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1. Introduction

The theory of Brauer groups has a long and rich history. In recent years there seems to be a renewed 
interest in this area, and there have been several important developments in the last 10-15 years using 
sophisticated techniques. It is also one of the few topics that can be studied both from a complex algebraic 
geometry point of view as well as using algebraic tools, notably étale cohomology.

The present paper originated with the authors being intrigued by the recent paper of Biswas, Dhillon and 
Hurtubise (see [6]). The above paper is written purely in the context of complex algebraic geometry, though 
their main results make sense in any characteristics. One of the results we obtain here is an extension of 
their results valid over separably closed fields of arbitrary characteristics using motivic and étale cohomology 
techniques.

Let k denote any separably closed field of arbitrary characteristic and let C denote a projective smooth 
curve over k. In this case we will make the standing assumption that the curve C has a k-rational point.
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Then Symd(C) will denote the d-fold symmetric power of the curve, which is a projective smooth variety of 
dimension d. Picd(C) will denote the Picard-scheme of isomorphism classes of line bundles of degree d on C
and Q(r, d) will denote the quot-scheme parametrizing degree d quotients of the OC-module O⊕r

C . Similarly 
Hilbd(C) will denote the Hilbert-scheme of closed zero dimensional subschemes of length d on the curve C. 
Then it is well-known that there is an isomorphism

Symd(C) ∼= Hilbd(C). (1)

See, for example, [30, XVII, Proposition 6.3.9]. (In fact, it is shown there that there is an isomorphism 
between the corresponding functors represented by the above schemes.) In view of the above isomorphism, 
one may identify points of Symd(C) with effective zero dimensional cycles of degree d on C.

Clearly there is a natural map Hilbd(C) → Picd(C) sending a divisor of degree d to its associated line 
bundle. Making use of the isomorphism in (1), this map therefore defines the Abel-Jacobi map of degree d:

ξd : Symd(C) → Picd(C), D �→ OC(D). (2)

Given a point Q in Q(r, d), we have the short-exact sequence:

0 → F(Q) → O⊕r
C → Q → 0.

Sending Q to the scheme-theoretic support of the quotient for the induced homomorphism ∧rF(Q) →
∧r(O⊕r

C ), we obtain a morphism

φd : Q(r, d) → Hilbd(C) ∼= Symd(C). (3)

Remarks 1.1. When the base field is algebraically closed, the above maps φd and ξd may be defined more 
directly without making use of the Hilbert-scheme, since now it suffices to define these maps on the corre-
sponding closed points. When the base field is no longer algebraically closed, the use of the isomorphism in 
(1) facilitates the definition of the maps φd and ξd. (We thank the referee for pointing out this approach to 
us.) See [5, Chapter 8], [11], [16], [21] and [23] for details on the Picard functor. Also see [9] for results that 
identify the Brauer group with the cohomological Brauer group.

Throughout the paper, Br′(X) will denote the cohomological Brauer group associated to the scheme X. 
Recall this is defined as the torsion part of the étale cohomology group H2

et(X, Gm) in general. Then the 
first result of the paper is the following theorem.

Theorem 1.2. If the base field k is separably closed of characteristic p ≥ 0, and � is any prime invertible in 
k, the induced maps φ∗

d : Br′(Symd(C))�n → Br′(Q(r, d))�n and ξ∗d : Br′(Picd(C))�n → Br′(Symd(C))�n are 
isomorphisms for any n > 0 and for any d ≥ 3. Here the subscripts �n denote the �n-torsion sub-modules.

Over the field of complex numbers, it was shown in [6] that the maps φ∗
d and ξ∗d are isomorphisms on 

the cohomological Brauer groups, for all d ≥ 2. Our present proof holds in arbitrary characteristics, since 
we make use of étale cohomology methods to approach the cohomological Brauer groups. However, the 
restriction that d ≥ 3 is needed in our proof, so that we can invoke the weak Lefschetz Theorem: see 
Propositions 3.2 and 3.4(ii).

The extension to positive characteristics is still far from automatic. One may see from our proof that one 
needs to have a calculation of the Picard groups of symmetric powers of projective smooth curves yielding 
results similar to that of MacDonald (see [18]) for singular cohomology: fortunately this was already worked 
out by Collino (see [7]) for all Chow-groups. This plays a key role in the proof of the isomorphism for 
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ξ∗d. In order to deduce the corresponding isomorphism for φ∗
d one also needs to have a calculation of the 

Picard groups of the Quot-schemes we are considering. Fortunately for us, this had also been worked out 
in the context of their Chow groups by del Bano: see [8]. The referee also pointed out that the homotopy 
invariance property of the prime to-the-characteristic torsion of the Brauer group is classical and has origins 
in [2, Proposition 7.7] and appears also in [13], [26, Proposition 8.6, Remark 5.2].

At the same time we also obtain similar results for Prym varieties, which is the content of our next main 
result.

