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Abstract. In this note we explore the relationships between motivic cohomology operations and cohomology

operations defined on mod-l étale cohomology as well as cohomology with respect to the De Rham-Witt sheaves.
We show that the cohomology operations on mod-l motivic cohomology with l different from the characteristic

of the ground field transform to the (classical) cohomology operations on mod-l étale cohomology upon inverting

the motivic Bott element. We also show that when l = p = the characteristic of the ground field, the classical
operations in mod-p motivic cohomology transform to cohomology operations in cohomology with respect to the

De Rham-Witt sheaves. We also introduce variants of the above cohomology operations that are covariant with

respect to proper maps and consider several examples of push-forward formulae involving them.
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1. Introduction

The main goals of this paper are to explore the relationships between the various cohomology operations: the
motivic and classical operations in motivic cohomology, the cohomology operations in étale cohomology and the
induced operations in cohomology with respect to the De Rham-Witt sheaves. We also consider variants of these
cohomology operations that are covariant for proper maps and study various examples of push-forward formulae
involving them.

Throughout the paper k will denote a fixed perfect field of characteristic p ≥ 0 and we will restrict to the
category of sooth schemes of finite type over k. X will denote such a scheme. Hn

M(X, Z(r)) will denote the motivic
cohomology with degree n and weight r; Hn

M(X, Z/l(r)) will denote the corresponding mod-l-variant. Similarly
Hn

et(X, Z/l(r)) will denote the mod-l étale cohomology of X if l is different from char(k) = p and Hn(X, ν(r)) will
denote the (Zariski or étale) cohomology with respect to the De Rham-Witt sheaves {ν(r)|r ≥ 0}.

In the first four sections we study comparisons between the motivic cohomology operations as in [Voev], the
classical operations in motivic cohomology as in [J1] and operations in mod−l étale cohomology with l different
from the characteristic of the base field. In this situation we will also assume that k has a primitive l-th root of
unity. Hn

M(X, Z(r)) will denote the motivic cohomology with degree n and weight r; Hn
M(X, Z/l(r)) will denote

the corresponding mod-l-variant. Similarly Hn
et(X, Z/l(r)) will denote the mod-l étale cohomology of X. We will

restrict to smooth schemes of finite type over k.

Let βεH0
M(Spec k, Z/l(1)) denote the Motivic Bott element: see section 3 for more details. In this situation,

let P r : Hi
M(X, Z/l(j)) → H

i+2r(l−1)
M (X, Z/l(j + r(l − 1))) and βP r : Hi

M(X, Z/l(j)) → H
i+2r(l−1)+1
M (X, Z/l(j +

r(l − 1))) denote the motivic cohomology operations defined in [Voev] and recalled below in the next section.
As shown in section 3, these operations induce operations on mod-l-étale cohomology which we identify with the
mod-l-motivic cohomology with the Bott element inverted: these will be denoted by the same symbols. By the
results of Theorem 1.2 and section 6 of [J1] the complex A = RΓ(Xet, µl) is an E∞-algebra over an E∞-operad.
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Therefore one obtains certain (classical) cohomology operations Qr : H2q
et (X, µl(q)) → H

2q+2r(l−1)
et (X, µl(q.l)) and

βQr : H2q
et (X, µl(q)) → H

2q+2r(l−1)+1
et (X, µl(q.l))

Then the main result of these sections is the following: this is discussed in section 4.

Theorem 1.1. Assume the above situation. Then we obtain the following relations between the classical operations
and the operations on étale cohomology induced by the motivic operations:

Qr = B(q−r).(l−1).P r, βQr = B(q−r).(l−1).βP r

In the fifth section we show that the classical cohomology operations defined in mod−p motivic cohomology as
in [J1] provide cohomology operations in cohomology with respect to the De Rham-Witt sheaves. We state this as
the following theorem:

Theorem 1.2. There exist operations Qs : Hq(XZar, ν(t)) → Hq+(2s−t)(p−1)(XZar, ν(p.t)) and

βQs : Hq(XZar, ν(t)) → Hq+(2s−t)(p−1)+1(XZar, ν(p.t)).

These operations satisfy the properties as discussed in Theorem 5.1

The sixth section is devoted to cohomology operations that commute with respect to proper push-forwards and
various examples of push-forward formulae involving these. The following is one such example and a few more are
considered in that section.

Example 1.3. Let dim(X) = 3 and l = 2. Then we obtain an operation

Q1 : H4(X, Z/2(2)) → H6(X, Z/2(4)).

so that the composition with the push-forward π∗ : H6(X, Z/2(4)) → H0(Spec k, Z/2(1)) is zero (assuming the
validity of the Beilinson-Soulé vanishing conjecture.)

