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Abstract. In this paper we explore the relationships between the motivic and classical cohomol-
ogy operations defined on mod-l motivic cohomology. We also explore similar relationships in étale
cohomology and conclude by considering certain operations that commute with proper push-forwards.

1. Introduction

Throughout the paper k will denote a fixed perfect field of characteristic p ≥ 0. We will restrict to
the category, Sm/k, of smooth separated schemes of finite type over k. If X denotes such a scheme,
Hn
M(X,Z(r)) will now denote the motivic cohomology with degree n and weight r and Hn

M(X,Z/l(r))
will denote the corresponding mod-l-variant. Cohomology operations on motivic cohomology were
defined and studied in [Voev1] and also just for Chow-groups in [Bros]. We call these motivic operations
and these are characterized by the property that these are operations which are defined when l 6= p
and have the form:

P r : H i
M(X,Z/l(j))→ H

i+2r(l−1)
M (X,Z/l(j + r(l − 1))) and

βP r : H i
M(X,Z/l(j))→ H

i+2r(l−1)+1
M (X,Z/l(j + r(l − 1))).

When i = 2j, the above motivic cohomology groups identify with the usual mod-l Chow groups and
then these operations were also defined in [Bros].

These operations are defined by making use of a geometric model for the classifying spaces of finite
groups. By using a simplicial model for these classifying spaces, one obtains certain other operations
in mod-l motivic cohomology, which we call classical and which are defined even if l = p. These
operations now have the form:

Qr : H i
M(X,Z/l(j))→ H

i+2r(l−1)
M (X,Z/l(jl)) and βQr : H i

M(X,Z/l(j))→ H
i+2r(l−1)+1
M (X,Z/l(jl)).

One of the main goals of this paper is to explore the relationship between these two types of operations
in mod-l motivic cohomology. These elaborate on the results in an earlier preprint by the authors
studying these relations after inverting the Bott-element, which is considerably easier.

The comparison of the total power operations, yields straightforward comparison between the mo-
tivic and classical operations first for classes with degree equal to twice the weight and then for classes
with degree ≤ twice the weight by observing that both the classical and motivic operations are stable
with respect to suspension in the degree. Since the classical operations are not stable with respect to
suspension in the weight, the case when the degree > twice the weight, is more involved and makes use
of the Cartan formulae. The main comparison results may be summarized in the following theorem.

Theorem 1.1. (See section 6 for more details.) Assume the base field has a primitive l-th root of
unity and let BεH0

M(Spec k,Z/l(1)) denote the motivic Bott element. Let F denote a pointed simplicial
sheaf on Sm/kNis .
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(i) Let αεH̃ i
M(F,Z/(q) for any i ≤ 2q. Then Qr(α) = B(q−r)(l−1)P r(α), βQr(α) = B(q−r)(l−1)βP r(α).

(ii) For the remaining two cases let αεH̃2q+t
M (F,Z/l(q)), with t > 0.

If t = 2t′ for some integer t′, then

Bt′lQr(x) = B(q+t′−r)(l−1).Bt′P r(x) and Bt′lβQr(x) = B(q+t′−r)(l−1).Bt′βP r(x), 0 ≤ r ≤ q + t′.

If t = 2t′ + 1 for some integer t′, then

B(t′+1)lQr(x) = B(q+t′+1−r)(l−1).Bt′+1P r(x) and

B(t′+1)lβQr(x) = B(q+t′+1−r)(l−1).Bt′+1βP r(x), 0 ≤ r ≤ q + t′ + 1.

(iii) Both the motivic and classical operations extend to operations on étale cohomology with respect
to the sheaf µl. If F denotes a pointed simplicial sheaf on Sm/ket and αεH̃ i

et(F, µl(q)), for any
i ≥ 0, then

Qr(α) = B(q−r)(l−1)P r(α), βQr(α) = B(q−r)(l−1)βP r(α).

One may consult Examples 6.5 for various examples of the above relations. We conclude by con-
structing classical operations in motivic cohomology that commute with respect to proper pushfor-
wards and applying them to several examples.

The following is an outline of the paper. We begin section 2 by reviewing quickly the cohomology of
the classifying spaces of finite groups, using both the geometric and simplicial models for the classifying
spaces. We discuss the total power operations in detail in the next two sections. First we recall the
total power operations defined by Voevodsky for defining the motivic operations. We show that this
may be modified to define total power operations for the classical operations, at least for classes whose
degree is less than or equal to twice their weight. Both of these are first defined for algebraic cycles
whose degree is twice their weight. Since the motivic operations are stable with respect to suspension
in both the degree and the weight this suffices to define the motivic operations for all classes. However,
since the classical operations are stable with respect to suspension in only the degree, the above total
power operations do not define classical operations except for classes with degree less than or equal
to twice their weight. Therefore we define total power operations in a different manner to be able to
define classical operations without the above restriction and then show that these new total power
operations agree with the ones defined above for classes with degree equal to twice their weight. This
is carried out in detail in section 4.

At this point, the usual relations among the classical operations, like the Cartan formulae and
Adem relations are by no means obvious. The quickest approach to establishing these for the classical
operations is to show that the classical operations defined here identify with the operations defined
operadically as in [J1, section 5] (making use of [May]), where such relations are known to hold. We
prove this in section 5. The next section contains the key comparison theorem relating the motivic
operations with the classical ones. We explore some applications of the above results in the last
section. Here we construct classical cohomology operations that commute with proper push-forwards
and work out several examples of such push-forward formulae.

Conventions. We restrict to smooth separated schemes of finite type over a field k and l will
be a fixed prime. Usually this will be assumed to be different from the characteristic of k and k
will be assumed to be provided with a primitive l-th root of unity, though such hypotheses are not
required to define the classical operations. We will also consider simplicial schemes X• over such a
base field, where each Xn will be assumed to be a smooth scheme of finite type over k. Sm/kZar
(Sm/kNis, Sm/ket) will denote the category Sm/k provided with the big Zariski (Nisnevich or étale
topology, respectively). If C denotes any one of these categories, SSh(C)+ will denote the category of
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all pointed simplicial sheaves on C. HC will denote the corresponding homotopy category obtained by
inverting all A1-weak-equivalences. Any pointed simplicial scheme X•, with each Xnε(Sm/k) as well
as any pointed simplicial set will be viewed as an object in each of the categories SSh(Sm/kZar)+,
SSh(Sm/kNis)+ and SSh(Sm/ket)+ in the obvious manner.

The mod−l motivic complex will be denoted Z/l. This should be distinguished from the integers
mod−l, which will be denoted Z/l. H∗M will denote cohomology with respect to the motivic or mod−l
motivic complex computed on the Nisnevich or Zariski site: H∗et will denote cohomology computed on
the étale site. Often, when certain computations hold in any of these cases, we will simply use H∗ to
denote cohomology computed on any of these sites.

2. Cohomology of the classifying space for a finite group

We begin by recalling briefly the construction of the geometric classifying space of a linear algebraic
group: originally this is due to Totaro - see [Tot]. Let G be a linear algebraic group over S = Spec k
i.e. a closed subgroup-scheme in GLn over S for some n. For a (closed) embedding i : G → GLn the
geometric classifying space Bgm(G; i) of G with respect to i is defined as follows. For m ≥ 1 let Um be
the open sub-scheme of Anm where the diagonal action of G determined by i is free. Let Vm = Um/G
be the quotient S-algebraic space of the action of G on Um induced by the (diagonal) action of G on
Anm; the projection Um → Vm defines Vm as the quotient algebraic space of Um by the free action of
G and Vm is thus smooth. We have closed embeddings Um → Um+1 and Vm → Vm+1 corresponding
to the embeddings Id × {0} : Anm → Anm × An and we set EGgm = lim

m→∞
Um and BGgm = lim

m→∞
Vm

where the colimit is taken in the category of sheaves on (Sm/k)Nis or on (Sm/k)et. Observe that
if G = Σn (or a subgroup of it) acting on An by permuting the n-coordinates and acting on Anm

diagonally, we may take Um = {(u1, · · · , un)|uiεAm, ui 6= uj , i 6= j}. Moreover, in this case, the Um
may be shown to be an affine scheme readily and then [MFK, Proposition 0.7] shows that Vm is also
affine. (These observations will be rather important for the construction of the total power operations
constructed below.)

The equivariant motivic ( étale cohomology) of a scheme X with an action by Σn will be defined to
be H∗M(EΣgm

n ×
Σn

X,Z/l(?)) (H∗et(EΣgm
n ×

Σn

X,Z/l(?)), respectively). The results in [MV, section 4] show

that, one may also define equivariant étale cohomology using the simplicial construction for EΣn.