Let k denote a separably closed field of characteristic different from 2 and let f : C̃ → C denote a 
degree two Galois covering, between smooth projective curves over k. Denote by σ the involution acting 
on C̃. Then we can write C = C̃

<σ> . Let g̃ := genus(C̃) and g := genus(C). Then f induces a morphism, 
f∗ : J(C) → J(C̃), on the Jacobian varieties of C̃ and C, given by l �→ f∗(l), the pullback of a degree zero 
line bundle l on C. When f is ramified, the morphism f∗ is injective (see [4, Corollary 11.4.4] or [20, §3]). 
When f is unramified, the image is a quotient of J(C) by a 2-torsion line bundle l on C which defines the 
covering f . In either case the image is an abelian subvariety of the Jacobian J(C̃). The abelian variety

P := J(C̃)
Image(f∗)

is called the Prym variety associated to the degree two covering C̃ → C. By identifying P with the kernel 
of the endomorphism σ + id on J(C̃) (see [20, §3]), we can write

J(C̃) = Image(f∗) + P

and there is a finite isogeny

J(C) × P → J(C̃).

Let r denote a fixed integer ≥ 2g̃ − 1. We will assume henceforth that f is ramified and that z is 
a ramification point on C which is also a k-rational point. Consider the Abel-Jacobi map, from §3.1: 
Φ : Symr(C̃) = P (Er) → J(C̃). Denote the inverse image Wr

P := Φ−1(P) and the subvarieties Ws
P :=

Wr
P ∩ (Syms(C̃) + (r − s).z) for 1 ≤ s ≤ r.

Theorem 1.3. (i) The induced pullback map

Br′(P) → Br′(Wr
P)

is an isomorphism.

(ii) If s is the largest integer ≤ r, so that Ws−1
P 	=Wr

P, and dim(Ws
P) ≥ 4, then Br(Wr

P)�n =
Br(Ws

P)�n → Br(Ws−1
P )�n is surjective as long as � is a prime different from the characteristic p of 

the base field. Moreover, this map will be an isomorphism if Ws−1
P is smooth and the induced map 

Pic(Ws
P)/�n → Pic(Ws−1

P )/�n is also an isomorphism; the last condition is satisfied if the base field is 
the complex numbers, dim(Ws

P) ≥ 4 and Ws−1
P is smooth.

Remark 1.4. In the first statement there is no need to consider the �n-torsion part of the Brauer group 
for � different from the characteristic of the base field. This is discussed in the Remark following Gabber’s 
Theorem: see [13, Theorem 2 and Remark, p. 193].

Terminology. Since we need to consider both the Picard scheme and the Picard group, we will use Pic (Pic) 
to denote the Picard scheme (the Picard group, respectively). H∗

et will always denote cohomology computed 
on the étale site.
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2. Review of Brauer groups of smooth projective varieties over a field k

In this section, we review Brauer groups both from the point of view of complex geometry as well as 
from the point of view of étale cohomology applicable in positive characteristics. We begin by considering 
the case where k = C.

2.1. Assume k = C

Let X denote a smooth projective variety over C. Denote by OX and O∗
X, the sheaf of holomorphic 

functions on X, and the multiplicative sheaf of nowhere vanishing holomorphic functions on X. Consider 
the exponential sequence:

0 → Z → OX
exp−→ O∗

X → 0. (4)

The associated long exact sequence of cohomology groups (computed on X(C) with the complex topology) 
is the following:

→ H1(X,O∗
X) → H2(X,Z) → H2(X,OX) → H2(X,O∗

X) → H3(X,Z) → . (5)

Under the connecting map, the image of Pic(X) = H1(X, O∗
X) inside H2(X, Z) is the Néron-Severi group

NS(X) := H1,1(X) ∩ H2(X,Z).

Definition 2.1. (Complex analytic version) The cohomological Brauer group Br′(X) is the torsion subgroup 
of the cohomology group H2(X, O∗

X). In other words,

Br′(X) = H2(X,O∗
X)tors.

The Brauer group can also be expressed via the cohomology sequence in (5) as follows.

Proposition 2.2. There is a natural short exact sequence:

0 → H2(X,Z)
NS(X) ⊗Q/Z → Br′(X) → H3(X,Z)tors → 0.

Proof. See [27, p. 878, Proposition 1.1]. �
2.2. Assume k is any separably closed field

Let X denote a smooth projective variety over k. Let Gm denote the étale sheaf of units in the structure 
sheaf and for each prime �, let μ�n(1) denote the sub-sheaf of Gm consisting of the �n-roots of unity. Then 
the analogue of the exponential sequence (4) is the Kummer-sequence:

1 → μ�n(1) → Gm
�n−−→ Gm → 1 (6)
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which holds on the étale site Xet of X, whenever � is invertible in k. (See [14, section 3].) It is observed (see 
[19, p. 66], for example) that the same sequence is exact on the fppf site (i.e. the flat site) of X without 
the requirement that � be invertible in k. However, since we will need affine spaces to be acyclic in various 
places in our proofs, we will henceforth restrict to the étale site and assume � is invertible in k. (For the 
same reason, we are also forced to restrict to separably closed fields.) Then we obtain the corresponding 
long-exact sequence:

→ H1
et(X,Gm) �n−→ H1

et(X,Gm) → H2
et(X, μ�n(1)) → H2

et(X,Gm) → H2
et(X,Gm) → · · · (7)

which holds on the étale site when � is invertible in k. (Recall Pic(X) = H1
et(X, Gm).)