Here is an outline of the paper. In the next section, we recall the motivic cohomology operations from [Voev]. In
the third section we recall the motivic Bott element. In the fourth section we first recall a well-known result that
the operadic construction of classical cohomology operations leads to the cohomology operations Qr and βQr that
may be defined using equivariant cohomology. Then we complete the proof of Theorem 1.1. In the fifth section
we consider cohomology operations when l = p = char(k) and interpret these as operations in cohomology with
respect to the De Rham-Witt sheaves. In the final section we consider variants of all of the above operations that
commute with push-forwards by proper maps. We conclude by discussing several examples of such operations.

2. The motivic cohomology operations (after Voevodsky)

The basic reference for this section is [Voev]. We begin with the computation of the motivic cohomology of
Bπ where π = Z/l and π = Σl (the symmetric group on l letters) where l is a fixed prime different from the
characteristic (= p) of the ground field k.

We begin by recalling briefly the construction of the geometric classifying space of a linear algebraic group:
originally this is due to Totaro and Edidin-Graham - see [Tot] discussed in [J1, section 4]. Let G be a linear
algebraic group over S = Spec k i.e. a closed subgroup-scheme in GLn over S for some n. For a (closed) embedding
i : G → GLn the geometric classifying space Bgm(G; i) of G with respect to i is defined as follows. For m ≥ 1 let
Um be the open sub-scheme of Anm

S where the diagonal action of G determined by i is free. Let Vm = Um/G be the
quotient S-algebraic space of the action of G on Um induced by the (diagonal) action of G on Anm

S ; the projection
Um → Vm defines Vm as the quotient algebraic space of Um by the free action of G and Vm is thus smooth. We have
closed embeddings Um → Um+1 and Vm → Vm+1 corresponding to the embeddings Id × {0} : Anm → Anm × An

and we set EGgm = lim
m→∞

Um and BGgm = lim
m→∞

Vm where the colimit is taken in the category of sheaves on

(sschms/S)Nis or on (sschms/S)et. Observe that if G = Σn (or a subgroup of it) acting on An by permuting the
n-coordinates, we may take Um = {(x(1)1, · · · , x(1)n, · · · , x(m)1, · · ·x(m)n)|x(i)j 6= x(i)k, for all i, j 6= k}.
(Moreover, in this case, the quotients Vm are in fact schemes.)

2.0.1. The following are proven in [Voev, section 6]:

• the map im : Um/G → Um+1/G defines an isomorphism on motivic cohomology of weight less than m.
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• One has H∗M(BGgm, Z(r)) = lim
∞←m

H∗M(Um/G, Z(r)) where r ≥ 0 is any weight.

• Let µl denote the group scheme of l-th roots of unity µl := ker(Gm
zl

→ Gm). (Observe that since the field k
is assumed to have a primitive root of unity, one may identify µl with the constant sheaf π = Z/l.) Then one has
the identification:

(2.0.2) Bµl = O(−l)P∞ − z(P∞)

We have Um = Am − {0}.

• Therefore, one has a cofibration sequence of the form

(2.0.3) X+ ∧ (Bµl)+ → X+ ∧ (O(−l)P∞)+ → X+ ∧ Th(O(−l))

• e(O(−l)) = lσ where σ ∈ H2
M(P∞; Z(1)) is the class of the first Chern class of O(−1) in motivic cohomology.

Here X is any smooth scheme. Therefore, the long exact sequence defined by ( 2.0.3) is of the form

(2.0.4) . . . → H∗−2
M (X, Z(?− 1)[[σ]] lσ→ H∗M(X, Z(?− 1))[[σ]] → H∗M(Bµl, Z(?)) → H∗−1(X, Z(?− 1)[[σ]] → . . .

(In the above long-exact-sequence and elsewhere, ∗ (?) will denote the degree (the weight, respectively) in motivic
cohomology.)

The short exact sequence of abelian groups 0 → Z → Z → Z/l → 0 defines a homomorphism δ : H̃∗M(−,Z/l(?)) →
H̃∗+1
M (−,Z(?)). Let v be Euler class of the line bundle on X×Bµl corresponding to the tautological representation

of µl. There exists a unique element u ∈ H1(X × Bµl,Z/l(1)) such that the restriction of u to ∗ is zero and
δ(u) = v. (Here ∗ denotes any k-rational point of Bµl that lifts to a k-rational point of one of the Um appearing
in the definition of the Eµl.)

• We will denote by v̄ the image of the class v in H2
M(X × Bµl, Z/l(1)). Now the elements v̄i and uv̄i, i ≥ 0

form a basis of H∗M(X × (Bµl), Z/l(?)) over H∗M(X, Z/l(?)).

