∞ΣTmht → Z̃/l∞ΣT

which are compatible with their ring-structures. The first two maps are between spectra in Sptmot(k0,Gal,ΣS2)
and the rest are maps between spectra in in Sptmot(k0,Gal,Z/l∞ΣTet

). Moreover, the second and third maps are
weak-equivalences.

Proof. This is essentially discussed in the above set of examples. The first map is the obvious map defined by
the Z/l-completion and the next two maps are defined by the comparison maps in étale homotopy theory: see
[AM] for example. Therefore these two maps are weak-equivalences. The next maps are induced by the maps
T̄et → T̄eht → T̄mht → Tmht → T, where the ‘ ¯ ′ denotes the objects defined over Spec k̄. The details on
the ring structure of the above spectra and the the verification that these maps are all compatible with the ring
structures on the above spectra are discussed in the examples above. The observation that the second and third
maps are weak-equivalences follows from comparison between the étale topological types and the topological types
of complex algebraic varieties as in [?] or [Fr]. �
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3.3. Stable motivic and étale homotopy types.

Definition 3.6. Let X = X• denote a simplicial scheme with each Xn ε Sm/k0. Let X̄• = Spec k ×
Spec k0

X• where k

denotes the chosen algebraic closure of k0. The stable étale topological type will denote the S2-suspension spectrum,
ΣS2Xet,+ associated to Xet,+. By viewing a simplicial set as the simplicial presheaf represented by it, one may
view ΣS2Xet,+ as an object in pro− Sptmot(k0,Gal,ΣS2).

With T = P1
k0

, we obtain the suspension spectra with respect to Z̃/l∞Teht, Z̃/l∞Tmht (already considered in

Examples 3.4):the object Z̃/l∞ΣTeht ∧Xeht+ (Z̃/l∞ΣTmht ∧Xmht+) is a pro-object of spectra, which may not be
necessarily A1-local. We will view them as imbedded in pro − Sptmot(k0,Gal, Z̃/l∞ΣTeht). Z̃/l∞ΣTeht ∧Xeht+

(Z̃/l∞ΣTmht ∧Xmht+) will be called the stable étale homotopy type of X (the motivic homotopy type of X, respec-
tively). The corresponding object Z̃/l∞ΣTeht

∧ X̄eht+ (Z̃/l∞ΣTmht
∧ X̄mht+), which is a pro-object of Z̃/l∞ΣTeht

-
spectra will be called the stable étale homotopy type of X̄ (the stable motivic homotopy type of X̄ respectively).

Next we may consider the following objects associated toX in the same category pro−Sptmot(k0,Gal,Z/l∞ΣTet
):

Z/l∞ΣTet
∧ X̄et+, Z/l∞ΣTW (k)et

∧ X̄et+, Z̃/l∞ΣTeht
∧ X̄eht+, Z̃/l∞ΣTmht

∧ X̄mht+ all of which are associated to

X̄. The first two are suspension-spectra associated to X̄et using different models of completed spheres: the first
uses the completion of the étale topological type of T̄ and the second uses the completion of the étale topological
type of T̄W (k). The third (fourth) is the suspension-spectrum associated to X̄eht+ using the spectrum Z̃/l(ΣT̄eht)

(Z̃/l∞(X̄mht+) using the sphere spectrum Z̃/l∞(ΣT̄mht), respectively). One also obtains Z̃/l∞(ΣTmht) ∧Xmht+.

Now one obtains the following maps between these objects (defined as in Proposition 3.5):

ΣS2 ∧ X̄et+ → (Z/l∞ΣS2) ∧ X̄et+ → (Z/l∞ΣTW (k)et
) ∧ X̄et+ ← (Z/l∞ΣTet

) ∧ X̄et+(3.3.1)

→ (Z̃/l∞ΣTeht
) ∧ X̄eht+ → (Z̃/l∞ΣTmht

) ∧ X̄mht+

→ (Z̃/l∞ΣTmht) ∧Xmht+ → (Z̃/l∞ΣT) ∧Xmht+

Proposition 3.7. Let Spt denote any one of the categories of spectra appearing in the list of properties : 2.1.

(i) For any spectrum E ε Spt, and any U• → X• which is a rigid hypercovering of X• in the ?-topology, one
obtains a weak-equivalence: Γ(U•, E) ' Γ(Spec k0,HomSp(ΣU•,+, E)) where HomSp denotes the internal hom in
the category Spt as discussed in [CJ1, [3.1.6, Mapping spectra] and ΣU•,+ denotes the suspension-spectrum of
U•,+.

(ii) In case E ε Spt is a constant presheaf of spectra, Γ(U•, E) = Eπ0(U•) ' Hom(ΣT (π0(U))+, E) where Hom
denotes the internal hom in the category Spt.

Proof. (i) This is rather obvious and therefore the proof is skipped. The main observation needed for (ii) is that,
since E is assumed constant, Γ(U•, E) ' Eπ0(U•). �

Theorem 3.8. Let X ε Sm/k0 and let E ε Sptmot(k0,Gal,T) be a fibrant object. Let K denote a normal subgroup
of Gal with finite index in Gal.

(i) Then

Hs,TV,K
mot (X+,E) = HomSp,Gal/K(Σs,TV ∧X+,EK

|X) = HomSp,Gal/K(Σs,TV ∧U•,+,EK
|X)

for any U• εHRRNis(X). Therefore, in particular,

Hs+2|TV|,TV,K
mot (X+,E) = HomSp,Gal/K(Σs,TV ∧X+,EK

|X) = lim
→ U• ε HRRNis(X)

HomSp,Gal/K(Σs,TV ∧U•,+,EK
|X)

(ii) Let X̄ = X ×
Spec k0

Spec k̄ where k̄ denotes an algebraic closure of k0. Let l denote a fixed prime different from

char(k0). Then the augmentation maps

Hs+2|TV|,TV
et (X̄+, Z̃/l∞(E)) = holimn{holim

∆
(HomSp(Σs,TV ∧ X̄+,G(Z̃/ln(E)))|n}

→ holimn{lim→ U• ε HRRet(X̄)
holim

∆
HomSp(Σs,TV ∧ U•,+, G((Z̃/ln(E))))|n}
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← holimn{lim→ U• ε HRRet(X̄)
HomSp(Σs,TV ∧ U•,+, Z̃/ln(E))|n}

are all weak-equivalences, where G( ) denotes the fibrant replacement on the étale site provided by the Godement
resolution.

(iii) Under the same hypotheses as in (ii), the augmentation maps

Hs+2|TV|,TV,K
et (X̄+, Z̃/l∞(E)) = holimn{holim

∆
(HomSp,Gal/K(Σs,TV ∧ X̄+,G(Z̃/ln(E)K)))|n}

→ holimmholimn{lim→ U• ε HRRet(X̄)
holim

∆
HomSp,Gal/K(Σs,TV ∧ U•,+, G(P (m)(Z̃/ln(E)K)))|n}

← holimmholimn{lim→ U• ε HRRet(X̄)
HomSp,Gal/K(Σs,TV ∧ U•,+, P (m)Z̃/ln(E)K)|n}

are all weak-equivalences, where G( ) denotes a fibrant replacement on the étale site and P (m) denotes a functorial
Postnikov truncation that kills the homotopy groups in dimension > m.

Proof. We will prove both (i) and (ii) simultaneously by observing that the Nisnevich site has finite cohomo-
logical dimension whereas the étale site of a scheme of finite type over an algebraically closed field k has finite
l-cohomological dimension for l 6= char(k). Therefore, we will consider the non-equivariant case first, where there
is no action of finite quotients of the Galois groups involved.

One may first replace E by an Ω-spectrum, so that we may replace E by its 0-th term, namely the value of
the spectrum E on S0. We will denote this by E0. Since E0 is now a fibrant simplicial presheaf one applies the
canonical Postnikov truncation functors Pm to E. Recall πl(P (m)Γ(V,E)) ∼= πm(Γ(V,E)) if l ≤ m and ∼= 0 if l > m
for all V in the given site: one may readily verify that these functors takes Gal-equivariant simplicial presheaves
to Gal-equivariant simplicial presheaves. Replacing E by the fibration sequence K(πm(E), n) → P (m)(E) →
P (m−1)(E) in the above augmentation maps provides a map of the corresponding spectral sequences. The finite
cohomological dimension or finite l-cohomological dimension hypothesis and the torsion hypothesis on E show
that the corresponding spectral sequences converge strongly. Therefore, in order to prove the first statement, it
suffices to prove the theorem when E is replaced by an abelian presheaf and this has been already established in
Proposition 3.3.

Finally take the homotopy inverse limit over n. Since this homotopy inverse limit commutes with the homotopy
inverse limit defining the Godement resolution G and the homotopy inverse limit coming from the simplicial scheme,
this completes the proof in this case, thereby proving the non-equivariant case of (i) and also (ii).

Next we consider the equivariant case of (i). We may once again assume that E is a fibrant simplicial presheaf.
In this case, one next observes that the functorial Postnikov truncation being functorial, is also equivariant. For
this we recall the equivariant site for the action of the finite group G = Gal/K as in [CJ1, 2.3.5]. Observe that
the objects in this site are schemes U provided with a G-action and the morphisms are maps of schemes that are
G-equivariant. The points on this site correspond to the orbits under G of the points of the underlying (non-
equivariant) site. Given any object U in this site, we obtain a G-equivariant map G×U = tg εGU → U , where the
G-action on G×U is only on the factor G and the map on the summand indexed by g is multiplication by g. This
map is readily seen to be a covering in this site. For any G-equivariant sheaf F , HomG(G×U,F ) = Hom(U,FG),
where HomG denotes the external Hom in the category AbSh(Sm/k0, G, ?) and Hom denotes the (external) Hom
in the category AbSh(Sm/k0, ?). The underlying non-equivariant site in (i) is the Nisnevich site which has finite
cohomological dimension for any fixed U . The underlying non-equivariant site in (ii) is the étale site of a scheme
U of finite type over an algebraically closed field k̄ which has finite l-cohomological dimension for l 6= char(k̄).
Therefore, in both cases for any U in the site, there exists a large enough integer d depending on U , so that
ExtnG(G × U,F ) ∼= Hn(U,FG) = 0 for n > d and for all abelian sheaves F in case (i) and all l-torsion abelian
sheaves F in cases (ii) and (iii). This verifies the hypotheses in [MV, Theorem 1.37, see also Definition 1.31], which
proves that in case (i), one obtains a weak-equivalence holimmG(P (m)E) ' G(E). and in case (ii), one obtains a
weak-equivalence holimmG(P (m)Z̃/lnE) ' G(Z̃/lnE). In view of these observations, it suffices to show that the
maps in (i) ((iii)) are weak-equivalences after replacing E by P (m)E (Z̃/lnE by P (m)Z̃/lnE). Then we reduce to
the case where E is replaced by K(πm(E),m) (Z̃/lnE is replaced by K(πm(Z̃/lnE),m), respectively). This case
then follows by [CJ1, Proposition 2.14] and Corollary 3.3. �
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Remark 3.9. One interpretation of the above theorem is that, under the above hypotheses,

Hs+2|TV|,TV
mot (X+,E) ' HomSp(Σs+2|TV|,TV

T (Xmht,+,E) and

Hs,TV
et (X̄+, Z̃/l∞(E)) ' HomSp(Σs+2|TV|,TV

T (X̄eht,+), Z̃/l∞(E))

i.e. The generalized motivic cohomology of X (the generalized étale cohomology of X̄ ) with respect to the spectrum
E (Z̃/l∞(E), respectively) may be computed from the motivic homotopy type of X (the étale homotopy type of
X̄, respectively).

4. Cellular objects in Sptmot(k0,Gal) and Sptet(k0,Gal) vs. linear schemes

Throughout the rest of the paper we will restrict to P1-spectra. As such the suspension spectra associated a
simplicial presheaf P will be often denoted simply by Σs+2|TV |,TV P , s ≥ 0, TV ε C′0.