Definition 2.3. (Algebraic version) The cohomological Brauer group Br′(X) is the torsion subgroup of the 
cohomology group H2

et(X, Gm). In other words, Br′(X) = H2
et(X, Gm)tors.

Then one also obtains the short-exact sequences:

0 → Pic(X)/�n ∼= NS(X)/�n → H2
et(X, μ�n(1)) → Br′(X)�n → 0 and (8)

0 → NS(X) ⊗ Z� → H2
et(X,Z�(1)) → T�(Br′(X)) → 0 (9)

where

NS(X) = Pic(X)/Pico(X) ∼= H1
et(X,Gm)/H1

et(X,Gm)o,

Pic(X)/�n = coker(Pic(X) �n−−→ Pic(X)), NS(X)/�n = coker(NS(X) �n−−→NS(X)),

Br′(X)�n = the �n-torsion part of Br′(X) and T�(Br′(X)) = lim
∞←n

Br′(X)�n .

The main tool we use to obtain results on the cohomological Brauer group will be the short-exact sequence 
in Proposition 2.2 in the complex analytic framework and the short-exact sequence in (8) in the algebraic 
framework.

3. Symmetric product of curves

Suppose C is a smooth geometrically connected projective curve over a field k, of genus g.
The d-self product of the curve C is denoted by C×d and the d-symmetric product (or equivalently the 

d-fold symmetric power) of C is denoted by Symd(C). Then we have the relation:

Symd(C) = C×d

Σd
.

Here Σd denotes the symmetric group on d-letters.
The variety Symd(C) is a smooth geometrically irreducible projective variety of dimension d.
The Jacobian variety of C is denoted by J(C). This variety is the Picard variety Pic0(C), parameterizing 

line bundles of degree zero on C. More generally we denote by Picd(C), the Picard variety parameterizing 
line bundles of degree d on C.

Recall that we have assumed that the curve C has a k-rational point p0. The given k-rational point p0
defines the closed immersion

i : Symd(C) → Symd+1(C), D �→ D + p0, (10)

and the image is a smooth divisor on Symd+1(C).
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3.1. Poincaré line bundle and the symmetric product

(See [1, Chapter 4] for the case the base field is C, and [17], [28] for the case the base field is any 
algebraically closed field.) Recall that the curve C is assumed to have a k-rational point.

The Poincaré line bundle L → C ×Picr(C) parametrizes line bundles of degree r, i.e. when restricted to 
C × [l], it is the line bundle l on C, and satisfying a universal property.

Denote the projection π : C × Picr(C) → Picr(C). The push-forward of L is denoted by

Er := π∗L

and its projectivization by

Φ : P (Er) → Picr(C).

When r ≥ 2g−1, Er is a vector bundle and P (Er) → Picr(C) is a projective bundle. (We skip the verification 
of these assertions for the case the base field is only separably closed, as it may be readily deduced from 
the case when the base field is algebraically closed.)

Then the variety Symr(C) � P (Er) and the morphism Φ is identified with the Abel-Jacobi map, consid-
ered in the previous subsection. The fiber Φ−1(L) is the complete linear system |L| of a point L ∈ Picr(C).

3.2. Weak Lefschetz for the symmetric product

As observed in (10), the chosen k-rational point p0 defines the closed immersion i : Symd(C) →
Symd+1(C), D �→ D + p0. Moreover, we have the following.

Lemma 3.1. When k is the field of complex numbers, the image of Symd(C) is an ample smooth divisor on 
Symd+1(C). The same conclusion holds when k is any field of characteristic 0.

Proof. See [1, p. 310, Proof of (2.2) Proposition] for the case the field k = C. Recall the point p0 is a 
k-rational point by our assumptions. Therefore, ampleness of the divisor descends along extension of scalars 
to prove the second statement. (We thank the referee for this observation.) �

Next assume k has arbitrary characteristic p. Let X = Symd+1(C) and Y = Symd(C), for a smooth 
projective curve C. Then dim(X) = d + 1 and dim(Y) = d with X − Y = Symd+1(C−{p0}) where Y is 
imbedded in X by the map D �→ D+p0 in (10). Clearly C−{p0} is affine (see, for example, [15, Chapter 11, 
Proposition 4.1]), and therefore so is Symd+1(C−{p0}).

