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The motivic Segal–Becker theorem for algebraic K-theory

Roy Joshua and Pablo Pelaez

The present paper is a continuation of earlier work by Gunnar Carlsson and the
first author on a motivic variant of the classical Becker–Gottlieb transfer and an
additivity theorem for such a transfer by the present authors. Here, we establish
a motivic variant of the classical Segal–Becker theorem relating the classifying
space of a 1-dimensional torus with the spectrum defining algebraic K-theory.

1. Introduction

A classical result from [Segal 1973] shows that the classifying space of the infinite
unitary group, namely BU, is a split summand of limm→∞�m

S1((S1)m
∧CP∞). A

year later, [Becker 1974] contained a similar result for the infinite orthogonal group
in place of the infinite unitary group U and BO(2) in the place of CP∞.

The purpose of this paper is to consider similar problems in the motivic world
and for algebraic K-theory, making use of a theory of the motivic Becker–Gottlieb
transfer worked out in [Carlsson and Joshua 2020] and the additivity theorem for
such a transfer worked out in [Joshua and Pelaez 2020]. We adopt the terminology
and conventions from [Carlsson and Joshua 2020] as well as other terminology
that has now become standard. As such, the base scheme is a perfect field k
and we restrict to the category of smooth schemes of finite type over k. This
category is denoted Sm(k) and is provided with the Nisnevich topology. PSh∗(k) is
the category of pointed simplicial presheaves on this site. This category is made
motivic by inverting the affine line A1 as in [Morel and Voevodsky 1999]; the
pointed simplicial presheaves in this category are referred to as motivic spaces.
We let T = P1, pointed at∞. We denote T∧n throughout by T n . Then a motivic
spectrum E denotes a sequence {En | n ≥ 0} of motivic spaces provided with
structure maps T ∧ En→ En+1. The category of motivic spectra is denoted Spt(k),
or just Spt if the choice of k is clear. Then a motivic spectrum E is called an
�T -spectrum if it is levelwise fibrant and the adjoint to the structure maps given by
{En→�T (En+1) | n} are all motivic weak-equivalences.

Then the first observation (see [Voevodsky 1998, §6.2]) is that algebraic K-theory
is represented by the motivic spectrum with Z×BGL∞ as the motivic space in
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each degree, with the structure map given by the Bott periodicity: Z×BGL∞ ≃
�T (Z×BGL∞). We denote this motivic spectrum by K . Therefore,

K 0(X)≃ [6∞T (X+), K ] ∼= [X, Z×BGL∞],

where the first and second [ , ] denote the hom in the stable motivic homotopy
category and the corresponding unstable pointed motivic homotopy category, re-
spectively.

We observe in Proposition 2.1 that there is an �T -motivic spectrum whose 0-th
term is given by the motivic space BGL∞. Assuming this, the first main result
of this paper is the following theorem, which we call the motivic Segal–Becker
theorem in view of the fact that such a result was proven for topological complex
K-theory, making use of complex unitary groups, in [Segal 1973] and for real
K-theory, making use of orthogonal groups, in [Becker 1974]. (In fact, Becker’s
proof, making use of the transfer, also applies to topological complex K-theory.)
For a motivic space P , we let Q(P)= limn→∞�n

T T∧n(P). Of key importance for
us is the map

λ : Q(BGm)→ Q(lim
−−→n BGLn)= Q(BGL∞)

q
−→ BGL∞, (1.1)

where the map q is the obvious one induced by the fact that BGL∞ is the 0-th space
of an �T -spectrum (see Proposition 2.1). The map Q(BGm)→ Q(lim

−−→n BGLn)=

Q(BGL∞) is induced by the inclusion, Gm→ GLn→ GL∞, where the first map
is the diagonal imbedding.

Theorem 1.2 (the motivic Segal–Becker theorem for algebraic K-theory). (i)
Assume that the base scheme is a field k of characteristic 0. Then the map in (1.1)
induces a surjection for every pointed motivic space X that is a compact object in
the unstable pointed motivic homotopy category:

[X, Q(BGm)] → [X, BGL∞].

(Recall that a motivic space X is a compact object in the unstable pointed motivic
homotopy category if Map(X, ) commutes with all small colimits in the second
argument, where Map( , ) denotes the simplicial mapping space.)

(ii) Assume that the base scheme is a perfect field k of positive characteristic
p > 0.1 Then, after inverting p, the map in (1.1) induces a surjection for every
pointed motivic space X that is a compact object in the corresponding unstable
pointed motivic homotopy category:

[X, Q(BGm)] → [X, BGL∞].

1The assumption that k be perfect may be dropped in view of recent results such as in [Elmanto
and Khan 2020] and [Bachmann and Hoyois 2021, Theorem 10.12].
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Remarks 1.3. (1) Localizing at the prime p in the unstable pointed motivic homo-
topy category, as used in statement (ii) and elsewhere in this paper, is discussed
in detail in [Asok et al. 2020]. One may also observe that, though [ , ] as used in
statement (ii) denotes Hom in the unstable pointed motivic homotopy theory, since
the target space is an infinite T -loop space, the above Hom identifies readily with a
Hom in the motivic stable homotopy category, after making use of the adjunction
between taking �T -loops and T -suspension.

(2) One should view the above results as a rather weak-form of the Segal–Becker
theorem, in the sense that we are able to prove only the surjectivity and (not split
surjectivity) of the above maps, and also only for objects X that are compact objects
in the corresponding unstable pointed motivic homotopy category. We hope to
consider questions on split surjectivity in a sequel to this paper, as it seems to
involve considerable additional work and certain techniques used in establishing
such splittings classically do not seem to extend readily to the motivic framework.

(3) It is possible there is an analogue of the above theorem for Hermitian K-theory
[Hornbostel 2005; Schlichting 2017] which is represented by the classifying space
of the infinite orthogonal groups. In fact, much of the proof for the case of algebraic
K-theory seems to carry over to the Hermitian case, the main difficulty being to
prove an analogue of Theorem 3.20. We hope to return to this question elsewhere.

Our approach to all of the above is via a theory of motivic transfers. Such
a theory of motivic and étale variants of the classical Becker–Gottlieb transfer
were developed in [Carlsson and Joshua 2020] and the additivity of transfers was
established in a general framework in [Joshua and Pelaez 2020], though special
cases such as Snaith splitting for the suspension spectrum of BGLn appears in
[Kleen 2018]. Theorem 1.2 is proven by making intrinsic use of this transfer, just
as was done by Becker and Gottlieb, making use of the classical Becker–Gottlieb
transfer. See [Becker 1974] and also [Becker and Gottlieb 1975; 1976].

In fact, we summarize the main ideas of the proof of Theorem 1.2 (as well as an
overview of the paper) as follows: The splitting provided by the motivic Becker–
Gottlieb transfer as in Proposition 2.2 enables us to prove Proposition 2.8. This
shows the map

q̄ = q ◦ Q(p) : Q(BNGL∞(T ))= Q(lim
−−→n BNGLn (Tn))

→ Q(lim
−−→n BGLn)= Q(BGL∞)

q
−→ BGL∞

induces a surjection

[X, Q(BNGL∞(T ))]
q̄∗
−→ [X, BGL∞]

for every compact object X in the unstable pointed motivic homotopy category.
(Here NGLn (Tn) denotes the normalizer of the maximal torus of diagonal matrices
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in GLn .) Then we show in Propositions 2.13 and 2.27 that the map q̄∗ above factors
through λ∗, where λ is the map in (1.1), thereby proving the theorem.

It may be worth pointing out this involves a second, somewhat different use
of the transfer, this time as defined in (3.5), and with a key property proven in
Corollary 3.24. These occupy most of Section 2 of the paper. While Proposition 2.8
is rather straightforward given the properties of the motivic Becker–Gottlieb transfer,
Proposition 2.27 is a bit involved: here one needs to know the relationship between
maps defined by the transfer as in (3.5) and Gysin maps, for at least finite étale
maps in orientable motivic cohomology theories. This is discussed in Section 3 of
the paper.

1A. Basic assumptions and terminology. We assume throughout that the base
scheme is a perfect field. (The assumption that k be perfect can be dropped, if one
prefers, in view of recent results such as in [Elmanto and Khan 2020] and [Bachmann
and Hoyois 2021, Theorem 10.12].) Then Spt = Spt(k) denotes the category of
motivic spectra on the big Nisnevich site of k, with SH = SH(k) denoting the
corresponding motivic stable homotopy category. If k is of characteristic 0, no
further assumptions are needed.

However, if char(k) = p > 0, then we only consider SH[p−1
], which is the

motivic stable homotopy category on k, with the prime p inverted. (The main
reason for this restriction is that a theory of Spanier–Whitehead duality holds only
after inverting p in this case.) Given a motivic spectrum E and a motivic space X ,
the generalized motivic cohomology represented by E is given by the bigraded
theory

h p,q(X, E)= [6∞T X, (S1)p−q
∧G∧q

m E] (1.4)

with [ , ] denoting the Hom in the motivic stable homotopy category.
In both the above cases, we do not require the existence of a symmetric monoidal

structure on the category of spectra itself; that is, it is sufficient to assume the smash
product of spectra is homotopy associative and homotopy commutative.