Definition 4.1. Let k denote a fixed Galois extension of k0: often this will be just k0 itself. Let (Cells) =
{(Gal/H)+ ∧ ΣsP1TV |V = an affine space over k, which is a representation of Gal/K,
K,H subgroups of finite index in Gal with K normal in Gal, n,m ≥ 0}. (These are the P1-suspension spectra
associated to Thom-spaces of finite dimensional representations of Gal/K.) Then the class of cellular-objects in
Sptmot(k0,Gal) (Sptet(k0,Gal)) is the smallest class of objects in Sptmot(k0,Gal) (Sptet(k0,Gal), respectively)
so that (i) it contains (Cells) (ii) if X is weakly-equivalent in Sptmot(k0, Gal) (Sptet(k0,Gal)) to a cellular object,
then X is a cellular object and (iii) if {Xi|i ε I} is a collection of cellular objects indexed by a small category I,
then hocolim

I
Xi is also cellular.

The above definition follows the approach taken in classical algebraic topology, where one defines a spectrum to
be cellular if it is built out of the suspension spectra of cells by taking iterated homotopy colimits. Observe that,
(Cells) now contains all suspension spectra of the form (Gal/H)+ ∧ TV , where V any affine space: this is large
enough to obtain the cellular approximation proved below.

On the other hand, the linear schemes considered in [Tot] and [J01] are schemes that are built out of affine
spaces and tori and are particularly simple objects to study in the setting of algebraic geometry: see [J01]. Though
it is not immediately apparent, these two notions are closely related: in fact we will show below that the suspension
spectrum of every smooth linear scheme is cellular.

Proposition 4.2. (Equivariant cellular approximation) (i) If E ε Sptmot(k0,Gal) (Sptet(k0,Gal)) and is fibrant,
there exists a natural Ec → E in Sptmot(k0,Gal) (Sptet(k0,Gal)) with Ec cellular that induces an isomorphism
on all presheaves of homotopy groups πHt,s.

(ii) If E ε Sptmot(k0, ,Gal) (Sptet(k0,Gal)) is cellular and πHTV ,s(E(U)) = 0 for all TV , s, H ⊆ Gal of finite
index and U in the site, then E is contractible.

Proof. Non-equivariant versions of these statements are proven in [DI, Proposition 7.3 and Lemma 7.6]. The same
proof applies after taking the fixed points with respect to any subgroup H ⊆ Gal of finite index. Finally make
use of the adjunction between taking the fixed points with respect to a subgroup H and taking the product with
Gal/H. �

In the above situation, the full subcategory of finite cellular objects or equivalently finite P1-spectra is the smallest
class of objects in Sptmot(k0,Gal) (Sptet(k0,Gal)) containing (Cells) with the following properties: (i) it is closed
under finite sums (ii) if X is weakly-equivalent to a finite cellular object, then X is a finite cellular object and (iii)
it is closed under finite homotopy pushouts.

The following are some of the properties of cellular objects. (See [DI], where they are stated in the non-equivariant
setting.)

Proposition 4.3. (i) If X,Y ε Sptmot(k0,Gal) (Sptet(k0,Gal)) are cellular, then so is X ∧ Y and X × Y .

(ii) If {Xi|i ε I} is a family with each Xi cellular, then so is
∨
iXi which is the co-product of the Xi.
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(iii) The suspension-spectra Σs+2|TV |,TV
P1 (Ank1

)+, Σs+2|TV |,TV
P1 (Ank1

− 0)+ are cellular. (Here k1 is a finite Galois
extension of k0.)

(iv) If X is a scheme and U∗ → X is a Nisnevich (étale) hypercover and each Σs+2|TV |,TV
P1 Un+ is cellular, then

Σs+2|TV |,TV
P1 X+ is also cellular.

(v) Let {Ui} be a Zariski open cover of the given scheme X so that the P1-suspension spectra of each intersection
Uα1···αn = Uα1 ∩ · · · ∩ Uαn is cellular. Then Σs+2|TV |,TV

P1 X is also cellular for all s, TV .

(vi) If p : E → B is an algebraic fiber bundle with fiber F such that Σs+2|TV |,TV
P1 F is cellular and B has a Zariski

open cover satisfying the hypotheses in (v) which also trivializes p, then Σs+2|TV |,TV
P1 E is also cellular.

(vii) If p : E → B is an algebraic vector bundle such that B has a Zariski open cover satisfying the hypotheses as
in (vi), then the Thom space Th(p) which is defined as the suspension spectrum associated to the quotient E/(E−B)
is also cellular.

(viii) If p : E → B is a principal G-bundle, for an algebraic group G, where both Σs+2|TV |,TV
P1 E and Σs+2|TV |,TV

P1 G+

are cellular, then so is Σs+2|TV |,TV
P1 B.

(ix) Σs+2|TV |,TV
P1 GLn is cellular for all n. The P1-suspension spectrum of the Stiefel variety Vk(An) = the set

of all k-tuples of linearly independent vectors in An and the P1-suspension spectrum of the Grassmannian variety
Grk(An) of k-planes in An are also cellular.

Definition 4.4. (Linear and cellular schemes) Let k1 denote a finite Galois extension of k0. Then a scheme X
over k1 is linear if it has a finite filtration F0 ⊆ F1 ⊆ · · ·Fn−1 ⊆ Fn = X by closed sub-schemes so that there exists
a sequence m0,m1, . . . ,mn, a0, a1, . . . , al of non-negative integers with each Fi − Fi−1 = tAaik1

× Gmi
m,k1

which is
a finite disjoint union of products of affine spaces and split tori isomorphic to Aaik1

× Gmi
m,k1

. Moreover we require
that each of the above summands is a connected component of Fi − Fi−1. We call {Fi|i} a linear filtration.

A linear scheme where the strata Fi − Fi−1 are all isomorphic to disjoint unions of affine spaces will be called a
cellular scheme. For the most part, we will only consider linear schemes when the field k1 = k0.

Remark 4.5. Observe in view of the definition that the if f : k0 → k′0 is any map of fields, the pulled-back scheme
X ′ = X ×

Spec k0

Spec k′0 is also cellular, with the i-th term of the induced filtration F ′i = Fi ×
Spec k0

Spec k′0.

Examples 4.6. (i) Common examples of cellular schemes are schemes of the form G/B, G/P where G is a
split reductive group over k0 and B (P ) is a Borel subgroup (parabolic subgroup). The existence of the cell-
filtration follows readily from the Bruhat decomposition. Since G is assumed to be split over k0, the Bruhat
decomposition holds over k0: see [Sp59, Theorem 16.1.3] and therefore, the Bruhat cells in the decomposition
of G/B are affine spaces over k0.

(ii) Next assume that G is a reductive group defined over k0 and that it is not necessarily split over k0. It will
be split over some finite Galois extension k1 of k0. Now the flag variety G/B ×

Spec k0

Spec k1 has a Bruhat

decomposition with the Bruhat-cells all affine spaces over k1.
(iii) Next let T denote a fixed maximal torus of G and let B denote a Borel subgroup containing T . Since G/T

maps in the obvious manner to G/B with fiber being the unipotent radical of G, it follows G/T is also a
cellular scheme. If G is split over k0, then the cell structure of G/T will be defined by affine spaces defined
over k0; otherwise, the cell-structure will be defined by affine spaces defined over some finite Galois extension
of k0.

Proposition 4.7. The P1 -motivic suspension spectrum of any smooth linear scheme (of finite type over k0) is
finite cellular. In particular, the P1 suspension spectra of cellular schemes are indeed finite cellular objects in
Sptmot(k0,Gal).

Proof. Let φ = F−1 ⊆ F0 ⊆ F1 ⊆ · · · ⊆ Fn−1 ⊆ Fn = X denote the given filtration so that each Fi − Fi−1 =
tAmi ×Gni

m which is a finite sum of products of affine spaces and split tori. We will show by descending induction
on k that the suspension spectra ΣP1(X − Fk) are all finite cellular. When k = n − 1, this is clear since X = Fn
and Fn −Fn−1 is a finite sum of products of affine-spaces and split tori. Therefore, we may assume this is true for
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0 < k + 1 ≤ n− 1 and we will show that this implies the corresponding statement for k. For this one observes the
stable co-fiber sequence in Sptmot(k0,Gal):

(4.0.2) ΣP1(X − Fk+1)+ → ΣP1(X − Fk)+ → ΣP1(X − Fk)/ΣP1(X − Fk+1) ' ΣP1(N/N − (Fk+1 − Fk))

where N is the normal bundle to the closed immersion Fk+1 − Fk → X − Fk. Observe that since X is smooth,
X−Fk which is open in X is also smooth and that the hypotheses imply that Fk+1−Fk is also smooth. Therefore,
the normal cone associated to the closed immersion Fk+1 − Fk → X − Fk is in fact a normal bundle. The last
weak-equivalence is provided by what is called the homotopy purity theorem: see [MV, section 3, Theorem 2.23
]. This shows that one has cofiber-sequence of the simplicial presheaves forming the spectra above in the A1-
localized category Pshmot. Depending on which finite Galois extension k1 of k0 the above schemes are defined, we
obtain compatible actions Gal(k1/k0) on the above simplicial presheaves. On taking the corresponding P1-motivic
suspension spectra, we also obtain compatible actions of Gal on the suspension coordinates. These observations
prove that the the stable cofiber-sequence above lives in Sptmot(k0,Gal).

At this point one needs to observe that Fk+1 − Fk is a disjoint union of products of affine spaces and split-tori
where each such summand is in fact a connected component in Fk+1 − Fk. Therefore, the above normal bundle
is in fact trivial: this uses the statement that vector bundles on affine spaces and tori are trivial. The statement
for vector bundles over affine spaces is the Serre-conjecture, proven by Quillen and Suslin. Its extension to vector
bundles over tori is proven in [Lam, Corollary 4.9, p. 146]. Therefore, it follows that ΣP1(N/N − (Fk+1 − Fk))+

is finite cellular and so is ΣP1(X − Fk+1)+ by the inductive hypothesis. Therefore, ΣP1(X − Fk)+ is also finite
cellular. �

We proceed to obtain the étale analogue of the stable cofiber sequence in 4.0.2. At present, we obtain this
only at the level of the étale topological types completed away from the residue characteristics, which nevertheless
suffices for later applications in this paper.

Lemma 4.8. Let S denote a pointed simplicial set, viewed as a constant pointed simplicial presheaf on Sm/k0 with
trivial action by Gal. Let E ε Sptmot(k0,Gal,Z/l∞ΣTet

), where T = P1
k̄
. Then

Γ(U,HomZ/l∞(ΣTet
),Gal/HGal(Z/l∞(ΣTet

S), EH) = HomZ/l∞(ΣTet
),Gal/HGal(Z/l∞(ΣTet

S),Γ(U,EH))

where both Z/l∞(ΣTet
S and Γ(U,EH) are viewed as constant presheaves of spectra.

Proof. For each fixed U ε Sm/k0, let Sm/U denote the sub-category of objects and morphisms over U . If pU : U →
Spec k0 denotes the structure map, then the above identification follows from the adjunction between p∗ and p∗.
(Here p∗ denotes the restriction of presheaves from Sm/k0 to Sm/U and p∗ is the corresponding push-forward. �

Proposition 4.9. Let X denote a smooth linear scheme over an algebraically closed field k̄. Let φ = F−1 ⊆ F0 ⊆
F1 ⊆ · · · ⊆ Fn−1 ⊆ Fn = X denote the given filtration so that each Fi − Fi−1 = tAmi ×Gni

m which is a finite sum
of products of affine spaces and tori.