The next key observation is that the same arguments also hold for the mod-l étale cohomology of Bµl, so that
we may conclude:

Let cycl denote the cycle map from mod-l motivic to mod-l étale cohomology. Let c(v̄) denote the Euler class
of of the same bundle on X × Bµl in H2

et(X × Bµl, Z/l(1)). Then c(v̄) = cycl(v̄), and there exists a unique class
c(u)εH1

et(X ×Bµl, Z/(1)) so that δ(c(u)) = c(v̄) and c(u) = cycl(u). Then the elements c(v̄)i and c(u)c(v̄)i, i ≥ 0
form basis of H∗et(X ×Bµl, Z/l(?)) over H∗et(X, Z/l(?)).

Next one may compute the mod-l motivic cohomology and mod-l étale cohomology of the symmetric group Σl

similarly. We recall this from [Voev]:

2.1. H∗M(X × BΣl; Z/l(?)) is a free module over H∗M(X; Z/l(?))with a basis {cd̄i, di|i ≥ 0} where d̄ is a class in
H2l−2
M (X × BΣn; Z/l(l − 1)) which is the mod-l reduction of a class dεH2l−2

M (X × BΣn; Z(l − 1)) and c is a class
in H2l−3

M (X ×BΣn; Z/l(l − 1)) so that δ(c) = d̄.

Going over the computation, one observes as in the case of Bµl, that the same computation carries over to mod-l
étale cohomology.

Next we recall the definition of the cohomology operations of Voevodsky. Let X denote a smooth scheme over
k.

Now the symmetric group Σl acts on X×
l

by permutations. In this context, one has the total power operation:

(2.1.1) P̃l : Hi
M(X, Z/l(j)) → Hil

M(EΣl×
Σl

X×
l

, Z/l(jl))

Next one uses the pull-back by the diagonal ∆∗ : Hil
M(EΣl×

Σl

X×
l

, Z/l(jl)) → Hil
M(BΣl×X, Z/l(jl)). We will denote

the composition ∆∗ ◦ P̃l by Pl. By the above results, ⊕
i,j

Hin
M(BΣl×X, Z/l(jl)) is a free module over H∗M(X, Z/(?))
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with basis given by the elements d̄r and cd̄r, r ≥ 0. The operation P r (βP r) is defined by the formula:

(2.1.2) Pl(w) = Σr≥0P
r(w)d̄d−r + βP r(w)cd̄d−r−1, wεH2d( , Z/l(d))

(A crucial observation is that, since the motivic cohomology operations are stable with respect to shifting degrees
by 1, and also both degrees and weights by 1, this defines the operations P r and βP r on all Hi

M( , Z/l(j)).)

Observe that so defined P r : Hi
M(X, Z/l(j)) → H

i+2r(l−1)
M (X, Z/l(j + r(l − 1))) and βP r : Hi

M(X, Z/l(j)) →
H

i+2r(l−1)+1
M (X, Z/l(j + r(l − 1))).

In view of the observations above, exactly the same definitions will define the cohomology operations in mod-l
étale cohomology as well. We will denote the operations P r : Hi

et(X, Z/l(j)) → H
i+2r(l−1)
et (X, Z/l(j + r(l − 1)))

(βP r : Hi
et(X, Z/l(j)) → H

i+2r(l−1)+1
et (X, Z/l(j + r(l − 1)))) by P r

et (βP r
et, respectively). Therefore, we obtain the

following result:

Theorem 2.1. Denoting the cycle map from motivic cohomology to étale cohomology by cycl, we obtain: cycl◦P r =
P r

et ◦ cycl and cycl ◦ βP r = βP r
et ◦ cycl.

3. Inverting the Motivic Bott element

Recall that if k is a field as above, we have:

Hp
M(Spec k, Z(1)) = 0, p 6= 1(3.0.3)

= k∗, p = 1

Now the universal coefficient sequence associated to the short exact sequence 0 → Z(1)×l→Z(1) → Z/l(1) → 0 of
motivic complexes, provides the isomorphism

(3.0.4) H0
M(Spec k, Z/l(1)) ∼= µl(k)

The Motivic Bott element is the class in H0
M(Spec k, Z/l(1)) corresponding under the above isomorphism to the

primitive l-th root of unity ζ. We will denote this element by B. Since cycl(B) = ζ in H∗et( , µl(∗)), multiplication
by the class cycl(B) induces an isomorphism: H∗et( , µl(r)) → H∗et( , µl(r + 1)). It follows that the cycle map
cycl induces a map of cohomology functors:

(3.0.5) cycl(B−1) : H∗M( , Z/l(?))[B−1] → H∗et( , µl(?))

It is shown in [Lev] that this map is an isomorphism on smooth schemes.