Proposition 3.2. (See the proof of [12, 9.4 Corollary].) Suppose Y → X is a closed immersion of projective 
smooth connected schemes over an algebraically closed field, so that the complement U = X − Y is affine 
and � is a prime different from char(k). Assume that dim(X) =d and that dim(Y) = d − 1 . Then in the 
long-exact sequence in étale cohomology with proper supports

· · · → Hq−1
et (Y, μ�n(t)) → Hq

et,c(U, μ�n(t)) → Hq
et(X, μ�n(t)) → Hq

et(Y, μ�n(t))

→ Hq+1
et,c (U, μ�n(t)) → · · ·,

Hq
et,c(U, μ�n(t)) ∼= Hq+1

et,c (U, μ�n(t)) ∼= 0 for all q ≤ d − 2 , so that the restriction map

Hq
et(X, μ�n(t)) → Hq

et(Y, μ�n(t))
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is an isomorphism for all i and for all q ≤ d − 2 , i.e. for all q ≤ dim(Y) − 1. A corresponding result holds
with integral (singular) cohomology with proper supports if the schemes are defined over the field of complex 
numbers. The same conclusions hold as long as X is smooth and U is affine, even if Y is not necessarily 
smooth.

Proof. By Poincaré duality, we obtain the isomorphism Hq
et,c(U, μ�n(t)) ∼= H2d−q

et (U, μ�n(d−t))∨ which 
vanishes for 2d − q >d since the cohomological dimension of the affine scheme U with respect to the lo-
cally constant sheaf μ�n(d−t) is d. Here μ�n(d−t) = Hom(μ�n (t), Z/�n)(d) (where the Hom denotes the 
sheaf-Hom) and H2d−q

et (U, μ�n(d − t))∨ denotes the dual Hom(H2d−q
et (U, μ�n(d−t)), Z/�n). The condition 

2d − q >d is clearly equivalent to q < d. The long-exact sequence in étale cohomology is obtained from the 
short exact sequence: 1 → j!j

∗(μ�n(t)) → μ�n (t) → i∗i∗(μ�n (t)) → 1 , where j : U → X and i : Y → X are 
the given immersions. Therefore, the long exact sequence exists even if Y is singular. Observe also that the 
smoothness of X implies that of U. The above arguments show that all that is needed for the conclusions 
to hold is for X to be smooth and U to be affine. �
Remark 3.3. The above Proposition shows that we obtain the weak Lefschetz isomorphism without checking 
that the divisor Y is ample, but by just knowing that X − Y is affine and smooth. A variant of the above 
Proposition also appears in [30, Expose XIV, Corollaire 3.3], but it is stated in a somewhat different form, 
involving local cohomology.

We conclude this section with the following weak Lefschetz theorem.

Proposition 3.4. (i) Assume that the curve C is defined over the complex numbers. Then the restriction map

i∗ : H2(Symd+1(C),Z) → H2(Symd(C),Z)

is an isomorphism, for each d ≥ 3. Moreover, this is an isomorphism of Hodge structures.

(ii) Assume that the curve C is defined over an algebraically closed field k of characteristic p and let �
denote a prime 	= p. Then the restriction map

i∗ : H2
et(Symd+1(C), μ�n) → H2

et(Symd(C), μ�n)

is an isomorphism, for each d ≥ 3. The same results hold if the curve C is only defined over a separably 
closed field k, but has a k-rational point.

Proof. W consider (i) first. By Lemma 3.1, the divisor Symd(C) + p0 is a smooth ample divisor on 
Symd+1(C). When d − 1 ≥ 2, the restriction map on cohomology groups is an isomorphism of Hodge 
structures, by the weak Lefschetz theorem.

Next we consider (ii). The case when the base field is algebraically closed follows from Proposition 3.2 by 
taking X = Symd+1(C) and Y = Symd(C) and observing that the dimension of Symd+1(C) = d + 1. The 
extension to the case the base field is only separably closed holds, since i : Symd(C) → Symd+1(C) is a 
closed immersion and one may then make use of Lemma 4.1 below to reduce to the case the base field is 
algebraically closed. �
Remark 3.5. A proof of the first statement in the above proposition is given in [6], by finding explicit 
generators of the cohomology groups H2(Symd(C), Z). By using the weak Lefschetz theorem, we are able 
to avoid this step altogether, though with a slight penalty that we need to restrict to the case where the 
degree d is always at least 3, whereas in [6], it is possible to allow d to be also 2.
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4. Brauer groups of Symd(C) and Picd(C) in positive characteristics

We begin with the following result that enables one to pass from separably closed base fields to alge-
braically closed base fields.

Lemma 4.1. Let k ⊆ k′ denote a radicial (i.e. purely inseparable) extension of fields and that char(k) = p > 0. 
If X is a scheme of finite type over k and X′ is its base extension to k′, then the induced map f : X′ → X is a 
finite and flat map of degree some power of p. Therefore, it induces an isomorphism f∗ : CH∗(X) ⊗ZZ/�n →
CH∗(X′) ⊗Z Z/�n for any prime � 	= p and any n > 0. Moreover f∗ : H∗

et(X, μ�n) → H∗
et(X′, μ�n) is also an 

isomorphism.

