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1. Introduction

This paper is a continuation of the earlier work, [9], where Carlsson and one of the 
present authors set up motivic and étale variants of the classical Becker-Gottlieb transfer. 
If one recalls, the power and utility of the classical Becker-Gottlieb transfer stems from 
the fact it provided a convenient mechanism to obtain splittings to certain maps in the 
stable homotopy category. In view of the fact that the transfer is a map of spectra, 
it induces a map of the Atiyah-Hirzebruch spectral sequences associated to generalized 
cohomology theories, and reduces the question on the existence of stable splittings to 
the calculation of certain Euler-characteristics in singular cohomology. The most notable 
example of this is the calculation of the Euler-characteristic of G/NG(T), where G is a 
compact Lie group and NG(T) is the normalizer of a maximal torus in G. Using the 
transfer, it becomes then possible to show that the generalized cohomology of the Borel 
construction with respect to G for a space X acted on by G, is a split summand of the 
generalized cohomology of the corresponding Borel construction for X with respect to 
NG(T). This then provided numerous applications, such as double coset formulae for 
actions of compact groups, generalizing the well-known double coset formulae for the 
action of finite groups: see [4], [3], [5], [15], [16].

The motivic analogue of the statement that the Euler characteristic of G/NG(T) is 1
in singular cohomology for compact Lie groups is a conjecture due to Morel (see the next 
page for more details), that a suitable motivic Euler characteristic in the Grothendieck-
Witt group is 1, for G/NG(T), where G is a split connected reductive group and NG(T)
is the normalizer of a maximal torus in G. We provide an affirmative solution to this 
conjecture in this paper assuming that the base field k contains a 

√
−1, the precise details 

of which are discussed below.
Let k denote a perfect field of arbitrary characteristic: we will restrict to the cat-

egory of smooth quasi-projective schemes over k and adopt the framework of [24].
Throughout, T will denote P 1 pointed by ∞ and Tn will denote T∧n for any inte-
ger n ≥ 0. Sk will denote the corresponding motivic sphere spectrum. Let Spt(kmot)
denote the category of motivic spectra over k. The corresponding stable homotopy cate-
gory will be denoted SH(k). In positive characteristic p, we consider Spt(kmot)[p−1]: we 
will identify this with the category of motivic spectra that are module spectra over 
the localized sphere spectrum Sk [p−1]. Then assuming char(k) = 0, given a smooth 
scheme X of finite type over k, Σ∞

T X+ denotes the T-suspension spectrum of X and 
D(Σ∞

T X+) = RHom(Σ∞
T X+, Sk), where RHom denotes the derived internal hom in 

the category Spt(kmot). When char(k) = p > 0, D(Σ∞
T X+) = RHom(Σ∞

T X+, Sk [p−1]). 
D(Σ∞

T X+) is the Spanier-Whitehead dual of Σ∞
T X+. It is known (see [26] and also [25]) 
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that after inverting the characteristic exponent, Σ∞
T X+ is dualizable in the sense that 

the natural map Σ∞
T X+ →D(D(Σ∞

T X+)) is an isomorphism in SH(k).
In this context, we have the co-evaluation map

Sk
c→Σ∞

T X+∧D(Σ∞
T X+)

and the evaluation map

D(Σ∞
T X+) ∧ Σ∞

T X+ → Sk

in characteristic 0. In positive characteristic p, we also have the co-evaluation map

Sk [p−1] c→Σ∞
T X+[p−1]∧D(Σ∞

T X+[p−1])

and the evaluation map

D(Σ∞
T X+[p−1]) ∧ Σ∞

T X+[p−1] → Sk [p−1].

See [11, p. 87]. Let f :X →X denote a self-map.

Definition 1.1. Assume the above setting. Then, in characteristic 0, the following com-
position in SH(k) defines the trace τX(f+):

Sk
c→Σ∞

T X+∧D(Σ∞
T X+) τ→D(Σ∞

T X+) ∧ Σ∞
T X+

id∧f→ D(Σ∞
T X+) ∧ Σ∞

T X+
e→Sk . (1.0.1)

In positive characteristic p, the following composition in SH(k)[p−1] defines the corre-
sponding trace, which will be denoted τX,Sk [p−1](f+):

Sk [p−1] c→Σ∞
T [p−1]X+∧D(Σ∞

T [p−1]X+) τ→D(Σ∞
T [p−1]X+) ∧ Σ∞

T [p−1]X+

id∧f→ D(Σ∞
T [p−1]X+) ∧ Σ∞

T [p−1]X+
e→Sk [p−1].

(1.0.2)

Here τ is the map interchanging the two factors. When f = idX, the corresponding trace 
τX+ = τX(idX+) (τX+,Sk [p−1] = τX,Sk [p−1](idX+)) will be denoted χmot(X) and called the 
motivic Euler-characteristic of X.

By [22] (see also [23]), π0,0(Sk) identifies with the Grothendieck-Witt ring of the 
field k, GW(k), and therefore χmot(X) is a class in GW(k) in characteristic 0 and in 
GW(k)[p−1] in positive characteristic. (In [22] the isomorphism of π0,0(Sk) with the 
Grothendieck-Witt ring of the field k was proven under the assumption char(k) �= 2 : the 
above restriction on the characteristic of the field k is removed in [6, Theorem 10.12].)

Then an open conjecture in this setting (due to Morel (see [19])) was the following: 
let G denote a split reductive group over k, with T a split maximal torus and NG(T) its 
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normalizer in G. Then the conjecture states that χmot(G/NG(T)) = 1 in GW(k) with 
the characteristic exponent of the field inverted. In fact, this is the strong form of the 
conjecture. The weak form of the conjecture is simply the statement that χmot(G/NG(T))
is a unit in GW(k) with the characteristic exponent of the field inverted.

The main result of the current paper is an affirmative solution of the above conjecture 
as stated in the following theorem.

Theorem 1.2. Let G denote a split linear algebraic group over the perfect field k, with T
a split maximal torus and N(T) its normalizer in G. Then the following are true:

(i) χmot(G/NG(T)) = 1 in GW(k) if char(k) = 0 and k contains a 
√
−1.

