EQUIVARIANT COHOMOLOGY AND CHERN CLASSES OF
SYMMETRIC VARIETIES OF MINIMAL RANK

M. BRION AND R. JOSHUA

Abstract. We describe the equivariant Chow ring of the wonderful compactification X of a symmetric space of minimal rank, via restriction to the associated toric variety Y. Also, we show that the restrictions to Y of the tangent bundle T_X and its logarithmic analogue S_X decompose into a direct sum of line bundles. This yields closed formulae for the equivariant Chern classes of T_X and S_X, and, in turn, for the Chern classes of reductive groups considered by Kiritchenko.

0. Introduction

The purpose of this article is to describe the equivariant intersection ring and equivariant Chern classes of a class of almost homogeneous varieties, namely, complete symmetric varieties of minimal rank. These include those (complete, nonsingular) equivariant compactifications of a connected reductive group, that are regular in the sense of [BDP90].

The main motivation for this work comes from questions of enumerative geometry on a complex algebraic variety M. If M is a spherical homogeneous spherical under a reductive group G, these questions find their proper setting in the ring of conditions $C^*(M)$, isomorphic to the direct limit of cohomology rings of G-equivariant compactifications X of M (see [DP83, DP85]). In particular, the Euler characteristic of any complete intersection of hypersurfaces in M has been expressed by Kiritchenko [Ki06], in terms of the Chern classes of the logarithmic tangent bundle S_X of any regular compactification X. As shown in [Ki06], these elements of $C^*(M)$ are independent of the choice of X, and their determination may be reduced to the case where X is a “wonderful variety”.

In fact, it is more convenient to work with the rational equivariant cohomology ring $H^*_G(X)$, from which the ordinary rational cohomology ring $H^*(X)$ is obtained by killing the action of generators of the polynomial ring $H^*_G(pt)$; the Chern classes of S_X have natural representatives in $H^*_G(X)$, the equivariant Chern classes. When X is a complete symmetric variety, the ring $H^*_G(X)$ admits algebraic descriptions by work of Bifet, De Concini, Littelman, and Procesi (see [BDP90, LP90]).

Here we consider the case where X is a wonderful symmetric variety of minimal rank, that is, the wonderful compactification of a symmetric space G/K of rank equal to $	ext{rk}(G) - 	ext{rk}(K)$. Moreover, we adopt a purely algebraic approach: we work over an arbitrary algebraically closed field, and replace the equivariant cohomology ring

The second author was supported by a grant from the NSA and by MPI(Bonn).
with the equivariant intersection ring $A^*_G(X)$ of [EG98] (for wonderful varieties over the complex numbers, both rings are isomorphic over the rationals).

We show in Theorem 2.2.1 that a natural pull-back map
\[r : A^*_G(X) \to A^*_T(Y)^{W_K} \]
is an isomorphism over the rationals, where $T \subset G$ denotes a maximal torus containing a maximal torus $T_K \subset K$ with Weyl group W_K, and Y denotes the closure in X of $T/T_K \subset G/K$. Furthermore, Y is the toric variety associated with the Weyl chambers of the restricted root system of G/K.

We also determine the images under r of the equivariant Chern classes of the tangent bundle T_X and its logarithmic analogue S_X. For this, we show in Theorem 3.1.1 that the normal bundle $N_{Y/X}$ decomposes (as a T-linearized bundle) into a direct sum of line bundles indexed by certain roots of K; moreover, any such line bundle is the pull-back of $O_{\mathbb{P}^1}(1)$ under a certain T-equivariant morphism $Y \to \mathbb{P}^1$. By Proposition 1.1.1, the product of these morphisms yields a closed immersion of the toric variety Y into a product of projective lines, indexed by the restricted roots.

In the case of regular compactifications of reductive groups, Theorem 2.2.1 is due to Littelmann and Procesi for equivariant cohomology rings (see [LP90]); it has been adapted to equivariant Chow ring in [Br98], and to equivariant Grothendieck rings by Uma in [Um05]. Here we adapt the approach of [Br98], based on a precise version of the localization theorem in equivariant intersection theory (inspired, in turn, by a similar result in equivariant cohomology, see [GKM99]). The main ingredient is that X contains only finitely many T-stable points and curves. This fact also plays an essential role in Tchoudjem’s description of the cohomology of line bundles on wonderful varieties of minimal rank, see [Tc05].

Theorem 3.1.1 seems to be new, already in the group case; it yields a closed formula for the image under r of the equivariant Todd class of X, analogous to the well-known formula expressing the Todd class of a toric variety in terms of boundary divisors. The toric variety Y associated to Weyl chambers is considered in [Pr90, DL94], where its cohomology is described as a graded representation of the Weyl group; however, its simple realization as a general orbit closure in a product of projective lines seems to have been unnoticed.

This article is organized as follows. Section 1 gathers preliminary notions and results on symmetric spaces, their wonderful compactifications, and the associated toric varieties. In particular, for a symmetric space G/K of minimal rank, we study the relations between the root systems and Weyl groups of G, K, and G/K; these are our main combinatorial tools. In Section 2, we first describe the T-invariant points and curves in a wonderful symmetric variety X of minimal rank; then we obtain our main structure result for $A^*_G(X)$, and some useful complements as well. Section 3 contains the decompositions of $N_{Y/X}$ and of the restrictions $T_X|_Y$, $S_X|_Y$, together with their applications to equivariant Chern and Todd classes.