1B. Geometric classifying spaces. We begin by recalling briefly the construction
of the geometric classifying space of a linear algebraic group; see for example,
[Totaro 1999, §1; Morel and Voevodsky 1999, §4]. Let G denote a linear algebraic
group over S= Spec k, that is, a closed subgroup-scheme in GLn over S for some n.
For a (closed) imbedding i : G→GLn as a closed subgroup-scheme, the geometric
classifying space Bgm(G; i) of G with respect to i is defined as follows. For m ≥ 1,
let EGgm,m

=Um(G)=U (Anm) be the open subscheme of Anm where the diagonal
action of G determined by i is free. By choosing m large enough, one can always
ensure that U (Anm) is nonempty and the quotient U (Anm)/G is a quasiprojective
scheme. We further choose such a family {U (Anm) | m} so that it satisfies the
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hypotheses in [Morel and Voevodsky 1999, Definition 2.1, Section 4.2] defining an
admissible gadget.

Let BGgm,m
= Vm(G)=Um(G)/G denote the quotient S-scheme (a quasiprojec-

tive variety) for the action of G on Um(G) induced by this (diagonal) action of G
on Anm ; the projection Um(G)→ Vm(G) defines Vm(G) as the quotient of Um(G)

by the free action of G and Vm(G) is thus smooth. We have closed imbeddings
Um(G)→ Um+1(G) and Vm(G)→ Vm+1(G) corresponding to the imbeddings
Id×{0} : Anm

→ Anm
× An . We set EGgm

= {Um(G) | m} = {EGgm,m
| m} and

BGgm
= {Vm(G) | m}, which are ind-objects in the category of schemes. (If one

prefers, one may view each EGgm,m (resp. BGgm,m) as a sheaf on the big Nisnevich
(étale) site of smooth schemes over k and then view EGgm (resp. BGgm) as the
corresponding colimit taken in the category of sheaves on (Sm/k)Nis or (Sm/k)ét.)

Definition 1.5. We denote EGgm by EG and BGgm by BG throughout the paper.

Given a scheme X of finite type over S with a G-action, we let Um(G)×G X
denote the balanced product, where (u, x) and (ug−1, gx) are identified for all
(u, x)∈Um×X and g∈G. Since the G-action on Um(G) is free, Um(G)×G X exists
as a geometric quotient which is also a quasiprojective scheme in this setting, in
case X is assumed to be quasiprojective; see [Mumford et al. 1994, Proposition 7.1].
(In case X is an algebraic space of finite type over S, the above quotient also exists,
but as an algebraic space of finite type over S.)

Next we recall a particularly nice way to construct geometric classifying spaces
for closed subgroups of GLn making use of the Stiefel varieties.

Definition 1.6 (Stiefel varieties and Grassmannians). Let n denote a fixed positive
integer and let i ≥ 0 denote an integer. We let Stn+i,n denote the set of all (n+i)×n-
matrices of rank n, or equivalently the set of all injective linear transformations
An
→ An+i . We view this as an open subscheme of the affine space A(n+i)×n . The

group GLn acts on Stn+i,n through its action on An: we view this as a right action
on the set of all (n+ i)× n-matrices. This is a free action and the quotient is the
Grassmann variety of n-planes in An+i , and denoted Grassn+i,n .

As observed in [Morel and Voevodsky 1999, p. 138], for each fixed positive
integer n, the family {Stn+i,n | i ≥0} satisfies the conditions in [Morel and Voevodsky
1999, Definition 2.1, p. 133], so that it defines what is there called an admissible
gadget. Thus {Stn+i,n /H | i ≥ 0} forms finite dimensional approximations to the
classifying space for any closed subgroup H of GLn . Therefore, we make the
following definitions.

Definition 1.7. (i) BHgm,i
= Stn+i,n /H and BH= limi→∞ BHgm,i .

(ii) BGL∞ = limi→∞ limn→∞ Stn+i,n/GLn = limn→∞ St2n,n /GLn .
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For any linear algebraic group G, we let BG denote the geometric classifying
space defined above (as in Definition 1.5 or equivalently in Definition 1.7) as an
ind-scheme. (We may view this as a motivic space.)

2. The motivic Segal–Becker theorem: proof of Theorem 1.2

We begin with the following observation due to Voevodsky.

Proposition 2.1. There exists a motivic �T -spectrum K̃ , whose 0-th space is given
by BGL∞.

Proof. The required spectrum is just f1(K ), where K denotes the �T -spectrum
representing algebraic K-theory; see [Voevodsky 2002a, Theorem 2.2]. That this
is the case follows from [Voevodsky 2002b, Lemma 2.2] (which holds uncondi-
tionally over any field by [Levine 2008, Theorem 7.5.1]) and [Voevodsky 2002b,
Theorem 4.1, Lemma 4.6 and its proof]. □

2A. Changing base points. Recall motivic spaces are assumed to be pointed sim-
plicial presheaves. However, it is often necessary for us to consider a motivic
space Y viewed as an unpointed simplicial presheaf and then provide it with an
extra base point +. A typical example we run into in this paper is when Y is the
geometric classifying space of a linear algebraic group (denoted BG, recalling
Definition 1.5) or a finite degree approximation of it (denoted BGgm,m), both of
which are pointed. However, while considering a motivic Becker–Gottlieb transfer
involving BG (resp. BGgm,m), one needs to consider 6∞T BG+ (resp. 6∞T BGgm,m

+ ),
which is the T -suspension spectrum of BG (resp. BGgm,m) provided with an extra
base point +.

Observe that there is a natural map r : BG+→ BG sending + to the base point
of BG. Let a :6∞T BG→6∞T BG+ denote a map such that

6∞T r ◦ a = id6∞T BG .

(Since the definition of such a map a is straightforward, we skip the details.)

Proposition 2.2. Let h∗,• denote a generalized motivic cohomology theory defined
with respect to a motivic spectrum (with p inverted, if char(k) = p > 0.) Let G
denote a linear algebraic group, which is also special in the sense of Grothendieck
(see [Chevalley et al. 1958]). Then, with N(T ) denoting the normalizer of a split
maximal torus in G, one obtains the commutative square

h∗,•(6∞T BN(T ))
r∗
// h∗,•(6∞T BN(T )+)

h∗,•(6∞T BG)
r∗

//

p∗

OO

h∗,•(6∞T BG+)

p∗

OO

(2.3)
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where the map p :BN(T )→BG is the map induced by the inclusion N(T )→G. The
right vertical map and the horizontal maps are all split monomorphisms. Therefore,
the left vertical map is also a monomorphism.

Proof. That the right vertical map is a split monomorphism is a consequence
of the motivic Becker–Gottlieb transfer as proved in [Carlsson and Joshua 2020,
§9.2], as well as [Joshua and Pelaez 2020, Theorem 1.6] and [Ananyevskiy 2021,
Theorem 5.1]. Moreover, all of these depend on the key identification of the
Grothendieck–Witt group with the motivic π0 of the motivic sphere spectrum from
[Morel 2004; 2012]. The restriction that the characteristic of the base field k be
different from 2 is removed in [Bachmann and Hoyois 2021, Theorem 10.12].

Let the motivic Euler characteristic of G/N(T ) be denoted χA1
(G/N(T )) hence-

forth. Now one may recall from [Joshua and Pelaez 2020, Theorem 1.6] that
we showed χA1

(G/N(T )) is 1 in the Grothendieck–Witt group GW(Spec k) (or
GW(Spec k)[p−1

] if char(k)= p > 0), provided k has a square root of −1. Hence
this conclusion holds whenever the base field k is algebraically or quadratically
closed. In positive characteristics p, one may see that this already shows that
χA1

(G/N(T )) is a unit in the group GW(Spec k)[p−1
], without the assumption

on the existence of a square root of −1 in k. For this, one may first observe the
commutative diagram

GW(Spec k̄)[p−1
]

rk
∼=

// Z[p−1
]

GW(Spec k)[p−1
]

rk
//

OO

// Z[p−1
]

id

OO

(2.4)

where k̄ is an algebraic closure of k. Here the left vertical map is induced by the
change of base fields from k to k̄, and rk denotes the rank map. Since the motivic
Euler characteristic of G/N(T ) over Spec k maps to the motivic Euler characteristic
of the corresponding G/N(T ) over Spec k̄, it follows that the rank of χA1

(G/N(T ))

over Spec k is in fact 1. By [Ananyevskiy 2021, Lemma 2.9(2)], this shows that the
χA1

(G/N(T )) over Spec k is in fact a unit in GW(Spec k)[p−1
], that is, when k

has positive characteristic. (For the convenience of the reader, we summarize a few
key facts discussed in [Ananyevskiy 2021, proof of Lemma 2.9(2)]. It is observed
there that when the base field k is not formally real, then