3.1. Observe that by the multiplicative properties of the operations and the observation that P r(B) = 0 if r ≥ 1
([Voev, Lemma 9.8]):

P r(Bjα) = BjP r(α),(3.1.1)

βP r(Bjα) = BjβP r(α)(3.1.2)

The above relations show that the motivic cohomology operations above induce operations on H∗( , Z/l(?))[B−1]
in the obvious manner: we define P r(α.B−1) = P r(α).B−1 and βP r(α.B−1) = βP r(α).B−1. Since we have already
observed that the cohomology operations commute with the cycle map, it follows that the induced operations on
H∗( , Z/l(?))[B−1] may be identified with the cohomology operations on mod-l étale cohomology.

3.2. These operations on mod−l étale cohomology will be denoted P r and βP r.

4. Comparison of cohomology operations in étale cohomology

We will begin by defining classical cohomology operations in étale cohomology. For this we start with a smooth
scheme X and let A = RΓ(Xet, µl). We let {NZEΣn|n} denote the simplicial Barratt-Eccles operad defined in
[J1, Definition 4.1]. By the results in Theorem 1.1 and section 6 of [J1], this acts on the complex A = RΓ(Xet, µl).
We will let Hom(K, Z/l) be denoted by K∨, if K is a complex of Z/l-sheaves on (smt.schms)et or a complex of
Z/l-vector spaces. Let π denote the cyclic group Z/l imbedded as a subgroup of the symmetric group Σl.
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If H is any subgroup of the symmetric group Σl, we will define the equivariant cohomology of A⊗l

with respect
to H as follows: H∗(A⊗l

,H; Z/l) will be the cohomology of the complex (NZEΣl)∨ ⊗
ZH
A⊗l

.

4.0.1. For our comparison purposes, it is important to realize that the equivariant cohomology defined above is
nothing other than equivariant étale cohomology. We proceed to explain this identification. First of all let H
also denote the obvious constant group-scheme defined over the field k and associated to the sub-group H of Σl.
Now H acts as a group scheme on the scheme X l; therefore we may form the simplicial scheme EH×

H
X l in the

obvious manner. We define the H-equivariant mod-l étale cohomology of X l to be the mod-l étale cohomology of
the simplicial scheme EH×

H
X l. This identifies with the equivariant cohomology H∗(A⊗l,H, Z/l). (In fact one may

identify the complex RΓ(EH×
H

X l, Z/l), up-to quasi-isomorphism, with the complex (NZEΣl)∨ ⊗
ZH
A⊗l

.)

4.0.2. We need to also compare the H-equivariant mod-l étale cohomology defined above with the equivariant
étale cohomology obtained by inverting the Bott element in H-equivariant mod-l motivic cohomology. Recall that
the definition of H-equivariant mod-l-motivic cohomology uses the geometric model for the classifying space for
H as opposed to the simplicial model. However, it is shown in [MV] that the two variants give isomorphic mod-l
étale cohomology, i.e. H∗et(BGgm, Z/l) ∼= H∗et(BG, Z/l) where BG denotes the simplicial classifying space for G
considered above.

Let ∆∗ : H∗(A⊗l

, π; Z/l) → H∗(A, π; Z/l) ∼= H∗(Bπ; Z/l) ⊗ H∗(A) denote the obvious map induced by the
diagonal :X → X l. One may also observe readily that the l-th power map defines a map H∗(A) → H∗(A⊗l

, π; Z/l),
a 7→ al. Let {wi, vwi|i ≥ 0} denote a basis of the Z/l-vector space H∗(Bπ; Z/l). Here v has degree 1 and w has
degree two. Since the cohomology operations are assumed to be stable, they are stable with respect to suspension
so that it suffices to define these on classes of even degree. One defines cohomology operations Qs, βQs on H2q(A)
by the formula: if l = 2, we let:

(4.0.3) ∆∗(x2) = ΣsQ
s(x)w(q−s) + βQs(x)vwq−s−1

and if l > 2, we let:

(4.0.4) ∆∗(xl) = Σs(−1)d−sQs(x)w(q−s)(l−1) + (−1)d−sβQs(x)vw(q−s)(l−1)−1

In [J1, Section 7.1] we provided the action of the operad {NEΣn|n} on the motivic complex Z/lν
mot
et which

is the mod-lν motivic complex sheafified on the big étale site of smooth schemes. One may identify the complex
Z/lν(r)mot

et with µlν (r)[0] up-to quasi-isomorphism: see [MVW, Theorem 10.3]. These lead to a somewhat different
definition of the classical cohomology operations on mod−lν -étale cohomology as discussed in [J1, Section 8]. We
will explain in outline that these operations are in fact identical. (Since most of this is folklore, we will be brief.)