Throughout this article, we consider algebraic varieties over an algebraically closed field k of characteristic $\neq 2$; by a point of such a variety, we mean a closed point.
As general references, we use [Ha77] for algebraic geometry, and [Sp98] for algebraic groups.

1. Preliminaries

1.1. The toric variety associated with Weyl chambers. Let Φ be a root system in a real vector space V (we follow the conventions of [Bo81] for root systems; in particular, Φ is finite but not necessarily reduced). Let W be the Weyl group, Q the root lattice in V, and Q^\vee the dual lattice (the co-weight lattice) in the dual vector space V^*. The Weyl chambers form a subdivision of V^* into rational polyhedral convex cones; let Σ be the fan of V^* consisting of all Weyl chambers and their faces. The pair (Q^\vee, Σ) corresponds to a toric variety

$$Y = Y(\Phi)$$

equipped with an action of W via its action on Q^\vee which permutes the Weyl chambers. The group W acts compatibly on the associated torus

$$T := \text{Hom}(Q, \mathbb{G}_m) = Q^\vee \otimes \mathbb{Z} \mathbb{G}_m.$$

Thus, Y is equipped with an action of the semi-direct product $T \cdot W$. Note that the character group $\mathcal{X}(T)$ is identified with Q; in particular, we may regard each $\alpha \in \Phi$ as a homomorphism $\alpha : T \to \mathbb{G}_m$.

The choice of a basis of Φ,

$$\Delta = \{\alpha_1, \ldots, \alpha_r\},$$

defines a positive Weyl chamber, the dual cone to Δ. Let $Y_0 \subset Y$ be the corresponding T-stable open affine subset. Then Y_0 is isomorphic to the affine space \mathbb{A}^r on which T acts linearly with weights $-\alpha_1, \ldots, -\alpha_r$. Moreover, the translates $w \cdot Y_0$, where $w \in W$, form an open covering of Y.

In particular, the variety Y is nonsingular. Also, Y is projective, as Σ is the normal fan to the convex polytope with vertices $w \cdot v$ ($w \in W$), where v is any prescribed regular element of V. The following result yields an explicit projective embedding of Y:

Proposition 1.1.1. (i) For any $\alpha \in \Phi$, the morphism $\alpha : T \to \mathbb{G}_m$ extends to a morphism

$$f_\alpha : Y \to \mathbb{P}^1.$$

Moreover, f_α and $f_{-\alpha}$ differ by the inverse map $\mathbb{P}^1 \to \mathbb{P}^1, z \mapsto z^{-1}$.

(ii) The product morphism

$$f := \prod_{\alpha \in \Phi} f_\alpha : Y \to \prod_{\alpha \in \Phi} \mathbb{P}^1$$

is a closed immersion. It is equivariant under $T \cdot W$, where T acts on the right-hand side via its action on each factor \mathbb{P}^1_α through the character α, and W acts via its natural action on the set Φ of indices.

(iii) Conversely, the T-orbit closure of any point of $\prod_{\alpha \in \Phi}(\mathbb{P}^1 \setminus \{0, \infty\})$ is isomorphic to Y.
(iv) Any non-constant morphism $F : Y \to C$, where C is an irreducible curve, factors through $f_\alpha : Y \to \mathbb{P}^1$ where f_α is an indivisible root, unique up to sign. Then

$$(f_\alpha)_* \mathcal{O}_Y = \mathcal{O}_{\mathbb{P}^1}.$$

Proof. (i) Since α has a constant sign on each Weyl chamber, it defines a morphism of fans from Σ to the fan of \mathbb{P}^1, consisting of two opposite half-lines and the origin. This implies our statement.

(ii) The equivariance property of f is readily verified. Moreover, the product map

$$\prod_{i=1}^r f_{\alpha_i} : Y \to (\mathbb{P}^1)^r$$

restricts to an isomorphism $Y_0 \to (\mathbb{P}^1 \setminus \{\infty\})^r$, since each f_{α_i} restricts to the i-th coordinate function on $Y_0 \cong \mathbb{A}^r$. Since $Y = W \cdot Y_0$, it follows that f is a closed immersion.

(iii) follows from (ii) by using the action of tuples $(t_\alpha)_{\alpha \in \Phi}$ of non-zero scalars, via componentwise multiplication.