We recall the computation of the reduced equivariant motivic cohomology of F , where F is any
pointed simplicial sheaf on (Sm/k)Nis. ( For example, F = X+ where X is a given scheme with trivial
action by Σl). (See [Voev1, Section 6].)

2.1. H̃∗M(F ∧ (BΣgm
l )+; Z/l(?)) is a free module over H̃∗M(F ; Z/l(?))with a basis {cd̄i, di|i ≥ 0} where

d̄ is a class in H̃2l−2
M (F ∧ (BΣgm

l )+; Z/l(l − 1)) which is the mod-l reduction of a class dεH̃2l−2
M (F ∧

(BΣgm
l )+; Z(l − 1)) and c is a class in H̃2l−3

M (F ∧ (BΣgm
l )+; Z/l(l − 1)) so that δ(c) = d̄.

Let cycl denote the cycle map from motivic cohomology to étale cohomology. (By identifying the
motivic cohomology with the higher Chow groups, these cycle maps identify with those defined in
[Bl].) Now one may observe that the same computation as above holds in étale cohomology with the
classes c and d replaced by their images under the above cycle map.

One may replace EΣgm
l by the simplicial model EΣl (which is given in degree m, by Σm+1

l and
provided with the obvious structure maps) and BΣgm

l by the corresponding simplicial model BΣl in
the above computation to obtain:
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2.2. H̃∗M(F+∧BΣl; Z/l(?)) is a free module over H̃∗M(F+; Z/l(?)) with a basis {xȳi, ȳi|i ≥ 0} where ȳ
is a class in H̃2l−2

M (F+ ∧BΣl; Z/l(0)) which is the mod-l reduction of a class yεH̃2l−2
M (F+ ∧BΣl; Z(0))

and x is a class in H̃2l−3
M (F+ ∧BΣl; Z/l(0)) so that δ(x) = ȳ.

Remark 2.1. One may observe that the main difference between the computations in 2.1 and in 2.2 is
that the classes x, y and ȳ have weight 0.

One may replace F above with a pointed simplicial sheaf on (Sm)et and the above cohomology with
H∗et to obtain:

2.3. H̃∗et(F+ ∧BΣl; Z/l(?)) is a free module over H̃∗et(F+; Z/l(?)) with a basis {xȳi, ȳi|i ≥ 0} where ȳ
is a class in H̃2l−2

et (F+ ∧BΣl; Z/l(0)) and x is a class in H̃2l−3
et (F+ ∧BΣl; Z/l(0)) so that δ(x) = ȳ.

3. The total power operations:I

A key step in the comparison between the motivic and classical cohomology operations is a thorough
understanding of the total power operation. We proceed to discuss this in detail.

If one only considers the case i = 2j, then H2j(X,Z/l(j)) for a smooth scheme X identifies with
the mod-l usual Chow groups of X. Then the total power operation simply sends a class

αεH2j(X,Z/l(j)) 7→ αl

which defines a class in H2jl(BΣgm
l ×X,Z/l(jl)).

In order to be able to extend this total power operation as a natural transformation

P̃l : H2j( ; Z/l(j))→ H2jl( ×BΣgm
l ,Z/l(jl))

defined on all simplicial sheaves on the big Zariski, Nisnevich or étale site over k, one needs to adopt
the construction in [Voev1, section 5]. We will adopt this suitably modified to also define total power
operations when BΣgm

l is replaced by the simplicial model BΣl.

Next recall the following. An augmented simplicial object X• in a category C consists of a simplicial
object Y• in C with Yi = Xi, i ≥ 0 together with an object X−1εC and an augmentation ε : Y0 → X−1

so that d0 ◦ ε = d1 ◦ ε, i = 0, 1.

Let X• denote an augmented simplicial scheme. Let k[X•] = {k[Xn]|n} denote the corresponding
co-ordinate ring. A finitely generated k[X•]-module is given by a collection {Mn|n} where each Mn is a
finitely generated k[Xn]-module and provided with a compatible collection of maps {α∗(Mn)→Mm}
for each structure map α : Xm → Xn of X•. M• will be called finitely generated projective (finitely
generated free) if each Mm is a finitely generated projective (free, respectively) k[Xm]-module.

Proposition 3.1. Let X• denote an augmented simplicial scheme so that X−1 is affine. If M• =
{Mm|m} is a finitely generated module on X• which is the pull-back of a finitely generated k[X−1]-
module, then there exists a finitely generated free module F• on X• and a map φ : F• → M• which is
an epimorphism in each degree. In case M• is the pull-back of a finitely generated projective k[X−1]-
module, one may also find a finitely generated projective k[X•]-module N• so that Mm ⊕Nn

∼= Fn for
all n and where the last isomorphism is compatible with the structure maps of the augmented simplicial
scheme.

Proof. Since M• is the pull-back of a finitely generated k[X−1]-module, it suffices to prove the first
statement when the augmented simplicial scheme X• has been replaced by the affine scheme X−1.
This is then clear since X−1 is affine. If N−1 is the kernel of the surjection, then M−1 ⊕N−1

∼= F−1.
This isomorphism pulls-back to a similar isomorphism Mn⊕Nn

∼= Fn for each n and compatible with
the structure maps of the augmented simplicial scheme X•. �
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The following results relate the geometric classifying space BΣgm
l with the simplicial classifying

space BΣl.

Proposition 3.2. Let UN denote the open subscheme

{(u1, · · · , ul)|uiεAN , uj 6= uk, j 6= k}

of ANl. (As observed above this scheme and the quotient scheme VN = UN/Σl are affine schemes.)

For any fixed integer N > 0, let gsN : EΣl×
Σl

UN → EΣl×
Σl

Spec k = BΣl denote the obvious

map of simplicial schemes. This map induces a weak-equivalence in HSShSm/kNis (and also in
HSShSm/kZar and HSShSm/ket) on taking the colimit as N →∞.

Proof. This is immediate from the fact that the UN get more and more connected as N → ∞: see
[MV, section 4.2]. �

In view of the above proposition, we may approximate BΣl by EΣl×
Σl

UN by taking N high enough.

We will let U denote UN and V denote VN for a large N .

Observe that one has an obvious augmentation

(3.0.1) EΣl×
Σl

UN → UN/Σl

One may view this diagram as an augmented simplicial scheme. Observe that the scheme VN = UN/Σl

is affine so that Proposition 3.1 applies.

3.0.2. Recall from [Voev1, Theorem 2.1] that the functor X → H2n(X,Z/(n)) is represented by the
sheaf U 7→ Z/ltr(An)(U)/Z/ltr(An − {0})(U), Uε(Sm/k)Nis.

Let X denote a scheme in (Sm/k) and E,L vector bundles on X provided with an isomorphism
φ : E ×X L → AN

X which is the N -dimensional trivial bundle on X. Given a cycle Z on E with
coefficients in Z/l and equi-dimensional and finite over X, we consider the cycle on L ×X E ×X L
whose fiber over a point (x, l) of L is (Zx, l), where Zx denotes the fiber of Z over xεX. It is
observed in [Voev1, Construction 5.1] that this is an equi-dimensional cycle finite over L and that
by identifying E ×X L with AN

X using the isomorphism φ, one obtains a map of pointed sheaves
Th(L) → Z/ltr(AN )/Z/ltr(AN − {0}) (where Th(L) denotes the Thom-space of L), i.e. a class in
H̃2N (Th(L),Z/l(N)). (In fact this map identifies with the class ∆∗(q∗(Z), where q : E×

X
L → E

is the obvious projection and ∆ : E×
X
L → L×

X
E×
X
L is the diagonal.) Moreover, making use of

the Thom-isomorphism, H̃2dim(E)(X+,Z/l(dim(E))) ∼= H̃2N (Th(L),Z/l(N)), one observes that this
defines a class in H̃2dim(E)(X+,Z/l(dim(E))) which is denoted a(Z) and shown to be independent of
the isomorphism φ: see [Voev1, Construction 5.1].

In view of 3.0.2, a class in H̃2i(X+,Z/l(i)) may be represented by a cycle Z on X × Ai equi-
dimensional and finite over X. Let Z l denote the l-th external power of Z: this is now a cycle on
(X ×Ai)l. We will let p∗(Z l) denote its pull-back to (X ×Ai)l ×U , where U = UN for some suitably
large N . Since Σl acts freely on U , one may observe that the cycle p∗(Z l) descends to a unique cycle Z ′

on ((X ×Ai)l×U)/Σl equi-dimensional and finite over (X l×U)/Σl. On pulling back by the diagonal
one obtains the cycle Z ′′ on X × (Ail × U)/Σl.
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3.0.3. Now Ē = (Al×U)/Σl is a vector bundle on V = U/Σl and the latter is affine. Moreover, recall
that we have the augmented simplicial schemes: EΣl×

Σl

(Al×U)→ (Al×U)/Σl and EΣl×
Σl

U → U/Σl .