Proposition 4.1. The cohomology operations defined above coincide with the classical cohomology operations
defined on mod-l étale cohomology in [J1, Section 8].

Proof. For the rest of this section we will denote Z/lν
mot
et by A. The above action of the operad {NEΣn|n} on the

above complex provides us maps

(4.0.5) θn : NZEΣn ⊗A⊗
n

→ A

We will let Hom(K, Z/l) be denoted by K∨, if K is a complex of Z/l-sheaves on (smt.schms)et. From the above
pairing we obtain

θ∗n : NZEΣn ⊗A∨ → (A∨)⊗n

where we define θ∗n(h, a∨)(a1 ⊗ · · · ⊗ an) =< a∨, θn(h ⊗ a1 ⊗ · · · ⊗ an) >, aiεA, a∨εA∨ and hεNZEΣn. It is a
standard result in this situation that the map θ∗n is a chain map and is an approximation to the diagonal map
(i.e. homotopic to the diagonal map) ∆ : A∨ → (A∨)⊗n

. (Here, as well as elsewhere in this section, we use the
observation that for any vector space V over Z/l, a vector vεV ( a vector v∨εV ∨) is determined by its pairing
< v, w > with all vectors wεV ∨ (its pairing < u, v∨ > with all vectors uεV , respectively.).)

We now define
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(4.0.6) d : NZEΣn ⊗A∨ → NZEΣn ⊗ (A∨)⊗
n

by the formula d(h, a∨) = (h, θ∗n(h, a∨)). This in turn defines a map

(4.0.7) d∗ : (NZEΣn)∨ ⊗A⊗
n

→ (NZEΣn)∨ ⊗A

by the formula:

< d∗(h∨, a1 ⊗ · · · ⊗ an), h′ ⊗ a∨ >=< d(h′, av), h∨ ⊗ a1 ⊗ · · · ⊗ an >

=< θn(h′, a1 ⊗ · · · an), a∨ > ⊗ < h′, h∨ >.

(Here h′εNZEΣn, h∨ε(NZEΣn)∨, a∨εA∨, aiεA.) We now let n = l and let π denote the cyclic subgroup Z/l
of Σl. One may recall that the action of σεΣn on NEΣn and of σ−1 on A⊗n

cancel out. Tracing through these
actions of Σn on the maps in the above steps, one concludes that the map d∗ induces a map on the quotients:

(4.0.8) d∗ : (NZEΣn)∨⊗
Zπ
A⊗

n

→ (NZEΣn)∨⊗
Zπ
A

Now the cohomology of the complex (NZEΣn)∨ ⊗
N(Z(π))

A identifies with H∗(Bπ; Z/l)⊗H∗(A) whereas the coho-

mology of the complex (NZEΣn)∨⊗
Zπ
A⊗n

identifies with the equivariant cohomology: H∗(A⊗n

, π; Z/l). Therefore,

the map d∗ defines a map

(4.0.9) d̄∗ : H∗(A⊗
n

, π; Z/l) → H∗(Bπ; Z/l)⊗H∗(A)

One may also observe readily that the l-th power map defines a map H∗(A) → H∗(A⊗l

,Σl; Z/l), a 7→ al.
Let {ei, fei|i ≥ 0} denote a basis of the Z/l-vector space H∗(BΣn; Z/l) dual to the basis {wi, vwi|i ≥ 0} for
H∗(BΣn; Z/l), i.e. < ei, w

j >= 0, if i 6= j and = 1 if i = j. Also < fei, w
j >= 0 for all i , j, < fei, vwj >= 0 for

i 6= j and = 1 for i = j. Observe that now we have the following computation for a class xεHq(A):

< d̄∗(xl), (−)∨ ⊗ ei >=< θ̄∗l (ei, (−)∨), xl >=< (−)∨, θ̄l(ei, x
l) > and

< d̄∗(xl), (−)∨ ⊗ fei >=< θ̄∗l (fei, (−)∨), xl >=< (−)∨, θ̄l(fei, x
l) >

where (−)∨εH∗(A)∨ and θ̄ (θ̄∗l ) is the map induced by θ (θ∗l , respectively) on taking homology of the corresponding
complexes. Since the map θ∗l was observed to be chain homotopic to the diagonal, it follows that d̄∗ = ∆∗ where
∆ is the obvious diagonal. Therefore, the coefficient of wi (vwi) in the expansion of d̄∗(xl)εH∗(BΣl; Z/l)⊗H∗(A)
identifies with θ̄i(ei, x

l) (θ̄i(fei, x
l), respectively). This completes the proof of the proposition �

The formulae in ( 4.0.3) and ( 4.0.4) are stated in terms of the cohomology of the cyclic groups. This has a
reformulation in terms of the cohomology of the symmetric groups Σl which will be readily comparable to the
formula in ( 2.1.2). First one may compute the cohomology of the symmetric group H∗(BΣl, Z/l) to be the
Z/l-vector space with basis given by {yi, xyi|i ≥ 0} where y is a class in H2l−2(BΣl; Z/l) and x is a class in
H2l−3(BΣl; Z/l). In fact y =