I (k)= kernel(GW(k)
rk
−→ Z)

is the nilradical of GW(k) [Baeza 1978, Theorem V.8.9, Lemma V.7.7 and The-
orem V. 7.8]. Therefore, if char(k) = p > 0, and the rank of χA1

(G/N(T )) is 1
in Z[p−1

], then χA1
(G/N(T )) is 1+ q for some nilpotent element q in I (k)[p−1

]

and the conclusion follows.)
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In characteristic 0, the commutative diagram

GW(Spec k̄)
rk
∼=

// Z

GW(Spec k)
rk
//

OO

// Z

id

OO

(2.5)

shows that once again the rank of χA1
(G/N(T )) is 1. Therefore, to show that the

class χA1
(G/N(T )) is a unit in GW(Spec k), it suffices to show its signature is 1;

this is proven in [Ananyevskiy 2021, Theorem 5.1(1)]. (Again, for the convenience
of the reader, we summarize some details from the proof of [Ananyevskiy 2021,
Theorem 5.1(1)]. When the field k is not formally real, the discussion in the last
paragraph applies, so that by [Ananyevskiy 2021, Lemma 2.12] one reduces to
considering only the case when k is a real closed field. In this case, one lets Ralg

denote the real closure of Q in R. Then, one knows that the given real closed field
k contains a copy of Ralg and that there exists a reductive group scheme G̃ over
Spec Ralg such that G = G̃×Spec Ralg Spec k. Let GR = G̃×Spec Ralg Spec R. Then
one also observes that the Grothendieck–Witt groups of the three fields k, Ralg and
R are isomorphic, and the motivic Euler characteristics

χA1
(G/N(T )), χA1

(G̃/Ñ(T )), χA1
(GSpec R/N(T )Spec R)

over the above three fields identify under the above isomorphisms, so that one
may assume the base field k is R. Then it is shown in [Ananyevskiy 2021, proof
of Theorem 5.1(1)] that, in this case, knowing the rank and signature of the mo-
tivic Euler characteristic χA1

(G/N(T )) are 1 suffices to prove it is a unit in the
Grothendieck–Witt group.)

These complete the proof that the right vertical map in (2.3) is a split monomor-
phism.

The horizontal maps in (2.3) are split by the map a∗. Since the diagram commutes,
it follows that the left vertical map in (2.3) is also a monomorphism. This proves
the proposition. □

Remark 2.6. There is an extension of the above theorem for linear algebraic groups
that are not special, as discussed in [Joshua and Pelaez 2020, Theorem 1.5] and
[Carlsson and Joshua 2020, Theorem 1.5(1)]. But then we require the field be
infinite to prevent certain situations like those mentioned in [Morel and Voevodsky
1999, §4.2, Example 2.10] from occurring. However, for the applications in this
paper, we only need to consider the linear algebraic groups {GLn | n}, which are all
special.
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2B. For the rest of the discussion, we restrict to the family of groups {GLn | n}.
Then the main result of this section is the proof of Theorem 1.2. We break the
proof into several propositions. Given two motivic spaces X ,Y , we let [X ,Y]
denote the Hom in the unstable pointed motivic homotopy category, with p inverted,
if p > 0 is the characteristic of the base field k. For a motivic space P , we let
Q(P)= limn→∞�n

T (T∧n(P)).
Let

p : BNGL∞(T )= lim
−−→n BNGLn (Tn)→ lim

−−→n BGLn = BGL∞ (2.7)

denote the map induced by the inclusion of NGLn (Tn) in GLn .

Proposition 2.8. (i) Assume the base field k is of characteristic 0. Then the map

q̄ = q ◦ Q(p) : Q(BNGL∞(T ))= Q(lim
−−→n BNGLn (Tn))

→ Q(lim
−−→n BGLn)= Q(BGL∞)

q
−→ BGL∞

induces a surjection for every pointed motivic space X which is a compact object in
the unstable pointed motivic homotopy category:

[X, lim
−−→n Q(BNGLn (Tn))] → [X, BGL∞].

(ii) Assume the base field k is perfect and of positive characteristic p. Then the
same conclusion holds after inverting the prime p.

Proof. We follow [Becker 1974, §4] in this proof. The proof of the second statement
follows along the same lines as the proof of the first statement. Therefore, we
discuss a proof of only the first statement. Clearly the map q̄ provides a map of the
corresponding spectra:

6∞T (BNGL∞(T ))=6∞T ( lim
n→∞

BNGLn (Tn))→ K̃ , (2.9)

where K̃ is the motivic �T -spectrum whose 0-th space is BGL∞. Let φ denote the
above map in (2.9).

Let h denote the motivic cohomology theory defined by the mapping cone of the
above map φ. Then, for every motivic space X , we obtain a long exact sequence:

· · · → [X, Q(BNGL∞(T ))]
q̄∗
−→ [X, BGL∞]

c
−→ h0,0(X)→ · · · . (2.10)

For each n ≥ 0, let
un ∈ [BGLn, BGL∞] (2.11)

be the class of the map induced by the imbedding GLn→GL∞. Then it suffices to
show that each such un is in the image of the induced map q̄∗, which is equivalent
to showing that c(un) = 0. To see this let vn : BGLn → Q(BNGL∞(T )) be such
that q̄∗([vn])= [q̄ ◦ vn] = un . Here, if α is a map, [α] denotes the stable homotopy
class of α. Since X is assumed to be compact, [X, BGL∞] = limn→∞[X, BGLn].
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Therefore, giving an α ∈ [X, BGL∞] is equivalent to giving an αn : X → BGLn

(for some n), so that α = un ◦αn . Now let βn = vn ◦αn . Then

q̄∗([βn])= [q̄ ◦ vn ◦αn] = [un ◦αn] = [α].

Now we observe the commutative diagram

[BGLn, Q(BNGL∞(T ))]
q̄∗
//

p∗n
��

K̃ 0,0(BGLn)
c
//

p∗n
��

h0,0(BGLn)

p∗n
��

[BNGLn (Tn), Q(BNGL∞(T ))]
q̄∗
// K̃ 0,0(BNGLn (Tn))

c
// h0,0(BNGLn (Tn))

(2.12)

where pn : BNGLn (Tn)→ BGLn is the obvious map induced by the imbedding
NGLn (Tn)→GLn . Recall that p∗n is a monomorphism, by Proposition 2.2. Therefore,
now it suffices to prove p∗n(c(un))= 0, for each n. But the commutativity of the
above diagram, shows that this is equivalent to showing that c(p∗n(un))= 0. At this
point, we observe the commutative diagram

BNGLn (Tn)
pn

//

in

��

BGLn

un

��

BNGL∞(T )
p

//

j
��

BGL∞

��

id

&&

Q(BNGL∞(T ))
Q(p)

// Q(BGL∞)
q
// BGL∞

where in and j are the obvious maps. The map BGL∞ → Q(BGL∞) is pro-
vided by taking the colimit of the maps BGL∞→�n

T6n
T (BGL∞), while the map

Q(BGL∞)→ BGL∞ is provided by the fact BGL∞ is an infinite T -loop space.
The fact that the composite map BGL∞→ Q(BGL∞)→ BGL∞ is homotopic to
the identity map follows from the adjunction between ∧T and �T , along with the
�T -infinite loop space structure on BGL∞. In view of the commutative diagram
above, p∗n(un)= un ◦ pn = q ◦ Q(p)◦ j ◦ in = q̄∗( j ◦ in). Since the two rows in the
diagram (2.12) are exact, it follows that indeed c(q̄∗( j ◦in))= 0, thereby completing
the proof that c(p∗n(un))= 0. □

Let λ : Q(BGm)→ Q(BGL∞)→ BGL∞ denote the map considered in (1.1).

Proposition 2.13. (i) Assume the base field k is of characteristic 0. Let X be any
pointed motivic space. Then there is a map ζ :Q(BNGL∞(T ))→Q(BGm)=Q(P∞),
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so that the triangle

[X, Q(BNGL∞(T ))]
ζ∗
//

q̄∗ ))

[X, Q(BGm)]

λ∗

��

[X, BGL∞]

(2.14)

commutes.

(ii) Assume the base field k is perfect and of positive characteristic p. Then the
same conclusion holds after inverting the prime p.