Proof. Clearly the induced map π : Spec k′ → Spec k is a finite and flat map of degree some power of p. 
Then one has an induced push-forward map f∗ : CH∗(X′, Z/�n) ∼= CH∗(X′) ⊗Z Z/�n → CH∗(X, Z/�n) ∼=
CH∗(X′) ⊗Z Z/�n so that the compositions f∗ ◦ f∗, f∗ ◦ f∗ are multiplications by the degree of f , which is 
a power of p. Here the statement that f∗ ◦ f∗ is multiplication by the degree of f is a consequence of the 
projection formula and does not use the fact that f is radicial. One needs the assumption that f is radicial 
to conclude that the composition f∗ ◦f∗ is also multiplication by the degree of f . (A proof of this statement 
in the context of Algebraic K-theory may be found in [25, §7, Proposition 4.8] and may be adapted to Chow 
groups and étale cohomology readily.)

But any power of p is a unit in Z/�n so that the map f∗ is an isomorphism. This proves the first statement. 
The second statement follows similarly. �

We now obtain the following theorem.

Theorem 4.2. Assume that C is a smooth projective curve over the separably closed field k.
(i) Then the restriction map Br′(Symd+1(C))�n → Br′(Symd(C))�n is an isomorphism for d ≥ 3.

(ii) The Abel-Jacobi maps ξd : Symd(C) → Picd(C) induce isomorphisms ξ∗d : Br′(Picd(C))�n →
Br′(Symd(C))�n for all d ≥ 3.

Proof. For (i) we now consider the commutative diagram:

0 �� Pic(Symd+1(C)))/�n ��

��

H2
et(Symd+1(C), μ�n) ��

��

Br′(Symd+1(C))�n
��

��

0

0 �� Pic(Symd(C)))/�n �� H2
et(Symd(C), μ�n) �� Br′(Symd(C))�n

�� 0.

By Lemma 4.1, one observes that replacing the base field, which is assumed to be separably closed, by its 
algebraic closure, induces an isomorphism on the terms appearing in the first two columns, so that the one 
obtains an induced isomorphism on the �n-torsion parts of the cohomological Brauer groups. Therefore, one 
may assume the base field is algebraically closed. By [7, Theorem 2], the left-most map is surjective. By the 
weak Lefschetz theorem, the middle vertical map is an isomorphism for d − 1 ≥ 2, i.e. for d ≥ 3, since the 
dimension of Symd(C) = d. Since the diagram clearly commutes, the left-most map is also an injection, and 
therefore it is also an isomorphism. Therefore, the five Lemma shows that the last vertical map is also an 
isomorphism for d ≥ 3. This proves (i). For (ii) we consider the commutative square:
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Br′(Picd+1(C))�n
��

ξ∗d+1
��

Br′(Picd(C))�n

ξ∗d
��

Br′(Symd+1(C))�n
�� Br′(Symd(C))�n .

Since the top row is evidently an isomorphism, and the bottom row is an isomorphism for d ≥ 3, it suffices to 
show that the map ξ∗d : Br′(Picd(C))�n → Br′(Symd(C))�n is an isomorphism for all d large. For d ≥ 2g− 1, 
we already observed in § 3.1 that ξd : Symd(C) → Picd(C) is a projective space bundle associated to a 
vector bundle. Therefore, by [13, p. 193], the map Br′(Picd(C))�n → Br′(Symd(C))�n is an isomorphism. 
(One may also note that [2] and [10] are results related to [13, p. 193].) This completes the proof of (ii) and 
hence that of the theorem. �
Remark 4.3. Clearly the above theorem proves the second isomorphism in Theorem 1.2.

5. Motivic cohomology, Étale cohomology and Brauer groups of Quot-schemes associated to projective 
smooth curves

We begin by briefly reviewing Motivic Thom classes, which will be needed in the proofs in this section.

5.1. Motivic Thom classes

A theory of Thom-classes and Chern classes for vector bundles on algebraic varieties has been discussed 
in detail by Panin in the motivic context: see [24, §1]. We summarize the main results here. One may begin 
with the homotopy purity theorem (see [22, Theorem 2.21]) which says the following: Given Y → X a closed 
immersion of smooth schemes of pure dimension over a field k, and with N the normal bundle associated to 
the above immersion, one obtains an isomorphism of pointed (simplicial) sheaves X/(X − Y) � N/(N − Y)
in the motivic homotopy category over k, i.e. the homotopy category of pointed simplicial sheaves on the 
Nisnevich site of k and with A1 inverted. Let the above homotopy category be denoted HSpk. This is the 
unstable motivic homotopy category.