∏l−1
i=1 iw = (l − 1)!wl−1 = −wl−1 where w is the class in H2(Bπ; Z/l) considered in

( 4.0.4). Now x = −vwl−2. Then the cohomology operation Qr and βQr expressed in terms of the equivariant
cohomology with respect to the symmetric group replacing the equivariant cohomology with respect to the cyclic
group Z/l has the following form:

(4.0.10) ∆∗(wl) = Σr≥0Q
r(w)yd−r + βP r(w)xyd−r−1, wεH2d

et ( , Z/l(d))

This uniquely defines the cohomology operations as they are stable with respect to suspension and hence extend
uniquely to cohomology classes with odd degree.



Cohomology Operations 7

Proof of Theorem 1.1.

Here the observations in 4.0.1 and 4.0.2 are important. In addition, one needs to observe that weight-suspension
in mod-l étale cohomology is defined by multiplication by the Bott element B: since B is a unit, the weight
suspension is an isomorphism in mod-l étale cohomology.

Therefore, the main difference of the above formula with the one in 3.2 is that the classes yi and xyi have no
weight, or equivalently have weight 0. Observe that the operations Qr and βQr defined above are maps:

Qr : H2q
et (X, µl(q)) → H

2q+2r(l−1)
et (X, µl(q.l)) and

βQr : H2q
et (X, µl(q)) → H

2q+2r(l−1)+1
et (X, µl(q.l))

Since the operations above raise a cohomology class in H2q
et (X, µl(q)) to the l-th power, and the classes yi and xyi

have zero-weight, the Tate-twist q.l appears in the target of these operations.

Therefore, we obtain the relation between the classical operations and the operations on étale cohomology
induced by the motivic operations as follows:

Qr = B(q−r).(l−1).P r, βQr = B(q−r).(l−1).βP r

Remark 4.2. There are alternate procedures for obtaining cohomology operations on ⊕rH
∗(Xet, µl(r)). One ap-

proach is to use [Ep] which applies in more generality to provide cohomology operations on cohomology with respect
to any strictly associative and commutative sheaf of algebras which are torsion. Over a separably closed field, one
may also use the the cohomology operations defined on the étale homotopy types.

5. Operations in mod−p motivic cohomology and cohomology with respect to the De Rham-Witt
sheaves

Recall from [J1, section 8] that we obtain classical cohomology operations

Qs : Hq(X, Z/p(t)) → Hq+2s(p−1)(X, Z/p(p.t)) and

βQs : Hq(X, Z/p(t)) → Hq+2s(p−1)+1(X, Z/p(p.t)).

These operations satisfy the properties discussed in [J1, Theorem 8.2].

Let ν(r) be the sheaf that is kernel of W ∗ − C : ZΩr
X/S → Ωr

X(p)/S
. Here X(p) is the scheme obtained as the

pull-back of X×
S
S where the map S → S is the absolute Frobenius and S = Spec k is the base field. Moreover W ∗

is defined as the adjoint to the obvious map Ωr
X/S → W∗Ωr

X(p)/S
and ZΩr

X/S denotes the kernel of the differential

d : Ωr
X/S → Ωr+1

X/S . (See [Ill, 2.4] for more details.) It is known that ν(0) = Z/p, ν(1) = dlog(O∗X) and that ν(r),
viewed as a sheaf on Xet is generated locally by dlog(x1). · · · dlog(xr), xiεO∗X .

It is shown in [GL, Theorem 8.4] that if X is a smooth integral scheme over k and k is perfect, then one has the
natural isomorphism

(5.0.11) Hs(X?, ν(r)) ∼= Hs+r(X?, Z/p(r))

where the right-hand-side is the mod−p motivic cohomology of the scheme X and X? denotes either XZar or Xet.
Therefore, it is clear that the operations considered above define operations on ⊕rH

∗(X?, ν(r)) and we obtain the
following theorem. Moreover, the above isomorphism suggests that these classical operations are likely to be the
only operations that exist in mod− p motivic cohomology: we obtain these as a direct consequence of the operad
actions constructed in [J1]. See [J1, Theorem 8.2] for more details.

Theorem 5.1. Assume the above situation. Let X? denote either XZar or Xet.