Proof of Theorem 1.2. Before we prove the above proposition, we proceed to show
how to complete the proof of Theorem 1.2, given the above proposition. We simply
observe that, for a compact object X , the composition of the maps in

[X, Q(BNGL∞(T ))]
ζ∗
−→ [X, Q(BGm))]

λ∗
−→ [X, BGL∞]

is a surjection, thereby proving that the map λ∗ is also a surjection, which completes
the proof of the theorem. □

2C. Therefore, it suffices to prove Proposition 2.13, which we now proceed to
do. Moreover, we only consider the characteristic 0 case explicitly, as the positive
characteristic case follows exactly along the same lines, once the characteristic
is inverted. Let St2n,n denote the Stiefel variety of n-frames (that is, n-linearly
independent vectors) (v1, . . . , vn) in A2n . The group GLn acts on this variety,
by acting on such frames by sending (v1, . . . , vn) to (v1, . . . , vn) ∗ g, g ∈ GLn .
(We view this as a right action because the Stiefel variety St2n,n identifies with
the variety of all 2n × n-matrices of rank n, with each vector vi in an n-frame
(v1, . . . , vn) written as the i-th column.) This is a free action and the quotient is
the Grassmannian Grass2n,n . The Stiefel variety St2n,n is an open subvariety of the
affine space A2n2

and the complement has codimension n+ 1 in A2n2
.

Next we consider the ind-scheme

A2
→ A4

→ A6
→ · · · → A2n in

−→ A2n+2
· · · , (2.15)

where the closed immersion A2n
→A2n+2 sends (x1, . . . , x2n) to (x1, . . . , x2n, 0, 0).

Let ei , i = 1, . . . , 2n, 2n+ 1, 2n+ 2, denote the standard basis vectors in A2n+2.
Then we obtain a closed immersion

in : St2n,n→ St2n+2,n+1, (2.16)

by sending an n-frame (v1, . . . , vn) in A2n to the n+ 1-frame

(v1, . . . , vn, ēn+1 = e2n+1+ e2n+2).
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This induces a closed immersion of the Grassmannians, Grass2n,n→Grass2n+2,n+1.
Therefore, the discussion in Section 1B shows that the above Stiefel varieties
may be used as finite dimensional approximations to EGLn and the Grassmannian,
Grass2n,n , could be used as a finite dimensional approximation to BGLn .

Next we make the identifications

BGLgm,n
n = St2n,n / GLn,

BNGLn (Tn)
gm,n
= St2n,n /NGLn (Tn),

˜BNGLn (Tn)gm,n = St2n,n /(Gm ×NGLn−1(Tn−1)),

(2.17)

where we imbed GLn−1 in GLn as the last (n − 1)× (n − 1)-block, then imbed
NGLn (Tn) in GLn , and Gm×NGLn−1(Tn−1) in Gm×GLn−1. Now Gm×NGLn−1(Tn−1)

is a subgroup of index n in NGLn (Tn), so that the projection

rn : ˜BNGLn (Tn)gm,n→ BNGLn (Tn)
gm,n

is a finite étale cover of degree n. The fact that the terms appearing on the right-
hand sides in (2.17) are indeed approximations to the classifying spaces of the
corresponding linear algebraic groups follows from the discussion in Section 1B.

Next consider the map St2n,n→ St2n,1 sending an n-frame (v1, v2, . . . , vn) to v1.
Clearly this factors through the quotient of St2n,n /1×GLn−1, where GLn−1 acts
only on the last n − 1-vectors in the n-frame (v1, . . . , vn−1, vn). Therefore, we
obtain the map

φn : St2n,n /(1×GLn−1)→ St2n,1 . (2.18)

Moreover, the above map φn is compatible with the obvious action of Gm on
St2n,n / GLn−1, where it acts on the vector v1 in an n-frame (v1, . . . , vn−1, vn), and
it acts on the 1-frame v in St2n,1. Taking quotients, this defines the map

φ̄n : St2n,n /(Gm ×GLn−1)→ St2n,1 /Gm . (2.19)

One may then observe the commutative square

St2n,n /(Gm ×GLn−1)
φ̄n

//

��

St2n,1 /Gm

��

St2n+2,n+1 /(Gm ×GLn)
φ̄n+1

// St2n+2,1 /Gm

(2.20)

where the left vertical map is the closed immersion defined by in :St2n,n→St2n+2,n+1

and the right vertical map is induced by the closed immersion St2n,1→ St2n+2,1.
One may also observe that clearly St2n,1 /Gm is an approximation to the classi-

fying space of Gm , so that we let

BGgm,n
m = St2n,1 /Gm . (2.21)
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We also let

un : ˜BNGLn (Tn)gm,n = St2n,n /(Gm ×NGLn−1(Tn−1))

→ St2n,n /(Gm ×GLn−1),

ūn = φ̄n ◦ un : ˜BNGLn (Tn)gm,n = St2n,n /(Gm ×NGLn−1(Tn−1))

→ St2n,1 /Gm = BGgm,n
m .

(2.22)

Then we also obtain the commutative diagram

St2n,n/(Gm×NGLn−1(Tn−1))
un
//

��

St2n,n/(Gm×GLn−1)
φ̄n
//

��

St2n,1/Gm

��

St2n+2,n+1/(Gm×NGLn (Tn))
un+1
// St2n+2,n+1/(Gm×GLn)

φ̄n+1
// St2n+2,1/Gm

(2.23)

As pointed out in the introduction, apart from the transfer for passage from
BGLgm,n

n to BNGLn (Tn)
gm,n , for the proof of Theorem 1.2, one also needs to invoke

a transfer map for the finite étale map

rn : ˜BNGLn (Tn)gm,n = St2n,n /(Gm ×NGLn−1(Tn−1))

→ St2n,n /NGLn (Tn)= BNGLn (Tn)
gm,n.

We also need to know that such a transfer map has reasonable properties, like com-
patibility with base change, and agreement with Gysin maps defined on orientable
generalized motivic cohomology theories. The purpose of the last short section
of the paper is to setup such a transfer and establish these basic properties for it:
see (3.5) for the definition of such a transfer. Let

τn :6
∞

T BNGLn (Tn)
gm,n
+ →6∞T ( ˜BNGLn (Tn)gm,n)+ (2.24)

denote the corresponding transfer defined as in (3.5), and let

ζn :6
∞

T BNGLn (Tn)
gm,n
+

τn
−→6∞T ( ˜BNGLn (Tn)gm,n)+

πn
−→6∞T BGgm,n

m
jn
−→6∞T BGm (2.25)

denote the composition, where the map πn is the composition of the map 6∞T ūn+

followed by the map that sends the base point + to the base point of BG
gm,n
m

as in Section 2A. The last map, denoted jn , is the obvious one sending a finite
dimensional approximation of BGm to the direct limit of such approximations. Let

q̄n : Q(BNGLn (Tn)
gm,n
+ )→ BGL∞ (2.26)

denote the composition

Q(BNGLn (Tn)
gm,n
+ )→ Q(BNGL∞(T ))

Q(p)
−−−→ Q(BGL∞)

q
−→ BGL∞.

Then a key result is the next proposition, which we show also proves Proposition 2.13.
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Proposition 2.27. Assume the above situation. Then the following diagrams com-
mute:

6∞T BNGLn (Tn)
gm,n
+

ζn

''��

6∞T BNGLn+1(Tn+1)
gm,n+1
+ ζn+1

// 6∞T BGm

(2.28)

[X, Q(BNGLn (Tn)
gm,n
+ )]

ζn∗
// [X, Q(BGm)]

λ∗

zz

[6∞T X, 6∞T (BNGLn (Tn)
gm,n
+ )]

≃

OO

ζn∗
//

q̄n∗
))

[6∞T X, 6∞T BGm]

≃

OO

λ′∗

��

K̃ 0,0(X)= [X, BGL∞]

(2.29)

where λ′ : 6∞T BGm → f1(K ) = K̃ is the map of spectra corresponding to the
infinite loop-space map λ : Q(BGm)→ BGL∞. The left vertical map in (2.28) is
the obvious map induced by the closed immersion in in (2.16). Moreover, [ , ] in the
middle row of (2.29) denotes Hom in the motivic stable homotopy category, while
[ , ] in the top row and the bottom row denotes Hom in the unstable pointed motivic
homotopy category.