The pull-back of the vector bundle Ē to the simplicial scheme EΣl×
Σl

U defines a vector bundle we

will denote by Ê. By invoking Proposition 3.1, one may find a vector bundle L̄ on V = U/Σl so that
Ē ×V L̄ ∼= AN

V for some N . Therefore, the pull-back L̂ of L̄ to EΣl×
Σl

U also has the property that

Ê ×EΣl×
Σl

U L̂ is a trivial bundle of rank N .

Next we let Ẽ = X × Ē, L̃ = X × L̄ denote the pull-backs of Ē and L̄ to X × V . We also let
E = X× Ê, L = X× L̂ denote the corresponding vector bundles on the simplicial scheme X×EΣl×

Σl

U

obtained by pull-back from X×V . Then E×X×EΣl×
Σl

U L is a trivial bundle of rank N on the simplicial

scheme X×EΣl×
Σl

U and Ẽ×X L̃ is a trivial bundle of rank N on X×V . Moreover, E⊕i (L⊕i) will be the

pull-back of the vector bundle (Ē)⊕i ((L̄)⊕i, respectively). Observe that Th(L⊕i) = X+ ∧ Th((L̂)⊕i),
Th((L̃)⊕i) = X+ ∧ Th((L̄)⊕i) and that there is a natural map Th(L⊕i)→ Th(L̃⊕i).

In this context, the same arguments as above show that a cycle Z on X ×Ai, equi-dimensional and
finite over X defines (pointed) maps

Pgm(Z) : Th(L̃⊕i)→ Z/ltr(AiN )/Ztr(AiN − 0) and(3.0.4)

Ps(Z) : Th(L⊕i)→ Z/ltr(AiN )/Ztr(AiN − {0})

with the latter being obtained by pre-composing the first map with the obvious map Th(L⊕i) →
Th(L̃⊕i). Clearly these correspond to classes in

H̃2iN (Th(L̃⊕i),Z/l(iN)) and H̃2iN (Th(L⊕i),Z/l(iN))

so that the second is the pull-back of the first class by the obvious map Th(L⊕i)→ Th((L̃)⊕i). Making
use of Thom-isomorphisms, these correspond to classes in

H̃2idim(E)(X+ ∧ (U/Σl)+,Z/l(idim(E))) and H̃2idim(E)(X+ ∧ (EΣl×
Σl

U+),Z/l(idim(E)))

so that the second is the pull-back of the first class by the obvious map EΣl×
Σl

U → U/Σl. More

precisely, we have defined maps

X+ ∧ (U/Σl)+ → Z/ltr(Aidim(E))/Ztr(Aidim(E) − {0}) and

X+ ∧ (EΣl×
Σl

U+)→ Z/ltr(Aidim(E))/Ztr(Aidim(E) − {0}).

so that the latter is obtained from the former by pre-composing with the augmentationX+∧(EΣl×
Σl

U+)→

X+ ∧ (U/Σl)+. Moreover, the assignment Z → Pgm(Z) and Z → Ps(Z) are contravariantly functorial
in X. Therefore, the same relations extend on taking a resolution of the given simplicial sheaf F by
a simplicial scheme X•, with each Xn a smooth scheme. (Observe also that rank(E) = l here.)

The contravariant functoriality of the above constructions in X shows that by taking a resolution
of any simplicial sheaf on (Sm/k)Nis (and also in SShSm/kZar and SShSm/ket) by representables,
one obtains the same maps as above when X is replaced by any simplicial sheaf on (Sm/k)Nis. In
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particular, one may replace X by the pointed simplicial sheaf Z/ltr(Ai)/Ztr(Ai−{0}) to obtain maps

Z/ltr(Ai)/Ztr(Ai − {0}) ∧ (U/Σl)+ → Z/ltr(Aidim(E))/Ztr(Aidim(E) − {0}) and

Z/ltr(Ai)/Ztr(Ai − {0}) ∧ (EΣl×
Σl

U+)→ Z/ltr(Aidim(E))/Ztr(Aidim(E) − {0})

so that the latter is obtained from the former by pre-composing with the augmentation EΣl×
Σl

U →

(U/Σl). Restating these as classes in cohomology, we observe that there exist natural transformations
(defined on the categories HSSh(Sm/kZar)+, HSSh(Sm/kNis)+ and HSSh(Sm/ket)+):

P ′gm : H̃2i( ,Z/l(i))→ H̃2il( ∧(UN/Σl)+,Z/l(il)) and

P ′s : H̃2i( ,Z/l(i))→ H̃2il( ∧(EΣl×
Σl

UN )+,Z/l(il))

so that the latter is obtained from the former by composing with the augmentation EΣl×
Σl

UN → UN/Σl.

Moreover, these are compatible as N →∞ which, together with Proposition 3.2 provides the following
result.

Proposition 3.3. We obtain natural transformations:

Pgm : lim
N→∞

H̃2i( ,Z/l(i))→ lim
N→∞

H̃2il( ∧(UN/Σl)+,Z/l(il)) and

Ps : lim
N→∞

H̃2i( ,Z/l(i))→ lim
N→∞

H̃2il( ∧(EΣl×
Σl

UN+),Z/l(i)) ∼= H̃2il( ∧BΣl,Z/l(il))

on HSSh(Sm/kNis)+ (and also on HSSh(Sm/kZar)+ and HSSh(Sm/ket)+) so that the latter is
obtained from the former by composing with the augmentation EΣl×

Σl

UN → UN/Σl.

Definition 3.4. The natural transformation Pgm (Ps) will be called the geometric total power oper-
ation (the simplicial total power operation, respectively).

3.1. Motivic operations. Next we recall the definition of the cohomology operations of Voevodsky.
Let F denote a pointed simplicial sheaf on (Sm/k)Nis (or on (Sm/k)Zar).

One starts with the total power operation :

(3.1.1) Pgm : H̃2i
M(F,Z/l(i))→ H̃2il

M(F ∧ (U/Σl)+,Z/l(il))

By the results in 2.1, ⊕
i,j
H̃ il
M(F ∧(U/Σl)+,Z/l(jl)) is a free module over H̃∗M(F,Z/(?)) with basis given

by the elements d̄r and cd̄r, r ≥ 0. The operations P r and βP r are defined by the formula:

(3.1.2) Pgm(w) = Σr≥0P
r(w)d̄i−r + βP r(w)cd̄i−r−1, wεH̃2i(F,Z/l(i))

Observe that so defined P r : H̃2i
M(F,Z/l(i))→ H̃

2i+2r(l−1)
M (F,Z/l(i+ r(l − 1))) and

βP r : H̃2i
M(F,Z/l(j))→ H̃

2i+2r(l−1)+1
M (X,Z/l(j + r(l − 1))).

Behavior under suspension: A key observation is that, since the motivic cohomology operations
are stable with respect to shifting degrees by 1, and also both degrees and weights by 1, this defines
the operations P r and βP r on all H̃ i

M(F,Z/l(j)).

The classical operations are not stable with respect to suspension of weights, and therefore, one
cannot define classical operations in general using the total power operations considered above. For
this, we define a new total power operation when the simplicial model is used for the classifying spaces
of finite groups. We also show that, when applied to classes with degree = twice their weight, these
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total power operations identify with the ones considered above. All of these are discussed in detail in
the next section.

4. The total power operations:II

We proceed to define total power operations in a somewhat different manner so as to be able to
define the classical operations on all classes. Let Σl denote the symmetric group on l-letters and let π
denote a subgroup of Σl. Let Bπ denote the simplicial classifying space of π with Eπ → Bπ denoting
the associated principal π-fibration. We let Z/l(Eπ) denote the chain complex obtained by taking the
free Z/l-vector space in each simplicial degree and viewing that as a chain-complex in the usual manner
using the alternating sums of the face maps as the differential. We let Z/l(Eπ)∨ = Hom(Z/l(Eπ), Z/l)
which now forms a co-chain complex trivial in negative degrees.