(ii) χmot(G/NG(T)) = 1 in GW(k)[p−1] if char(k) = p > 0 and k contains a 
√
−1.

The statements (i) and (ii) already were used in the preprint [17] in the context of 
proving the additivity also for the transfer and proving various applications of these 
in the motivic stable homotopy category. Then, Ananyevskiy proved independently the 
weak form of the conjecture in [1]. In this paper, we also show how to simplify the proof 
discussed in [1], by making use of our proof of the strong form of the conjecture for fields 
that contain 

√
−1. This is discussed in our proof of the following Corollary.

Corollary 1.3. Assume as in Theorem 1.2 that G denotes a split linear algebraic group 
over k, with T a split maximal torus and N(T) its normalizer in G. Then the following 
hold:

(i) χmot(G/NG(T)) in GW(k) is a unit if char(k) = 0, and
(ii) χmot(G/NG(T)) in GW(k)[p−1] is a unit if char(k) = p > 0.

In view of the interest in these results, and because a proof of additivity for the trace 
is relatively straight-forward,1 we have decided to write this short paper entirely devoted 
to a self-contained proof of these results. On feeding this result into the motivic variant 
of the transfer constructed in [9] and [10], we obtain a number of splitting results. The 
following result should serve as a proto-typical example of such applications.

Let E → B denote a G-torsor for the action of any linear algebraic group G with 
both E and B smooth quasi-projective schemes over k, with B connected. Let Y de-
note a G-scheme or an unpointed simplicial presheaf provided with a G-action. Let 
q : E×

G
(G ×

NG(T)
Y) → E×

G
Y denote the map induced by the map G ×

NG(T)
Y →Y sending 

(g, y) �→ gy. (In case the group G is special in the sense of Grothendieck, the quotient 
construction above can be carried out on the Nisnevich site, but in general this needs to 

1 I.e., unlike additivity for the transfer which is much more involved, and needs the notion of rigidity in 
an essential manner.
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be carried out on the etale site and then pushed forward to the Nisnevich site, by means 
of a derived push-forward: the details are in [10, 3.4.2].)

Then the induced map

q∗ :h•,∗(E×
G

Y,M) →h•,∗(E×
G

(G ×
NG(T)

Y),M)

is a split injection, where h∗,• denotes any generalized motivic cohomology theory with 
respect to the motivic spectrum M.

In order to show that the map q∗ is a split monomorphism, one needs the the transfer :

tr(Y) : Σ∞
T (E ×G Y)+ → Σ∞

T (E×
G

(G ×
NG(T)

Y)+,

which is a map in SH(k) (SH(k)[p−1], respectively) so that the composition tr(Y)∗ ◦ q∗ is 
multiplication by χmot(G/N(T)). Therefore, knowing χmot(G/N(T)) is a unit in GW(k)
shows q∗ is a split injection.

See also [18], where such splittings obtained from the motivic transfer proves a variant 
of the classical Segal-Becker theorem for Algebraic K-Theory.

Remark 1.4. Certain special cases of the above splitting results, for groups that are 
special seem to be also worked out in [19], under the assumption the above conjecture 
is true. Observe that a linear algebraic group G is special in the sense of Grothendieck 
(see [8]), if any torsor for G is locally trivial on the Zariski site. Special groups include 
{GLn, SLn|n}, but exclude all orthogonal groups as well as finite groups. For groups G
that are not special, G-torsors are locally trivial only on the étale site. The construction 
of the transfer, worked out in [9] and [10, Chapter 3] apply for all such groups.

Here is an overview of the paper. One of the key techniques that is used in the proof of 
Theorem 1.2 is to show that the trace and the motivic Euler-characteristic are additive 
up to multiplication by a sign in general, and additive when the base field k has a 

√
−1. 

We devote section 2 of the paper to establishing this additivity. Section 3 then completes 
the proof of the above theorem closely following the ideas for a proof of the corresponding 
result as in [7, Lemma 3.5] in the étale setting.

Acknowledgments. The first author would like to thank Gunnar Carlsson for getting 
him interested in the problem of constructing a Becker-Gottlieb transfer in the motivic 
framework and for numerous helpful discussions. Both authors would like to thank Michel 
Brion for helpful discussions on fixed point schemes as well as on aspects of Theorem 3.2. 
We are also happy to acknowledge [7, Lemma 3.5 and its proof] as one of the inspirations 
for this paper. We also thank Alexey Ananyevskiy for helpful comments on our preprint 
[17], which have enabled us to sharpen our results, and also for bringing his results to 
our attention. Finally, it is a pleasure to acknowledge our intellectual debt to Fabien 
Morel and Vladimir Voevodsky for their foundational work in motivic homotopy theory. 
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In addition, the authors are also grateful to the referee for providing us very valuable 
feedback, which surely have helped us sharpen some results and improve the overall 
organization.

2. Additivity of the motivic trace

The main goal of this section is to establish additivity properties for the pre-transfer 
and trace. But we begin by establishing certain properties of a general nature for the 
pre-transfer and the trace.

2.1. Basic properties of the pre-transfer and trace

It is convenient to reformulate the trace in terms of the pre-transfer, which we proceed 
to discuss next. At the same time, we extend the framework as follows. The following 
discussion is a variant of what appears in [20, Chapter III]. See also [21], [13] and [14]
for related discussions.

Definition 2.1. (Co-module structures) Assume that C is an unpointed simplicial 
presheaf, i.e., C is a contravariant functor from a given site to the category of unpointed 
simplicial sets. Let C+ denote the corresponding pointed simplicial presheaf. Then the 
diagonal map Δ : C+ →C+∧C+ together with the augmentation ε : C+ →S0 defines the 
structure of an associative co-algebra of simplicial presheaves on C+. A pointed sim-
plicial presheaf P will be called a right C+-co-module, if it comes equipped with maps 
Δ : P →P∧C+ so that the diagrams:

P
Δ

Δ

P ∧ C+

id∧Δ

P ∧ C+

Δ∧id

P ∧ C+ ∧ C+

and P

Δ
id

P ∧ C+

id∧ε

P ∧ S0

(2.1.1)

commute. The most common choice of P is with P =C+ and with the obvious diagonal 
map Δ : C+ →C+∧C+ as providing the co-module structure. However, the reason we 
are constructing the pre-transfer in this generality (see the definition below) is so that 
we are able to obtain strong additivity results as in Theorem 2.5.