(i) Then one obtains the cofiber-sequence of objects of pro− Sptmot(k0,Gal,Z/l∞ΣTet
):

(4.0.3) Z/l∞(ΣTet
(X − Fk+1)et+)→ Z/l∞(ΣTet

(X − Fk)et+)→ Z/l∞(ΣTet
(X − Fk)et+/ΣTet

(X − Fk+1)et+)

' Z/l∞(ΣTet
(N/N − (Fk+1 − Fk))et)

where T = P1
k̄

and where N denotes the normal bundle associated to the closed immersion Fk → Fk+1 and et
denotes the étale topological type. Moreover the terms in the above diagram are viewed as the obvious constant
presheaves of spectra with the action by the Galois group Gal only on the suspension coordinates.

(ii) Therefore, if E denotes any object in Sptmot(k0,Gal,ΣTet
), one obtains the cofiber sequence

HomZ/l∞(ΣTet
),Gal/HGal(Z/l∞(ΣTet

(N/N − (Fk+1 − Fk))et), Z/ln(EHGal))

→ HomZ/l∞(ΣTet
),Gal/HGal(Z/l∞(ΣTet

(X − Fk)et), Z/ln(EHGal))

→ HomZ/l∞(ΣTet
),Gal/HGal(Z/l∞(ΣTet

(X − Fk+1)et), Z/ln(EHGal))

Moreover, the first term above identifies with HomZ/l∞(ΣTet
),Gal/HGal(Z/l∞(Σ2c,c

Tet
(Fk+1 − Fk)+), Z/ln(EHGal))

where c is the codimension of Fk+1 − Fk in Fk+1.
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Proof. (i) uses the theory of étale tubular neighborhoods as worked out in [Fr, Proposition 15.6] and also [Fr,
Theorem 15.7]. Now the first assertion in (ii) follows readily. As shown in the last proposition, the normal bundle
N associated to the closed immersion of Fk+1 − Fk in Fk+1 is trivial. Therefore, the remaining conclusions follow
from the last lemma. �

Remark 4.10. On the other hand it may be important to point out that even if one has a stable cofiber sequence
ΣP1U+ → ΣP1X+ → ΣP1(X/U) where U and X are schemes over k0 where U ⊆ X is open in X and both the
suspension spectra ΣP1U+ and ΣP1Y+ are finite cellular, (where Y is the complement of U in X), there is no
reason apriori for ΣP1X+ to be finite cellular. This is because, first of all one needs to be able to make use of
the fact that ΣP1Y+ is finite cellular. For this, one needs X and Y to be smooth and also the normal bundle
to Y in X to be trivial (or at least its Thom-space to be just a suspension spectrum associated to Y+). This
does not seem possible in general; however, if one considers generalized cohomology theories defined by spectra in
Spt(k0,Gal) which have Thom-isomorphism, then the cohomology of Y with respect to this spectrum identifies
with the cohomology of the Thom-space with respect to the same spectrum. Amplifying on these ideas, one will
then be able to prove certain finiteness properties of generalized cohomology and homology with respect to spectra
that have Thom-isomorphisms. These observations motivate the following definitions.

Definition 4.11. Let E denote a ring spectrum in Spt(k0,Gal) as in 2.1. Then Spt(k0,E,Gal) will denote the
sub-category of all (Galois-equivariant) E-module spectra and E-module maps. This is a symmetric monoidal
category with E as the unit. The internal hom in this category will be denoted HomE.

Let (E− Cells) denote the collection

(Cells) ∧ E = {(Gal/H)+ ∧ Σn,mP1 TV ∧ E|V = an affine space over k, which is a representation of Gal/K,
K,H subgroups of finite index in Gal with K normal in Gal, n,m ≥ 0}.

Then cellular-objects in Spt(k0,E,Gal) is the smallest class of objects in Spt(k0,E,Gal) so that (i) it contains
(E− Cells) (ii) if X is weakly-equivalent to an E-cellular object, then X is an E-cellular object and (iii) if {Xi|i ε I}
is a collection of E-cellular objects indexed by a small category I, then hocolim

I
Xi is also E-cellular. Henceforth

we will restrict to the full subcategory of Spt(k0,E,Gal) consisting of cellular objects: this subcategory itself will be
denoted by Spt(k0,E, Gal).

In the above situation, the class of finite E-spectra is the smallest class of objects in Spt(k0,E,Gal) containing
(E− Cells) with the following properties: (i) it is closed under finite sums (ii) if X is weakly-equivalent to a
finite E-cellular object, then X is a finite E-cellular object and (iii) it is closed under finite homotopy pushouts in
Spt(k0,E,Gal).

5. Finite T-spectra, finite E-spectra, Generalized Cohomology and Homology

We will begin by first defining generalized motivic cohomology.

Definition 5.1. (Generalized motivic and étale cohomology). Let T = P1 and let E,X ε Sptmot(k0,Gal,T) or
E,X ε Sptet(k0,Gal,T). Then we let Hom(X ,E) denote the internal hom in the category of spectra defined in
[CJ1, 3.1.6 Mapping spectra]. We also let RHom(X ,E) = Hom(X , GE) where GE denotes the fibrant replacement
defined by the Godement resolution. Given A,B ε Sptmot(k0,Gal,T), [A,B] denotes Hom in the corresponding
homotopy category. A similar meaning holds for [A,B] if A,B ε Sptet(k0,Gal,T). Then we let

h•(X ,E, H) = RHom(X ,E)H and hs+2|TV |,TV (X ,E, H) = [Σ(TV ) ∧ Ss,RHom(X ,E)H ]

for any subgroup H of finite index in Gal. h(X ,E, H) will be called the generalized cohomology spectrum with
respect to E and H. Observe that RHom(X ,E) belongs to Sptmot(k0,Gal,T) (Sptet(k0,Gal,T), respectively).
Next we consider the special case where X = ΣT ∧ X+ is the T-suspension spectrum associated to a scheme
X ε Sm/k0. In this case, assuming that H acts trivially on the suspension coordinates, hs+2|TV |,TV (X ,E, H)
identifies with [Σ(X+) ∧ TV ∧ Ss,EH ].

Lemma 5.2. Let X denote a finite T-spectrum. Then RHomE(RHomT(Σs+2|TV |,TV
T X ,E),E) is a finite E-module

spectrum.

Proof. This is simply the following observation:

RHomE(RHomΣT
(Σs+2|TV |,TV

T ∧ X+,E),E) ' RHomE(RHomΣT
(Σs+2|TV |,TV

T ∧ X+,ΣT) ∧ E,E)
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' RHomΣT
(RHomΣT

(Σs+2|TV |,TV
T ∧ X+,ΣT),ΣT) ∧ E ' Σs+2|TV |,TV X+ ∧ E. �

Next we proceed to define mod-l motivic and étale homology in such a way so that Spanier-Whitehead duality
makes sense in the motivic and étale context.

Definition 5.3. (Generalized homology). We define generalized homology with respect to E ε Sptmot(k0,Gal)
or E ε Sptet(k0,Gal) as follows. Let p : X → Spec k0 denote the obvious structure map. One first takes
RHomE(Rp∗(E|X),E) where E|X denotes the restriction of E to the corresponding big site of X. One may
also observe that E|X ' RHom( ,E) which is the sheaf associated to the presheaf U 7→ RHomΣT

(ΣT ∧ U+,E),
U in the appropriate site on X. Here RHom is the derived functor of the internal hom functor in the category
of sheaves of T-spectra and RHomE is the derived functor of the internal hom-functor HomE in the category of
E-module spectra on the appropriate big site. Then we let

h•(X ,E, H) = RHomE(Rp∗(E|X),E))H ,

hs+2|TV |,TV (X,E, H) = [ΣTV ∧ Ss,RHomE(Rp∗(E|X),E)H ].

Observe that RHomE(Rp∗(E|X),E)) belongs to Sptmot(k0,Gal,T) or E ε Sptet(k0,Gal,T) depending on the con-
text. If E = H(Z/l), we will denote the corresponding homology by Hs+2|TV |,TV (X,Z/l). h(X ,E, H) is called the
generalized homology spectrum with respect to E.

In case E = H(µl), the corresponding étale homology will be denoted Het
s+2|TV |,TV (X,µl). Generalized Étale

cohomology and homology are also considered [J86] in a slightly different context.

Remark 5.4. It is important to observe that the generalized homology defined above is not a Borel-Moore type
homology theory, i.e. we are not considering homology with proper supports.

Proposition 5.5. (i) The generalized homology defined above is a covariant functor for arbitrary maps.

(ii) If ΣT ∧X+ is a finite T1-spectrum, the natural map

ΣT ∧X+ ∧ E → RHomE(Rp∗(E|X), E)

is a weak-equivalence, so that hs+2|TV |,TV (X,E,H) = [ΣTV ∧ Ss, Q(C(ΣP1 ∧X+) ∧ E))H ] where C(ΣT ∧X+) →
ΣT ∧X+ is a cofibrant replacement and C(ΣT ∧X+) ∧ E → Q(C(ΣT ∧X+) ∧ E) is a fibrant replacement.

(iii) If X is smooth scheme of finite type over k0 with p : X → Spec k0 the structure map, then one has a natural
weak-equivalence RHomΣT

(ΣTX+, E) ' Rp∗(E|X) in Sptmot(k0,Gal) (Sptet(k0,Gal), respectively).

Proof. (i) This follows readily since generalized cohomology is a contravariant functor for arbitrary maps and the
above definition of generalized homology is as a suitable dual of generalized cohomology. More specifically, let
f : X → Y denote a map between two smooth schemes and let pX : X → Spec k0 and pY : Y → Spec k0 denote the
obvious structure maps. Then pX = pY ◦f and therefore, RpX∗(E|X) ' RpY ∗Rf∗(E|X) and so that f−1(E|Y ) maps
naturally to E|X . This provides the map E|Y → Rf∗(E|X) and hence the map RHomE(RpX∗(E|X), E|Spec k0) →
RHomE(RpY ∗(E|Y ), E). This proves (i).

(ii) Observe that Γ(U,Rp∗(E|X)) = Γ(U ×
Spec k0

X,E) ' RHom(ΣTU+ ∧X+, E) where we have used the conven-

tions of [CJ1, 3.1.7] of taking sections over the terminal object Spec k0 to obtain the last identification. Therefore,
the map in (ii) corresponds to a map X+ ∧ E → RHomE(RHom(ΣT( )+ ∧ X+, E), E) which corresponds by
adjunction to a map X+ ∧ RHom(ΣT( )+ ∧ X+, E) → RHom(ΣT( )+, E) ' RΓ(( )+, E). Here ( ) varies
over U ε Sm/k0. If E is fibrant, the last identifies with Γ(( )+, E). Using the assumption that ΣT ∧X+ is a finite
T-spectrum, one may reduce to the case where ΣT ∧X+ = ΣT or an appropriate suspension of ΣT, in which case
the proposition is clear.

(iii) Let V ε (Sm/k0)?. Then Γ(V,RHomΣT
(ΣTX+, E)) = Γ(X ×

Speck0

V ,RHomΣT
(ΣT(X ×

Speck0

V )+, E) compat-

ible the action of the Galois group. Clearly one may identify Γ(V,Rp∗(E|X)) with the last term. �

Remark 5.6. The last proposition shows that at least for schemes X whose T suspension spectra are finite T-motivic
spectra, the generalized homology has the same form as in algebraic topology: see [Sw], for example. Moreover, it
justifies the definition of homology we have adopted.
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Corollary 5.7. The generalized homology and homology of smooth linear schemes are represented by finite E-
module spectra.

Proof. The identification in (ii) of the last Proposition along with Proposition 4.7 and Lemma 5.2 readily prove
this. �

The rest of this section holds only in the non-equivariant framework. Though there are extensions of Thom-
isomorphism to the equivariant setting, this is rather cumbersome; besides Thom isomorphism does not seem to
play a major role in this paper. Therefore, we have chosen just to make some remarks on Thom isomorphism in
the non-equivariant setting. Observe that, generalized cohomology and homology are now indexed by a pair of
integers.