Proof. We first prove the commutativity of the triangle in (2.28). For this, one
begins with the cartesian square (which also defines Pn and the map r ′n):

Pn
ĩ

//

r ′n

��

˜BNGLn+1(Tn+1)gm,n+1

= St2n+2,n+1 /(Gm ×NGLn (Tn))

rn+1

��

BNGLn (Tn)
gm,n

= St2n,n /NGLn (Tn)

i
//
BNGLn+1(Tn+1)

gm,n+1

= St2n+2,n+1 /NGLn+1(Tn+1)

(2.30)

Observe that the right vertical map, and therefore also the left vertical map, is a
finite étale map of degree n+ 1. By Proposition 3.6 (which shows the naturality
of the transfer with respect to base change), we observe that the square below
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homotopy commutes:

6∞T Pn,+

6∞T ĩ+
// 6∞T

˜BNGLn+1(Tn+1)
gm,n+1

+

6∞T BNGLn (Tn)
gm,n
+

6∞T i+
//

τ ′n

OO

6∞T BNGLn+1(Tn+1)+
gm,n+1

τn+1

OO

(2.31)

Then a straightforward calculation, as discussed below, shows that

Pn = ˜BNGLn (Tn)gm,n ⊔BNGLn (Tn)
gm,n. (2.32)

The main observation here is that under the identifications in (2.17), the map

BNGLn (Tn)
gm,n
→ BNGLn+1(Tn+1)

gm,n+1

lifts to ˜BNGLn+1(Tn+1)gm,n+1, which provides the required splitting. In fact, this
splitting may be described in more detail as follows. Observe first that the imbedding
i : St2n,n→ St2n+2,n+1 is defined by sending an n-frame (v1, . . . , vn) in St2n,n to
the n+ 1-frame (v1, . . . , vn, ēn+1) in St2n+2,n+1, where ēn+1 is the nonzero vector
chosen as in (2.16) that lies in the ambient affine space A2n+2 and is outside
of An

⊆ An+2. The induced map St2n,n /NGLn (Tn)→ St2n+2,n+1 /NGLn+1 is the
map i : BNGLn (Tn)

gm,n
→ BNGLn+1(Tn+1)

gm,n+1 appearing in (2.30).
One may see that from i one obtains an induced map

St2n,n /(Gm ×NGLn−1(Tn−1))→ St2n+2,n+1 /(Gm ×NGLn (Tn)), (2.33)

since the action of Gm ×NGLn−1(Tn−1) on St2n,n and the action of Gm ×NGLn (Tn)

on St2n+2,n+1 are compatible. (For this one identifies St2n,n as imbedded in
St2n+2,n+1 using the imbedding in considered in (2.16), and identifies the group
Gm×NGLn−1(Tn−1) with the subgroup Gm×NGLn−1(Tn−1)×1 of Gm×NGLn (Tn).)
Moreover, one may see that this map is a closed immersion and that one obtains a
commutative triangle

St2n,n /(Gm ×NGLn−1(Tn−1)) //

**

Pn

r ′n
xx

St2n,n /NGLn (Tn)

(2.34)

The left inclined map is a finite étale map of degree n, while the right inclined
map is a finite étale map of degree n + 1. Since the top horizontal map is also
étale (see [Milne 1980, Chapter I, Corollary 3.6]) and a closed immersion, it
is the open (and closed) imbedding of a connected component in Pn . Let the
complement in Pn of St2n,n /(Gm ×NGLn−1(Tn−1)) be denoted Cn . Then the induced
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map Cn→St2n,n /NGLn (Tn) is a bijective and finite étale map, so is an isomorphism,
showing that St2n,n /NGLn (Tn)= BNGLn (Tn)

gm,n is a split summand of

St2n+2,n+1 /(Gm ×NGLn (Tn))=
˜BNGLn+1(Tn+1)gm,n+1.

(One may also obtain an explicit description of the above splitting as given by
sending the n-frame (v1, . . . , vn) in St2n,n to the n + 1-frame (ēn+1, v1, . . . , vn)

in St2n+2,n+1. Gm acts on ēn+1 by multiplication by scalars. Let s denote this
imbedding of St2n,n /NGLn (Tn) in St2n+2,n+1 /(Gm ×NGLn (Tn)).)

Moreover, observe from the above description of the splitting (2.32) that under
the composite map

ūn+1 ◦ ĩ : Pn
ĩ
−→ ˜BNGLn+1(Tn+1)gm,n+1 = St2n+2,n+1 /(Gm ×NGLn (Tn))

un+1
−−→ St2n+2,n+1 /(Gm ×GLn)

φ̄n
−→ St2n+2,1 /Gm, (2.35)

the copy of BNGLn (Tn)
gm,n
= St2n,n /NGLn (Tn) in Pn (under the above splitting

of Pn) is sent to the base point. (Observe that the n-frames (v1, . . . , vn) coming
from St2n,n , under the above imbedding s get sent to the last n-frames.) Since the
diagram

BG
gm,n
m // BG

gm,n+1
m

˜BNGLn (Tn)gm,n

ūn

OO

// ˜BNGLn+1(Tn+1)
gm,n+1

ūn+1

OO

(which is the same as the diagram (2.23)) also commutes, combining these diagrams
and composing with the inclusions into BGm proves the commutativity of the
triangle (2.28). In fact, the commutativity of the triangle (2.28) is equivalent to the
statement that the composition of maps along the left column followed by the top
inclined map is the same (up to homotopy) as the composition of the bottom map
followed by the maps in the right column in the following big diagram:

6∞T BGm

6∞T BG
gm,n
m //

jn
22

6∞T BG
gm,n+1
m

jn+1

OO

6∞T
˜BNGLn (Tn)

gm,n
+

//

πn

OO

6∞T Pn,+

6∞T ĩ+
// 6∞T

˜BNGLn+1(Tn+1)
gm,n+1
+

πn+1

OO

6∞T BNGLn (Tn)
gm,n
+

//

τn

OO
τ ′n

66

6∞T BNGLn+1(Tn+1)
gm,n+1
+

τn+1

OO
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The commutativity of the part of the above diagram on and above the second row
has already been proven. The bottom square on the right commutes by (2.31).
Proposition 3.6(i) proves that τ ′n = τn + id, where id denotes the identity map of
6∞T BNGLn (Tn)

gm,n
+ . Finally, the observation in (2.35) completes the proof.

Next we consider the commutativity of the diagram (2.29). Since the top square
there evidently commutes, it suffices to consider the commutativity of the bottom
triangle there. The key observation is that, in order to prove the commutativity of
the bottom triangle in (2.29), it suffices to take X = BNGLn (Tn)

gm,n
+ and show that

the triangle commutes for the class u ∈ [X, Q(BNGLn (Tn)
gm,n
+ )] denoting the class

corresponding to the identity map 6∞T X+→6∞T X+.
Let u denote the class considered in the last line. Then q̄n∗(u)= (q ◦ Q(p))∗(u)

denotes the class of the vector bundle of rank n associated to the principal NGLn (Tn)-
bundle over BNGLn (Tn)

gm,n . One may see this readily as follows: First, the natural
map p : BNGLn (Tn)

gm,n
→ BGL∞ corresponds to the rank n vector bundle over

BNGLn (Tn)
gm,n associated to the principal NGLn (Tn)-bundle over BNGLn (Tn)

gm,n .
Then the homotopy commutative diagram

BNGLn (Tn)
gm,n p

//

u
��

BGL∞

��

id

&&

Q(BNGLn (Tn)
gm,n)

Q(p)
// Q(BGL∞)

q
// BGL∞

completes the proof. We denote by α this vector bundle over

BNGLn (Tn)
gm,n
= St2n,n /NGLn (Tn). (2.36)

Let β denote the line bundle associated to the principal Gm-bundle

St2n,n /(1×NGLn−1(Tn−1))

→ St2n,n/(Gm ×NGLn−1(Tn−1))= ˜BNGLn (Tn)gm,n. (2.37)

Then λ′
∗
(ζn∗(u)) is the image of β under the transfer map

τ ∗n : K̃
0,0( ˜BNGLn (Tn)gm,n

)
→ K̃ 0,0(BNGLn (Tn)

gm,n),

where ζn is the map in (2.25). This results from the following observations:

(i) The map λ′ ◦ jn : 6∞T BGgm,n
→ 6∞T BG

gm
m → f1(K ) = K̃ corresponds to a

map λ̃′n : St2n,1 /Gm = BG
gm,n
m → BGL∞.

(ii) The map λ̃′n : St2n,1 /Gm = BG
gm,n
m → BGL∞ corresponds to the line bundle

on St2n,1 /Gm corresponding to the Gm-bundle St2n,1→ St2n,1/Gm .

(iii) The above line bundle on St2n,1 /Gm pulls back under the map φ̄n (see (2.19))
to the line bundle on St2n,n /(Gm ×GLn−1) corresponding to the Gm-bundle
St2n,n /(1×GLn−1)→ St2n,n /(Gm ×GLn−1).
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(iv) The above line bundle on St2n,n /(Gm ×GLn−1) pulls back to β by the map

un : ˜BNGLn (Tn)gm,n = St2n,n /(Gm ×NGLn−1(Tn−1))→ St2n,n /(Gm ×GLn−1)

(see (2.22)).

(v) Recall that πn=6∞T ūn+. The above observations now show that the composite
map

λ′ ◦ jn ◦πn = λ′ ◦ jn ◦6∞T ūn+ = λ′ ◦ jn ◦6∞T un+ ◦6
∞

T φ̄n+ :

6∞T
˜BNGLn (Tn)

gm,n

+

jn◦πn
−−−→6∞T BGgm

m
λ′
−→ f1 K = K̃

corresponds to the bundle β.

(vi) Now

λ′ ◦ ζn = λ′ ◦ jn ◦πn+ ◦ τn

= λ′ ◦ jn ◦6∞T ūn+ ◦ τn = λ′ ◦ jn ◦6∞T un+ ◦6
∞

T φ̄n+ ◦ τn

(see (2.25)).