Definition 2.2. (The pre-transfer) Assume that the pointed simplicial presheaf P is such 
that Σ∞

T P is dualizable in Spt(kmot) and is provided with a map f :P →P. Assume further 
that C is an unpointed simplicial presheaf so that P is a right C+-co-module. Then the 
pre-transfer with respect to C+ is defined to be a map tr′(f) : Sk → Σ∞

T C+, which is the 
composition of the following maps. Let e : D(Σ∞

T P) ∧ Σ∞
T P → Sk denote the evaluation 

map. We take the dual of this map to obtain:
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c = D(e) : Sk 
D(Sk) → D(D(Σ∞
T P) ∧ (Σ∞

T P)) �←D(Σ∞
T P) ∧ (Σ∞

T P) τ→(Σ∞
T P)∧D(Σ∞

T P).
(2.1.1)

Here τ denotes the obvious flip map interchanging the two factors and c denotes 
the co-evaluation. The reason that taking the double dual yields the same object up 
to weak-equivalence is because we are in fact taking the dual in the setting discussed 
above. Observe that all the maps that go in the left-direction are weak-equivalences. All 
the maps involved in the definition of the co-evaluation map are natural maps.

To complete the definition of the pre-transfer, one simply composes the co-evaluation 
map with the following composite map:

(Σ∞
T P)∧D(Σ∞

T P) τ→D(Σ∞
T P) ∧ (Σ∞

T P)id∧f→ D(Σ∞
T P) ∧ (Σ∞

T P)
id∧Δ→ D(Σ∞

T P) ∧ (Σ∞
T P) ∧ (Σ∞

T C+)e∧id→ Sk ∧ (Σ∞
T C+) 
 Σ∞

T C+.
(2.1.1)

The corresponding trace τ(f), is defined as the composition of the above pre-transfer 
tr′(f) with the projection π sending C+ to S0

+.
When f = idP, the pre-transfer (trace) will be denoted tr′P (τP, respectively), and when 

P =C+ and f = idP, the pre-transfer (trace) will be denoted tr′C+
(τC+ , respectively).

Remark 2.3. Observe that now the trace map τC+ identifies with the following composite 
map:

τC+ : Sk
c→Σ∞

T C+∧D(Σ∞
T C+) τ→D(Σ∞

T C+) ∧ Σ∞
T C+

e→Sk .

Definition 2.4. If E denotes any commutative ring spectrum in Spt(kmot), for example, 
Sk [p−1], we will let Spt(kmot, E) denote the category of E-module spectra over E . Then 
one may replace the sphere spectrum Sk everywhere by E and define the pre-transfer 
and trace similarly, provided the unpointed simplicial presheaf C is such that E ∧ C+

is dualizable in Spt(kmot, E) and is provided with a map f :C →C. When P =C+, these 
will be denoted tr(f+)′E , tr ′C+,E , τC+,E , etc.

Let

U+
j+→X+

k+→X/U = Cone(j+) →S1∧U+ (2.1.2)

denote a cofiber sequence where both U and X are unpointed simplicial presheaves, with 
j+ a cofibration. Now a key point to observe is that all of U, X and X/U have the 
structure of right X+-co-modules. The right X+-co-module structure on X+ is given by 
the diagonal map Δ : X+ →X+∧X+, while the right X+-co-module structure on U+ is 
given by the map Δ : U+

Δ→U+∧U+
id∧j+→ U+∧X+, where j : U →X is the given map. The 

right X+-co-module structure on X/U is obtained in view of the commutative square
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U
(id×j)◦Δ

j

U × X

j×id

X
Δ

X × X

(2.1.3)

which provides the map

X/U → (X×X)/(U×X) ∼= (X/U)∧X+. (2.1.4)

We begin with the following results, which are variants of [20, Theorem 7.10, Chapter 
III and Theorem 2.9, Chapter IV] adapted to our contexts.

Theorem 2.5. Let U+
j+→X+

k+→X/U = Cone(j) →S1∧U+ denote a cofiber sequence as in 
(2.1.2). Let f : U+ →U+, g : X+ →X+ denote two pointed maps so that the diagram

U+

j+

f

X+

g

U+

j+

X+

commutes. Let h : X/U →X/U denote the corresponding induced map. Then, with the 
right X+-co-module structures discussed above, one obtains the following commutative 
diagram:

U+

j+

Δ

X+

k+

Δ

X/U
l

Δ

S1 ∧ U+

S1Δ

U+ ∧ X+

j+∧id

X+ ∧ X+

k+∧id

(X/U) ∧ X+

l∧id

S1 ∧ U+ ∧ X+.

(2.1.5)

Assume further that the T-suspension spectra of all the above simplicial presheaves are 
dualizable in Spt(kmot). Then, one obtains in SH(k):

tr ′(g) =tr ′(f )+tr ′(h), and τ(g) = τ(f ) + τ(h).

Let E denote a commutative ring spectrum in Spt(kmot). Then the corresponding 
results also hold if the smash products of the above simplicial presheaves with the ring 
spectrum E are dualizable in Spt(kmot, E).

Theorem 2.6. Let F =F1F3F2 denote a pushout of unpointed simplicial presheaves 
on the big Nisnevich site of the base scheme, with the corresponding maps F3 →F2, 
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F3 →F1 and Fj →F, for j = 1, 2, 3, assumed to be cofibrations (that is, injective maps 
of presheaves). Assume further the following: the T-suspension spectra of all the above 
simplicial presheaves are dualizable in Spt(kmot). Let ij : Fj →F denote the inclusion 
Fj →F, j = 1, 2, 3. Then, one obtains in SH(k):

(i) tr′F+
= i1 ◦ tr′F1+

+ i2 ◦ tr′F2+
− i3 ◦ tr′F3+

and τF+ = τF1+ + τF2+ − τF3+ , where tr′F+

and tr′Fj+
, j = 1, 2, 3 (τF+ , τFj+ , j = 1, 2, 3) denote the pre-transfer maps (trace 

maps, respectively).
(ii) In particular, taking F2 = ∗, and F = Cone(F3 →F1), we obtain in SH(k): tr′F =

i1 ◦ tr′F1+
− i3 ◦ tr′F3+

and τF = τF1+ − τF3+ .