(iv) Taking the Stein factorization, we may assume that $F_* \mathcal{O}_Y = \mathcal{O}_C$. Then C is normal, and hence nonsingular. Moreover, the action of T on Y descends to a unique action on C such that F is equivariant (indeed, F equals the canonical morphism $Y \to \text{Proj} \mathcal{R}(Y, F^* \mathcal{L})$, where \mathcal{L} is any ample invertible sheaf on C, and $\mathcal{R}(Y, F^* \mathcal{L})$ denotes the section ring $\bigoplus \Gamma(Y, F^* \mathcal{L}^n)$. Furthermore, $F^* \mathcal{L}$ admits a T-linearization, and hence T acts on $\mathcal{R}(Y, \mathcal{L})$. It follows that $C \cong \mathbb{P}^1$ where T acts through a character χ, uniquely defined up to sign. Thus, F induces a morphism from the fan of Y to the fan of \mathbb{P}^1; this morphism is given by the linear map $\chi : V^* \to \mathbb{R}$. In other words, χ has a constant sign on each Weyl chamber. Thus, χ is an integral multiple of an indivisible root α, uniquely defined up to sign. Since F has connected fibers, then $\chi = \pm \alpha$.

Conversely, if α is an indivisible root, then the fibers of the morphism $\alpha : T \to \mathbb{G}_m$ are irreducible. This implies (1.1.1). \qed

Next, for later use, we determine the divisor of each f_α regarded as a rational function on Y. Since f_α is a T-eigenvector, its divisor is a linear combination of the T-stable prime divisors Y_1, \ldots, Y_m of the toric variety Y, also called its boundary divisors. Recall that Y_1, \ldots, Y_m correspond bijectively to the rays of the Weyl chambers, i.e., to the W-translates of the fundamental co-weights $\omega_1^\vee, \ldots, \omega_r^\vee$ (which form the dual basis of the basis of simple roots). The isotropy group of each ω_i^\vee in W is the maximal parabolic subgroup W_i generated by the reflections associated with the simple roots $\alpha_j, j \neq i$. Thus, the orbit $W\omega_i^\vee \cong W/W_i$ is in bijection with the subset

$$W^i := \{w \in W \mid wo_j \in \Phi^+ \text{ for all } j \neq i\}$$

of minimal representatives for the coset space W/W_i. So the boundary divisors are indexed by the set

$$E(\Phi) := \{(i, w) \mid 1 \leq i \leq r, w \in W^i\} \cong \{w\omega_i^\vee \mid 1 \leq i \leq r, w \in W\}.$$
Furthermore, we have
\[(1.1.2) \text{div}(f_\alpha) = \sum_{(i,w) \in E(\Phi)} \langle \alpha, w\omega_i^\vee \rangle Y_{i,w} \]
by Proposition 1.1.1 and the classical formula for the divisor of a character in a toric variety (see e.g. [Od88, Prop. 2.1]). Also, note that \(\langle \alpha, w\omega_i^\vee \rangle\) is the \(i\)-th coordinate of \(w^{-1}\alpha\) in the basis of simple roots.

1.2. Symmetric spaces. Let \(G\) be a connected reductive algebraic group, and \(\theta : G \to G\) an involutive automorphism. Denote by \(K = G^\theta \subset G\) the subgroup of fixed points; then the homogeneous space \(G/K\) is a symmetric space.

We now collect some results on the structure of symmetric spaces, referring to [Ri82, Sp85] for details and proofs. The identity component \(K_0\) is reductive, and non-trivial unless \(G\) is a \(\theta\)-split torus, i.e., a torus where \(\theta\) acts via the inverse map \(g \mapsto g^{-1}\).

A parabolic subgroup \(P \subseteq G\) is said to be \(\theta\)-split if the parabolic subgroup \(\theta(P)\) is opposite to \(P\). The minimal \(\theta\)-split parabolic subgroups are all conjugate under \(K_0\); we choose such a subgroup \(P\) and put
\[L := P \cap \theta(P),\]
a \(\theta\)-stable Levi subgroup of \(P\). The intersection \(L \cap K\) contains the derived subgroup \([L,L]\); thus, every maximal torus of \(L\) is \(\theta\)-stable. We choose such a torus \(T\), so that
\[(1.2.1) \quad T = T^{\theta \theta^{-\theta}} \quad \text{and} \quad T^{\theta \cap T^{-\theta}} \quad \text{is finite.}\]
Moreover, the identity component
\[A := T^{-\theta,0}\]
is a maximal \(\theta\)-split subtorus of \(G\). All such subtori are conjugate in \(K_0\); their common dimension is the rank of the symmetric space \(G/K\), denoted by \(\text{rk}(G/K)\). Moreover,
\[C_G(A) = L = (L \cap K)A\]
(where \(C_G(A)\) denotes the centralizer of \(A\) in \(G\)), and \((L \cap K) \cap A = A \cap K\) consists of all elements of order 2 of \(A\).

The product \(PK^0 \subseteq G\) is open, and equals \(PK\); thus, \(PK/K\) is an open subset of \(G/K\), isomorphic to \(P/P \cap K = P/L \cap K\). Let \(P_u\) be the unipotent radical of \(P\), so that \(P = P_u \cdot L\). Then the map
\[(1.2.2) \quad \iota : P_u \times A/A \cap K \to PK/K, \quad (g, x) \mapsto g \cdot x\]
is an isomorphism.