Therefore, it follows that λ′
∗
(ζn∗(u)) corresponds to the composite map

6∞T BNGLn (Tn)
gm,n
+

id
−→6∞T BNGLn (Tn)

gm,n
+

τn
−→6∞T

˜BNGLn (Tn)
gm,n
+

jn◦πn
−−−→6∞T BGgm

m
λ′
−→ f1 K = K̃ . (2.38)

Therefore, at this point, in order to prove the commutativity of the bottom triangle
in (2.29), it suffices to prove that

τ ∗n (β)= α, (2.39)

where τ ∗n denotes the transfer map induced by the transfer τn on the Grothendieck
groups. This is a straightforward computation making use of the direct images of
coherent sheaves under finite étale maps as discussed in the following paragraphs,
as well as Corollary 3.24. (See [Becker 1974, p. 142] for very similar arguments in
the topological case.)

Denoting the total space of the vector bundle α by E(α), observe that E(α)=

St2n,n ×NGLn (Tn)W , where W corresponds to the n-dimensional representation of
GLn forming the fibers of the vector bundle α. We let W ′ denote the repre-
sentation W , but viewed as a representation of NGLn (Tn). Let Tn−1 denote the
(n−1)-dimensional split torus forming the last (n−1)-factors in the split maxi-
mal torus Tn . Observe that on further restricting to the action of the subgroup
H =Gm×NGLn−1(Tn−1), W ′ is the representation of NGLn (Tn) that is induced from
a 1-dimensional representation V of the subgroup H , that is, if {σi H | i = 1, . . . , n}
is the complete set of left cosets of H in NGLn (Tn), then W ′ ∼=

⊕n
i=1 Vi , with each

Vi = V and where NGLn (Tn) acts on W ′ as follows. For g ∈NGLn (Tn), if g.σi = σkh,
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h ∈ H , then g.vi = hk , with vi = vk ∈ V . (This may be seen by observing that
the normalizer of the maximal torus NGLn (Tn) is the semidirect product of the
symmetric group 6n and the maximal torus Tn .)

Next observe that

p : ˜BNGLn (Tn)gm,n = St2n,n /H → St2n,n /NGLn (Tn)= BNGLn (Tn)
gm,n

is a finite étale map of degree n. Then β identifies with the line bundle, with
structure group Gm , defined by St2n,n ×H V on

˜BNGLn (Tn)gm,n = St2n,n /H.

Clearly p∗(β)= α. Therefore, it suffices to show that the transfer τ ∗n equals p∗ in
this case. That is, it suffices to prove that the transfer τ ∗n on Grothendieck groups
identifies with the push-forward in this case, which is proven in more generality in
the next section of this paper (see Corollary 3.24). This, therefore, completes the
proof of the proposition. □

Proof of Proposition 2.13. One observes from Proposition 2.27 that

q̄n∗ = λ∗ ◦ ζn∗,

and that the direct system of maps {ζn∗ | n} are compatible. Therefore, it follows
that the maps {q̄n∗ | n} are also compatible, and taking the direct limit, we obtain
q̄∗ = limn→∞ q̄n∗ = λ∗ ◦ limn→∞ ζn∗ = λ∗ ◦ ζ∗, which proves Proposition 2.13. □

3. The motivic transfer and the motivic Gysin maps
associated to projective smooth morphisms

3A. One may observe from the discussion in (2.24) and (2.39) that we need to
define a transfer for all finite étale maps between smooth schemes with reasonable
properties, such as compatibility with base change, and then show that such a
transfer induces the push-forward map at the level of algebraic K-theory. The
definition of such a transfer map for finite étale maps is relatively straightforward.
In fact there are existing constructions in the literature, as the referee has pointed
out, which either provide such transfers directly or can be used to provide such
transfers with a little bit of effort. We discuss some of these below in Remarks 3.8.

However, proving that such transfers coincide with the push-forward map on
algebraic K-theory seems a bit involved: in the approach we take, one needs to first
show that these transfers coincide with Gysin maps for all orientable generalized
motivic cohomology theories, and then observe that such Gysin maps on algebraic
K-theory agree with push-forward maps. A careful examination of the proof of the
first statement shows that it takes more or less the same effort to define a transfer
map for all projective smooth maps and show that it agrees with a Gysin map up
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to multiplication by a certain Euler class, which trivializes when the maps are
finite étale. Therefore, we observe that as a consequence we are able to derive
the precise relationship between the transfer and Gysin maps associated to all
projective smooth maps between smooth quasiprojective schemes on all orientable
generalized motivic cohomology theories. We believe this result is of independent
interest, though not used in the rest of the paper in this generality.

Therefore, the general context in which we work in this section is the following.
Let

p : E→ B (3.1)

denote a projective smooth map of quasiprojective smooth schemes over the base
field.

3B. The definition of a transfer for projective smooth maps. In order to motivate
this construction, we quickly review the corresponding Thom–Pontrjagin construc-
tion in the context of classical algebraic topology. Here p : E→ B denotes a smooth
fiber bundle between compact manifolds E and B. Then one may obtain a closed
imbedding of E in B×RN for N sufficiently large. We denote this imbedding by i .
Therefore, one obtains the Thom–Pontrjagin collapse map

TP : B+ ∧ SN
→ Th(ν), (3.2)

where ν denotes the normal bundle associated to the closed imbedding i . (One may
recall that this is the starting point of the classical Atiyah duality [Atiyah 1961;
Spanier and Whitehead 1955; Dold and Puppe 1983] as well as its étale variant as
in [Joshua 1986; 1987] in the context of étale homotopy theory as in [Artin and
Mazur 1969].)

We proceed to define a corresponding construction in the motivic context, making
use of the Voevodsky collapse in the place of the Thom–Pontrjagin collapse. In the
situation in (3.1), as the schemes E and B are assumed to be quasiprojective, one
obtains a closed immersion i : E→ B×PN for a large enough N . Therefore, the
discussion in [Voevodsky 2003, Proposition 2.7, Lemma 2.10 and Theorem 2.11]
(see also [Carlsson and Joshua 2020, §10.4]) provides the Voevodsky collapse map

V : B+ ∧ T n
→ Th(ν) (3.3)

for a suitably large n, and where ν denotes the vector bundle on E , which we call
the virtual normal bundle; see [Carlsson and Joshua 2020, §10.8]. (See also [Hoyois
2017, §5.3] for a discussion on the collapse, which in this framework is originally
due to Voevodsky.)

Let τ = τE/B denote the relative tangent bundle associated to p : E → B.
Assume the relative dimension of p is d. Then it follows from [Voevodsky 2003,
Proposition 2.7 through Theorem 2.11] (see also [Carlsson and Joshua 2020, §10.4,
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Definition 10.8]) that ν ⊕ τ is a trivial bundle on pull-back to Ẽ , where Ẽ is a
(functorial) affine replacement of E provided by the technique of [Jouanolou 1973].

Definition 3.4. Therefore, we may define the Becker–Gottlieb transfer in the situa-
tion of (3.1) as follows:

tr : B+ ∧ T n V
−→ Th(ν)

iν
−→ Th(ν⊕ τ)≃ E+ ∧ T n, (3.5)

where iν is the map induced by the obvious inclusion ν→ ν⊕τ . (See, for example,
the proof of [Becker and Gottlieb 1975, Theorem 4.3].)

Proposition 3.6 (some basic properties of the transfer). (i) Assume that in (3.1),
E = E0 ⊔ E1. Denoting the corresponding transfers tri : B+ ∧ T n

→ Ei,+ ∧ T n

and tr : B+ ∧ T n
→ E+ ∧ T n , we have tr∗ = tr∗0+ tr∗1 in any generalized motivic

cohomology theory.

(ii) In case E = B in (3.1) and the map p is the identity map on B, then tr∗ = id on
any orientable generalized motivic cohomology theory.

(iii) Assume that the square

E ′ //

p′
��

E
p
��

B ′ // B

(3.7)

is cartesian. Then we obtain the following homotopy commutative diagram of
transfer maps:

B+ ∧ T n V
// Th(ν)

iν
// Th(ν⊕ τ)≃ E+ ∧ T n

B ′
+
∧ T n V ′

//

OO

Th(ν ′)
i ′ν
//

OO

Th(ν ′⊕ τ ′)≃ E ′
+
∧ T n

OO

where V ′ and i ′ν are the maps corresponding to V and iν when B and E are replaced
by B ′ and E ′.

Proof. The proofs of the first and last statements are straightforward from the
construction of the transfer. The second statement follows Corollary 3.24 by taking
the map p to be the identity. □

Remarks 3.8. Here we briefly discuss other possible constructions of the transfer
associated to finite étale maps p : E → B, where E and B are quasiprojective
smooth schemes over the base field k. One may find one such construction in
[Röndigs and Østvær 2008, §2.3], as pointed out by the referee, where it is verified
that this transfer is compatible with base change. (Making use of the 6-functor
formalism in motivic homotopy theory as in [Ayoub 2007], the second author has
also sketched a construction of a transfer for finite étale maps. As this is not all
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that different from the one in [Röndigs and Østvær 2008, §2.3], we do not discuss
this any further here.) Therefore, what one needs to show is that this transfer
on algebraic K-theory agrees with the push-forward. As this is not discussed in
[Röndigs and Østvær 2008], all one can say is that a proof of this fact will likely
follow the same steps as outlined above and discussed below in detail, except that
the relative tangent bundle to the map p is trivial in this case.