Let E denote a commutative ring spectrum in Spt(kmot). Then the corresponding results 
also hold if the smash products of the above simplicial presheaves with the ring spectrum 
E are dualizable in Spt(kmot, E).

Our next goal is to provide proofs of these two theorems. We will discuss the proofs 
explicitly only for the case of spectra in Spt(kmot), as the corresponding results readily 
extend to spectra in Spt(kmot, E) for a commutative ring spectrum E in Spt(kmot, E). 
The additivity of the trace follows readily from the additivity of the pre-transfer, as it 
is obtained by composing with the projection Σ∞

T X+ → Sk.
Since this is discussed in the topological framework in [20, Theorem 7.10, Chapter 

III and Theorem 2.9, Chapter IV], our proof amounts to verifying carefully and in a 
detailed manner that the same arguments there carry over to our framework. This is 
possible, largely because the arguments in the proof of [20, Theorem 7.10, Chapter III 
and Theorem 2.9, Chapter IV] depend only on a theory of Spanier-Whitehead duality in 
a symmetric monoidal triangulated category framework and [11] shows that the entire 
theory of Spanier-Whitehead duality works in such general frameworks. Nevertheless, 
it seems prudent to show explicitly that at least the key arguments in [20, Theorem 
7.10, Chapter III and Theorem 2.9, Chapter IV] carry over to our framework. It may be 
important to point out that the discussion in [20, Chapters III and IV] is carried out in 
the equivariant framework: as all our discussion is taking place with no group actions, 
one may take the group to be trivial in the discussion in [20].

The very first observation is that the hypotheses of Theorem 2.5 readily imply the 
commutativity of the diagram:

U+

j+

f

X+

k+

g

X/U
l

h

S1 ∧ U+

S1f

U+

j+

X+

k+

X/U
l

S1 ∧ U+.
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Next we proceed to verify the commutativity of the diagram (2.1.5). Since the first 
square clearly commutes, it suffices to verify the commutativity of the second square. 
This follows readily in view of the following commutative square of pairs:

(X, φ)

Δ

(X,U)

Δ

(X × X, φ) (X × X,U × X).

Observe, as a consequence that we have verified that the hypotheses of [20, Theorem 7.10, 
Chapter III] are satisfied by the Σ∞

T -suspension spectra of all the simplicial presheaves 
appearing in (2.1.5).

The next step is to observe that the Fi, i = 1, 2, 3 (F) in our Theorem 2.6, correspond 
to the Fi (F, respectively) in [20, Theorem 2.9, Chapter IV]. Now observe that

F3+ → (F1F2)+ →F+ →S1∧F3,+ (2.1.6)

is a distinguished triangle. Moreover as F1  F2 has a natural map (which we will call 
k) into F, there is a commutative diagram:

(F1  F2)+
k

Δ

F+

Δ

(F1  F2)+ ∧ F+

k∧id

F+ ∧ F+.

Then the distinguished triangle (2.1.6) provides the commutative diagram:

(F1  F2)+
k

Δ

F+

Δ

S1 ∧ F3,+

Δ

S1 ∧ (F1  F2)+

Δ

(F1  F2)+ ∧ F+

k∧id

F+ ∧ F+ (S1 ∧ F3,+) ∧ F+ (S1 ∧ (F1  F2)+) ∧ F+

so that the hypotheses of [20, Theorem 7.10, Chapter III] are satisfied with X, Y and Z
there equal to the Σ∞

T -suspension spectra of (F1F2)+, F+ and S1∧F3,+. These argu-
ments, therefore reduce the proof of Theorem 2.6 to that of Theorem 2.5.

Therefore, what we proceed to verify is that, then the proof of [20, Theorem 7.10, 
Chapter III] carries over to our framework. This will then complete the proof of Theo-
rem 2.5. A key step of this amounts to verifying that the big commutative diagram given 
on [20, p. 166] carries over to our framework. One may observe that this big diagram 
is broken up into various sub-diagrams, labeled (I) through (VII) and that it suffices to 
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verify that each of these sub-diagrams commutes up to homotopy. This will prove that 
additivity holds for the trace.

For this, it seems best to follow the terminology adopted in [20, Theorem 7.10, Chapter 
III]: therefore we will let U+ (X+ and X/U) in Theorem 2.5 be denoted X (Y and Z, 
respectively) for the remaining part of the proof of Theorem 2.5. Let k : X →Y (i : Y →Z
and π : Z →S1∧X) denote the corresponding maps j+ : U+ →X+ (k+ : X+ →X/U, and 
the map l : X/U →S1∧U+) as in Theorem 2.5. Then the very first step in this direction 
is to verify that the three squares

DY ∧ X
id∧k

Dk∧id

DY ∧ Y

e

DX ∧ X
e

Sk

, DZ ∧ Y
id∧i

Di∧id

DZ ∧ Z

e

DY ∧ Y
e

Sk

, and

D(S1 ∧ X) ∧ Z
id∧π

Dπ∧id

D(S1 ∧ X) ∧ (S1 ∧ X)

e

DZ ∧ Z
e

Sk

(2.1.7)

commute up to homotopy. (The homotopy commutativity of these squares is a for-
mal consequence of Spanier-Whitehead duality: see [27, pp. 324-325] for proofs in 
the classical setting.) As argued on [20, page 167, Chapter III], the composite e ◦
(Dπ ∧ i) :D(S1∧X)∧Y → Sk is equal to e ◦ ((id ∧ π) ◦ (id ∧ i) and is therefore the trivial 
map. Therefore, if j denotes the inclusion of DZ∧Z in the cofiber of Dπ ∧ i, one obtains 
the induced map ē : (DZ∧Z)/(D(S1∧X)∧Y) → Sk so that the triangle

DZ ∧ Z
e

j

Sk

(DZ ∧ Z)/(D(S1 ∧ X) ∧ Y)

ē

(2.1.8)

homotopy commutes. This provides the commutative triangle denoted (I) in [20, p. 166]
there and the commutative triangle denoted (II) there commutes by the second and third 
commutative squares in (2.1.7). The duals of (I) and (II) are the triangles denoted (I*) 
and (II*) (on [20, p. 166]) and therefore, they also commute.