In case (X,Y ) is a smooth pair with c = the codimension of Y in X, we let h2∗,∗
Y (X,E) = h2∗,∗(ΣT(X/X−Y ),E),

where T = P1.

Definition 5.8. (Thom isomorphism) We say that a spectrum E in Sptmot(k0) or Sptet(k0) is orientable or equiv-
alently that it has the Thom-isomorphism property if for every smooth pair (X,Y ) with c = the codimension of Y
in X, there exists a (canonical) class [T ] εh2c,c

Y (X; E) so that the cup-product ∪[T ] : h2∗,∗(Y,E)→ h2∗+2c,∗+c
Y (X,E)

is an isomorphism for all ∗.

In the presence of Thom-isomorphism, one can extend the earlier results in this section to smooth schemes that
are stratified by strata whose T-suspension spectra are finite T- spectra. We proceed to discuss this extension.

Let (X,Y ) denote a smooth pair (with c = the codimension of Y in X) over the base-scheme Spec k0: recall this
means, the structure maps of X and Y over Spec k0 are smooth and that Y is (regularly) imbedded in X as a closed
sub-scheme over Spec k0. Let pX : X → Spec k0 and pY : Y → Spec k0 denote the given structure maps. Given
a sheaf F on (Sm/Spec k0)Nis, we let F|X denote its restriction to (Sm/X)Nis. Therefore, we obtain presheaves
of T-motivic spectra on (Sm/X)Nis: ΣTX|X,+, ΣTY|X,+ and ΣT(X|X/X|X − Y|X) defined by Γ(U,ΣTX|X) =
ΣTU+ = ΣT(X×

X
U)+, Γ(U,ΣTY|X,+) = ΣT(Y×

X
U)+ and Γ(U,ΣT(X|X/(X|X − Y|X))) = ΣT(U/(U − Y×

X
U)).

Lemma 5.9. Let E denote a T-spectrum that is orientable in the above sense. Then RpX∗(RHomΣT
(Σs,tT (X|X/(X|X−

Y|X)),E|X)) ' RpY ∗(RHomΣT
(Σs,tT Y|Y,+,E|Y ))

Proof. Let S = Spec k0. Then the left-hand-side identifies with the presheaf U → RHomΣT
(Σs,tT X×

S
U/(X×

S
U −

Y×
S
U),E|X). By Thom-isomorphism, this identifies with U → RHomT(Σs,tT Y×

S
U+,E|Y ) and this clearly identifies

with the presheaf on the right-hand-side. �

The next proposition shows the use of orientability.

Proposition 5.10. Let X denote a smooth scheme provided with a stratification (i.e. a decomposition into locally
closed smooth subschemes) so that the T-motivic suspension spectra of the strata are all finite T-motivic spectra.
Assume further that these are all defined over a finite Galois extension k′ of k0 and let E denote a ring spectrum
in Sptmot(k0) (or Sptet(k0)) which is orientable. Then RHomE(RpX∗RHomΣT

(Σt,sT ∧X|X,+,E|X),E)) is a finite
E-spectrum.

Proof. Clearly any finite T-spectrum smashed with E is a finite E-spectrum. The definition of finite E-spectra,
shows the following: if one has a (stable) cofiber sequence A → B → B/A → ΣS1A with all maps being maps of
E-module spectra, and if two of the three terms, A, B and B/A are finite E-spectra, then so is the third. Therefore,
one reduces to showing the following: let (X,Y ) denote a smooth pair, so that the T-suspension spectra of Y and
X − Y are finite T-spectra. Then RHomE(RpX∗RHomΣT

(Σt,sT ∧X|X+,E|X),E)) is a finite E-spectrum.

A key step here is the identification (provided by Thom-isomorphism) as in the lemma above:

(5.0.4) RHomE(RpX∗RHomΣT
(Σt,sT ∧(X|X/X|X−Y|X),E|X),E) ' RHomE(RpY ∗RHomΣT

(Σt,sT ∧Y|Y,+,E|Y ),E)

Since Σt,sT Y+ is assumed to be a finite T-spectrum, this identifies with Σt,sT ∧ Y+ ∧ E.

Clearly this is a finite E-spectrum. Now one observes the stable cofiber sequence:

RHomE(RpX−Y ∗RHomΣT
(Σt,sT ∧ (X − Y )|X−Y,+, E|X−Y ), E)



Motivic Spanier-Whitehead duality and the motivic Becker-Gottlieb transfer 19

→ RHomE(RpX∗RHomΣT
(Σt,sT ∧X|X,+,E|X),E)

→ RHomE(RpY ∗RHomΣT
(Σt,sT ∧ Y|Y,+,E|Y ),E)

The last term is what it is, in view of (5.0.4). We may now assume that ΣT(X − Y )+ is finite T-spectrum so
that the first term is a finite E-module spectrum clearly. Using ascending induction on the cell-filtration, we may
assume that the last term is also a finite E-module spectrum. Therefore, the conclusion follows. �

6. Formalism of P1 and E-duality

Let E ε Spt(k0,Gal) denote a fixed ring spectrum. Let Spt(k0,Gal,E) denote the category of Galois-equivariant
E-module spectra. Recall that this is a symmetric monoidal category with E as the unit. Throughout this section
we will restrict to the full subcategory of (E − Cells), or E-cellular objects in Spt(k0,Gal,E). The internal hom
in this category will be denoted HomE. The dual of an object F ε Spt(k0,Gal,E) will mean RHomE(F,E) which
is a derived functor of HomE applied to F and will be denoted DE(F ). (Often DE(F ) will be called the E-dual of
F .) Next we observe the following important property of finite E-spectra.

Definition 6.1. We define ∧E =
L
∧
E

where ∧
E

is the monoidal structure on Spt(k0,Gal,E). We will define duality

maps µ : F ∧E Σs+2|TV |,TVDE(F ) → Σs+2|TV |,TV
P1 E in the obvious way, since Σs+2|TV |,TVDE(F ) ' RHomE(E ∧E

F,Σs+2|TV |,TV E).

We will next verify that the above duality maps satisfy the usual formalism of Spanier-Whitehead duality: see
[Sw, Chapter 14]. We will assume henceforth that the ring spectra we consider are all commutative ring-spectra.

Proposition 6.2. Let F ε Spt(k0,Gal,E) denote a finite E-module spectrum. (i) Then the obvious natural map
F → DE(DE(F )) is a weak-equivalence. (ii) If K ε SptE,Gal, the natural map DE(F ) ∧E K → RHomE(F,K) is a
weak-equivalence.

Proof. In view of the definition of finite E-spectra, it suffices to prove both statements when F = E or an ap-
propriate P1-suspension of E. Now the main observation is that E is the unit of the symmetric monoidal struc-
ture on Spt(k0,Gal,E), so that RHomE(E,E) ' E and hence E ' RHomE(RHomE(E,E),E). This proves (i).
RHomE(E,K) ' K ' RHomE(E,E) ∧E K which proves (ii) when F = E. The general case follows from this
readily by using the fact that F is a a finite E-module spectrum. �

Let X,X∗ ε Spt(k0,Gal,E) and let µ : X∗∧EX → Σs+2|TV |,TV
P1 E denote a map. Then we define homomorphisms:

Dµ : [P,Q ∧E X
∗]→ [P ∧E X,Q] and(6.0.4)

µD : [P,X ∧E Q]→ [X∗ ∧E P,Q](6.0.5)

as follows for any P,Q ε Spt(k0,Gal,E). Here [ , ] denotes Hom in the homotopy category associated to
Spt(k0,Gal,E). (First observe that since E is assumed to be a commutative ring spectrum, one may use left
and right module structures interchangeably.) Given a map f : P → Q ∧E X

∗, Dµ(f) will be represented by the
composite map:

P ∧E X
f∧Eid→ Q ∧E X

∗ ∧E X
id∧Eµ→ Q ∧E Σs+2|TV |,TV

P1 E ' Σs+2|TV |,TV
P1 Q

If g : P → X ∧E Q is a map, µD(g) is represented by

X∗ ∧E P
id∧Eg→ X∗ ∧E X ∧E Q

µ∧id→ Σs,TVP1 E ∧E Q ' Σs+2|TV |,TV
P1 Q.

Definition 6.3. We say that µ : X∗ ∧E X → Σs+2|TV |,TV
P1 E is an E-duality map if and only if the two maps Dµ

and µD are isomorphisms for all spectra F ε Spt(k0,Gal,E). When the spectrum E is ΣP1 , we call an E-duality
map, a ΣP1 -duality map or a motivic Spanier-Whitehead duality map.

Proposition 6.4. µ is an E-duality map if and only if Dµ and µD are both isomorphisms for P = Σs+2|TV |,TV
P1 E

and Q = Σs
′+2|TW |,TW

P1 E

Proof. This may be proven as in [Sw, 14.22 Proposition] using the layer filtration defined in [CJ1, 3.1.8 Layer
filtrations on spectra] since we have already restricted to spectra that are E-cellular. �
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Theorem 6.5. (Formal properties of E-duality)

(i) If µ : X∗ ∧E X → Σs+2|TV |,TV
P1 E is an E-duality map, then so is µ ◦ τ : X ∧E X

∗ → Σs+2|TV |,TV
P1 E

(ii) Suppose µ : X∗ ∧E X → Σs+2|TV |,TV
P1 E and ν : Y ∗ ∧E Y → Σs

′+2|TW |,TW
P1 E are duality maps. Then both maps

[X,Y ]
Dµ→[Y ∗ ∧E X,Σ

s′+2|TW |,TW
P1 E] and [Y ∗, X∗]νD→[Y ∗ ∧E X,Σ

s+2|TV |,TV
P1 E]

are isomorphisms. Assume s ≥ s′ and that TV = TW ∧ TU . Denoting by f∗ : Y ∗ → X∗ the induced map associated
to a given map f : X → Y , f∗ is characterized by the homotopy-commutativity of

Y ∗ ∧E X
f∗∧Eid //

id∧Ef

��

X∗ ∧E X

µ

��
Y ∗ ∧E Y

Σ
s−s′+2|TU |,TU
P1 ν

//
Σs+2|TV |,TV

P1 E

(iii) if µ : X∗ ∧E X → Σs+2|TV |,TV
P1 E, ν : Y ∗ ∧E Y → Σs

′+2|TW |,TW
P1 E and π : Z∗ ∧ Z → Σs”+2|TU |,TU

P1 E are duality
maps, and f : X → Y and g : Y → Z are E-module maps, then (a) (f∗)∗ ' f (b)(g ◦f)∗ ' f∗ ◦g∗ and (c) id∗ = id.

(iv) If µ : X∗ ∧E X → Σs+2|TV |,TV
P1 E and µ̂ : X̂∗ ∧E X → Σs+2|TV |,TV

P1 E are both E-duality maps, then there is a
weak-equivalence h : X∗ → X̂∗ so that µ̂ ◦ (h ∧ id) ' µ and h is unique upto homotopy.

(v) If µ : X∗ ∧E X → Σs+2|TV |,TV
P1 E and ν : Ŷ ∗ ∧E Y → Σs

′+2|TW |,TW
P1 E are both E-duality maps, then so

is the composite (µ, ν) : X∗ ∧E Y ∗ ∧EY ∧E X → X∗ ∧E Σs
′+2|TW |,TW

P1 E ∧E X → Σs,tP1 E ∧E Σs
′+2|TW |,TW

P1 E ∼=
Σs+s

′+2|TV |+2|TW |,TV ∧TW
P1 E.

Proof. These all may be proved exactly as in [Sw, Chapter 14] making use of the earlier results in this section.
Therefore we skip the details. �

7. Motivic stable homotopy and cohomotopy of G/N(T )

Throughout this section, G will denote GLn (for some positive integer n) or a connected reductive group that is
defined and split over the field k0.)