Let K denote a possibly unbounded co-chain complex. Now K⊗
l

is the l-fold tensor product of
K:the symmetric group Σl acts in the obvious manner on K⊗

l
. Therefore, one may now form the

co-chain complex:
Z/l(Eπ)∨ ⊗

Z/l[π]
K⊗

l

where the differentials of the tensor-product are induced by the differentials of the two factors in the
usual manner. (Strictly speaking one needs to take the homotopy inverse limit of the cosimplicial object
of co-chain complexes obtained this way: see [J1]. However, one may identify this with a suitable total
chain-complex as in [Brow, Appendix].) In particular, the differential, ((Z/l(Eπ))∨)0 ⊗

Z/l[π]
K⊗

l
)n →

(Z/l(Eπ)∨ ⊗
Z/l(π)

(K⊗
l
)n+1 is such that if zεKn is a cycle, then its l-th power z⊗

l
defines a cycle of

degree nl in the above total complex we denote by

(4.0.3) Q̃(z)ε(Z/l(EΣl)∨ ⊗
Z/l(Σl)

K⊗
l
)nl

We will choose the complex K as follows. First we allow three distinct contexts:

(i) We work throughout on the site (Sm/k)Zar with H∗ denoting cohomology on the Zariski site.

(ii) We work throughout on the site (Sm/k)Nis with H∗ denoting cohomology on the Nisnevich site.

(iii) We work throughout on the site (Sm/k)et with H∗ denoting cohomology on the étale site.

Next observe that the category of (possibly unbounded) co-chain complexes of abelian sheaves on
any of the above two sites is a quasi-simplicial model category in the sense of [Fausk] and therefore
it is closed under homotopy inverse limits. Let Hom denote the internal hom in this category. Then,
given co-chain complexes of abelian sheaves M , N , we let RHom(M,N) = Hom(M,GN) with G
denoting the homotopy inverse limit of the cosimplicial object defined by the Godement resolution
computed on the appropriate site. RHom will denote the external hom.

Let Xε(Sm/k). We let K = Γ(X,RHom(M,A(i))) where M is any chain complex of abelian
sheaves trivial in negative degrees, A(i) = Z/l(i) is the mod−l motivic complex of weight i. Moreover,
now K = RHom(M ⊗ Z(X),A(i)), where Z(X) denotes the co-chain complex associated to the
simplicial abelian presheaf defined by Γ(U,Z(X)) = Z(Γ(U,X)).

In fact we may start with a pointed simplicial sheaf F in (Sm/k)Nis and let M denote the normalized
co-chain complex obtained by taking the associated free simplicial sheaf Z/l(F ) of Z/l-vector spaces
(with the base point of F identified with 0) and re-indexing so that we obtain a co-chain complex. Then
we defineRHom(F,A(i)) = RHom(M,A(i)) = Hom(M,GA(i)). The above definition makes implicit
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use of the adjunction between the free Z/l-vector space functor and the underlying functor sending
a Z/l-vector space to the underlying set. A useful observation in this context is that the natural
map Z/l(S)⊗

Z/l
Z/l(T ) → Z/l(S

∧
T ) is a weak-equivalence for any pointed simplicial presheaves S

and T . (One may prove this as follows. First this is clear if S is a presheaf of pointed sets, i.e.
it is true if S is replaced by its 0-th skeleton. One may prove using ascending induction on n,
that the above map is a weak-equivalence when S is replaced by its n-skeleton. Finally take the
colimit as n → ∞ over the n-skeleta of S.) This will enable one to obtain the weak-equivalence
RHom(M ′ ⊗M ′′,A(i)) ' RHom(F ′

∧
F ′′,A(i)), when M ′ = Z/l(F ′) and M ′′ = Z/l(F ′′).

ThenK⊗
l

= Γ(X,RHom(M,A(i)))⊗
l

= Γ(X l,RHom(M,A(i))�l
) maps to Γ(X,RHom(M,A(il)))

by pull-back by the diagonal ∆ : X → X l. (In fact this makes use of the diagonal map Z/l(F ) →
Z/l(F )⊗

l
and the pairing A⊗l → A.) We proceed to show this pairing is compatible with the obvious

action of Σl. First observe that M being the normalized chain complex obtained from the simpli-
cial abelian sheaf Z/l(F ) (re-indexed so as to become a co-chain complex), has the structure of a
co-algebra over the Barratt-Eccles operad as shown in [B-F, 2.1.1 Theorem]. A has the structure of
an algebra over the same operad as shown in [J1, Theorem 1.1]. Therefore, one may readily show
that these structures provide RHom(M,A) the structure of an algebra over the tensor product of
the Barratt-Eccles operad and the Eilenberg-Zilber operad: see [J1, Proposition 6.4]. Therefore, the
above pairing is compatible with the obvious action of Σl and one obtains the obvious map

Z/l(EΣl)∨ ⊗
Z/l(Σl)

Γ(X,RHom(Z/l(F ),A(i)))⊗l → Z/l(EΣl)∨ ⊗
Z/l(Σl)

Γ(X,RHom(Z/l(F ),A(il))).

(See for example (5.0.7), which explains such pairings in more detail.) One may identify the last term
with

Γ(X,RHom(Z/l(F ) ⊗
Z/l(Σl)

Z/l(EΣl),A(il)) = Γ(X,RHom(Z/l(F )⊗ Z/l(BΣl),A(il)).

We denote the above composition

(4.0.4) Z/l(EΣl)∨ ⊗
Z/l(Σl)

Γ(X,RHom(Z/l(F ),A(i)))⊗l → Γ(X,RHom(Z/l(F )⊗ Z/l(BΣl),A(il)))

by Q̄s. As observed above any cycle zεΓ(X,RHom(M,A)) in degree n provides a cycle in degree nl
in the source of the last map. Therefore, Q̄s(Q̃(z)) defines a cycle in the target of the last map in
degree nl. This provides the natural transformation

(4.0.5) Qs : Hj( ,Z/l(i))→ Hjl( ∧BΣl,Z/l(il))

for all j and all i ≥ 0 on the category HSSh(Sm/kNis)+ and HSSh(Sm/ket)+. (We call this the
(second) simplicial total power operation.)

4.1. The classical operations. These are defined similar to the motivic operations using the total
power operation Qs defined above. Let F denote a pointed simplicial sheaf. The main point to recall
is the computation of H̃∗M(F ∧ BΣl; Z/l) (H̃∗et(F ∧ BΣl; Z/l)) in 2.2 ( 2.3) which shows it is a free
module over H̃∗M(F ; Z/l) (H̃∗et(F ; Z/l), respectively) with basis {xȳi, ȳi|i ≥ 0}. The operation Qr

(βQr) is defined by the formula:

(4.1.1) Qs(w) = Σr≥0Q
r(w)ȳj/2−r + βQr(w)xȳj/2−r−1, wεH̃j(F,Z/l(i)), j even
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and extended to all j by observing that the classical operations are stable with respect to degree
suspension. Observe that, so defined,

Qr : H̃j(F,Z/l(i))→ H̃j+2r(l−1)(F,Z/l(il)) and βQr : H̃j(F,Z/l(i))→ H̃j+2r(l−1)+1(X,Z/l(il)).

Behavior under suspension. In contrast to the motivic operations, these operations are compatible
with shifting the degree alone by 1. This will follow from the comparison theorem in the next section.

Next we proceed to show that, for classes with degree = twice the weight, the total power operation
Qs identifies with the total power operation Ps defined above in Proposition 3.3.

Proposition 4.1. Let αεH̃2i
M(F,Z/l(i)) denote a class. Then Qs(α) = Ps(α).

Proof. First we observe from [Voev1, Theorem 2.1] that since we are only considering cycles whose
degree equals twice their weight, one may replace the motivic Z/l(m)[2m] by the sheaf associated to
the presheaf V 7→ Z/ltr(Am(V )/Z/l(Am − 0)(V ), V belonging to the big Nisnevich site (Sm/k)Nis.
Henceforth we will use A(m) to denote this sheaf when considering such cycles; when considering
general cycles, A(m) will still denote the motivic complex Z/l(m).