(i) Operations on the Zariski and étale cohomology with respect to the sheaves ν(r)s: One obtains operations
Qs : Hq(X?, ν(t)) → Hq+(2s−t)(p−1)(X?, ν(pt)) and βQs : Hq(X?, ν(t)) → Hq++(2s−t)(p−1)+1(X?, ν(pt)). These
satisfy the following properties:

(ii) Contravariant functoriality: If f : X → Y is a map between smooth schemes over k, f∗ ◦Qs = Qs ◦ f∗

(iii) Let xεHq(X?, ν(t)). Qs(x) = 0 if 2s− t > q, βQs(x) = 0 if 2s− t ≥ q and if (2s− t = q), then Qs(x) = xp.
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(iv) If β is the Bockstein, β ◦Qs = βQs.

(v) Cartan formulae: For all primes l, Qs(x⊗ y) = Σ
i+j=s

Qi(x)⊗Qj(y) and

βQs(x⊗ y) = Σ
i+j=s

βQi(x)⊗Qj(y) + Qi(x)⊗ βQj(y)

(vi) Adem relations: With the same terminology as before:

If a < lb, and ε = 0, 1 one has

(5.0.12) βεQaQb = Σi(−1)a+i(a− pi, (l − 1)b− a + i− 1)βεQa+b−iQi

where β0Qs = Qs while β1Qs = βQs. One also has

βεQaβQb = (1− ε)Σi(−1)a+i(a− pi, (l − 1)b− a + i− 1)βQa+b−iQi

−Σi(−1)a+i(a− pi− 1, (l − 1)b− a + i)βεQa+b−iβQi
(5.0.13)

(vii) The operation Qs and βQs commute with change of base fields.

Proof. The assertion that the degree and the weight of the source and target is as indicated follows from the
isomorphisms in (5.0.11). The existence of the operations on cohomology computed on the is clear again from the
same isomorphism. The properties for the operations defined are induced by the properties of the corresponding
operation on mod-p motivic cohomology considered in [J1, Theorem 8.4]. �

6. Cohomological operations that commute with proper push-forwards and Examples

The operations considered so far commute with pull-backs only and do not commute with push-forwards by
proper maps. In this section we modify the above operations to obtain operations that commute with proper-push-
forwards. The key to this is the following formula, which follows by a deformation to the normal cone argument as
shown in [FL, Chapter VI]. We state this for the convenience of the reader. Recall that motivic cohomology is a
contravariant functor on smooth schemes. By identifying motivic cohomology with higher Chow groups, one may
show the former is also covariant for proper maps.

Proposition 6.1. Let

X
i //

f

��

W

g

��
X ′

i′ //
W ′

denote a cartesian square with all schemes smooth and with the vertical maps either regular closed immersions or
projections from a projective space. Let the normal bundle associated to i (i) be N (N ′, respectively). Then the
square commutes:

H∗(X ′, Z/l(•))
i′∗ //

e(N)f∗

��

H∗(W ′, Z/l(•))

g∗

��
H∗(X, Z/l(•))

i∗ //
H∗(W, Z/l(•))

where N = f∗(N ′)/N is the excess normal bundle and e(N) denotes the Euler-class of N . In case g and hence f
are also closed immersions with co-normal sheaves Ng and Nf , respectively, then N ∼= Ng |X/Nf . Moreover if a
finite constant group scheme G acts on the above schemes, the corresponding assertions holds in the G-equivariant
motivic cohomology defined below.

Definition 6.2. Let G denote a finite group acting on a scheme X. Then we let HG(X, Z/(r)) = holim
∆

RΓ(EG×
G

X, Z/l(r))

following the terminology in [J2, Section 6]. We let Hn
G(X, Z/l(r)) = π−n(HG(X, Z/l(r)) .
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Remarks 6.3. 1. One may now verify that if G = Z/l, for a fixed prime l, then

H∗G(Spec k, Z/l(•)) ∼= H∗(Spec k, Z/l(•))⊗H∗sing(BG, Z/l)

where H∗(Spec k, Z/l(•)) denotes the motivic cohomology of Spec k and H∗sing(BG, Z/l) denotes the singular
cohomology of the space BG with Z/l-coefficients. Recall that if l = 2, H∗sing(BG, Z/l) is a polynomial ring in one
variable and when l > 2, H∗sing(BG, Z/l) = Z/l[t]⊗Λ[ν] where βt = ν and Λ[ν] denotes an exterior algebra in one
generator ν.