Let Sm/k denote the category whose objects are pairs (X, U) where X is a smooth scheme over k of finite 
type and U open in X. Morphisms (X′, U′) → (X, U) are maps of schemes f : X′ → X so that f(U′) ⊆U. A 
cohomology theory on Sm/k (see [24, Definition 1.1]) is a contravariant functor

A•,∗ : Sm/k → (bi-graded abelian groups)

so that it has localization sequences relating the cohomology of X = (X, φ), U = (U, φ) and (X, U) in the 
usual manner, it is homotopy invariant (in the sense that A•,∗(X ×A1) � A•,∗(X)) and has étale excision, 
i.e. if e : (X′, U′) → (X, U) is étale and the induced map X′ − U′ → X − U is an isomorphism, then the 
induced map e∗ : A•,∗(X, U) → A•,∗(X′, U′) is an isomorphism. Such a cohomology theory is multiplicative, 
if there is a bi-graded pairing

Ap′,q′
(X′,U′) ⊗ Ap,q(X,U) → Ap′+p,q′+q(X × X′,X′ × U ∪ U′ × X))

that is associative in the obvious sense, there is a unique class 1 ∈ A0,0(Spec k) that acts as the identity for 
the above pairing and the above pairing satisfies a partial Leibniz-rule: see [24, Definition 1.5].

We will also assume that the given cohomology theory extends uniquely to a contravariant functor

HSpk → (bi-graded abelian groups)
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so that A•,∗(X, U) identifies with A•,∗(X/U). It follows in particular, that one obtains an isomorphism 
A•,∗(X, U) � A•,∗(N, N − (X − U)). (One may often apply a deformation to the normal cone to obtain this 
isomorphism explicitly, depending on the cohomology theory.) If we denote X−U by the closed subscheme 
Y, and denote A•,∗(X, U) (A•,∗(N, N − Y)) by A•,∗

Y (X) (A•,∗
Y (N), respectively), the above isomorphism may 

be denoted A•,∗
Y (X) � A•,∗

Y (N).
Assume A•,∗ is a multiplicative cohomology theory in the above sense. Then this cohomology theory has 

Thom classes if for every smooth scheme X and every vector bundle E of rank c over X, there is a unique 
class Th(E) ∈A2c,c

X (E), so that taking cup product with the class Th(E) induces an isomorphism (which we 
call Thom isomorphism):

A•,∗(X) → A•+2c,∗+c
X (E).

The above isomorphism is further required to be functorial with respect to maps f : X′ → X of smooth 
schemes. In this situation, one obtains a Gysin-map associated to each closed immersion i : Y → X of 
smooth schemes of pure codimension c by defining

i∗ : Ap,q(Y) → Ap+2c,q+c(X) (11)

as follows. We let i∗(α) be given by the image of Th(N) ∪ α under the map Ap+2c,q+c
Y (N) ∼= Ap+2c,q+c

Y (X) →
Ap+2c,q+c(X).

It is then shown in [24, (1.2.2)] that providing the cohomology theory A•,∗ with Thom-classes is equivalent 
to providing A•,∗ with a theory of Chern-classes for vector bundles.

An important example of such a cohomology theory is motivic cohomology: Hp,q
M (X) ∼= CHq(X, 2q − p)

where CHq(X, 2q− p) denotes the higher Chow groups of Bloch. Taking p = 2q, we then obtain the isomor-
phism H2q,q

M (X) = CHq(X, 0) = CHq(X). Another example of such a cohomology theory is étale cohomology: 
X �→ Hp

et(X, μ�n(q)), with � a prime different from char(k) = p and where μ�n(q) denotes the sheaf μ�n , 
Tate-twisted q-times.

The cycle map from Chow-groups to étale cohomology clearly preserves Chern classes of vector bundles 
and therefore also preserves Thom-classes of vector bundles. Moreover the cycle map is compatible with 
localization sequences and therefore with the Gysin map i∗ associated to closed immersions of smooth 
schemes.

5.2. Proof of the isomorphism φ∗
d : Br′(Symd(C))�n → Br′(Q(r, d))�n

We will assume once again that, throughout this section, the base field is separably closed. Given a 
projective smooth curve C over k, we let Q(r, d) denote the Quot-scheme parameterizing all torsion quotients 
of degree d of the OC-module, O⊕r

C . Then Q(r, d) is a smooth projective variety of dimension rd over k. 
Given a point Q in Q(r, d), we have the short-exact sequence:

0 → F(Q) → O⊕r
C → Q → 0.

Sending Q to the scheme-theoretic support of the quotient for the induced homomorphism ∧rF(Q) →
∧r(O⊕r

C ), which will be a degree d effective zero dimensional cycle on C, we obtain a morphism

φd : Q(r, d) → Hilbd(C) ∼= Symd(C). (12)

Next one observes that there is a natural action of Gr
m on Q(r, d) induced from the natural action of Gm

on C: see [3] and also [6, §5]. Let Partkr = {m = (m1, · · · , mr)} denote the set of partitions of k of length 
r, i.e. sequences of integers (m1, · · · , mr) so that mi ≥ 0 and Σimi = k. The connected components of the 
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fixed point scheme, for the above action of Gr
m on Q(r, d), are the Symm(C) = Symm1(C) × · · · × Symmr(C). 