Next we briefly consider the homotopy commutativity of the remaining diagram begin-
ning with the squares labeled (III), (IV) and (V) in [20, p. 166]. Since the maps denoted 
δ are weak-equivalences, it suffices to show that these squares homotopy commute when 
the maps denoted δ−1 are replaced by the corresponding maps δ going in the opposite 
direction. Such maps δ appearing there are all special instances of the following natural 
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map: δ : DB∧A → D(DA∧B), for two spectra A and B in Spt(kmot). The homotopy 
commutativity of the squares (III), (IV) and (V) are reduced therefore to the naturality 
of the above map in the arguments A and B: see the discussion in [20, pp. 167-168]. The 
commutativity of the triangle labeled (VI) follows essentially from the definition of the 
maps there. Finally the homotopy commutativity of the square (VII) is reduced to the 
following lemma, which is simply a restatement of [20, Lemma 7.11, Chapter III]. These 
will complete the proof for the additivity property for the trace and hence the proofs of 
Theorems 2.5 and 2.6.

Lemma 2.7. Let f :A →X and g :B →Y be maps in Spt(kmot) and let i : X → Cone(f)
and j : Y → Cone(g) be the inclusions into their cofibers. Then the boundary map δ :
Σ−1

S1 Cone(i ∧ j) → Cone(f∧g) in the cofiber sequence Cone(f ∧ g) → Cone((i◦f) ∧ (j ◦ g))
→ Cone(i ∧ j) is the sum of the two composites:

Σ−1
S1 Cone(i ∧ j)

Σ−1
S1 Cone(i∧id)

→ Cone(idCone(f) ∧ j) = Cone(f) ∧ B ∼= Cone(f ∧ idB)

Cone(id∧g)→ Cone(f ∧ g),

Σ−1
S1 Cone(i ∧ j)

Σ−1
S1 Cone(id∧j)

→ Σ−1
S1 Cone(i ∧ idCone(g)) = A ∧ Cone(g) ∼= Cone(idA ∧ g)

Cone(f∧id)→ Cone(f ∧ g).

Proposition 2.8. (Multiplicative property of the pre-transfer and trace) Assume Fi, 
i = 1, 2 are simplicial presheaves, and let fi :Fi →Fi, i = 1, 2 denote a given map. Let 
F =F1+∧F2+ and let f =f1+∧f2+. Then

tr′F(f) = tr′F1+
(f1+) ∧ tr′F2

(f2+), and

τF(f) = τF1+(f1+) ∧ τF2+(f2+).

A corresponding result holds if F2 is a pointed simplicial presheaf with F =F1+∧F2.

Proof. A key point to observe is that the evaluation eF : D(F)∧F → Sk is given by start-
ing with eF1+ ∧ eF2+ : D(F1+)∧F1+∧D(F2+)∧F2+ → Sk ∧ Sk 
 Sk and by precompos-
ing it with the map D(F)∧F =D(F1+∧F2+)∧F1+∧F2+

τ→D(F1+) ∧ F1+ ∧ D(F2+)∧F2+, 
where τ is the obvious map that interchanges the factors. Similarly the co-evaluation 

map c : Sk 
 Sk ∧ Sk
cF1+∧cF2+→ F1+∧D(F1+)∧F2+ ∧ D(F2+) provides the co-evaluation 

map for F. The multiplicative property of the pre-transfer follows readily from the above 
two observations as well as from the definition of the pre-transfer as in Definition 2.2. 
In view of the definition of the trace as in Definition 2.2, the multiplicative property of 
the trace follows from the multiplicative property of the pre-transfer. These prove the 
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statements when F+ =F1+∧F2+. The corresponding statements when F2 is already a 
pointed simplicial presheaf may be proven along entirely similar lines. �
2.2. Additivity of the motivic trace

The goal of this section is to prove the following theorem.

Theorem 2.9. (Mayer-Vietoris and Additivity for the Trace)

(i) Let X denote a smooth quasi-projective scheme and let ij : Xj →X, j = 1, 2 de-
note the open immersion of two Zariski open subschemes of X, with X =X1∪X2. 
Let U →X denote the open immersion of a Zariski open subscheme of X, with 
Ui =U∩Xi. Then adopting the terminology above, (that is, where τP denotes the 
trace associated to the pointed simplicial presheaf P), and when char(k) = 0,

τX/U = τX1/U1 + τX2/U2 − τ(X1∩X2)/(U1∩U2) in SH(k). (2.2.1)

In case char(k) =p > 0,

τX/U,Sk [p−1] = τX1/U1,Sk [p−1] + τX2/U2,Sk [p−1] − τ(X1∩X2)/(U1∩U2),Sk [p−1],

in SH(k)[p−1].
(2.2.2)

Throughout the following discussion, let < −1 > denote the class in the 
Grothendieck-Witt ring associated to −1 ∈ k as in [22, p. 252].

(ii) Let i : Z →X denote a closed immersion of smooth schemes with j : U →X denoting 
the corresponding open complement. Let N denote the normal bundle associated to 
the closed immersion i and let Th(N ) denotes its Thom-space. Let c denote the 
codimension of Z in X. Then adopting the terminology above, we obtain in SH(k)
when char(k) = 0:

τX+ = τU+ + τX/U, and τX/U = τTh(N ) =< −1 >c τZ+ . (2.2.3)

In case 
√
−1 ∈ k, it follows that

τX/U = τTh(N ) = τZ+ .