The character group \(X(A/A \cap K)\) may be identified with the subgroup \(2X(A) \subset X(A)\). On the other hand, \(A/A \cap K \cong T/T \cap K\) and hence \(X(A/A \cap K)\) may be
identified with the subgroup of $\mathcal{X}(T)$ consisting of those characters that vanish on $T \cap K$, i.e.,

\[
\mathcal{X}(A/A \cap K) = \{ \chi - \theta(\chi) \mid \chi \in \mathcal{X}(T) \}
\]

(where θ acts on $\mathcal{X}(T)$ via its action on T).

Denote by

\[
\Phi_G \subset \mathcal{X}(T)
\]

the root system of (G, T), with Weyl group

\[
W_G = N_G(T)/T.
\]

Choose a basis Δ_G consisting of roots of P. Let $\Phi^+_G \subset \Phi_G$ be the corresponding subset of positive roots and let $\Delta_L \subset \Delta_G$ be the subset of simple roots of L. The natural action of the involution θ on Φ fixes pointwise the sub-root system Φ_L. Moreover, θ exchanges the subsets $\Phi^+_G \setminus \Phi^+_L$ and $\Phi^-_G \setminus \Phi^-_L$ (the sets of roots of P_u and $\theta(P_u) = \theta(P_u)$).

Also, denote by

\[
p : \mathcal{X}(T) \to \mathcal{X}(A)
\]

the restriction map from the character group of T to that of A. Then $p(\Phi_G) \setminus \{0\}$ is a (possibly non-reduced) root system called the restricted root system, that we denote by $\Phi_{G/K}$. Moreover,

\[
\Delta_{G/K} := p(\Delta_G \setminus \Delta_L)
\]

is a basis of $\Phi_{G/K}$. The corresponding Weyl group is

\[
W_{G/K} = N_G(A)/C_G(A) \cong N_{K^0}(A)/C_{K^0}(A).
\]

Also, $W_{G/K} \cong N_W(A)/C_W(A)$, and $N_W(A) = W_G^\theta$ whereas $C_W(A) = W_L$. This yields an exact sequence

\[
1 \to W_L \to W_G^\theta \to W_{G/K} \to 1.
\]

1.3. The wonderful compactification of an adjoint symmetric space. We keep the notation and assumptions of Subsec. 1.2 and we assume, in addition, that G is semi-simple and adjoint; equivalently, Δ_G is a basis of $\mathcal{X}(T)$. Then the symmetric space G/K is said to be adjoint as well.

By [DP83, DS99], G/K admits a canonical compactification: the wonderful compactification X, which satisfies the following properties.

(i) X is a nonsingular projective variety.

(ii) G acts on X with an open orbit isomorphic to G/K.

(iii) The complement of the open orbit is the union of $r = \text{rk}(G/K)$ nonsingular prime divisors X_1, \ldots, X_r with normal crossings.

(iv) The G-orbit closures in X are exactly the partial intersections

\[
X_I := \bigcap_{i \in I} X_i
\]

where I runs over the subsets of $\{1, \ldots, r\}$.

(v) The unique closed orbit, $X_1 \cap \cdots \cap X_r$, is isomorphic to $G/P \cong G/\theta(P)$.

We say that X is a wonderful symmetric variety, and X_1, \ldots, X_r are its boundary divisors. By (iii) and (iv), each orbit closure X_I is nonsingular.
Let Y be the closure in X of the subset

$$A/A \cap K \cong AK/K = LK/K \subseteq G/K.$$

Then Y is invariant under the action of the subgroup $LN_K(A) \subseteq G$. Since $L \cap N_K(A) = L \cap K = C_K(A)$, and $N_K(A)/C_K(A) \cong W_{G/K}$ by (1.2.4), we obtain an exact sequence

$$1 \to L \to LN_K(A) \to W_{G/K} \to 1.$$

Moreover, since Y is fixed pointwise by $L \cap K$, the action of $LN_K(A)$ factors through an action of the semi-direct product

$$(L/L \cap K) \cdot W_{G/K} \cong (A/A \cap K) \cdot W_{G/K}.$$

We identify the group $X(A/A \cap K) = 2^X(A)$ with $X(A)$. Then each $p(\chi)$, where $\chi \in X(T)$, is identified with $\chi - \theta(\chi)$. Then the adjointness of G and (1.2.3) imply that $X(A/A \cap K)$ is the restricted root lattice, with basis

$$\Delta_{G/K} = \{\alpha - \theta(\alpha) \mid \alpha \in \Delta_G \setminus \Delta_L\}.$$

Moreover, Y is the toric variety associated with the Weyl chambers of the restricted root system $\Phi_{G/K}$ as in Subsec. 1.1. This defines the open affine toric subvariety $Y_0 \subset Y$ associated with the positive Weyl chamber dual to $\Delta_{G/K}$. Note that

$$(1.3.1) \quad Y = W_{G/K} \cdot Y_0.$$

Also, recall the local structure of the wonderful symmetric variety X: the subset

$$X_0 := P \cdot Y_0 = P_u \cdot Y_0$$

is open in X, and the map

$$(1.3.2) \quad \iota : P_u \times Y_0 \to X_0, \quad (g, x) \mapsto g \cdot x$$

is a P-equivariant isomorphism. Moreover, any G-orbit in X meets X_0 along a unique orbit of P, and meets transversally Y_0 along a unique orbit of $A/A \cap K$.