The next key step to is to invoke the following result proved in Proposition 3.2: the map gsN :
EΣl×

Σl

UN → EΣl×
Σl

Spec k = BΣl of simplicial schemes induces a weak-equivalence in HSShSm/kNis
(and also in HSShSm/kZar and HSShSm/ket) on taking the colimit as N →∞. Therefore, one may
replace BΣl in the above definition of the classical operations by EΣl×

Σl

U , where U = UN , N >> 0.

i.e. First the map in (4.0.4) may be replaced by the map

(4.1.2) Z/l(EΣl)∨ ⊗
Z/l(Σl)

Γ(X,RHom(Z/l(F )⊗ Z/l(U),A(i)))⊗l

→ Γ(X,RHom(Z/l(F )⊗ Z/l(EΣl) ⊗
Z/l(Σl)

Z/l(U),A(il)))

Therefore, the total power operation Qs may be defined as a map

(4.1.3) Qs : H̃j( ,A(i))→ H̃jl( ∧(EΣl×
Σl

U),A(il))

Next will consider the case when F = X which is a smooth scheme. A class in H̃2i(F,A(i)) may
be represented by a cycle Z on X × Ai equi-dimensional and finite over X. One first pulls-back the
cycle Z to p∗(Z l) on X × Ail × U . This cycle is invariant under the obvious action of the symmetric
group Σl on Ail × U and therefore defines a cycle in

Z/l(EΣl)∨ ⊗
Z/l(Σl)

Γ(X,RHom(Z/l(U),A(il))) = Γ(X,RHom(Z/l(EΣl) ⊗
Z/l(Σl)

Z/l(U),A(il))).

Observe that this is the total complex of the double complex defined by the cosimplicial co-chain
complex: {Γ(X,RHom(Z/l(Σ×

n

l )⊗ Z/l(U),A(il)))|n}. In fact this defines the cycle Q̄s(Q̃(z)) in

Γ(X,RHom(Z/l(U),A(il))) = Γ(X,RHom(Z/l(EΣl)0 ⊗
Z/l(Σl)

Z/l(U),A(il))

so that the pull-backs by d∗0 and d∗1 to classes in Γ(X,RHom(Z/l(Σl)⊗Z/l(U),A(il))) are the same.

This will be denoted Q̂s(z).

(4.1.4) A key observation is that the assignment z 7→ Q̂s(z) is contravariantly functorial.
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Next let Ē and L̄ denote the vector bundles on V = U/Σl defined as in 3.0.3. Recall rank(Ē) = l.
Recall also that the pull-back of Ē to U is trivial and that since L̄ is chosen such that Ē⊕ L̄ is trivial,
the pull-back of L̄ to U is also trivial. Recall the pull-back of Ē (L̄) to EΣl×

Σl

U is Ê (L̂, respectively).

(See the discussion preceeding (3.0.4) above.) It follows that for each fixed degree n ≥ 0, Ên ⊕ L̂n is
trivial and that therefore that L̂n also is trivial. Therefore, the same cycle as above defines the cycle

∆∗(q∗(Q̂s(z)))εΓ(X,RHom(Z/l(Th(L̂⊕i0 )),A(i(l + rank(L̂))))

= RHom(Z(X)⊗ Z/l(EΣl)0 ⊗
Z/l(Σl)

(Z/l(Th(L̄⊕i0 )),A(i(l + rank(L)))),

where q : Ê⊕i×
X
L̂⊕i → Ê⊕i is the obvious projection and ∆ : Ê⊕i×

X
L̂⊕i → L̂⊕i×

X
Ê⊕i×

X
L̂⊕i is the

diagonal. Moreover, the two pull-backs by d0 and d1 to classes in Γ(X,RHom(Z/l(Th(L̂⊕i0 )),A(i(l+
rank(L̂))))) identify since the pull-backs by d0 and d1 of the class Q̂s(z) identify. On taking coho-
mology, this defines a class in H2iN (X+ ∧EΣl∧

Σl

Th(L̄⊕i),Z/l(iN)) = H2iN (Th(L̃⊕i),Z/l(iN)), where

N = rank(E) + rank(L). (Recall l = rank(E) as well.) In fact, the definition of the total power
operation Ps(z) as in Proposition 3.3 shows that, this class identifies with the class denoted Ps(z)
above. The main point to observe now is that under Thom-isomorphism this class corresponds to the
class in H2il(X+∧EΣl∧

Σl

U+,Z/l(li) represented by the class Q̂(z). This is proved in the lemma below.

Since this class represents the class Qs(z), we observe that Qs(z) = Ps(z) in this case.

Next we consider the general case when F denotes any pointed simplicial sheaf. Now one chooses
the standard resolution of F by a simplicial scheme X• as in [Voev1, section 3], with each Xn a smooth
scheme. Then a class z in H̃2i(F,Z/l(i)) is represented by a cycle Z0 on X0×Ai equi-dimensional and
finite over X0 so that the two pull-backs d∗i (Z0) to cycles on X1×Ai equi-dimensional and finite over X1

are the same for i = 0 and i = 1. The observation (4.1.4) shows that then d∗0(Q̂s(Z0)) = d∗1(Q̂s(Z0)).
It follows that this cycle therefore defines a cycle in

Tot{RHom(Z/l(F )⊗Z/l(Σn
l )⊗Z/l(U),A(il)|n} = RHom(Z/l(F )⊗Z/l(EΣl) ⊗

Z/l(Σl)
Z/l(U),A(il))

(Here Tot denotes a suitable total complex.) We will denote this cycle by Q̂s(Z0)F . Next observe that
the vector bundles Ē and L̄ as in 3.0.2 as well as the associated vector bundles Ê and L̂ are defined
independently of X, so that these are the same for all Xj , j = 0, 1, . . . ,. Therefore, we may define the
associated vector bundle E = X•×Ê and L = X•×L̂. Moreover it follows similarly that the two cycles
∆∗(q∗(d∗j (Q̂s(Z0))))εRHom(Z(X)⊗ Z/l(EΣl)0 ⊗

Z/l(Σl)
Z/l(Th(L̄⊕i0 )),A(iN)) are the same for j = 0, 1.

Therefore, on taking cohomology, this defines a class in H2iN (Th(L⊕i),Z/l(iN)) = H2iN (X•,+ ∧
EΣl∧

Σl

Th(L̄),Z/l(iN)) ∼= H2iN (F ∧ EΣl∧
Σl

Th(L̄),Z/l(iN)), where N = rank(E) + rank(L). In fact

this class identifies with the class denoted Ps(z) above. Once again the lemma below shows that under
Thom-isomorphism this class corresponds to the class in H2il(F+ ∧ EΣl∧

Σl

U+,Z/l(il) represented by

the class Q̂s(Z0)F . Since this class represents the class Qs(z), we observe that Qs(z) = Ps(z) in this
case as well, thereby completing the proof of the proposition. �

Lemma 4.2. Let zεH̃2u(X•,+,A(u)) for a simplicial scheme X• be represented by a cycle Z0 on
X0 × Au equi-dimensional and finite over X0 so that the pull-backs d∗0(Z0) and d∗1(Z0) to cycles on
X1 ×Au are the same. Let V denote the trivial vector bundle X• ×Av. Then the Thom-isomorphism
sends the class z to the cycle represented by ∆∗(q∗(Z0))εH̃2u+2v(Th(V ),A(u+ v)), where q : V0 → X0
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is the projection and ∆ : V0×
X0

Au → V0×
X0

Au×
X0

V0 is the obvious diagonal. (Here V0 is the restriction

of V to X0.)

Proof. The Thom class [T ] corresponding to the vector bundle V is the class defined by the diagonal
∆V0 which is a cycle on V0×V0 equi-dimensional and finite over V0. Now the cup-product of the class
z represented by the cycle Z0 with [T ] corresponds to the cycle represented by ∆∗(q∗(Z0)). �

5. Comparison with the operadic definition of classical cohomology operations:
properties of classical operations

An E∞-structure on the motivic complex Z/l = ⊕iZ/l(i)) is shown to lead to a somewhat different
definition of the classical cohomology operations on mod−l motivic cohomology as discussed in [J1,
Section 5] and based on the earlier work [May]. We will presently show that these operations are in fact
identical to the classical operations defined above. Since the classical operations defined operadically
readily inherit several well-known properties, we are thereby able to carry over such properties to the
classical cohomological operations defined above. Some of these properties of the classical cohomology
operations, for example, the Cartan formulae are used in an essential manner in the comparison results
in the next section.

The only other way to establish such properties for the classical cohomology operations would be
by a tedious step-by-step verification of these properties following the approach in [St-Ep]. Therefore
we prefer the approach adopted here, which is far simpler.

Proposition 5.1. The cohomology operations defined above coincide with the classical cohomology
operations defined on mod-l motivic cohomology in [J1, Section 5].