2. The situation where will apply the above proposition will be the following: X will denote a given smooth
scheme and X ′ will denote X×

l

. W will denote another smooth scheme provided with a closed immersion X → W

and W ′ will denote W×l

. In this case the normal bundle associated to the diagonal imbedding of X in X×
l

is TX×l−1

(the normal bundle associated to the diagonal imbedding of W in W×l

is TW×l−1 ,respectively). As equivariant
vector bundles for the obvious permutation action of Z/l on X×

l

and W×l

these identify with R⊗k TX and R⊗k TW

where R is the representation of Z/l given by (k[x]/(xl − 1))/k. For a line bundle E , let w(E , t) = 1 + c1(L)l−1t.
One extends the definition of w(E , t) to all vector bundles E by making this class take short exact sequences to
products. Then the Euler-class e(R⊗k TX) = tdim(X)w(TX , 1/t) and e(R⊗k TW ) = tdim(W )w(TW , 1/t).

At this point, we may adopt the arguments as in [Br] to define cohomology operations that are compatible with
push-forwards by proper maps between quasi-projective schemes. i.e. Let Q• : H∗(X, Z/l(•)) → H∗(X, Z/l(•))
denote the total operation defined by Q• = ΣsQ

s. Now we define the covariantly functorial operations Qs by
letting

(6.0.14) Q• = ΣsQs = Q• ∩ w(TX)−1

(Recall that the class w(TX) is invertible.) If we re-index motivic cohomology homologically, (i.e. if X is proper
and of pure dimension d, we let Hn(X, Z/l(r)) = H2d−n(X, Z/(d − r))) the operations Qs map Hn(X, Z/l(t)) to
Hn−2s(l−1)(X, Z/l(tl − d(l − 1))).

Proposition 6.4. Let f : X → Y denote a proper map between quasi-projective schemes over Spec k. Then
Q• ◦ f∗ = f∗ ◦Q•.

Proof. Since X and Y are quasi-projective, f may be factored as a closed immersion i : X → Y × Pn for some
projective space Pn and the obvious projection π : Y × Pn → Y . Therefore, it suffices to prove the assertion
separately for f = i and for f = π. The case f = i is clear from the statements above. Next observe that Pn

is a linear scheme and therefore the motivic cohomology of X × Pn is given by an obvious Kunneth formula: see
[AJ, Appendix] for example. Therefore the Cartan formula immediately implies the required assertion for the case
f = π. �

We proceed to consider various examples.

6.1. Examples. The first example we consider is an operation Qs : Hq(X, Z/l(t)) → Hq−2s(l−1)(X, Z/l(tl −
d(l − 1))) on a projective smooth scheme X of dimension d so that the composition with the proper map π∗ :
Hq−2s(l−1)(X, Z/l(ldl)) → Hq−2s(l−1)(Spec k, Z/l(tl − d(l − 1))) is in fact zero. In view of the fact that the
operation Qs commutes with proper push-forward, it suffices to take q > 2t so that the group Hq(Spec k, Z/l(t)) =
0.

For example, one may take dim(X) = 3, q = 3, t = 1, s = 1 and l = 2. Now we have the operation

Q1 : H2(X, Z/2(1)) → H0(X, Z/2(−1)).

In cohomology notation this identifies with an operation Q1 : H4(X, Z/2(2)) → H6(X, Z/2(4)). The projection to
Spec k sends the source to the group H2(Spec k, Z/2(1)) ∼= H−2(Spec k, Z/2(−1)) which is zero assuming the
Beilinson-Soulé vanishing conjecture. It follows that π∗ ◦ Q1 = 0 assuming the validity of this conjecture. Recall
that H4(X, Z/2(2)) identifies with CH2(X, Z/2). Therefore any closed integral sub-scheme of X of codimension 2
defines a class in this group. If α is such a class, our conclusion is that π∗(Q1(α)) = 0.

So far we did not put any restriction on the prime l. If we require l = p, the last operation takes on the form
Q1 : H2(X, ν(2)) → H2(X, ν(4)) where cohomology denotes cohomology computed either on the Zariski or étale
sites.
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As another example, we may assume again dim(X) = 3, l = 3. Now we obtain the operation Q1 : H3(X, Z/3(2)) →
H7(X, Z/3(6)). Re-indexing homologically this identifies with Q1 : H3(X, Z/3(1)) → H−1(X, Z/3(−3)). Once
again one may prove that the composition π∗ ◦ Q1 = 0. In case l = p, this operation now takes on the form
Q1 : H1(X, ν(2)) → H1(X, ν(6)).

As yet another example, we will presently show that the only classical operations that send the usual mod-l
Chow groups to the usual mod-l Chow groups are the power operations. Recall that the usual mod−l Chow
groups are given by the mod−l motivic cohomology groups H2n(X, Z/l(n)). Now let Qs : H2t(X, Z/l(t)) →
H2t+2s(l−1)(X, Z/l(lt)) be given so that the 2t+2s(l− 1) = 2lt. Then 2s(l− 1) = 2t(l− 1) so that s = t. Therefore
we see from [J1, Theorem 8.2(ii)] that the given operation is none other than the l-th power operation.
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