The main goal of this section is to show that the stable motivic homotopy and cohomotopy of G/N(T ), when
completed away from the characteristic of k0 is finite as a completed P1-spectrum, in fact is the completion of the
étale homotopy type of Ḡ/N(T̄ ) smashed with the P1-spectrum. Here Ḡ (T̄ ) is the algebraic group G (its maximal
torus) base-extended to the algebraic closure of k0. Before we proceed to the rather technical proofs below, we
hope the following detailed explanations will shed some light on the proofs.

The motivic stable homotopy and cohomotopy of the varieties G/B and G/T are fairly easy to compute using
the Bruhat decomposition for G which in fact provides a nice cell decomposition for the above varieties. We adopt
the following strategy to extend these results to G/N(T ).

We may define a left action of N(T ) on G/T as follows: (n, gT ) 7→ gn−1T . To see this is a left action, observe
that if n, n′ εN , then (n′, (n, gT )) 7→ (n′, gn−1T ) 7→ gn−1n′

−1
T = g(n′n)−1T . This is the image of (n′n, gT ).

Moreover gn−1T = gT if and only if n−1T = T , i.e. if and only if n εT . Therefore, the above action of N(T )
induces an action by W = N(T )/T , where W is the Weyl group of G. Moreover, the same arguments show this
is also a free action. It follows that one has a fibration sequence : W = N(T )/T → G/T → G/N(T ). Since we
have assumed that G is split over k0, it is important to observe that (N(T )/T )(k0) ∼= W , i.e. every element in W
is represented by a k0-rational point of N(T ). See [Sp59, 16.1.3 Theorem].

It is tempting to conclude from this that, since the P1-suspension spectrum of G/T+ is a finite spectrum, so is the
P1-suspension spectrum of G/N(T )+. However, the above fibration sequence is one only unstably and therefore such
a conclusion does not follow, unless proven using other arguments. Presently we prove this using a comparison
with the completed étale homotopy type of Ḡ/N(T̄ ). Finally since Ḡ lifts to a corresponding reductive group
defined over the complex numbers, it is possible to compare the completed étale homotopy type of Ḡ/N(T̄ ) with
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the corresponding variety associated to the complex group GC. At this point one may replace GC with its compact
form K and eventually reduce to comparing with the completion of K/N(TK). K/N(TK) is well-known to be a
finite complex.

Next we identify G/N(T ) with EW×
W
G/T : this involves looking at Henselizations (and strict Henselizations ) of

G/N(T ) at points on it and considering the corresponding inverse images under the map EW×
W
G/T → G/N(T ).

What seems quite important for the computations below and the above identification is the following:

Proposition 7.1. The map G/T → G/N(T ) is finite étale with fibers given by the constant étale group scheme
Wk0 = W ∧Spec k0 = tw εWSpec k0. Moreover, if k is a field extension of k0, for each k-rational point of G/N(T ),
there are exactly W , k-rational points of G/T mapping to it. In particular, if ḡ εG/N(T )(k) and OhG/N(T ),ḡ denotes
the Henselizations at ḡ, then SpecOhG/N(T ),ḡ ×

G/N(T )
G/T ∼= tw εWSpecOhG/N(T ),ḡ.

Proof. The first statement essentially follows from the observations made earlier regarding the free-action of W
on G/T . One may also want to observe that since G is smooth, so are G/T and G/N(T ). Therefore, the map
G/T → G/N(T ) is smooth of relative dimension 0, i.e. it is étale. G/N(T ) identifies with the variety of all maximal
tori in G. Any such maximal torus remains stable on conjugation by any element of its normalizer and there are
precisely W distinct maximal tori that are contained in the normalizer of a given maximal torus. This

Throughout this proof k will denote any extension field of k0 appearing as a residue field in G/N(T ). One may
readily observe that for each such k-rational point of G/N(T ), there are exactly W k-rational points of G/T lying
over it. (Since G is split over k0, this holds for the k0 rational points. To see it for k-rational points, where k is
any extension field of k0, one may use the identification Gk/Hk

∼= (G/H) ×
Spec k0

Spec k: here H = T , or N(T ) and

Xk = X ×
Spec k0

Spec k for any k0-scheme X.)

Let U → G/N(T ) denote an étale neighborhood of a k-rational point uk of G/N(T ) together with a lift of the
k-rational point on G/N(T ) to U , which we denote by ũk. (Recall that the Henselization of G/N(T ) at a given
k-rational point is the Spec of the colimit of OU,ũk as U runs over such étale neighborhoods of uk.) It is clear that
if V = U ×

G/N(T )
G/T , then there is a lift of ũk to V . In fact there are W such lifts corresponding to the points

in G/T lying over u. Therefore, it suffices to show that etale neighborhoods of the form U ×
G/N(T )

G/T are cofinal

in the system of étale neighborhoods of the lifts of uk to G/T which appear in the Henselization of G/T at these
points.

For this, we make a couple of observations first. Let X → Y denote a finite étale map over k so that X is
a W -torsor over Y and that X×

Y
X ∼= t

w εW
X. Suppose moreover that over every point y εY , there are exactly

W -points x εX with k(x) ∼= k(y). Then if y εY is a point, the étale neighborhoods of y of the form U together
with a lift of the k(y)-rational point which are obtained as follows are cofinal in the system of étale neighborhoods
that appear in the Henselization of Y at y: let V denote an étale neighborhood of a point x in the fiber over y,
with k(x) = k(y) along with a lift of this k(x)-rational point, then let U = V viewed now as an étale neighborhood
of y. This is clear, since given any étale neighborhood W of y appearing in the system of neighborhoods used in
the Henselization of Y at y, its inverse image W×

Y
X is an étale neighborhood of any point in the fiber over y and

the map W×
Y
X → Y factors through W .

Next let v : V → G/T be an étale map with a lift vk of a k-rational point of G/T in the fiber over uk. Then the
composition V → G/T → G/N(T ) is an étale map with a lift of the k-rational point uk to V . Observe that G/T →
G/N(T ) is a torsor that trivializes over G/T , i.e. G/T ×

G/N(T )
G/T ∼= t

w εW
G/T . Therefore, V ×

G/N(T )
G/T ∼= t

w εW
V

which clearly maps to t
w εW

G/T . Varying V over a cofinal system of étale neighborhoods of vk, then V ×
G/N(T )

G/T

is cofinal in the system of étale neighborhoods that appear in the Henselizations at all the lifts of uk to G/T . The
last statement now follows readily in view of these observations. �

The generalized cohomology of G/N(T ) then identifies with the generalized cohomology of the simplicial scheme
EW×

W
G/T which may be computed using the spectral sequence: Es,t1 = ht(W s×G/T ;E) ∼= ⊕w εW sht(G/B;E)⇒
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hs+t(EW×
W
G/T ;E) where E is a spectrum in Spt(k0,Gal,P1). Such spectral sequences exist both on the Nisnevich

and étale sites, after first replacing E by an Ω-spectrum and then after replacing this Ω-spectrum by the fibrant
simplicial presheaf forming its 0-th term. One may compute the generalized cohomology ht(G/B;E) readily using
the Bruhat decomposition on G/B and this computation works fine on both the Nisnevich and étale sites. These
computations will show that apart from the mod-l motivic or étale cohomology of the base field k, the E1-terms are
essentially the same for the Nisnevich and étale sites and in fact also for the case when the base field is algebraically
closed. Now a comparison of these spectral sequences will enable one to compute the completed motivic homotopy
and cohomotopy of G/N(T ) as claimed. In order to carry out such a comparison, we will need to make use of the
natural maps defined in (3.3.1) between the étale homotopy types and the motivic homotopy types.

Corollary 7.2. Let E ε Spt(k0,Gal,P1). Then the quotient map EW×
W
G/T → G/N(T ) = (G/T )/W induces a

weak-equivalence hNis(G/N(T ), E) ' hNis(EW×
W
G/T,E) where hNis( , E) denotes the generalized cohomology

spectrum computed on the Nisnevich site with respect to E. If Ḡ ( T̄ ) denotes the base extension of G (T ) to
the algebraic closure of k0, then the map EW×

W
Ḡ/T̄ → Ḡ/N(T̄ ) induces a weak-equivalence het(Ḡ/N(T̄ ), E) '

het(EW×
W
Ḡ/T̄ , E) where het( , E) denotes the generalized cohomology spectrum computed on the étale site with

respect to E, provided the homotopy groups of E are l torsion or E is Z/l-complete.

Proof. First we will consider the case where E is replaced by an abelian sheaf (or abelian presheaf). In this case,
the Leray spectral sequence in [J02, Theorem 4.2] applies in view of Proposition 7.1 and provides an isomorphism
of the cohomology of G/N(T ) with respect to E with the cohomology of EW×

W
G/T with respect to E. The general

case when E ε Spt(k0,Gal,P1) follows from this using the Atiyah-Hirzebruch type spectral sequences whose E2-
terms are Hs

Nis(G/N(T ), π−t(E)) and Hs
Nis(EW×

W
G/T, π−t(E)). These spectral sequences exist as argued above

(by assuming E is an Ω-spectrum and then by replacing E by the fibrant simplicial presheaf forming its 0-term)
and converge strongly in view of the fact that the Nisnevich sites of G/N(T ) and G/T have finite cohomological
dimension. This proves the first statement. The second follows similarly under the stronger hypotheses. �

In these computations it seems essential that the linear algebraic group G be split over k0, i.e. a maximal torus
is split over k0, the root data and the Weyl group are all defined over the given field k0. In this case the action of
the Weyl-group on G/T is defined over k0 and so is the Bruhat decomposition: see [Spr98, Chapter 16] or [B-T65,
5. 15 Théorème]. The hypothesis that the group G be reductive is used only to ensure that it lifts to characteristic
0. We will denote by ḠC (T̄C, N(T̄C)) the lift of Ḡ (T̄ , N(T̄ )) to characteristic 0, i.e. over C.

One may want to recall that the action of the Galois group Gal is only on the suspension coordinates of the
spectra below.

Theorem 7.3. Let X denote a linear scheme over k0 (see Definition 4.4) which is also smooth and where the strata
are isomorphic to product of affine spaces and split tori over k0. We may also let X = G/N(T ) where N(T ) is the
normalizer of a maximal torus in G, with G a split connected reductive group G, split over k0 and T ( B) is a fixed
maximal torus of G ( B a Borel subgroup containing T , respectively). Let X̄ denote the scheme X ×

Spec k0

Spec k.

Let l denote a fixed prime different from char(k) and let Z/l∞ and Z̃/l∞ denote the Z/l-completions in the sense
of [CJ1, section 4].

(i) Then the natural map

ΣP̄1
et
X̄et,+

L
∧

ΣP̄1
et

ΣP1 → ΣP1

∞Xmht,+

induces weak-equivalences

hNis(X,Z/l∞(ΣP1), H) '→het(X̄, Z/l∞(ΣP̄1
et

), H)
L
∧

Z/l∞(ΣP̄1
et

)H
Z̃/l∞(ΣP1)H

where hNis (het) denotes the generalized cohomology spectrum computed on the Nisnevich site (étale site, respec-
tively).

(ii) Next let X denote linear schemes of the following form: (a) G/B or (b) G/T where G is a split connected
reductive classical group G, split over k0 and T ( B) is a fixed maximal torus of G ( B a Borel subgroup containing
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T , respectively). We may also let X = G/N(T ) where N(T ) is the normalizer of a maximal torus in G, with G as
above. Then one obtains the weak-equivalences:

Z/l∞(ΣP̄1
et
X̄et,+)H

L
∧

Z/l∞(ΣP̄1
et

)H
Z̃/l∞(ΣP1)H ' het(X̄, Z/l∞(ΣP̄1

et
), H)

L
∧

Z/l∞(ΣP̄1
et

)H
Z̃/l∞(Σ∞P1)H ' hNis(X, Z̃/l∞(ΣP1)H)

of spectra in Spts(k0,Gal,P1).

Here we have used Z/l∞ΣP̄1
et
X̄et,+ to denote the homotopy limit of the obvious pro-object denoted by the same

symbol. Also, hNis (het) denotes the generalized homology spectrum computed on the Nisnevich site (étale site,
respectively).