Proof. Recall the simplicial Barratt-Eccles operad is the operad {NZ(EΣn)|n} where EΣn denotes the
simplicial bar-resolution of the finite group Σn and NZ(EΣn) denotes the normalized chain complex
associated to the simplicial abelian group Z(EΣn). The operad structure obtained this way is discussed
in [J1]. We will assume that it is an action by the simplicial Barratt-Eccles operad on the motivic
complex that provides its E∞-structure. The above action of the operad {NZ(EΣn)|n} on the complex
A = ⊕n≥0Z/l(n) provides us maps

(5.0.5) θl : NZ(EΣl)⊗A⊗
l → A

Recall that K∨ denotes Hom(K,Z/l), if K is any complex of Z/l-vector spaces. From the above
pairing we obtain

θ∗l : NZ(EΣl)⊗A∨ → (A∨)⊗
l

where we define θ∗l (h, a
∨)(a1⊗· · ·⊗al) =< θl(h⊗a1⊗· · ·⊗al), a∨ >, aiεA, a∨εA∨ and hεNZ(EΣl). In

fact these pairings provide the dual A∨ with the structure of a co-algebra over the operad {NZ(EΣl|l}.
It is a standard result in this situation that the map θ∗l is a chain map and is an approximation to
the diagonal map (i.e. homotopic to the diagonal map) ∆ : A∨ → (A∨)⊗

l
. (Here, as well as elsewhere

in this section, we use the observation that for any vector space V over Z/l, a vector vεV ( a vector
v∨εV ∨) is determined by its pairing < v,w > with all vectors wεV ∨ (its pairing < u, v∨ > with all
vectors uεV , respectively.).)

We next take the dual of the pairing θ∗l to define a chain-map:

((A∨)∨)⊗
l → NZ(EΣl)∨ ⊗ (A∨)∨.

The formula defining the chain map θ∗l shows that this map sends A⊗l ⊆ ((A∨)∨)⊗
l

to NZ(EΣl)∨⊗A.
Clearly there is a pairing NZ(EΣl)∨ ⊗NZ(EΣl)∨ → NZ(EΣl)∨ induced by the diagonal ∆ : EΣl →
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EΣl ×EΣl. Tensoring the last map with NZ(EΣl)∨ and making use of this pairing provides us with
the map:

(5.0.6) d : (NZ(EΣl))∨ ⊗A⊗
l → (NZ(EΣl))∨ ⊗A

One may recall that the action of σεΣl on NZ(EΣl) and of σ−1 on A⊗l
cancel out. Tracing through

these actions of Σl on the maps in the above steps, one concludes that the map d induces a map on
the quotients:

(5.0.7) d̄ : (NZ(EΣl))∨ ⊗
ZΣl

A⊗l → (NZ(EΣl))∨ ⊗
ZΣl

A

Now the cohomology of the complex (NZ(EΣl))∨ ⊗
N(Z(Σl))

A identifies with H∗(BΣl;Z/l) ⊗ H∗(A)

whereas the cohomology of the complex (NZ(EΣl))∨ ⊗
ZΣl

A⊗l
identifies with the equivariant cohomol-

ogy: H∗(A⊗l
,Σl;Z/l). Therefore, the map d̄ defines a map

(5.0.8) d̄∗ : H∗(A⊗l
,Σl;Z/l)→ H∗(BΣl;Z/l)⊗H∗(A)

The formula defining d also shows that the map d̄∗ is a map of H∗(BΣl, Z/l)-modules. One may
also observe readily that the l-th power map defines a map H∗(A) → H∗(A⊗l

,Σl;Z/l), a 7→ al. Let
{ei, fei|i ≥ 0} denote a basis of the Z/l-vector space H∗(BΣl;Z/l) dual to the basis {yi, xyi|i ≥ 0}
for H∗(BΣl;Z/l), i.e. < ei, y

j >= 0, if i 6= j and = 1 if i = j. Also < fei, y
j >= 0 for all i , j,

< fei, xy
j >= 0 for i 6= j and = 1 for i = j. Observe that now we have the following computation for

a class αεHq(A):

< d̄∗(αl), ei ⊗ (−)∨ >=< θ̄∗l (ei, (−)∨), αl >=< (−)∨, θ̄l(ei, αl) > and

< d̄∗(αl), fei ⊗ (−)∨ >=< θ̄∗l (fei, (−)∨), αl >=< (−)∨, θ̄l(fei, αl) >

where (−)∨εH∗(A)∨ and θ̄∗l is the map induced by θ∗l on taking homology of the corresponding
complexes. Since the map θ∗l was observed to be chain homotopic to the diagonal, it follows that
d̄∗ = ∆∗ where ∆ is the obvious diagonal. Therefore, the coefficient of yi (xyi) in the expansion of
d̄∗(αl)εH∗(BΣl; Z/l) ⊗H∗(A) identifies with θ̄i(ei, αl) (θ̄i(fei, αl), respectively). This completes the
proof of the proposition �

The main point of the above comparison is to provide the following corollary where the corresponding
results are shown to hold for the classical operations defined operadically in [J1, Theorem 5.3] invoking
the results of [May].

Theorem 5.2. Let F denote a pointed simplicial sheaf on (Sm/k)Nis in which case H∗ will denote
cohomology computed on the Nisnevich site or on (Sm/k)et in which case H∗ will denote cohomology
computed on the étale site.

The classical cohomology operations Qs : H̃q(F,Z/l(t))→ H̃q+2s(l−1)(F,Z/l(l.t)) and

βQs : H̃q(F,Z/l(t))→ H̃q+2s(l−1)+1(F,Z/l(l.t)).

satisfy the following properties:

(i) Contravariant functoriality: if f : F ′ → F is a map between simplicial sheaves, f∗ ◦Qs = Qs ◦ f∗

(ii) Let xεH̃q(F,Z/l(t)). Qs(x) = 0 if 2s > q, βQs(x) = 0 if 2s ≥ q and if (q = 2s), then Qs(x) = xl.
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(iii) If β is the Bockstein, β ◦Qs = βQs.

(iv) Cartan formulae: For all primes l, Qs(x⊗ y) = Σ
i+j=s

Qi(x)⊗Qj(y) and

βQs(x⊗ y) = Σ
i+j=s

βQi(x)⊗Qj(y) +Qi(x)⊗ βQj(y)

(v) Adem relations For each pair of integers i ≥ 0, j ≥ 0, we let (i, j) = (i+j)!
i!j! with the convention that

0! = 1. We will also let (i, j) = 0 if i < 0 or j < 0. (See [May, p. 183].) With this terminology we
obtain:

If (l > 2, a < lb, and ε = 0, 1) or if (l = 2, a < lb and ε = 0) one has

(5.0.9) βεQaQb = Σi(−1)a+i(a− li, (l − 1)b− a+ i− 1)βεQa+b−iQi

where β0Qs = Qs while β1Qs = βQs. If l > 2, a ≤ lb and ε = 0, 1, one also has

βεQaβQb = (1− ε)Σi(−1)a+i(a− li, (l − 1)b− a+ i− 1)βQa+b−iQi

−Σi(−1)a+i(a− li− 1, (l − 1)b− a+ i)βεQa+b−iβQi
(5.0.10)

(vi) The operations Qs commute with the simplicial suspension isomorphism in Hn(F ; Z/l(r)) ∼=
Hn+1(S1

sF ; Z/l(r)).

(vii) The operation Qs commutes with change of base fields and also with the higher cycle map into
mod−l étale cohomology.

Remark 5.3. It is important to observe that Q0 is not the identity. The property (ii) above shows
that in general Q0(x) = xl, if xεH0(X,Z/l(t)) = H̃0(X+,Z/l(t)) for any smooth scheme X and any
t ≥ 0. This will play a major role in the comparison results in the next section.

6. Comparison between the motivic and classical operations

In view of the results established in the earlier sections we are able to provide a nearly complete
comparison of the motivic and classical operations.

6.0.11. The Motivic Bott element. Throughout the rest of this section, we will assume that the
field k has a primitive l-th root of unity. Recall that we have:

Hp
M(Spec k,Z(1)) = 0, p 6= 1(6.0.12)

= k∗, p = 1

Now the universal coefficient sequence associated to the short exact sequence 0 → Z(1)×l→Z(1) →
Z/l(1)→ 0 of motivic complexes, provides the isomorphism

(6.0.13) H0
M(Spec k,Z/l(1)) ∼= µl(k)

The Motivic Bott element is the class in H0
M(Spec k,Z/l(1)) corresponding under the above isomor-

phism to the primitive l-th root of unity ζ. We will denote this element by B. Since cycl(B) = ζ
in H∗et( , µl(∗)), multiplication by the class cycl(B) induces an isomorphism: H∗et( , µl(r)) →
H∗et( , µl(r + 1)). It follows that the cycle map cycl induces a map of cohomology functors:

(6.0.14) cycl(B−1) : H∗M( ,Z/l(?))[B−1]→ H∗et( , µl(?)).
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It is shown in [Lev] that this map is an isomorphism on smooth schemes.