In case char(k) =p > 0, we obtain in SH(k)[p−1]:

τX+,Sk [p−1] = τU+,Sk [p−1] + τX/U,Sk [p−1], τX/U,Sk [p−1]

= τTh(N ),Sk [p−1] =< −1 >c τZ+,Sk [p−1],
(2.2.4)

and assuming 
√
−1 ∈ k

τX/U,Sk [p−1] = τTh(N ),Sk [p−1] = τZ+,Sk [p−1].
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(iii) Let {Sα|α} denote a stratification of the smooth scheme X into finitely many locally 
closed and smooth subschemes Sα. Let cα denote the codimension of Sα in X. Then 
we obtain in SH(k) when char(k) = 0:

τX+ = Σα < −1 >cα τSα+ and assuming
√
−1 ∈ k, (2.2.5)

τX+ = ΣατSα+ .

In case char(k) =p > 0, we obtain in SH(k)[p−1]:

τX+,Sk [p−1] = Σα < −1 >cα τSα+,Sk [p−1], and again assuming
√
−1 ∈ k, (2.2.6)

τX+,Sk [p−1] = ΣατSα+,Sk [p−1]. �
Proof. We will explicitly discuss only the case in characteristic 0, as proofs in positive 
characteristics will follow along the same lines.

First one recalls the stable homotopy cofiber sequence (see [24, p. 115, Theorem 2.23])

Σ∞
T U+ → Σ∞

T X+ → Σ∞
T (X/U) 
 Σ∞

T ∧Th(N ) (2.2.7)

in the stable motivic homotopy category over the base scheme. The first statement in 
(2.2.3) follows by applying Theorem 2.5 to the stable homotopy cofiber sequence in 
(2.2.7).

Next we will consider (i), namely the Mayer-Vietoris sequence. For this, one begins 
with the stable cofiber sequences

Σ∞
T (U1∩U2)+ → Σ∞

T (U1U2)+ → Σ∞
T (U)+,

Σ∞
T (X1∩X2)+ → Σ∞

T (X1X2)+ → Σ∞
T (X)+.

Then one applies Theorem 2.6(i) to both of them, which will prove:

τU+ = τ(U1∪U2)+ = τU1+ + τU2+ − τ(U1∩U2)+ and (2.2.8)

τX+ = τ(X1∪X2)+ = τX1+ + τX2+ − τ(X1∩X2)+ .

On applying the first statement in (ii) to Ui ⊆Xi, i = 1, 2 and U1∩U2 ⊆X1∩X2 we obtain:

τXi/Ui = τXi+ − τUi+ , i = 1, 2 and

τ(X/U)+ = τ(X1∪X2)/(U1∪U2) = τ(X1∪X2)+ − τ(U1∪U2)+ .

The required statement in (2.2.1) now follows on substituting from (2.2.8). This com-
pletes the proof of (i).

We proceed to establish the remaining statement in (2.2.3). First we will consider 
the case where the normal bundle N is trivial, mainly because this is an impor-
tant special case to consider. When the normal bundle is trivial, we observe that 
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X/U 
Th(N ) 
 Tc∧Z+. Next, the multiplicative property of the trace as in Lemma 2.8
shows that

τΣ∞
T

(Tc∧Z+) = (τΣ∞
T

T)∧
c ∧ τΣ∞

T
Z+ (2.2.9)

as classes in π0,0(Sk). In general, it is known that the class of τΣ∞
T

T =< −1 > in the 
Grothendieck-Witt group GW(k): recall that GW(k) identifies with π0,0(Sk), in view of 
[22, Theorem 6.2.2]. (Here it may be important to recall that T is the pointed simplicial 
presheaf P 1 pointed by ∞.) This implies that τΣ∞

T
T = −1 in π0,0(Sk) and proves the 

second statement in (2.2.3) when N is trivial.
Next we assume that 

√
−1 ∈ k. Then the quadratic form < −1 > gets identified with 

< 1 > in the Grothendieck-Witt group GW(k): see, for example, [28, p. 44]. Therefore, 
τΣ∞

T
T =< 1 >, hence τΣ∞

T
Tc∧Z+ = τΣ∞

T
Z+ . This completes the proof of (ii), when the 

normal bundle to Z in X is trivial.
To consider the general case when the normal bundle N is not necessarily trivial, one 

takes a finite Zariski open cover {Ui|i = 1, · · ·, n} so that N|Ui is trivial for each i. Then 
the Mayer-Vietoris property considered in (i) and ascending induction on n, together 
with the case where the normal bundle is trivial considered above, completes the proof 
in this case. (Observe that any scheme Z over k of finite type is always quasi-compact, 
so that such a finite open cover always exists.) These complete the proof of all the 
statements in (ii).

Next we consider the statement in (iii). This will follow from the second statement in 
(ii) using ascending induction on the number of strata. However, as this induction needs 
to be handled carefully, we proceed to provide an outline of the relevant argument. We 
will assume that the stratification of X defines the following increasing filtrations:

(a) φ = X−1 ⊆X0 ⊆ · · · ⊆Xn =X, where each Xi is closed and the strata Xi−Xi−1, 
i = 0, · · · , n are smooth.

(b) U0 ⊆U1 ⊆ · · · ⊆Un−1 ⊆Un =X, where each Ui is open in X (and therefore smooth), 
with Ui−Ui−1 =Xn−i−Xn−i−1, for all i = 0, · · ·n. Now observe that each Uk →X is an 
open immersion, while each Xk−Xk−1 →X−Xk−1 is a closed immersion. Let ck denote 
the corresponding codimension.

We now apply Theorem 2.9(ii) with U =Un−1, and Z =Un−Un−1 =X0−X−1 =X0, the 
closed stratum. Since X is now smooth and so is Z, the hypotheses of Theorem 2.9(ii) 
are satisfied. This provides us

τX+ = τUn−1+ + τX/Un−1 and τX/Un−1 =< −1 >c0 τX0+ (2.2.10)

Next we replace X by Un−1, U by Un−2 and Z by X1−X0. Since X1−X0 is smooth, 
Theorem 2.9(ii) now provides us

τUn−1+ = τUn−2++ < −1 >c1 τ(X1−X0)+ . (2.2.11)
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Substituting these in (2.2.10), we obtain

τX+ = τUn−2++ < −1 >c1 τ(X1−X0)++ < −1 >c0 τX0+ .