(iii) If X is any one of the schemes as in (ii), then it admits a lifting to a linear scheme X̄C̄ defined over C and
one also obtains the weak-equivalences:

Z/l∞(ΣS2X̄C)) ' Z/l∞(ΣS2X̄C)et)

Proof. Since the action of the Galois group Gal is only on the suspension coordinates of the spectrum, we will
suppress the group H and prove the statements only when H = e. This suffices since the action of the Galois
group on a spectrum belonging to Spt(k0,Gal,P1) is only on the suspension coordinates which are of the form
P1
K = ∧

Gal/K
P1 and there it is by permuting the factors in the ∧. Therefore this action is compatible with the action

of Gal on the other spectra that appear in the proof where the suspension coordinates are P1
et,Gal = ∧

Gal/K
P1
et or

S2
K = ∧

Gal/K
S2.

Let X denote any of the schemes considered above. Then we obtain the identifications (upto weak-equivalences):

het(X̄, Z/l∞(ΣP̄1
et

))
L
∧

Z/l∞(ΣP̄1
et

)
Z̃/l∞(ΣP1) ' HomΣ

P1
et

(ΣP1
et
X̄et,+, Z/l∞(ΣP1

et
))

L
∧

Z/l∞(Σ
P1
et

)
Z̃/l∞(ΣP1) and

hNis(X, Z̃/l∞(ΣP1)) ' HomΣ∞
P1

(ΣP1(Xmht,+), Z̃/l∞(ΣP1)).

Moreover there is a natural map

(7.0.6) het(X,Z/l∞(ΣP̄1
et

))
L
∧

Z/l∞(ΣP̄1
et

)
Z̃/l∞(ΣP1) ' HomΣ

P1
et

(ΣP1
et
Xet,+, Z/l∞(Σ∞P1

et
))

L
∧

Z/l∞(Σ
P1
et

)
Z̃/l∞(ΣP1)

→ HomgZ/l∞(ΣP1 )
(Z̃/l∞(ΣP1)

L
∧

Z/l∞(Σ
P1
et

)
(Z/l∞(ΣP1

et
)Xet,+, Z̃/l∞(ΣP1)))

where het(X̄, Z/l∞(ΣP̄1
et

)) (hNis(X,Z/l∞(ΣP1))) is the generalized étale cohomology spectrum of X̄ (generalized
cohomology spectrum of X computed on the Nisnevich site, respectively). It is shown in Proposition 4.9, that the

last term HomgZ/l∞(ΣP1 )
(Z̃/l∞(ΣP1)

L
∧

Z/l∞(Σ
P1
et

)
(Z/l∞(Σ∞

P1
et

)Xet,+, Z̃/l∞(ΣP1))) provides a localization sequence

when X is a linear scheme provided with the obvious stratification. There is also an obvious map

(7.0.7) hNis(X, Z̃/l∞(ΣP1)) = HomgZ/l∞(ΣP1 )
(ΣP1(Xmht,+), Z̃/l∞(ΣP1))

→ HomgZ/l∞(ΣP1 )
(Z̃/l∞(ΣP1)

L
∧

Z/l∞(Σ
P1
et

)
(Z/l∞(ΣP1

et
)X̄et,+, Z̃/l∞(ΣP1)))

induced by the map ΣP1
et
X̄et,+

L
∧

Σ
P1
et

ΣP1 → ΣP1Xmht,+.

We proceed to show that these maps induce weak-equivalences. Assume for the time being that X is a smooth
linear scheme like G/T . Propositions 4.7 and 4.9 show that the terms on either side of (7.0.6) and (7.0.7) have
localization sequences associated to the obvious stratification of such a linear scheme and that therefore we reduce
to the case of a stratum which is the product of an affine space and a torus. Another application of the same
localization sequences reduces to proving this when X is an affine space. Since the normal bundle to this stratum
is trivial, we reduce to proving this when ΣP1Xmht,+ (ΣP1

et
Xet,+) is replaced by ΣP1 [TN ] (ΣP1

et
[TN ], respectively)
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where N is the normal bundle to the stratum X and TN is the corresponding Thom-space. Recall that the etale
homotopy type of any affine space Ank completed at l is trivial, since k is algebraically closed. Therefore, in this case
het(X̄, Z/l∞(ΣS2)) ' het(Spec k, Z/l∞(ΣS2)). Since, by definition Z̃/l∞(ΣP1) is a fibrant object (i.e. an object that
is A1-local) in the model category Spts(k0,Gal,Nis,P1), a similar conclusion holds for hNis(X, Z̃/l∞(ΣP1)). There-

fore, both hNis(ΣP1 [TN ], Z̃/l∞(ΣP1)) and het(ΣP1
et

[TN ], Z/l∞(ΣP̄1
et

))
L
∧

Z/l∞(ΣP̄1
et

)
Z̃/l∞(ΣP1) identify with Z̃/l∞(ΣP1)[−TN ].

The definition of the smash-product of spectra next shows

HomgZ/l∞(ΣP1 )
(Z̃/l∞(ΣP1)

L
∧

Z/l∞(Σ
P1
et

)
(Z/l∞(ΣP1

et
)ΣP1

et
[TN ], Z̃/l∞(ΣP1)))

' HomZ/l∞(Σ
P1
et

)((Z/l∞(ΣP1
et

)ΣP1
et

[TN ], Z̃/l∞(ΣP1)))

Moreover making use of the properties of the completion functor, the last term also identifies with Z̃/l∞(ΣP1)[−TN ].
Therefore the map in question is a weak-equivalence in this case. The arguments above show that then the same
holds for G/T and by the same arguments for any linear scheme that is smooth. These prove the statements in (i)
for generalized cohomology for all varieties except G/N(T ).

Next recall G/N(T ) (Ḡ/N(T̄ )) identifies with the simplicial scheme EW×
W
G/T . (EW×

W
Ḡ/T̄ , respectively).

Therefore, the generalized cohomology of these objects are obtained as the homotopy limit holim
∆
{het(Wn ×

Ḡ/T̄ , Z/l∞(ΣS2)) and holim
∆
{hNis(Wn × G/T , Z̃/l∞(ΣP1)). Therefore, the maps in (7.0.6) and (7.0.7) will be

weak-equivalences with X = G/N(T ) if all the maps in the diagram

(holim
∆
{het(Wn×Ḡ/T̄ , Z/l∞ΣP̄1

et
)|n})

L
∧

Z/l∞(ΣP̄1
et

)
Z̃/l∞(ΣP1)→ holim

∆
{het(Wn×Ḡ/T̄ , Z/l∞(ΣP̄1

et
))

L
∧

Z/l∞(ΣP̄1
et

)
Z̃/l∞(ΣP1)|n}

→ holim
∆

het(Wn × Ḡ/T̄ , Z̃/l∞(ΣP1))← holim
∆

hNis(Wn ×G/T, Z̃/l∞(ΣP1))

are also weak-equivalences. Since homotopy inverse limits preserve weak-equivalences between suitably fibrant
objects, the last map is a weak-equivalence. The map before that may be easily seen to be a weak-equivalence, so
that it reduces to showing the first map above is also a weak-equivalence. At this point, the hypotheses show that
Ḡ/N(T̄ ) = EW×

W
Ḡ/T̄ lifts to characteristic 0, i.e. one may now assume the ground field is C. Therefore, this map

identifies with the map:

h(hocolim
∆

{Wn × Ḡ/T̄C|n}, Z/l∞(ΣS2))
L
∧

Z/l∞(ΣP̄1
et

)
Z̃/l∞(ΣP1)→ h(hocolim

∆
{Wn × Ḡ/T̄C|n}, Z̃/l∞(ΣP1))

which in turn identifies with the map

HomΣ∞
S2

(ΣP̄1
et

(EW×
W

(Ḡ/T̄ )C, Z/l∞(ΣP̄1
et

))
L
∧

Z/l∞(ΣP̄1
et

)
Z̃/l∞(ΣP1)→ HomΣP̄1

et

(ΣP̄1
et

(EW×
W

(Ḡ/T̄ )C, Z̃/l∞(ΣP1)).

where HomΣ∞
S2

denotes the internal hom in the category Spts(k0,Gal,S2, ). It is well-known that Ḡ/N(T̄ )C has the
homotopy type of a finite complex. Since both sides above are homotopy invariant, we may now assume Ḡ/N(T̄ )C
itself is a finite cell-complex. In this case an induction on the number cells will how that the last map above is a
weak-equivalence.

These prove that the maps in (7.0.6) and (7.0.7) induces a weak-equivalence for X = G/N(T ) as well. These
prove the statements in generalized cohomology for all the varieties considered.

Moreover, the proof of (ii) is clear in view of the arguments above and the definition of generalized homology:
see 5.3. This also shows that Z/l∞(ΣP̄1

et
X̄et,+)) is a finite Z/l∞(ΣP̄1

et
)-module spectrum: here we have used

Z/l∞(ΣP̄1
et
X̄et,+)) to denote the homotopy limit of the obvious pro-object denoted by the same symbol when

X = G/N(T ). Clearly the same conclusions hold when X is a linear scheme. In order to complete the proof of
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the theorem, we take the duals of A = het(X̄, Z/l∞(ΣP̄1
et

))
L
∧

Z/l∞(ΣP̄1
et

)
Z̃/l∞(ΣP1) and hNis(G/N(T ), Z̃/l∞(ΣP1)) by

applying HomgZ/l∞(ΣP1 )
( , Z̃/l∞(ΣP1)). Then the identifications above show that

HomgZ/l∞(ΣP1 )
(A, Z̃/l∞(ΣP1)) ' Z/l∞(ΣP̄1

et
X̄et+)

L
∧

Z/l∞(ΣP̄1
et

)
Z̃/l∞(ΣP1).

By the definition of generalized homology as in Definition 5.3,

hNis(X, Z̃/l∞(ΣP1)) = HomgZ/l∞(ΣP1 )
(hNis(X, Z̃/l∞(ΣP1)), Z̃/l∞(ΣP1)).

Therefore, we see that hNis(X, Z̃/l∞(ΣP1)) ' Z/l∞(ΣP̄1
et
X̄et+)

L
∧

Z/l∞(ΣP̄1
et

)
Z̃/l∞(ΣP1) completing the proof of the

theorem. �

Corollary 7.4. Assume the hypothesis of the theorem. Then:

HomgZ/l∞(ΣP1 )H
(hNis(G/N(T ), Z̃/l∞(ΣP1), H), Z̃/l∞(ΣP1)H) ' hNis(G/N(T ), Z̃/l∞(ΣP1), H) and

HomgZ/l∞(ΣP1 )H
(hNis(G/N(T ), Z̃/l∞(ΣP1), H), Z̃/l∞(ΣP1)H) ' hNis(G/N(T ), Z̃/l∞(ΣP1), H).

Moreover, hNis(G/N(T ), Z̃/l∞(ΣP1), H) ' Z̃/l∞((ΣP1G/N(T )))H ' (Z̃/l∞(ΣP1)
L
∧

ΣP1
ΣP1G/N(T )+)H .

Proof. Since the maps involved are all compatible with respect to the action of the Galois group, Gal, it suffices
to prove the statements with H = e, the trivial group. In view of the hypotheses, one may lift the reductive group
Ḡ, and the root data to characteristic 0 so that Ḡ/N(T̄ ) also lifts to characteristic 0. It is well-known that over
the complex numbers G/N(T ) has the homotopy type of a finite complex: for example, one may replace G by its
compact form. Therefore a comparison of its completed homotopy type with the completed etale homotopy type
of Ḡ/N(T̄ ) shows that that Z/l∞(ΣP̄1

et
(Ḡ/N(T̄ ))et+) ' Z/l∞ΣP̄1

et
(GC/N(TC)) is a finite cell spectrum over the

completed sphere spectrum Z/l∞(ΣP̄1
et

). These prove the first two weak-equivalences. To see the last, one may

first observe that the weak-equivalence hNis(G/N(T ), Z̃/l∞(ΣP1)) ' Z/l∞(ΣP̄1
et

(Ḡ/N(T̄ )et+))
L
∧

Z/l∞(ΣP̄1
et

)
Z̃/l∞(Σ∞P1)

proven in Theorem 7.3 implies that hNis(G/N(T ), Z̃/l∞(ΣP1)) ' hocolim
∆

{hNis((EW×
W
G/T )n, Z̃/l∞(ΣP1))|n}.