One obtains an associated Bialynicki-Birula decomposition of Q(r, d) which are given by {Symm+(C)|m}
where Symm+(C) is an affine space bundle over the corresponding component Symm(C). The open cell 
corresponds to m1 = (0, · · · , 0, d) and the second largest cell corresponds to m2 = (0, · · · , 0, 1, d − 1) so 
that Symm1(C) = Symd(C) and Symm2(C) = Symd−1(C) × C.

Therefore, the discussion in [8, Theorem 2.4] applies to show that the long-exact localization sequences 
in Chow groups as well as étale cohomology with μ�n-coefficients associated to the stratification of Q(r, d)
by {Symm+(C)|m} break up into short-exact sequences. i.e. the long-exact sequences

· · · → H0
et(Symd−1(C) × C, μ�n)

fet∗−−→ H2
et(Q(r,d), μ�n) → H2

et(Symd(C), μ�n) → · · · and (13)

· · · → CH0(Symd−1(C) × C) fCH
∗−−−→ CH1(Q(r,d)) → CH1(Symd(C)) → · · · (14)

break up into short-exact sequences. Observe that for H2
et and CH1, no strata of lower dimension other than 

Symm2+(C)-contribute, so that

H2
et(Q(r,d), μ�n) ∼= H2

et(Symm1+(C) ∪ Symm2+(C), μ�n) and

CH1(Q(r,d)) ∼= CH1(Symm1+(C) ∪ Symm2+(C)).

Here f : Symm2+(C) → Q(r, d) is the corresponding closed immersion (which is of codimension 1), and 
fCH
∗ and fet

∗ denote the corresponding Gysin homomorphisms. Therefore, the splitting of the long-exact 
sequences in (13) and (14) provides the calculation:

CH1(Q(r,d)) ∼= CH1(Symd(C)) ⊕ Im(fCH
∗ ), H2

et(Q(r, d), μ�n) ∼= H2
et(Symd(C), μ�n) ⊕ Im(fet∗ ). (15)

Moreover one may observe that, since Symd−1(C) × C is connected, Im(fCH
∗ ) = {fCH

∗ (1)} = Z and 
Im(fet

∗ ) = {fet
∗ (1)} = Z/�n. Observe that fCH

∗ (1) is the image of the Thom-class

Th ∈ CH1
Symm2+(C)(Q(r, d))

under the map CH1
Symm2+(C)(Q(r, d)) → CH1(Q(r, d)), while fet

∗ (1) is the image of the corresponding Thom-
class in étale cohomology. Clearly the Thom-class in Motivic cohomology maps to the corresponding 
Thom-class in étale cohomology. Moreover the definition of the Gysin map as in (11) shows they are 
compatible under the cycle map.

Next we also observe that the map φd : Q(r, d) → Symm1(C) and the open inclusion j : Sym(C)m1+ →
Q(r, d) are so that, at the level of the above cohomology groups, j∗ ◦ φ∗

d = id, i.e. the induced map φ∗
d is a 

split monomorphism.

Theorem 5.1. The map φd : Q(r, d) → Symd(C) induces an isomorphism on the cohomological Brauer groups 
Br′( )�n .

Proof. Making use of Lemma 4.1, we may once again assume the base field is algebraically closed. We next 
consider the commutative diagram where the vertical maps are the maps φ∗

d:

0 �� Pic(Symd(C))/�n ��

��

H2
et(Symd(C), μ�n) ��

��

Br′(Symd(C))�n
��

��

0

0 �� Pic(Q(r,d))/�n �� H2
et(Q(r,d), μ�n)

�� Br′(Q(r,d))�n
�� 0
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On identifying CH1 with the Picard-groups, the observations above prove that the two left-most vertical 
maps are split injections and that their co-kernels are isomorphic. Therefore, a snake lemma argument 
readily shows that the last vertical map is also an isomorphism, thereby proving the theorem. �
Remark 5.2. Clearly the above theorem proves the first isomorphism in Theorem 1.2.

6. Brauer groups of Prym varieties

We begin the section by recalling Prym varieties and later obtain various results on their Brauer groups. 
We may assume throughout this section that k denotes a separably closed field of characteristic different 
from 2, though the strongest results are possible only for the case k = C as shown below.

6.1. Prym varieties. [4, Chapter 12] and [20]

Suppose f : C̃ → C is a degree two Galois covering, between smooth projective curves defined over a 
separably closed field. Denote by σ the involution acting on C̃. Then we can write C = C̃

<σ> .
Let g̃ := genus(C̃) and g := genus(C).
There is an induced morphism on the Jacobian varieties of C̃ and C:

f∗ : J(C) → J(C̃)

given by l �→ f∗(l), the pullback of a degree zero line bundle l on C.
Recall the Prym variety associated to the degree two covering C̃ → C is defined by:

P := J(C̃)
Image(f∗) .

By identifying P with the kernel of the endomorphism σ + id on J(C̃) (see [20, section 3]), we can write

J(C̃) = Image(f∗) + P,

and there is an isogeny

J(C) × P → J(C̃).