It follows that the G-orbit structure of X is determined by that of the associated toric variety Y: any G-orbit in X meets transversally Y along a disjoint union of orbit closures of $A/A \cap K$, permuted transitively by $W_{G/K}$. As another consequence, $X_0 \cap G/K = PK/K$ and $Y_0 \cap G/K = AK/K$, so that ι restricts to the isomorphism (1.2.2).

Finally, the closed G-orbit meets Y_0 transversally at a unique point z. Then the isotropy group G_z equals $\theta(P)$, and the normal space to $G \cdot z$ at z is identified with the tangent space to Y at that point. Hence the weights of T in the tangent space to X at z are the positive roots $\alpha \in \Phi^+_G \setminus \Phi^+_L$ (the contribution of the tangent space to $G \cdot z$), and the simple restricted roots $\gamma = \alpha - \theta(\alpha)$, where $\alpha \in \Delta_G \setminus \Delta_L$ (the contribution of the tangent space to Y).
1.4. Symmetric spaces of minimal rank. We return to the setting of Subsect. 1.2. In particular, we consider a connected reductive group G equipped with an involutive automorphism θ, and the fixed point subgroup $K = G^\theta$.

Let T be any θ-stable maximal torus of G. Then (1.2.1) implies that

$$\text{rk}(G) \geq \text{rk}(K) + \text{rk}(G/K)$$

with equality if and only if the identity component $T^{\theta,0}$ is a maximal torus of K^0, and $T^{-\theta,0}$ is a maximal θ-split subtorus. We then say that the symmetric space G/K is of minimal rank; equivalently, all θ-stable maximal tori of G are conjugate in K^0.

We refer to [Br04, Subsec. 3.2] for the proof of the following auxiliary result, where we put

$$T_K := T^{\theta,0} = (T \cap K)^0.$$

Lemma 1.4.1. (i) The roots of (K^0, T_K) are exactly the restrictions to T_K of the roots of (G, T).

(ii) The Weyl group of (K^0, T_K) may be identified with W_G^θ.

In particular, $C_G(T_K) = T$ by (i) (this may also be seen directly). We put

$$W_K := W_G^\theta$$

and

$$N_K := N_{K^0}(T) = N_{K^0}(T_K).$$

By (ii), this yields an exact sequence

(1.4.1)

$$1 \rightarrow T_K \rightarrow N_K \rightarrow W_K \rightarrow 1.$$

Moreover, by (1.2.5), W_K fits into an exact sequence

(1.4.2)

$$1 \rightarrow W_L \rightarrow W_K \rightarrow W_{G/K} \rightarrow 1.$$

The group W_K acts on Φ_G and stabilizes the subset $\Phi^\theta_G = \Phi_L$; the restriction map

$$q : \mathcal{X}(T) \rightarrow \mathcal{X}(T_K)$$

is W_K-equivariant and θ-stable. Denoting by Φ_K the root system of (K^0, T_K), (i) is equivalent to the equality

$$\Phi_K = q(\Phi_G).$$

We now obtain two additional auxiliary results:

Lemma 1.4.2. Let $\beta \in \Phi_K$. Then one of the following cases occurs:

(a) $q^{-1}(\beta)$ consists of a unique root, $\alpha \in \Phi_L$.

(b) $q^{-1}(\beta)$ consists of two strongly orthogonal roots $\alpha, \theta(\alpha)$, where $\alpha \in \Phi_G^+ \setminus \Phi_L^+$ and $\theta(\alpha) \in \Phi_G^- \setminus \Phi_L^-$. In particular, q induces a bijection $q^{-1}(\Phi_L) = \Phi_L \cong q(\Phi_L)$. Moreover, α and $\theta(\alpha)$ are strongly orthogonal for any $\alpha \in \Phi_G \setminus \Phi_L$; then $s_\alpha s_{\theta(\alpha)} \in W_G^\theta = W_K$ is a representative of the reflection of $W_{G/K}$ associated with the restricted root $\alpha - \theta(\alpha)$.

Proof. Let $S \subseteq T_K$ be the identity component of the kernel of β. Then the centralizer $C_G(S)$ is a connected reductive θ-stable subgroup of G containing T, and the symmetric space $C_G(S)/C_K(S)$ is of minimal rank. Moreover, θ yields an involution of the quotient group $C_G(S)/S$, and the corresponding symmetric space is still of minimal rank. So we may reduce to the case where S is trivial, i.e., K has rank 1. Since β is a root of K^0, it follows that $K^0 \cong \text{SL}(2)$ or $\text{PSL}(2)$. Together with the
minimal rank assumption, it follows that one of the following cases occurs, up to an isogeny of G:
(a) $\mathcal{K} = G = \text{SL}(2)$; then θ is trivial.
(b) $\mathcal{K} = \text{SL}(2)$ and $G = \text{SL}(2) \times \text{SL}(2)$; then θ exchanges both factors.
This implies our assertions. \hfill \Box

We will identify $q(\Phi_L)$ with Φ_L in view of Lemma 1.4.2.