Since

hNis((EW×
W
G/T )n, Z̃/l∞(ΣP1)) ' Z̃/l∞(ΣP1(EW×

W
G/T )n) ' Z̃/l∞(ΣP1)

L
∧

ΣP1
(EW×

W
G/T )n

for all n ≥ 0, and hocolim
∆

commutes with
L
∧

ΣP1
we obtain the last weak-equivalence. �

8. Construction of Transfer maps

This is one of the few places in the paper, where we need to use both non-equivariant and equivariant spectra with
respect to the action of the Galois group: we will therefore adopt the terminology in [CJ1, 3.1.5 Equivariant vs. non-
equivariant spectra]. Accordingly ΣP1,Gal (ΣP1) will denote the Galois-equivariant motivic P1-spectrum (the non-

equivariant motivic P1-spectrum, respectively). We will let ∧̃Gal =
L
∧gZ/l∞(ΣP1,Gal)

, ∧Gal =
L
∧

(ΣP1,Gal)
, ∧̃ =

L
∧gZ/l∞(ΣP1 )

,

and ∧ =
L
∧

(ΣP1 )
.

Associated to any self-map f : G/N(T ) → G/N(T ) over the base field k, we will presently define a Gal-
equivariant pre-transfer map

(8.0.8) tr(f)′Gal : Z̃/l∞(ΣP1,Gal) ' Z̃/l∞(ΣP1,Gal) ∧Gal ΣP1(Spec k)+ → Z̃/l∞(ΣP1,Gal) ∧Gal ΣP1,Gal(G/N(T ))+

following the approach taken by Becker-Gottlieb (see [BG76] and also [DP]). In fact, the discussion in [DP] puts
these constructions in a sufficiently general context that seems to apply to the situation at hand as well.
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Given an F ε Spt(k0,Gal,P1), we let DGal(F ) = RHomgZ/l∞(ΣP1,Gal)
(F, Z̃/l∞(ΣP1,Gal)). The non-equivariant

version of this dual will be D(F ) = RHomgZ/l∞(ΣP1 )
(F, Z̃/l∞(ΣP1)). For the discussion below, we will let F =

Z̃/l∞(ΣP1,Gal) ∧Gal ΣP1,Gal(G/N(T )+).

We start with the obvious evaluation map µ (which we called the duality map) (defined in 6.1). Then we take
its dual followed by a suitable suspension to obtain a map

Z̃/l∞(Σs+2|TV |,TV
P1,Gal )→ DGal(Z̃/l∞(ΣP1,Gal)∧GalΣP1,Gal(G/N(T )+))∧̃GalZ̃/l∞(ΣP1,Gal)∧GalΣ

s+2|TV |,TV
P1,Gal (G/N(T )+).

It is possible to take any non-negative integral values for s and |TV |, in particular both may be 0. We will denote this
map by φGal from now on. This map is Gal-equivariant, when Gal acts diagonally on the right. (Observe that the
Gal action onRHomgZ/l∞(ΣP1,Gal)

(F, Z̃/l∞(ΣP1,Gal)) is by (g, f) 7→ g◦f◦g−1, f εRHomgZ/l∞(ΣP1 )
(F, Z̃/l∞(ΣP1,Gal))

and g εGal.)

Let φ : Z̃/l∞(Σs+2|TV |,|TV |
P1 )→ D(Z̃/l∞(ΣP1) ∧ ΣP1(G/N(T )+))∧̃Z̃/l∞(ΣP1) ∧ Σs+2|TV |,|TV |

P1 (G/N(T )+)

denote the corresponding non-equivariant map.

Definition 8.1. We define the Gal-equivariant pre-transfer, tr(f)′Gal, to be the composition

(µ∧id)◦(id∧∆(f))◦φGal : Z̃/l∞(Σs+2|TV |,TV
P1,Gal )→ DGal(Z̃/l∞(ΣP1,Gal)∧GalΣP1,GalG/N(T )+)∧̃GalZ̃/l∞(ΣP1,Gal)∧Gal

Σs+2|TV |,|TV |
P1,Gal (G/N(T )+)

→ DGal(Z̃/l∞(ΣP1,Gal)∧GalΣ
s+2|TV |,|TV |
P1,Gal G/N(T )+)∧̃GalZ̃/l∞(ΣP1,Gal)∧GalΣP1,Gal(G/N(T )+)∧̃GalZ̃/l∞(ΣP1,Gal)∧Gal

ΣP1,Gal(G/N(T )+)

→ Z̃/l∞(Σs+2|TV |,TV
P1,Gal ) ∧Gal (ΣP1,GalG/N(T )+).

Here ∆(f) : Z̃/l∞(ΣP1,Gal)∧Gal ΣP1(G/N(T )+)→ Z̃/l∞(ΣP1,Gal)∧Gal ΣP1,Gal(G/N(T )+)∧̃GalZ̃/l∞(ΣP1,Gal)∧Gal
ΣP1,Gal(G/N(T )+) is the map (Z̃/l∞(id) ∧Gal f ∧ id) ◦∆. We define the (non-equivariant) pre-transfer, tr(f)′, to
be the corresponding composition involving non-equivariant spectra.

Proposition 8.2. Assume the above situation. Then we obtain the Gal-equivariant weak-equivalence of Gal-
equivariant spectra:

RHomgZ/l∞(ΣP1,Gal)
(Z̃/l∞(ΣP1,Gal) ∧Gal ΣP1,Gal(G/N(T )+), Z̃/l∞(ΣP1,Gal))

' RHomgZ/l∞(ΣP1 )
(Z̃/l∞(ΣP1) ∧ ΣP1G/N(T )+, Z̃/l∞(ΣP1,Gal))

Proof. We first obtain the identification:

(8.0.9) RHomgZ/l∞(ΣP1,Gal)
(Z̃/l∞(ΣP1,Gal) ∧Gal ΣP1,Gal(G/N(T )+), Z̃/l∞(ΣP1,Gal))

' RHomΣP1,Gal
(ΣP1,GalG/N(T )+, Z̃/l∞(ΣP1,Gal)) and

(8.0.10)
RHomgZ/l∞(ΣP1 )

(Z̃/l∞(ΣP1) ∧Gal ΣP1(G/N(T )+), Z̃/l∞(ΣP1,Gal)) ' RHomΣP1 (ΣP1G/N(T )+, Z̃/l∞(ΣP1,Gal))

Next recall from [CJ1, 3.1.5 Equivariant vs. non-equivariant spectra] that the spectrum ΣP1,Gal is a module
spectrum over ΣP1 and that the Galois group Gal has no action on G/N(T ). Therefore,

ΣP1,GalG/N(T )+ ' ΣP1,Gal

L
∧

ΣP1
ΣP1G/N(T )+.
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This then induces a weak-equivalence between the right-hand-sides of (8.0.9) and (8.0.10). Therefore, it suffices
to show that this weak-equivalence preserves the Gal-action. If f εRHomΣP1 (ΣP1G/N(T )+, Z/l(ΣP1,Gal)), let
its image under the above map be f̄ εRHomΣP1,Gal

(ΣP1,GalG/N(T )+, Z/l(ΣP1,Gal)). Then (gf)(m) = g(f(m)),
m ε ΣP1G/N(T )+, g εGal and f̄(s.m) = sf(m), if m is as above and s ε ΣP1,Gal. Therefore, (g.f̄)(s.m) =
gf̄(g−1s.m) = g.(g−1s.f(m)) = s.gf(m). The last equality follows from the observation that the Gal action on
ΣP1,Gal is compatible with its ring structure, the first equality is because Gal acts on f̄ by (gf̄)(s.m) = g.f̄(g−1s.m)
and the next equality follows from the definition of f̄ . Now (gf)(s.m) = s.gf(m) = gf̄(s.m). This shows that the
map f 7→ f̄ is compatible with the Gal-action. �

Corollary 8.3. Assume the above situation. Then the Galois-equivariant pre-transfer tr(f)′Gal identifies with

tr(f)′
L
∧gZ/l∞(ΣP1 )

idgZ/l∞(ΣP1,Gal)
.

Proof. The proof is clear in view of the last proposition. �

Now the following result is the key to the use of the pre-transfer:

Proposition 8.4. The composite map

Z̃/l∞(Σs+2|TV |,|TV |
P1 )

tr(f)′→ Z̃/l∞(ΣP1) ∧ Σs+ 2|TV |, |TV |P1(G/N(T )+)
pr→Z̃/l∞(Σs+2|TV |,|TV |

P1 )

where pr denotes the obvious collapse map has degree Λf = the Lefschetz-number of f .

Proof. The key observation that we make is the following: since

Z̃/l∞(ΣP1) ∧ ΣP1(G/N(T )+) ' Z/l∞(ΣP1
et,+

G/N(T )et+)
L
∧

Z/l∞(ΣP1
et,+

)
Z̃/l∞(ΣP1), it follows that

D(Z̃/l∞(ΣP1)∧ΣP1G/N(T )+) ' RHomZ/l∞(ΣP1
et

)(Z/l∞(ΣP1
et

(G/N(T )et+)), Z/l∞(ΣP1
et

))
L
∧

Z/l∞(ΣP1
et,+

)
Z̃/l∞(ΣP1).

Therefore, the required property follows from the corresponding transfer constructed in the context of étale ho-
motopy for the variety G/N(T ) and in fact reduces to the corresponding property of the classical Becker-Gottlieb
transfer defined for the lifting of G/N(T ) to characteristic 0. �

Corollary 8.5. The composite map

prGal ◦ tr(f)′Gal : Z̃/l∞(Σs+2|TV |,TV
P1,Gal )

tr(f)′Gal→ Z̃/l∞(ΣP1,Gal) ∧Gal Σs+2|TV |,|TV |
P1,Gal G/N(T )+

pr→Z̃/l∞(Σs+2|TV |,TV
P1,Gal )

is a unit in [Z/l(ΣP1,Gal), Z/l(ΣP1,Gal)] where [A,B] denotes Hom in the homotopy category HSptmot(k0, Gal)
and/or HSptet(k0, Gal) and where pr : Z̃/l∞(ΣP1,Gal) ∧Gal ΣP1,Gal(G/N(T )+) → Z̃/l∞(ΣP1

Gal
) is the obvious

collapse map.

Proof. The above results show that the composition prGal ◦ tr(f)′Gal identifies with (pr ◦ tr(f)′)
L
∧

ΣP1
idΣP1,Gal

. The

corollary follows. �

Definition 8.6. (The transfer.) Next we proceed to construct the transfer map tr(f)Gal : Z̃/l∞(ΣP1,Gal) ∧Gal
Σs+2|TV |,TV

P1,Gal (BG+)→ Z̃/l∞(ΣP1,Gal) ∧Gal Σs+2|TV |,TV
P1,Gal (EG×

G
G/N(T )+).