Clearly this may be continued inductively to deduce statement (iii) in Theorem 2.9 from 
Theorem 2.9(ii). �
3. Proofs of the main theorems

We begin by discussing the following Proposition, which seems to be rather well-
known. (See for example, [29, Proposition 4.10] or [7, (3.6)].)

Proposition 3.1. Let T denote a split torus acting on a separated scheme X all defined 
over the given perfect base field k.

Then the following hold.
X admits a decomposition into a disjoint union of finitely many locally closed, T-stable 

subschemes Xj so that

Xj ∼= (T/Γj)×Yj. (3.0.1)

Here each Γj is a sub-group-scheme of T, each Yj is a scheme of finite type over k
which is also regular and on which T acts trivially with the isomorphism in (3.0.1) being 
T-equivariant.

Proof. One may derive this from the generic torus slice theorem proved in [29, Proposi-
tion 4.10], which says that if a split torus acts on a reduced separated scheme of finite 
type over a perfect field, then the following are satisfied:

(1) there is an open subscheme U which is regular and stable under the T-action
(2) a geometric quotient U/T exists, which is a regular scheme of finite type over k
(3) U is isomorphic as a T-scheme to T/Γ×U/T where Γ is a diagonalizable subgroup 

scheme of T and T acts trivially on U/T.

(See also [7, (3.6)] for a similar decomposition.) �
Next we consider the following theorem.

Theorem 3.2. Under the assumption that the base field k is of characteristic 0, the fol-
lowing hold, where τX+ denotes the trace associated to the pointed scheme X+:

(i) τGm+ = 1− < −1 > in GW(k), and if T is a split torus of rank n, τT+ = (1− <
−1 >)n in GW(k). Therefore, it follows that when k contains a 

√
−1, τGm+ = 0

and τT+ = 0 in GW(k).
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(ii) Let T denote a split torus acting on a smooth scheme X. Then XT is also smooth, 
and τX+ − τXT

+
belongs to the ideal generated by (1− < −1 >) in GW(k). In 

particular, when k contains a 
√
−1, τX+ = τXT

+
in GW(k).

If the base field is of positive characteristic p, the corresponding assertions hold with the
trace of a pointed smooth scheme Y+ replaced by τY+,Sk [p−1] and the Grothendieck-Witt 
ring replaced by the Grothendieck-Witt ring with the prime p inverted.

Proof. We will only consider the proofs when the base field is of characteristic 0, since the 
proofs in the positive characteristic case are entirely similar. However, it is important to 
point out that in positive characteristics p, it is important to invert p: for otherwise, one 
no longer has a theory of Spanier-Whitehead duality. Next observe from Definition 2.2, 
that the trace τX+ associated to any smooth scheme X is a map Sk → Sk : as such, we 
will identify τX+ with the corresponding class τ∗X+

(1) in the Grothendieck Witt-ring of 
the base field.

Next we consider (i). We observe that the scheme A1 is the disjoint union of the 
closed point {0} and Gm. If i1 : {0} → A1 and j1 : Gm → A1 are the corresponding 
immersions, Theorems 2.9(ii) and (iii) show that

τA1
+

= τGm+ + τA1/Gm
= τGm+ + τT = τGm++ < −1 > . (3.0.2)

Therefore, it follows that

τGm+ = τA1
+
− < −1 >= 1− < −1 >, (3.0.3)

where τA1
+

= τ{0}+ = 1 by A1-contractibility. One may readily see this from the def-
inition of the pre-transfer as in Definition 2.2, which shows that both the pre-transfer 
tr ′C+

=tr ′C+
(id) and hence the corresponding trace, τC+ = π ◦ tr′C+

depends on C+ only 
up to its class in the motivic stable homotopy category. Since T is a split torus, we 
may assume T = Gn

m for some positive integer n. Then the multiplicative property of 
the trace and pre-transfer (see Proposition 2.8) prove that τT+ = (1− < −1 >)n. In 
particular, when k contains a 

√
−1, it follows that τGm+ = 0 and τT+ = 0 in GW(k). 

These complete the proof of statement (i).
Therefore, we proceed to prove the statement in (ii). First, we invoke Proposition 3.1

to conclude that XT is the disjoint union of the subschemes Xj for which Γj = T.
Let ij : Xj ∼= (T/Γj)×Yj →X denote the locally closed immersion. Next observe that 

the additivity of the trace proven in Theorem 2.9, and the multiplicativity of the pre-
transfer and trace proven in Proposition 2.8 along with the decomposition in (3.0.1) show 
that
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τX+ = ΣjτXj+ = Σj(τT/Γj+) ∧ τYj+ . (3.0.4)

Now statement (i) in the theorem shows that the term τT/Γj+ = (1− < −1 >)nj , 
if T/Γj is a split torus of rank nj . Since XT is the disjoint union of the subschemes 
Xj =T/Γj×Yj with Γj = T, the additivity of the trace proven in Theorem 2.9 and applied 
to XT proves the sum of such terms on the right-hand-side of (3.0.4) is τXT

+
. Therefore, 

it follows that τX+ − τXT
+

belongs to the ideal in GW(k) generated by 1− < −1 >. In 

particular, when k contains a 
√
−1, it follows that τX+ = τXT

+
. These complete the proof 

of the statements in (ii). �
Proof of Theorem 1.2. We point out that it is important to assume the base field k
is perfect in the following arguments: this will ensure that all the schemes considered 
here are defined over the same base field. First we will show that we can reduce to 
the case G is connected. Let Go denote the connected component of G containing the 
identity element and let T denote a split maximal torus in G. Then, one first obtains 
the isomorphisms G/NG(T) ∼={gTg−1|g εG} and Go/NGo(T) ∼={goTg−1

o |go εGo}. Next 
observe that gTg−1, being a maximal torus and hence a connected subgroup of G, is in 
fact a maximal torus in Go for each g εG. These show that

G/NG(T) ={gTg−1|g εG}∼={goTg−1
o |go εGo}=Go/NGo(T).