As observed above, the cohomology H∗(BΣgm
l ; Z/l) maps naturally to H∗(BΣl; Z/l) under which

the total power operation Pgm maps to the total power operation Ps. Therefore, a simple comparison
of the degrees and weights of the classes involved provides the following proposition.

Proposition 6.1. Assume that the base field k has a primitive l-th root of unity. Let αεH2q
M(X,Z/l(q)

for some q ≥ 0 with Xε(Sm/k). Then

Qr(α) = B(q−r).(l−1).P r(α), βQr(α) = B(q−r).(l−1).βP r(α)

for r ≤ q. For r > q, Qr(α) = 0 = P r(α).

Corollary 6.2. The same relation holds for any class αεH̃ i
M(F,Z/(q)) when F is any pointed sim-

plicial sheaf on (Sm/k)Nis provided i ≤ 2q.

Proof. We will first observe that the relations hold when i = 2q and F is any pointed simplicial sheaf
on (Sm/k)Nis. This follows readily in view of the observation that the two total power operations Pgm
and Ps are compatible as natural transformations defined on the category of all pointed simplicial
sheaves on (Sm/k). Next we consider the statement when i < 2q. For example, if i = 2q − 1,
H̃2q−1
M (F,Z/l(q)) ∼= H̃2q

M(Σ1
s∧F,Z/l(q)). Now using the observation that both the motivic and classical

operations are stable with respect to the suspension Σ1
s∧ , such a degree-suspension reduces this to

the case when i = 2q, which has been proved already. Observe also that when i ≤ 2q, one knows that
Qr(α) = 0 = P r(α) for r > q, (see [Voev1, Lemma 9.9] for a proof of the last equality) so that for the
classes α for which Qr is non-zero, the exponent (q − r)(l − 1) of B is ≥ 0. (If i > 2q this may no
longer be true apriori.)

In case F is in fact a scheme Xε(Sm/k), the identification H i
M(X,Z/(q)) ∼= CHj(X, 2q− i; l) shows

that these groups are trivial if i > 2q. Therefore, it suffices to consider the case when i ≤ 2q in case
F is in fact a scheme Xε(Sm/k). �

Next we will consider what may be said about the case i > 2q. First observe that the Bott element
B defines a class in H0

M(X,Z/l(1)) for any smooth scheme X by pull-back. Next consider a a pointed
simplicial sheaf F . Then one finds a resolution of F by pointed simplicial schemes X•,+: see [Voev1,
section 3]. The structure map X1 → Spec k factors through the structure map X0 → Spec k, so that
B pulls-back to define a class (still denoted) BεH̃0

M(F,Z/l(1)).

Lemma 6.3. Let F denote a pointed simplicial sheaf on (Smt/k)Nis. Then
(i) Q0(B) = Bl.
(ii) if xεH̃q

M(F,Z/l(t)), then Qr(B.x) = BlQr(x) and βQr(B.x) = BlβQr(x) for all xεH̃q
M(F,Z/l(t)).

Proof. (i) Take x = B in Theorem 5.2(ii). Then q = 0 = s there so that Qr(B) = 0 for r > 0
and Q0(B) = Bl. This proves (i). (ii) now follows from (i) making use of the Cartan formula in
Theorem 5.2(iv). �

Our basic technique to handle the case where the degree > twice the weight (i.e. i > 2q) is to apply
suitable weight and degree suspensions so as to reduce to the case where the degree = twice the weight.
Then we handle this case by the comparison above. Both the motivic and classical operations commute
with degree suspension, and the motivic operations commute with weight suspensions as well. The
classical operations do not, however, commute with weight suspensions. But weight suspensions may
effected by multiplying with the class B and the behavior of the classical operations with respect
to tensoring with B is explained by the results above. Therefore, we obtain the extension of our
comparison to classes of all degree and weight as explained below.
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Proposition 6.4. Suppose xεH̃2q+t
M (F,Z/l(q)), with t > 0.

(i) If t = 2t′ for some integer t′, then

Bt′lQr(x) = B(q+t′−r)(l−1).Bt′P r(x) and Bt′lβQr(x) = B(q+t′−r)(l−1).Bt′βP r(x), 0 ≤ r ≤ q + t′.

(ii) If t = 2t′ + 1,

B(t′+1)lQr(x) = B(q+t′+1−r)(l−1).Bt′+1P r(x) and

B(t′+1)lβQr(x) = B(q+t′+1−r)(l−1).Bt′+1βP r(x), 0 ≤ r ≤ q + t′ + 1.

Proof. To obtain (i), one first applies an iterated weight suspension t′-times: this is effected by mul-
tiplying x by Bt′ . Now the class Bt′xεH̃2q+2t′

M (F,Z/l(q + t′)), so that one may apply the comparison
in Proposition 6.1 to it and obtain:

Qr(Bt′x) = B(q+t′−r)(l−1)P r(Bt′x) and βQr(Bt′x) = B(q+t′−r)(l−1)βP r(Bt′x).

Making use of Lemma 6.3, we see that Qr(Bt′x) simplifies to Bt′lQr(x) while βQr(Bt′x) simplifies
to Bt′lβQr(x). P r(Bt′x) = Bt′P r(X) and βP r(Bt′x) = Bt′βP r(x). These prove (i). To obtain (ii),
one needs to apply an iterated weight suspension t′ + 1-times followed by a degree suspension once.
This produces the class Σ1

sB
t′+1xεH̃2q+2t′+2

M (Σ1
sF,Z/l(q+ t′+ 1)). Now one applies the comparison in

Proposition 6.1 to it. Then one makes use of Lemma 6.3 to pull-out the B from the left-hand-side. �

.

Examples 6.5. (i) Take t = 1. In this case one obtains BlQr(x) = B(q+1−r)(l−1)BP r(x) and
BlβQr(x) = B(q+1−r)(l−1)BβP r(x). One may now also take r = q to obtain, BlQq(x) = BlP q(x)
and BlβQq(x) = BlβP q(x). Since B is not invertible, multiplication by B need not be injective
and therefore, one cannot conclude that therefore Qq(x) = P q(X) or that βQq(x) = βP q(x).

(ii) Take t = 2. In this case one obtains BlQr(x) = B(q+1−r)(l−1)BP r(x) and
BlβQr(x) = B(q+1−r)(l−1)BβP r(x).

(iii) Take t = 3. In this case one obtains B2lQr(x) = B(q+2−r)(l−1)B2P r(x) and B2lβQr(x) =
B(q+2−r)(l−1)B2βP r(x). If, in addition, r = q + 1, then this becomes B2lQr(x) = Bl+1P r(x)
and B2lβQr(x) = Bl+1βP r(x). Once again, since B in not invertible, one cannot conclude that
therefore Bl−1Qr(x) = P r(x) or that Bl−1βQr(x) = βP r(x).

Observe that by the multiplicative properties of the operations and the observation that P r(B) = 0
if r ≥ 1 ([Voev1, Lemma 9.8]):

P r(Bjα) = BjP r(α),(6.0.15)

βP r(Bjα) = BjβP r(α).(6.0.16)

The above relations show that the motivic cohomology operations above induce operations on
H∗( ,Z/l(?))[B−1] in the obvious manner: we define P r(α.B−1) = P r(α).B−1 and βP r(α.B−1) =
βP r(α).B−1. Next we proceed to compare these induced motivic and classical operations on mod−l
étale cohomology,

Proposition 6.6. (Comparison of operations in mod−l étale cohomology.) Assume that the base
field k has a primitive l-th root of unity. Let F denote a pointed simplicial sheaf on (Sm/k)et. Let
αεH i

et(F, µl(q)) for some q ≥ 0. Then

Qr(α) = B(q−r).(l−1).P r(α), βQr(α) = B(q−r).(l−1).βP r(α)

for r ≤ i/2 and all i ≥ 0. For Qr(α) = 0 for r > i/2 and P r(α) = 0 for r ≥ i/2.
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Proof. For the case r ≤ q this follows from Proposition 6.1. For the other cases it follows by expanding
the exponents of B on both sides of the formulae in Proposition 6.4 and canceling out all the powers
of B on the left-hand-side. �

7. Cohomological operations that commute with proper push-forwards and Examples

The operations considered so far commute with pull-backs only and do not commute with push-
forwards by proper maps. In this section we modify the above operations to obtain operations that
commute with proper-push-forwards. The goal of this discussion is to consider the analogues of degree
formulae in mod-p motivic cohomology: such degree formulae have played a major role in some of
the applications of motivic cohomology operations. The key to this is the following formula, which
follows by a deformation to the normal cone argument as shown in [FL, Chapter VI]. We state this for
the convenience of the reader. Recall that motivic cohomology is a contravariant functor on smooth
schemes. By identifying motivic cohomology with higher Chow groups, one may show the former is
also covariant for proper maps.