Lemma 1.4.3. (i) q induces bijections
$$\Phi^+_G \setminus \Phi_L \cong \Phi_K \setminus \Phi_L \cong \Phi^-_G \setminus \Phi_L.$$
(ii) $\Phi_K \setminus \Phi_L$ is a sub-root system of Φ_K, invariant under W_K.

(iii) The restricted root system Φ_G/K is reduced.

Proof. (i) follows readily from Lemma 1.4.2.

(ii) Since Φ_L is invariant under W_K, then so is $\Phi_K \setminus \Phi_L$. In particular, the latter is invariant under any reflection s_β, where $\beta \in \Phi_K \setminus \Phi_L$. It follows that $\Phi_K \setminus \Phi_L \subset \Phi_K$ is a sub-root system.

(iii) Arguing as in the proof of Lemma 1.4.2, we reduce to the case where $\text{rk}(G/K) = 1$. Also, we have to check the non-existence of roots $\alpha, \beta \in \Phi_G \setminus \Phi_L$ such that $\beta - \theta(\beta) = 2(\alpha - \theta(\alpha))$. Considering the identity component of the intersection of kernels of α, β and $\theta(\alpha)$, we may also reduce to the case where $\text{rk}(G) \leq 3$. Then the result follows by inspection. \hfill \Box

2. Equivariant Chow ring

2.1. Wonderful symmetric varieties of minimal rank. From now on, we consider an adjoint semi-simple group G equipped with an involutive automorphism θ such that the corresponding symmetric space G/K is of minimal rank. Then the group K is connected, semi-simple and adjoint, by [Br04, Lem. 5].

We choose a θ-stable maximal torus $T \subseteq G$, so that $A := T^{\theta,0}$ is a maximal θ-split subtorus. Also, we put $T_K := T^{\theta}$; this group is connected by [Br04, Lem. 5] again. Thus, T_K is a maximal torus of K. In agreement with the notation of Subsec. 1.4, we denote by N_K the normalizer of T_K in K, and by W_K the Weyl group of (K, T_K).

As in Subsec. 1.3, we denote by X the wonderful compactification of G/K, also called a wonderful symmetric variety of minimal rank. The associated toric variety Y is the closure in X of $T/T_K \cong A/A \cap K$. Recall that Y is invariant under the subgroup $LN_K \subseteq G$, and fixed pointwise by $L \cap K$. Thus, LN_K acts on Y via its quotient group
$$LN_K/(L \cap K) \cong T/T_K \cdot W_G/K \cong TN_K/T_K.$$

We will mostly consider Y as a TN_K-variety.

By [Tc05, Sec. 10], X contains only finitely many T-stable curves. We now obtain a precise description of all these curves, and of those that lie in Y. This may be deduced from the results of [loc. cit.], which hold in the more general setting of wonderful varieties of minimal rank, but we prefer to provide direct, somewhat simpler arguments.
Lemma 2.1.1. (i) The T-fixed points in X (resp. Y) are exactly the points $w \cdot z$, where $w \in W$ (resp. W_K). They are parametrized by W_G/W_L (resp. $W_K/W_L \cong W_G/W_K$).

(ii) For any $\alpha \in \Phi^+_G \setminus \Phi^+_L$, there exists a unique irreducible T-stable curve $C_{z,\alpha}$ which contains z and on which T acts through its character α. The T-fixed points in $C_{z,\alpha}$ are exactly z and $s_\alpha \cdot z$.

(iii) For any $\gamma = \alpha - \theta(\alpha) \in \Delta_G/K$, there exists a unique irreducible T-stable curve $C_{z,\gamma}$ which contains z and on which T acts through its character γ. The T-fixed points in $C_{z,\gamma}$ are exactly z and $s_\alpha s_{\theta(\alpha)} \cdot z$.

(iv) The irreducible T-stable curves in X are the W_G-translates of the curves $C_{z,\alpha}$ and $C_{z,\gamma}$. They are all isomorphic to \mathbb{P}^1.

(v) The irreducible T-stable curves in Y are the W_G/K-translates of the curves $C_{z,\gamma}$.

Proof. The assertions on the T-fixed points in X are proved in [Br04, Lem. 6]. And since Y is the toric variety associated with the Weyl chambers of $\Phi_{G/K}$, the group W_G/K acts simply transitively on its T-fixed points. This proves (i).

Let $C \subset X$ be an irreducible T-stable curve. Replacing C with a W_G-translate, we may assume that it contains z. Then $C \cap X_0$ is an irreducible T-stable curve in X_0, an affine space where T acts linearly with weights the positive roots $\alpha \in \Phi^+_G \setminus \Phi^+_L$, and the simple restricted roots $\gamma = \alpha - \theta(\alpha), \alpha \in \Delta_G \setminus \Delta_L$. Since these weights all have multiplicity 1, it follows that $C \cap X_0$ is a coordinate line in X_0. Thus, C is isomorphic to \mathbb{P}^1 where T acts through α or γ. In the former case, C is contained in the closed G-orbit $G \cdot z$; it follows that its other T-fixed point is $s_\alpha \cdot z$. In the latter case, C is contained in Y, and hence its other T-fixed point corresponds to a simple reflection in W_G/K. By considering the weight of the T-action on C, this simple reflection must be the image in W_G/K of $s_\alpha s_{\theta(\alpha)} \in W_K$. This implies the remaining assertions (ii)-(v). \qed

2.2. Structure of the equivariant Chow ring. We will obtain a description of the G-equivariant Chow ring of X with rational coefficients. For this, we briefly recall some properties of equivariant intersection theory, referring to [Br97, EG98] for details.