The referee has also pointed out that the discussions in [Elmanto et al. 2021]
and [Hoyois et al. 2021], making use of framed correspondences, provide a transfer
map for finite étale maps that identify with push-forwards (of vector bundles) on
algebraic K-theory.

In the rest of this section, we do the following:

(i) Making use of the same Voevodsky collapse used in the construction of the
transfer, we proceed to define a Gysin map associated to projective and smooth
maps between smooth quasiprojective schemes in all orientable generalized motivic
cohomology theories.

(ii) Then we show that this Gysin map agrees with the Gysin maps defined by
more traditional means, typically by factoring the given map p : E → B as the
composition of a closed immersion of E into a relative projective space B ×Pn

followed by the projection π : B×Pn
→ B.

(iii) At this point, standard comparison results (see [Panin 2009, §2.9.1] which
invokes [Thomason and Trobaugh 1990, 3.16, 3.17 and 3.18]) show that the above
Gysin maps identify with the push-forward maps on the algebraic K-theory of
smooth quasiprojective schemes.

(iv) Finally, we show that on orientable generalized motivic cohomology theories,
the map induced by the transfer and the Gysin maps constructed below differ only
by multiplication by the Euler class of the relative tangent bundle to the map p.
As a result, when p is a finite étale map, the relative tangent bundle to the map p
trivializes and the map induced by the transfer agrees with the push-forward on
algebraic K-theory.

3C. Gysin maps associated to projective smooth maps on orientable generalized
motivic cohomology theories. We begin by quickly reviewing the corresponding
situation in algebraic topology. For any generalized cohomology theory h∗, the
Thom–Pontrjagin collapse in (3.2) induces the map

TP∗ : h∗(Th(ν))→ h∗(B+ ∧ SN ).

We further assume that h∗ is an orientable cohomology theory in the sense that it has
a Thom class T (ν)∈ hc(Th(ν)) (where c is the codimension of E in B×SN ), so that
cup product with this class defines the Thom isomorphism h∗(E)→ h∗+c(Th(ν)).
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In this case one also observes the suspension isomorphism h∗(B+∧SN )∼= h∗−N (B).
Thus the composition

p∗ : h∗(E)
∪ T (ν)
−−−→ h∗+c(Th(ν))

TP∗
−−→ h∗+c(B+ ∧ SN )∼= h∗+c−N (B) (3.9)

defines a Gysin map. One may observe that if the relative dimension of E over B
is d , then c= N − d , so that h∗+c−N (B)= h∗−d(B) as required of a Gysin map.

We proceed to define a corresponding Gysin map in the motivic context, for ori-
entable generalized motivic cohomology theories in the sense of [Panin and Yagunov
2002, §2] (see also [Panin 2009]), making use of the Voevodsky collapse in place
of the Thom–Pontrjagin collapse. In the situation in (3.1), as the schemes E and B
are assumed to be quasiprojective, one obtains a closed immersion i : E→ B×PN

for a large enough N . In this context, we recall the Voevodsky collapse

V : B+ ∧ T n
→ Th(ν) (3.10)

as discussed above in (3.3). It should be clear that, with this collapse map replacing
the Thom–Pontrjagin collapse, and generalized motivic cohomology theories that
are orientable (and bigraded), one obtains a Gysin map

p∗ : h∗,•(E)
∪ T (ν)
−−−→ h∗+2c,•+c(Th(ν))

V ∗
−→ h∗+2c,•+c(B+ ∧ T n)∼= h∗+2c−2n,•+c−n(B)= h∗−2d,•−d(B) (3.11)

if d is the relative dimension of E over B, T (ν) is the Thom-class of the bundle ν,
and c is the rank of the vector bundle ν.

Next we proceed to show that the Gysin map defined above indeed agrees with
Gysin maps that are defined by other more traditional means, such as in [Panin
2009] or [Panin and Yagunov 2002, §4 and §5]. (See also [Déglise 2008].) For this,
we need to first recall the framework for defining the Voevodsky collapse. One may
observe from [Voevodsky 2003, pp. 69–70] that one needs to consider the sequence
of closed immersions

E i
−→ B×Pd id×1

−−−→ B×Pd
×Pd id×Segre

−−−−−→B×Pd2
+2d , (3.12)

where Segre denotes the Segre imbedding. We let m = d2
+ 2d henceforth. Let

ν denote the normal bundle to the above composite closed immersion and let c
denote the codimension of this closed immersion. Then one obtains the following
sequence of maps:

h∗,•(E)
∪ T (ν)
−−−→ h∗+2c,•+c(Th(ν))∼= h∗+2c,•+c(B×Pm/(B×Pm

− E))
Gysin′1
−−−→ h∗+2c,•+c(B×Pm)

Gysin2
−−−→ h∗+2c−2m,•+c−m(B). (3.13)

Here the map denoted Gysin′1 precomposed with the cup product with the Thom
class T (ν) is the usual Gysin map associated to the composite closed immersion
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E → B ×Pm (see [Panin and Yagunov 2002, §4]) and the map denoted Gysin2
is the usual Gysin map associated to the projection B×Pm

→ B; see [Panin and
Yagunov 2002, Definition 5.1].

3C1. Deformation to the normal cone. In order to relate the Gysin maps in (3.11)
and (3.13), we first invoke the technique of deformation to the normal cone from
[Panin 2009, §1.2.1, Theorem 1.2]. (See also [Panin and Smirnov 2000, §2.2.8].)
Let i : Y → X denote a closed immersion of smooth schemes of finite type over
k with normal bundle N . Then there exists a smooth scheme X̃ together with a
smooth map p : X̃ → A1 and a closed immersion i : Y × A1

→ X̃ , so that the
composition p ◦ i : Y × A1

→ A1 coincides with the projection Y × A1
→ A1.

Moreover, the following additional properties hold:

(1) The fiber of p over 1 ∈ A1 is isomorphic to X and the base change of i by the
imbedding 1 ∈ A1 corresponds to the given imbedding Y → X .

(2) The fiber of p over 0 ∈ A1 is isomorphic to N and the base change of i by the
imbedding 0 ∈ A1 corresponds to the 0-section imbedding Y →N .

(3) If Z→ Y is a closed immersion of a smooth subscheme of Y , then one obtains
the diagram

(N ,N − Z)
i0
−→ (X̃ , X̃ − Z ×A1)

i1
←− (X, X − Z),

and hence the following diagram for any orientable generalized motivic coho-
mology theory h∗,• with both the horizontal maps being isomorphisms:2

h∗,•(N ,N − Z)
i∗0
←− h∗,•(X̃ , X̃ − Z ×A1)

i∗1
−→ h∗,•(X, X − Z). (3.14)

(4) Moreover, in the above situation the normal bundle to the composite closed
immersion Z→ Y →N is isomorphic to the sum NZ ,Y ⊕N|Z , where NZ ,Y

denotes the normal bundle associated to the closed immersion Z→ Y .

Proposition 3.15. Assume the above situation. Then the Gysin map defined in (3.11)
agrees with the Gysin map defined in (3.13).

Proof. We follow the constructions in [Voevodsky 2003, pp. 69–70]. Accordingly
the second Pd in Pd

×Pd in (3.12) is identified with the dual projective space and
H denotes the incidence hyperplane in Pd

×Pd . Then it is observed there that
P̃d
= Pd

×Pd
− H considered as a scheme over Pd by the projection to the first

factor (p1) is an affine space bundle; in fact, this is an instance of what is known as
Jouanolou’s trick.

Let N denote the normal bundle to the Segre imbedding of B×Pd
×Pd in B×Pn.