The key observations are the identifications:

Σs+2|TV |,TV
P1,Gal (EG×

G
G/N(T )+) ' EGnGΣs+2|TV |,TV

P1,Gal (G/N(T )+),

Z̃/l∞(ΣP1,Gal) ∧Gal Σs+2|TV |,TV
P1,Gal (EG×

G
G/N(T )+) ' EGnG(Z̃/l∞(ΣP1,Gal) ∧ Σs+2|TV |,TV

P1,Gal (G/N(T )+)),

Σs+2|TV |,TV
P1,Gal (EG×

G
(Spec k)+) ' EGnGΣs+2|TV |,TV

P1,Gal , and

Z̃/l∞(ΣP1,Gal) ∧Gal Σs+2|TV |,TV
P1,Gal (EG×

G
(Spec k)+) ' EGnG(Z̃/l∞(ΣP1,Gal) ∧ Σs+2|TV |,TV

P1,Gal (Spec k)+).
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(Here X n Y = X+ ∧ Y when Y is a pointed simplicial presheaf and X is an unpointed simplicial presheaf.)

8.1. Motivic cohomology of linear schemes and of G/N(T ). Though the following computation is not used
elsewhere in the paper, we include it here since it will put the results of the last theorem in better perspective.
H∗( ; Z/l) will denote mod-l-motivic cohomology and H∗et( ;µl) will denote étale cohomology with respect to
µl.

Proposition 8.7. Let X denote one of the schemes G/B, G/T or G/N(T ) defined over the field k0 and let k
denote a fixed algebraic closure of k0. Then

(i) H∗M(X,Z/l) ∼= CH∗(X;Z/l)⊗
Z/l
H∗M(Spec k0; Z/l) if X = G/B or X = G/T and in these cases CH∗(X;Z/l) ∼=

H∗et(X̄, µl) where X̄ = X ×
Spec k0

Spec k

(ii) If X = G/N(T ), H∗M(X,Z/l) ∼= H∗et(X̄, µl)⊗
Z/l
H∗M(Spec k0; Z/l).

(iii) In all of the above cases H∗M(X; Z/l) is a free module over H∗M(Spec k0; Z/l). Moreover, in all of the
above cases, on also obtains the identification H∗M(X; Z/l) ∼= H∗(RHom(M(X)/l, Z/l))⊗

Z/l
H∗M(Spec k0; Z/l) where

M(X)/l denotes the mod−l motive of X: recall this is a complex of sheaves.

Proof. First we consider the case where X = G/B. In this case, the Bruhat decomposition provides decomposition
of G/B into affine spaces. The arguments apply more generally to any projective smooth scheme X provided
with the action of the multiplicative group Gm and the resulting Bialynicki-Birula decomposition: see [delBano].
Though these were originally stated for the case where the ground field is algebraically closed, they have now
been extended to the case where the ground field is any field: see [Bros]. The basic idea is that the long-exact
localization sequences in higher Chow groups break-up into short exact sequences. We will provide some details of
this argument, mainly for the sake of completeness.

First one observes that XGm is smooth and projective and breaks up into finitely many components, Xα.
α = 0, · · · , n. (When X = G/B, these components are just k-rational points on X.) Then X itself breaks up as
the disjoint union of locally closed smooth sub-schemes X+

α , so that (i) each X+
α is provided with a Gm-equivariant

map πα : X+
α → Xα, (ii) (X+

α )Gm = Xα. Moreover, there exists a descending filtration X = Y0 ⊇ Y1 ⊇ Y2 ⊇ · · · ⊇
Yn ⊇ Yn+1 = φ by closed Gm-stable sub-schemes Yi, with X+

α = Yα − Yα+1 = X+
α .

Let dα = the codimension of X+
α in X and let Γπα denote the closure of the graph of πα in Xα×X. This defines a

class, mα, in CHdim(Xα)+dα(Xα×X). Composition with this class defines maps: CHi−dα(Xα, j;Z/l)
p∗α→CHi−dα(Xα×

X, j;Z/l)∩mα→ CHi+dim(Xα)(Xα ×X, j;Z/l)
p2∗→CHi(X, j;Z/l) where pi denotes the projection to the i-th factor. It

is shown in [delBano, Theorem 2.4] that these maps provide a decomposition:

(8.1.1) ⊕
α
CHi−dα(Xα, j;Z/l)

∼=→CHi(X, j;Z/l)

In our case X = G/B and each Xα is a k-rational point. Moreover, taking j = 0, shows that CH∗(X,Z/l) ∼=
⊕w εWZ/l, where the summands correspond to the various Schubert-cells indexed by the Weyl group W . Therefore,
after identifying the higher Chow-groups of G/B with its motivic-cohomology, we obtain the isomorphism:

(8.1.2) H∗M(G/B; Z/l) ∼= CH∗(G/B,Z/l)⊗
Z/l
H∗M(Spec k; Z/l)

Moreover, in this case it is clear that H∗et(G/B;µl) ∼= ⊕w εWZ/l. Therefore, these statements prove all the
assertions in the theorem, except for the last part of (iii) for the case X = G/B.

Next we consider the last assertion in (iii) for X = G/B. observe first that M(X)/l is a resolution of the constant

sheaf Z/lX so that, RΓ(X,Z/l) ' RHom(M(X)/l,Z/l). One has a natural map RHom(M(X)/l,Z/l)
L
⊗
Z/l
Z/l →

RHom(M(X)/l, Z/l). Using the cell-filtration on X, one may show that this map is a quasi-isomorphism. This
proves the last assertion in (iii).
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When X = G/T , observe that there is a natural smooth map G/T → G/B whose fibers are all Ru(B) and
hence affine spaces. The homotopy property for motivic cohomology shows therefore, that the above statements
for X = G/B carry over to X = G/T .

Next we consider the case X = G/N(T ). Recall that we already showed we may identify the simplicial scheme
EW×

W
G/T with G/N(T ). Therefore the corresponding assertions for G/N(T ) follow from the ones for G/T by

observing that the cohomology spectra of a simplicial scheme is defined as the homotopy limit of the cohomology
spectra of the schemes in each simplicial degree. �

9. Motivic Atiyah duality

Recall Atiyah duality is the statement that the Thom-space of the normal bundle to imbedding a compact
manifold in a large sphere is Spanier-Whitehead dual to the stable homotopy type of the manifold. This was
extended to projective algebraic varieties over algebraically closed fields in the context of étale homotopy theory in
[J86]. Recall that in [Voev, Proposition 2.7], it is shown that for every projective smooth variety X, there exists a
vector bundle N together with a Thom-Pontrjagin collapse map: TP : T d+n → Th(N ). Here T d+n is a T-sphere of
dimension d+n (and identified with the projective space Pd+n

k0
) and Th(N ) is the Thom-space of the vector bundle

N . As another application of the theory developed in this paper, we are able to provide an independent proof that
this collapse map provides a version of Atiyah-duality (see [At]) in the motivic context when X is assumed to be
both linear and smooth projective. This is independent of [Voev] which contains a (rather difficult to follow) proof
for general smooth projective schemes.)

The starting point of this in all contexts is the construction of a Thom-Pontrjagin collapse map from a large
sphere to a suitable Thom-space. In [Voev, Proposition 2.7], Voevodsky obtained a version of this which we will
employ. It is shown in [Voev, Proposition 2.7] that there exists a vector bundle N on Pd along with a map

(9.0.3) TP1 : T d+n → ThPd(N)

where T d+n is the sphere Sd+n ∧ G∧nm . This map is degree one in the sense that TP ∗(a) = t where a denotes the
top class in the motivic cohomology of ThPd(N) and t denotes the canonical generator of H2d+2n(T d+n,Z(d+ n))

Next assume X is a projective smooth scheme over k0 imbedded in the projective space Pd with normal bundle
V . Then the immersion N − Pd → N −X induces a second Thom-Pontrjagin collapse map

(9.0.4) TP2 : ThPd(N)→ ThX(N) ' ThX(N|X ⊕ V ).

This is also degree one in the sense that the TP ∗2 pulls-back the top class of ThX(N|X ⊕V ) in motivic cohomology
to the top class of ThPd(N). Composing the two Thom-Pontrjagin collapse maps, we obtain

(9.0.5) TP : T d+n → ThX(N|X ⊕ V ) and TPet : T̄ d+n
et → ThX̄(N̄|X̄ ⊕ V̄ )et

where the subscript et denotes the étale topological type and the ¯ denotes the corresponding schemes defined over
the algebraic closure of k0. Next we may compose TP with the diagonal map ∆ : ThX(N|X⊕V )→ X+∧ThX(N|X⊕
V ). Taking the corresponding P1-suspension spectra, we obtain the map µ : ΣP1T d+n → ΣP1X+∧ΣP1ThX(N|X⊕V ).

Theorem 9.1. Assume in addition that X is a linear scheme. Then the following hold:

(i) Both ΣP1(X) and ΣP1 ∧ ThX(N|X ⊕ V ) are finite ΣP1-module spectra. In fact Z̃/l∞(ΣP1) ∧ ΣP1(X) '

Z̃/l∞(ΣP1)
L
∧

Z/l∞(ΣP1
et

)
Z/l∞(ΣP1

et
(Xet)) and Z̃/l∞(ΣP1)∧ΣP1(ThX(N|X⊕V )) ' Z̃/l∞(ΣP1)

L
∧

ΣP1
et

ΣP1
et

(ThX(N|X⊕V )et)

(ii) The dual of the map idgZ/l∞(ΣP1 )
∧ µ is a duality map in the sense of Definition 6.1.

Proof. The finiteness of ΣP1(X) is already established in Proposition 4.7. We will consider the given filtration
φ = F−1 ⊆ F0 ⊆ F1 ⊆ · · · ⊆ Fn−1 ⊆ Fn = X so that each Fi − Fi−1 = tAmi × Gni

m which is a finite sum of
products of affine spaces and split tori. We will show by descending induction on k that the suspension spectra
ΣP1ThX−Fk(N|X−Fk ⊕V|X−Fk) are all finite cellular. When k = n− 1, this is clear since X = Fn and Fn−Fn−1 is
a finite sum of products of affine-spaces and split tori. Therefore any vector bundle over Fn−Fn−1 is trivial and we
may assume ΣP1ThX−Fk(N|X−Fk ⊕ V|X−Fk) is finite cellular for 1 ≤ k + 1 ≤ n and we will show that this implies
the corresponding statement for k = k − 1. For this one observes the stable co-fiber sequence in Sptmot(k0):
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ΣP1(ThX−Fk+1(N|X−Fk+1 ⊕ V|X−Fk+1))→ ΣP1(ThX−Fk(N|X−Fk ⊕ V|X−Fk))→ ΣP1ΣNP1(Fk+1 − Fk)+

where N = rank(N) + rank(V ) + codimFk+1−Fk(X − Fk). The existence of this stable cofiber sequence follows
from the homotopy purity theorem as in [MV, section3, Theorem 2.23]. The identification of the last term of the
above stable cofiber sequence as claimed follows from the observation that the stratum Fk+1 − Fk is assumed to
be a disjoint union of affine spaces and tori and hence that every vector bundle over it is trivial as observed in
the proof of Proposition 4.7. This proves that finiteness of the P1-suspension spectra in the first statement. The
comparison with completed suspension spectra associated to the étale homotopy types follows as in the proof of
Theorem 7.3.

In view of (i), the map idgZ/l∞(ΣP1 )
∧µ may be identified with the map id∧Z/l∞(µ̄et), where ∧ denotes

L
∧

Z/l(ΣP1
et

)

and id denotes the identity map of Z̃/l∞ΣP1 and µ̄et denotes the induced map on the étale topological types of the
corresponding objects defined over the algebraic closure of k0. Therefore, it suffices to show that the map Z/l∞(µet)
is a duality map. At this point one may invoke [J86] to complete the proof of (ii). (The basic technique there is to
show that slant-product with the class µ̄et̂(idd+n) induces a map of Atiyah-Hirzebruch spectral sequences defining
generalized étale homology and cohomology with respect to any constant presheaf of spectra whose homotopy
groups are l-primary torsion. This reduces to showing that the above slant-product induces an isomorphism at the
E2-terms of these spectral sequences which are étale homology and cohomology. Then one makes of use a triangle
involving Thom-isomorphism, Poincaré duality and the slant-product with the class µ̄et(idd+n) as in [Sw, 14.42
Proposition].) �
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