To any nonsingular variety Z carrying an action of a linear algebraic group H, one associates an equivariant Chow ring $A^*_H(Z)$. This is a positively graded ring with degree-0 part \mathbb{Z}, and degree-1 part the equivariant Picard group $\text{Pic}_H(Z)$ consisting of isomorphism classes of H-linearized invertible sheaves on Z.

Every closed H-stable subvariety $Y \subset Z$ of codimension n yields an equivariant class

$$[Y]_H \in A^n_H(Z).$$

The class $[Z]_H$ is the unit element of $A^*_H(Z)$.

Any equivariant morphism $f : Z \to Z'$, where Z' is a nonsingular H-variety, yields a pull-back homomorphism

$$f^* : A^*_H(Z') \to A^*_H(Z).$$

In particular, $A^*_H(Z)$ is an algebra over the equivariant ring of the point, $A^*_H(pt)$.
The equivariant Chow ring of \(Z \) is related to the ordinary Chow ring \(A^*(Z) \) via a homomorphism of graded rings

\[
\varphi_H : A_H^*(Z) \to A^*(Z)
\]

which restricts trivially to the ideal of \(A_H^*(Z) \) generated by \(A_H^+(pt) \) (the positive part of \(A_H^*(pt) \)). If \(H \) is connected, then \(\varphi_H \) induces an isomorphism over the rationals:

\[
A_H^*(Z)_Q/A_H^+(pt)A_H^*(Z)_Q \cong A^*(Z)_Q.
\]

More generally, there is a natural homomorphism of graded rings

\[
\varphi_H' : A_H^*(Z) \to A_H^*(Z)
\]

for any closed subgroup \(H' \subset H \). If \(H' = H^0 \), the neutral component of \(H \), then the group of components \(H/H^0 \) acts on the graded ring \(A_H^{*0}(Z) \), and the image of \(\varphi_H' \) is contained in the invariant subring \(A_H^{*0}(Z)^{H/H^0} \). Moreover, \(\varphi_H^{H^0} \) induces an isomorphism of rational equivariant Chow rings

\[
A_H^*(Z)_Q \cong A_{H^0}^*(Z)^{H/H^0}_Q.
\]

If \(H \) is a connected reductive group, and \(T \subseteq H \) is a maximal torus with normalizer \(N \) and associated Weyl group \(W \), then the composite of the canonical maps

\[
A_H^*(Z) \to A_N^*(Z) \to A_T^*(Z)^W
\]

is an isomorphism over the rationals. In particular, we obtain an isomorphism

\[
A_H^*(pt)_Q \cong A_T^*(pt)_Q^W.
\]

Furthermore, \(A_T^*(pt) \) is canonically isomorphic to the symmetric algebra (over the integers) of the character group \(\mathcal{X}(T) \). This algebra will be denoted by \(S_T \), or just \(S \) if this yields no confusion.

Returning to the \(G \)-variety \(X \), we may now state our structure result:

Theorem 2.2.1. The map

\[
(2.2.1) \quad \rho : A_G^*(X) \to A_T^*(X)^{W_G} \to A_T^*(X)^{W_K} \to A_T^*(Y)^{W_K}
\]

obtained by composing the canonical maps, is an isomorphism over the rationals.

Proof. We adapt the arguments of [Br98, Sec. 3.1] regarding regular compactifications of reductive groups; our starting point is the precise version of the localization theorem obtained in [Br97, Sec. 3.4]. Together with Lemma 2.1.1, it implies that the \(T \)-equivariant Chow ring \(A_T^*(X) \) may be identified as an \(S \)-algebra to the space of tuples \((f_{w\cdot z})_{w\in W_G/W_L} \) of elements of \(S \) such that

\[
f_{v\cdot z} \equiv f_{w\cdot z} \pmod{\chi}
\]

whenever the \(T \)-fixed points \(v\cdot z \) and \(w\cdot z \) are joined by an irreducible \(T \)-stable curve where \(T \) acts through its character \(\chi \). This identification is obtained by restricting to the fixed points. The ring structure on the above space of tuples is given by pointwise addition and multiplication; moreover, \(S \) is identified with the subring of constant tuples \((f)\).
It follows that \(A^*_G(X)_Q \cong A^*_T(X)_Q^{WG} \) may be identified, via restriction to \(z \), with the subring of \(S^{WL}_Q \) consisting of those \(f \) such that

\[(2.2.2) \quad v^{-1} \cdot f \equiv w^{-1} \cdot f \pmod{\chi} \]

for all \(v, w \) and \(\chi \) as above. By Lemma 2.1.1 again, it suffices to check (2.2.2) when \(v = 1 \). Then either we are in case (ii) of that lemma, and \(w = s_\alpha \), or we are in case (iii) and \(w = s_\alpha s_{\theta(\alpha)} \). In the former case, (2.2.2) is equivalent to the congruence

\[f \equiv s_\alpha \cdot f \pmod{\alpha} \]

which holds for any \(f \in S_Q \). In the latter case, we obtain

\[(2.2.3) \quad f \equiv s_\alpha s_{\theta(\alpha)} \cdot f \pmod{\alpha - \theta(\alpha)} \]

Thus, \(A^*_G(X)_Q \) is identified with the subring of \(S^{WL}_Q \) defined by the congruences (2.2.3) for all \(\alpha \in \Delta_G \setminus \Delta_L \).