If j : B × P̃d
→ B ×Pd

×Pd denotes the open immersion, we let j∗(N ) be the

2This may be viewed as a cohomology variant of the purity theorem; see [Morel and Voevodsky
1999, Theorem 2.23, p. 115].
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pull-back of N to B× P̃d . Since P̃d
→ Pd is a torsor for a vector bundle, and all

vector bundles on affine spaces are trivial by the affirmative solution to the Serre
conjecture, one may see that j∗(N )∼= p∗1(1

∗(N )), where 1 : B×Pd
→ B×Pd

×Pd

is the diagonal imbedding.
Let E denote the pull-back p∗1(τB×Pd/B) (where τB×Pd/B denotes the relative

tangent bundle to B × Pd over B), and let ν1 denote the normal bundle to the
closed immersion i : E → B ×Pd . Let p : Ẽ → E denote the map induced by
p1 : B× P̃d

→ B×Pd when Ẽ is defined by the cartesian square

Ẽ //

p
��

B× P̃d

p1
��

E // B×Pd

Let ν̃1 denote the normal bundle to the induced closed immersion Ẽ→ B× P̃d .
Then denoting the Thom class of the bundle E1 = (E⊕ j∗(N ))

|Ẽ ⊕ ν̃1 by T (E1), we
obtain the sequence of maps

h∗,•(Ẽ)
∪ T (E1)
−−−−→ h∗+2c,•+c(Th(E1))→ h∗+2c,•+c(Th(E ⊕ j∗(N ))). (3.16)

The last map is obtained from the observation that the normal bundle to the composite
closed immersion Ẽ→ B× P̃d 0-section

−−−−−→ E ⊕ j∗(N ) is E1 (see 3C1(4) above). At
this point we make use of the identification j∗(N )= p∗1(1

∗(N )), so that

E1 = p∗(i∗(τB×Pd/B ⊕1∗(N ))⊕ ν1) and E ⊕ N = p∗1(τB×Pd/B ⊕1∗(N )),

which then readily provides the commutativity of the following diagram with
E0 = i∗(τB×Pd/B ⊕1∗(N ))⊕ ν1:

h∗,•(Ẽ)
∪T (E1)

--
∼=

��

h∗+2c,•+c(Th(E1))

∼=

��

..

h∗,•(E)
∪T (E0)

--

h∗+2c,•+c(Th(E ⊕ j∗(N )))

∼=

��

h∗+2c,•+c(B×Pm/(B×Pm
− E))

..

h∗+2c,•+c(B×Pm/(B×Pm
− (B×1Pd)))

(3.17)

The left-most vertical map above is an isomorphism as p : Ẽ→ E is an affine space
bundle. To see that the next vertical map is an isomorphism, one needs to observe
that

Th(E1)= Th
(

p∗(i∗(τB×Pd/B ⊕1∗(N ))⊕ ν1)
)
≃ Th(i∗(τB×Pd/B ⊕1∗(N ))⊕ ν1).
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At this point we make use of the isomorphisms in (3.14) and 3C1(4) to obtain the
isomorphism

h∗,•
(
Th(i∗(τB×Pd/B ⊕1∗(N ))⊕ ν1)

)
∼= h∗,•((B×Pm)/(B×Pm

− E)).

To see the last vertical map in (3.17) is an isomorphism, one first observes that

Th(E ⊕ j∗(N ))= Th(p∗1(τB×Pd/B ⊕1∗(N )))≃ Th(τB×Pd/B ⊕1∗(N )),

and then adopts a similar argument to obtain the isomorphism

h∗,•(Th(τB×Pd/B ⊕1∗(N ))∼= h∗,•
(
(B×Pm)/((B×Pm)− (B×1Pd))

)
.

We also obtain the following commutative diagram:

h∗+2c,•+c
(
B×Pm/((B×Pm

−B×(Pd
×Pd))∪B×H∞)

)

��

,,

h∗+2c,•+c(B×Pm/(B×H∞))
∼=

,,

��

h∗+2c,•+c(B×Pm/(B×Pm
−(B×Pd

×Pd)))

--

h∗+2c,•+c(B+∧T m)

∼=

��

h∗+2c,•+c(B×Pm)
Gysin

,,

h∗+2c−2m,•+c−m(B)

(3.18)

where H∞ is a hyperplane in B×Pm which pulls back to the incidence hyperplane in
B×Pd

×Pd under the Segre imbedding. Next we recall the following identification
(see [Voevodsky 2003, proof of Lemma 2.10]):

Th(E ⊕ j∗(N ))≃ B×Pm/
(
(B×Pm

− B× (Pd
×Pd))∪ B× H∞

)
.

This shows that in this case, one obtains a composite collapse map

V : B+ ∧ T m
→ Th(E ⊕ j∗(N ))→ Th(E1), (3.19)

and hence that one may compose the maps forming the top row of the diagram (3.17)
followed by the maps forming the top row of the diagram (3.18). In view of the
fact that p : Ẽ→ E is an affine replacement, Th(E1)≃ Th(E0), so that the collapse
map in (3.19) defines a collapse

V : B+ ∧ T m
→ Th(E0),

which differs from the collapse map in (3.3) only by the addition of a trivial bundle,
and hence a T -suspension of some finite degree on both the source and the target;
see [Voevodsky 2003, proof of Proposition 2.7 and Theorem 2.11]. Therefore, one
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may now observe that the composition of the maps in the top rows of the two
diagrams followed by the suspension isomorphism forming the right-most vertical
map in the second diagram identifies with the map p∗ in (3.11).

Observe that there is a natural map

h∗+2c,•+c(B×Pm/(B×Pm
− (B×1Pd))

)
→ h∗+2c,•+c(B×Pm/(B×Pm

− (B×Pd
×Pd))

)
.

Therefore one may compose the maps forming the bottom rows of the two dia-
grams (3.17) and (3.18). The composition of the maps forming the bottom rows of
the two diagrams defines the Gysin map in (3.13). The commutativity of the two
diagrams proves these two maps are the same. □

Theorem 3.20. Let h∗,• denote a generalized motivic cohomology which is ori-
entable in the above sense. Let tr denote the transfer as in (3.5). Then if eu(τ )

denotes the Euler class of the bundle τ , we obtain the relation

tr∗(α)= p∗(α ∪ eu(τ )), α ∈ h∗,•(E), (3.21)

where p∗ denotes the Gysin map defined above in (3.11).

Proof. As shown in [Becker and Gottlieb 1975, Theorem 4.3], and adopting the
terminology as in (3.3) and (3.11), it suffices to prove the commutativity of the
diagram

h∗,•(E)
∪ eu(τ )

--
∼=

��

h∗+2d,•+d(E)

∪T (ν)

��

p∗
--

h∗+2n,•+n(E+∧T n)
∼=

--

h∗,•(B)

∼=

��

h∗+2n,•+n(Th(ν⊕τ))
i∗
--

h∗+2n,•+n(Th(ν))
V ∗
--

h∗+2n,•+n(B+∧T n)

(3.22)

Here d is the relative dimension of E over B and i denotes the map of Thom-spaces
induced by the inclusion ν→ ν⊕ τ . The definition of the Gysin map as in (3.11)
readily proves the commutativity of the right square, so that it suffices to prove
the commutativity of the left square. This results from the commutativity of the
following diagram:
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h∗,•(E)
∪ eu(τ )

//

∪T (τ )

��

h∗+2d,•+d(E)

∼=

��

∪T (ν)
// h∗+2n,•+n(Th(ν))

∼=

��

h∗+2d,•+d(Th(τ )) //

∪T (ν)

��

h∗+2d,•+d(E(τ ))
∪T (π∗1 (ν))

//

∪T (π∗1 (ν))

��

h∗+2n,•+n(Th(π∗1 (ν)))

id
vv

h∗+2n,•+n(Th(τ ⊕ ν)) // h∗+2n,•+n(Th(π∗1 (ν)))

(3.23)

Here, if α denotes a vector bundle, then Th(α) denotes the Thom space and T (α)

the Thom class of α. Observe that the composition of the top row and the right
vertical map in the left square of (3.22) equals the composition of the maps in the
top row of (3.23). The composition of the map in the left column and the first
bottom map in (3.22) clearly equals the composition of the two vertical maps in
the left-most column of (3.23). Since E(τ ) denotes the total space of the vector
bundle τ , we obtain the isomorphism h∗+2d,•+d(E)

∼=
−→ h∗+2d,•+d(E(τ )) and also

the isomorphism h∗+2n,•+n(Th(ν))
∼=
−→h∗+2n,•+n(Th(π∗1 (ν))), where π1 : E(τ )→ E

denotes the projection. Moreover, under the above isomorphisms, the map denoted
i∗ in (3.22) identifies with the bottom-most map in (3.23). These observations
prove the commutativity of the diagram (3.23) and hence the commutativity of the
diagram (3.22) as well. □

Corollary 3.24. Let p : E→ B denote a finite étale map between smooth quasipro-
jective schemes. If h∗,• is an orientable generalized motivic cohomology theory
defined by a motivic spectrum, then one has the equality

tr∗ = p∗,

where tr∗ denotes the map induced by the motivic Becker–Gottlieb transfer tr
(see (3.5)) in the above cohomology theory and p∗ denotes the Gysin map. Moreover,
for algebraic K-theory, the Gysin map p∗ agrees with the finite push-forward defined
for coherent sheaves.

Proof. The first statement is an immediate consequence of Theorem 3.20, once one
observes that the Euler class eu(τ ) is trivial, which follows from the fact that p
is finite étale and τ denotes the relative tangent bundle of the map p. The second
statement on the Gysin map p∗ for algebraic K-theory follows from [Panin 2009,
§2.9.1], invoking [Thomason and Trobaugh 1990, 3.16, 3.17 and 3.18]. Observe that
push-forward by finite étale maps sends vector bundles to vector bundles, and for
smooth quasiprojective schemes over k, the K-theory of coherent sheaves identifies
with the K-theory of vector bundles. □
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