In particular, dim(P) = g̃ − g. If f is unramified, then g̃ = 2g−1 and dim(P) = g − 1. If f is ramified, then 
g̃ and dim(P) can be computed by the Riemann-Hurwitz formula.

6.2. Special subvarieties of Symr(C̃)

For simplicity, we assume that f is ramified in the following discussion. Let r denote a fixed integer 
≥ 2g̃ − 1.

Note that the action by σ on C̃ naturally extends onto the symmetric products:

σ : Symr(C̃) → Symr(C̃), D �→ σ(D).

Let z ∈ C̃ be a ramification point of f : we will assume that z is a k-rational point. Then z is a fixed point 
for the action of σ on C̃, i.e., σ(z) = z.
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This gives a σ-equivariant filtration:

C̃ + (r − 1).z ⊂ Sym2(C̃) + (r − 2).z ⊂ ... ⊂ Symr−1(C̃) + z ⊂ Symr(C̃). (16)

Consider the Abel-Jacobi map, from §3.1, with respect to z:

Φ : Symr(C̃) = P (Er) → J(C̃).

Denote the inverse image

Wr
P := Φ−1(P),

and the subvarieties

Ws
P := Wr

P ∩ (Syms(C̃) + (r − s).z)

for 1 ≤ s ≤ r.

6.3. Proof of Theorem 1.3: Brauer groups of Ws
P and P

We start by recalling the following results from Proposition 3.4: the maps induced by the closed immersion 
i : Symd(C̃) → Symd+1(C̃)

i∗ : H2(Symd+1(C̃),Z) → H2(Symd(C̃),Z) and

i∗ : H2
et(Symd+1(C̃), μ�n) → H2

et(Symd(C̃), μ�n)

are isomorphisms for d ≥ 3, where the base field k = C for the first isomorphism and k is any separably 
closed field, with char(k) 	= � for the second isomorphism.

Since r is assumed to be at least g̃ − 1, one may observe that

Φ : Symr(C̃) → J(C̃)

is a projective bundle. Hence Wr
P → P is also a projective bundle.

Theorem 6.1. (i) The induced pullback map

Br′(P) → Br′(Wr
P)

is an isomorphism.

(ii) If s is the largest integer ≤ r, so that Ws−1
P 	=Wr

P, and dim(Ws
P) ≥ 4, then Br(Wr

P)�n = Br(Ws
P)�n →

Br(Ws−1
P )�n is surjective as long as � is a prime different from the characteristic p of the base field. Moreover 

this map will be an isomorphism if Ws−1
P is smooth and the induced map Pic(Ws

P)/�n → Pic(Ws−1
P )/�n is 

also an isomorphism; the last condition is satisfied if the base field is the complex numbers, dim(Ws
P) ≥ 4

and Ws−1
P is smooth.

Proof. (i) We invoke Gabber’s theorem [13, p. 193], to obtain the exact sequence:

0 → [Cl(α)] → Br′(P) → Br′(Wr
P) → 0.
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Here Cl(α) denotes the class of the projective bundle in the Brauer group of P and [Cl(α)] denotes the 
subgroup generated by this class. However, since the projective bundle is a projectivization of a vector 
bundle, see §3.1, it is a trivial class in the Brauer group of P. Hence the pullback map is an isomorphism of 
Brauer groups, thereby proving (i).

(ii) Next observe that the complement Ws
P−Ws−1

P is open in Ws
P =Wr

P, and therefore smooth. Observe 
also that Ws

P−Ws−1
P = (Syms(C̃) − Syms−1(C̃)) ∩ Φ−1(P) is affine, which holds since Φ−1(P) is closed in 

Symr(C̃) and Syms(C̃) − Syms−1(C̃) is affine. Now the proof of the weak-Lefschetz isomorphism in Propo-
sition 3.2 shows that the conclusions there hold even if the closed subvariety Y is not smooth, as long 
as the complement X−Y is smooth and affine. Therefore, if Ws

P is chosen as in (ii), the restriction map 
H2

et(Ws
P, μ�n) → H2

et(Ws−1
P , μ�n) is an isomorphism. In view of the short-exact sequence in (8), this readily 

implies the surjection of the Brauer groups in (ii). The assertion that this map will become an isomor-
phism when the restriction Pic(Ws

P)/�n → Pic(Ws−1
P )/�n is also an isomorphism follows once again from 

the short-exact sequence (8).
Finally, the assertion that one has the required weak-Lefschetz isomorphism for the Picard groups when 

k = C is the Grothendieck-Lefschetz theorem: see [29] or [15, Chapter IV, Corollary 3.3]. �
Remark 6.2. Clearly the above theorem proves Theorem 1.3. If one also knows the schemes Ws

P are all 
smooth, one can obtain stronger results, for example, that the conclusions in (ii) hold for all s as long as 
dim(Ws

P) ≥ 4.
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