Proposition 7.1. Let

X
i //

f
��

W

g

��
X ′

i′ //
W ′

denote a cartesian square with all schemes smooth and with the vertical maps either regular closed
immersions or projections from a projective space. Let the normal bundle associated to i (i) be N (N ′,
respectively). Then the square commutes:

H∗(X ′,Z/l(•))
i′∗ //

e(N)f∗

��

H∗(W ′,Z/l(•))

g∗

��
H∗(X,Z/l(•))

i∗ //
H∗(W,Z/l(•))

where N = f∗(N ′)/N is the excess normal bundle and e(N) denotes the Euler-class of N . In case g and
hence f are also closed immersions with normal bundles Ng and Nf , respectively, then N ∼= Ng |X/Nf .
Moreover if a finite constant group scheme G acts on the above schemes, the corresponding assertions
holds in the G-equivariant motivic cohomology defined below.

Definition 7.2. Let G denote a finite group acting on a scheme X. Then we let HG(X,Z/(r)) =
holim

∆
RΓ(EG×

G
X,Z/l(r)) following the terminology in [J2, Section 6]. We let Hn

G(X,Z/l(r)) =

π−n(HG(X,Z/l(r)) .

Remarks 7.3. 1. One may now verify that if G = Z/l, for a fixed prime l, then

H∗G(Spec k,Z/l(•)) ∼= H∗(Spec k,Z/l(•))⊗H∗sing(BG,Z/l)

where H∗(Spec k,Z/l(•)) denotes the motivic cohomology of Spec k and H∗sing(BG,Z/l) denotes the
singular cohomology of the space BG with Z/l-coefficients. Recall that if l = 2, H∗sing(BG,Z/l) is a
polynomial ring in one variable and when l > 2, H∗sing(BG,Z/l) = Z/l[t] ⊗ Λ[ν] where βt = ν and
Λ[ν] denotes an exterior algebra in one generator ν.

2. The situation where will apply the above proposition will be the following: X will denote a
given smooth scheme and X ′ will denote X×

l
. W will denote another smooth scheme provided with a
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closed immersion X →W and W ′ will denote W×
l
. In this case the normal bundle associated to the

diagonal imbedding of X in X×
l

is T
X×l−1 (the normal bundle associated to the diagonal imbedding of

W in W×
l

is T
W×l−1 ,respectively). As equivariant vector bundles for the obvious permutation action

of Z/l on X×
l

and W×
l

these identify with R⊗k TX and R⊗k TW where R is the representation of Z/l
given by (k[x]/(xl− 1))/k. For a line bundle E , let w(E , t) = 1 + c1(L)l−1t. One extends the definition
of w(E , t) to all vector bundles E by making this class take short exact sequences to products. Then
the Euler-class e(R⊗k TX) = tdim(X)w(TX , 1/t) and e(R⊗k TW ) = tdim(W )w(TW , 1/t).

At this point, we may adopt the arguments as in [Bros] to define cohomology operations that
are compatible with push-forwards by proper maps between quasi-projective schemes. i.e. Let Q• :
H∗(X,Z/l(•))→ H∗(X,Z/l(•)) denote the total operation defined by Q• = ΣsQ

s. Now we define the
covariantly functorial operations Qs by letting

(7.0.17) Q• = ΣsQs = Q• ∩ w(TX)−1

(Recall that the class w(TX) is invertible.) If we re-index motivic cohomology homologically, (i.e. if
X is proper and of pure dimension d, we let Hn(X,Z/l(r)) = H2d−n(X,Z/(d− r))) the operations Qs
map Hn(X,Z/l(t)) to Hn−2s(l−1)(X,Z/l(tl − d(l − 1))).

Proposition 7.4. Let f : X → Y denote a proper map between quasi-projective schemes over Spec k.
Then Q• ◦ f∗ = f∗ ◦Q•.

Proof. Since X and Y are quasi-projective, f may be factored as a closed immersion i : X → Y × Pn
for some projective space Pn and the obvious projection π : Y × Pn → Y . Therefore, it suffices to
prove the assertion separately for f = i and for f = π. The case f = i is clear from the statements
above. Next observe that Pn is a linear scheme and therefore the motivic cohomology of X × Pn is
given by an obvious Kunneth formula: see [AJ, Appendix] for example. Therefore the Cartan formula
immediately implies the required assertion for the case f = π. �

We proceed to consider various examples.

7.1. Examples. The first example we consider is an operation

Qs : Hq(X,Z/l(t))→ Hq−2s(l−1)(X,Z/l(tl − d(l − 1)))

on a projective smooth scheme X of dimension d so that the composition with the proper map
π∗ : Hq−2s(l−1)(X,Z/l(tl − d(l − 1)))→ Hq−2s(l−1)(Spec k,Z/l(tl − d(l − 1))) is in fact zero.

For example, one may take dim(X) = 3, q = 2, t = 1, s = 1 and l = 2. Now we have the operation

Q1 : H2(X,Z/2(1))→ H0(X,Z/2(−1)).

In cohomology notation this identifies with an operation Q1 : H4(X,Z/2(2)) → H6(X,Z/2(4)). The
projection to Spec k sends the source to the groupH2(Spec k,Z/2(1)) ∼= H−2(Spec k,Z/2(−1)) ∼=
CH−1(Speck k,Z/2) = 0. It follows that π∗ ◦ Q1 = 0. Recall that H4(X,Z/2(2)) identifies with
CH2(X,Z/2). Therefore any closed integral sub-scheme of X of codimension 2 defines a class in this
group. If α is such a class, our conclusion is that π∗(Q1(α)) = 0.

So far we did not put any restriction on the prime l. Next we assume l = p. Let ν(r) be the sheaf
that is kernel of W ∗ − C : ZΩr

X/S → Ωr
X(p)/S

. Here X(p) is the scheme obtained as the pull-back of
X×

S
S where the map S → S is the absolute Frobenius and S = Spec k is the base field. Moreover

W ∗ is defined as the adjoint to the obvious map Ωr
X/S → W∗Ωr

X(p)/S
and ZΩr

X/S denotes the kernel
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of the differential d : Ωr
X/S → Ωr+1

X/S . (See [Ill, 2.4] for more details.) It is known that ν(0) = the
constant sheaf Z/p, ν(1) = dlog(O∗X) and that ν(r), viewed as a sheaf on Xet is generated locally by
dlog(x1). · · · dlog(xr), xiεO∗X .

It is shown in [GL, Theorem 8.4] that if X is a smooth integral scheme over k and k is perfect, then
one has the natural isomorphism (induced by a quasi-isomorphism ν(r)[−r] ' Z/p(r)) Hs(X, ν(r)) ∼=
Hs+r(X,Z/p(r)), where cohomology denotes cohomology computed either on the Zariski or étale sites.

Therefore, if we require l = p and the field k is perfect, the last operation takes on the form

Q1 : H2(X, ν(2))→ H2(X, ν(4))

where cohomology denotes cohomology computed either on the Zariski or étale sites.

As another example, we may assume dim(X) = 4, q = 3, t = 1, s = 1 and l = 3. Now we obtain the
operation Q1 : CH3(X,Z/3, 1) ∼= H5(X,Z/3(3)) → H9(X,Z/3(9)). Re-indexing homologically this
identifies with Q1 : H3(X,Z/3(1))→ H−1(X,Z/3(−5)). Now π∗◦Q1 = Q1◦π∗ and π∗ maps the group
H3(X,Z/3(1)) to H3(Spec k,Z/3(1)) ∼= H−3(Spec k,Z/3(−1)) ∼= CH−1(Spec k,Z/3, 1) = 0 since the
higher Chow groups indexed by the codimension are trivial for negative codimension. Therefore, the
composition π∗ ◦Q1 = 0. In case l = p, this operation now takes on the form

Q1 : H2(X, ν(3))→ H0(X, ν(9)).

As yet another example, we will presently show that the only classical operations that send the
usual mod-l Chow groups to the usual mod-l Chow groups are the power operations. Recall that the
usual mod−l Chow groups are given by the mod−l motivic cohomology groups H2n(X,Z/l(n)). Now
let Qs : H2t(X,Z/l(t)) → H2t+2s(l−1)(X,Z/l(lt)) be given so that the 2t + 2s(l − 1) = 2lt. Then
2s(l − 1) = 2t(l − 1) so that s = t. Therefore we see from Theorem 5.2(ii) that the given operation is
none other than the l-th power operation.
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