Therefore, we may assume the group G is connected.
Moreover, we may take the quotient by the unpointed radical Ru(G), which is a nor-

mal subgroup (and is isomorphic to an affine space), with the quotient Gred =G/Ru(G)
reductive. Now G/NG(T) ∼=Gred/NGred(T) (since the intersection of a maximal torus in 
G with the unpointed radical Ru(G) is trivial), so that we may assume G is a connected 
split reductive group.

Then we observe that since G/NG(T) is the variety of all split maximal tori in G, T
has an action on G/NG(T) (induced by the left translation action of T on G) so that 
there is exactly a single fixed point, namely the coset eNG(T), that is, (G/NG(T ))T =
{eNG(T)}={Spec k}. (To prove this assertion, one may reduce to the case where the 
base field is algebraically closed, since the formation of fixed point schemes respects 
change of base fields as shown in [12, p. 33, Remark (3)]. See also [7, Lemma 3.5]. In 
fact, one may see this directly as follows. Making use of the identification of G/NG(T)
with {gTg−1|g εG}, one sees that if g0Tg−1

0 is fixed by the conjugation action of T, then 
g−1
0 Tg0 ⊆NG(T)o =T, so that g0 εNG(T). Thus the coset g0NG(T) = eNG(T).)

Next we will first consider the case where the base field is of characteristic 0. Therefore, 
by Theorem 3.2(ii),

τG/NG(T)+ = τ(G/NG(T))T+ = τSpec k+ = idSk ,

which is the identity map of the motivic sphere spectrum. Therefore,
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χmot(G/NG(T )) = τ∗G/NG(T)+(1) = 1.

The motivic stable homotopy group π0,0(Sk) identifies with the Grothendieck-Witt ring 
by [22]. This completes the proof of the statement on τG/NG(T)+ in Theorem 1.2 in this 
case. In case the base field is of positive characteristic p, one observes that Σ∞

T G/NG(T)+
will be dualizable only in Spt(kmot)[p−1]. But once the prime p is inverted the same 
arguments as before carry over proving the corresponding statement. These complete 
the proof of the theorem. �

Proof of Corollary 1.3. Observe, first that if k̄ is the algebraic closure of the given field, 
then it contains a 

√
−1, and therefore the conclusions of the theorem hold in this 

case. In positive characteristic p, we proceed to show that this already implies that 
χmot(G/NG(T)) is a unit in the group GW(k)[p−1], without the assumption on the ex-
istence of a square root of −1 in k. For this, one may first observe the commutative 
diagram, where k̄ is an algebraic closure of k:

GW(k̄)[p−1]
rk

∼= Z[p−1]

GW(k)[p−1]
rk

Z[p−1].

id

(3.0.5)

Here the left vertical map is induced by the change of base fields from k to k̄, and rk
denotes the rank map. Since the motivic Euler-characteristic of G/NG(T) over Spec k
maps to the motivic Euler-characteristic of the corresponding G/NG(T) over Spec ̄k, it 
follows that the rank of χmot(G/NG(T)) over Spec k is in fact 1. By [1, Lemma 2.9(2)], 
this shows that the χmot(G/NG(T)) over Spec k is in fact a unit in GW(k)[p−1], that is, 
when k has positive characteristic. (For the convenience of the reader, we will summarize 
a few key facts discussed in [1, Proof of Lemma 2.9(2)]. It is observed there that when 

the base field k is not formally real, then I(k) = kernel(GW(k)rk→Z) is the nil radical 
of GW(k): see [2, Theorem V.8.9, Lemma V.7.7 and Theorem V. 7.8]. Therefore, if 
char(k) = p > 0, and the rank of χmot(G/NG(T)) is 1 in Z[p−1], then χmot(G/NG(T))
is 1 + q for some nilpotent element q in I(k)[p−1] and the conclusion follows.)

An alternative shorter proof is the following: observe that χmot(G/NG(T)) − χmot((G/

NG(T))T) = χmot(G/NG(T)) − 1 belongs to the ideal generated by 1− < −1 >. 1− <

−1 > clearly belongs to I(k) = kernel(GW(k)rk→Z). When k is not formally real, the 
above ideal is nilpotent as observed above, and therefore, χmot(G/NG(T)) is a unit when 
k is not formally real.
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In characteristic 0, the commutative diagram

GW(k̄)
rk

∼= Z

GW(k)
rk

Z,

id

(3.0.6)

shows that once again the rank of χmot(G/NG(T)) is 1. Therefore, to show that the 
class χmot(G/NG(T)) is a unit in GW(k), it suffices to show its signature is a unit: 
this is proven in [1, Theorem 5.1(1)]. (Again, for the convenience of the reader, we 
summarize some details from the proof of [1, Theorem 5.1(1)]. When the field k is not 
formally real, the discussion in the last paragraph applies, so that by [1, Lemma 2.12]
one reduces to considering only the case when k is a real closed field. In this case, 
one lets Ralg denote the real closure of Q in R. Then, one knows the given real closed 
field k contains a copy of Ralg and that there exists a reductive group scheme ˜G over 
SpecRalg so that G = ˜G ×SpecRalg Spec k. Let GR = ˜G ×SpecRalg SpecR. Then one also 
observes that the Grothendieck-Witt groups of the three fields k, Ralg and R are iso-
morphic, and the motivic Euler-characteristics χmot(G/NG(T)), χmot(˜G/ ˜NG(T)) and 
χmot(GSpecR/N(T)SpecR) over the above three fields identify under the above isomor-
phisms, so that one may assume the base field k is R. Then it is shown in [1, Proof of 
Theorem 5.1(1)] that, in this case, knowing the rank and signature of the motivic Euler 
characteristic χmot(G/NG(T)) are 1 suffices to prove it is a unit in the Grothendieck-Witt 
group.) These complete the proof of the corollary. �
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