On the other hand, we may apply the same localization theorem to the \(T \)-variety \(Y \). Taking invariants of \(W_K \) and using the exact sequence (1.4.2), we see that \(A^*_T(Y)_Q^{WK} \) may be identified with the same subring of \(S_Q \), by restricting to the same point \(z \). This implies our statement.

\[\square \]

2.3. Further developments. We obtain a more precise description of the image of the morphism \(r \) defined in Theorem 2.2.1, which will not be used in the sequel of this article, but has its own interest:

Proposition 2.3.1. (i) We have compatible isomorphisms of graded rings

\[A^*_T(Y)_Q^{WK} \cong (S^{WL}_{T_K} \otimes A^*_T(Y)_Q^{WK/T_K})_Q^{WG/K} \]

and

\[A^*_T(pt)_Q^{WK} \cong S^{WK}_{T_K} \cong (S^{WL}_{T_K} \otimes S_{T/K})_Q^{WG/K}. \]

(ii) The image in \(A^*_G(X)_Q \cong A^*_T(Y)_Q^{WK} \) of the subring

\[A^*_K(pt)_Q \cong S^{WK}_{T_K} \cong (S^{WL}_{T_K} \otimes \mathbb{Q})_Q^{WG/K} \subseteq A^*_T(pt)_Q^{WK} \]

is mapped isomorphically to \(A^*_G(G/K)_Q \cong A^*_K(pt)_Q \) under the pull-back from \(X \) to the open orbit \(G/K \).

(iii) We have isomorphisms

\[(2.3.1) \quad \text{Pic}(X)_Q \cong \text{Pic}_G(X)_Q \cong \text{Pic}_T(Y)_Q^{WK} \cong \text{Pic}_{T/K}(Y)_Q^{WK} \]

that identify the class \([X_i] \) of any boundary divisor with

\[(2.3.2) \quad [X_i \cap Y]_{T/K} = \sum_{w \in W_K} [Y_{i,w}]_{T/K} \]

where \(Y_{i,w} \) denote the boundary divisors of \(Y \), indexed as in Subsec. 1.1.
Theorem 2.2.1. To show the third isomorphism, note that implies the first isomorphism of (2.3.1). The second isomorphism is a consequence of induced by the natural map where the vertical arrows are pull-backs, and over, isomorphisms in view of the exact sequence (1.4.2).

Let \(T \) be a closed subgroup acting trivially on \(X \), and \(X_i \cap Y \) into irreducible components \(Y_{i,w} \), each of them having intersection multiplicity one.

Proof. (i) The lemma below yields a \(W_K \)-equivariant isomorphism of graded \(S_T \)-algebras

\[
A^*_T(Y) \cong S_T \otimes_{S_{T/K}} A^*_T(T/K)(Y),
\]

where \(W_K \) acts on \(S_T \) via its action on \(T \), and on \(A^*_T(T/K)(Y) \) via its compatible actions on \(T/T_K \) and \(Y \). Moreover, \(\mathcal{X}(T)_\mathbb{Q} \cong \mathcal{X}(T_K)_\mathbb{Q} \oplus \mathcal{X}(T/T_K)_\mathbb{Q} \) as \(W_K \)-modules, so that

\[
S_{T,\mathbb{Q}} \cong S_{T_K,\mathbb{Q}} \otimes S_{T/T_K,\mathbb{Q}}
\]
as graded \(W_K \)-algebras. It follows that

\[
A^*_T(Y)_\mathbb{Q} \cong S_{T_K,\mathbb{Q}} \otimes A^*_T(T/K)(Y)_\mathbb{Q}
\]
as graded \(S_{T,\mathbb{Q}} \)-\(W_K \)-algebras. Taking \(W_K \)-invariants and observing that the action of \(W_L \subseteq W_K \) on the right-hand side fixes pointwise \(A^*_T(T/K)(Y)_\mathbb{Q} \), we obtain the desired isomorphisms in view of the exact sequence (1.4.2).

(ii) Since \((G/K) \cap Y = T/T_K \), we obtain a commutative square

\[
\begin{array}{ccc}
A^*_G(X) & \xrightarrow{r} & A^*_T(Y)^{W_K} \\
\downarrow & & \downarrow \\
A^*_G(G/K) & \xrightarrow{s} & A^*_T(T/T_K)^{W_K}
\end{array}
\]

where the vertical arrows are pull-backs, and \(s \) is defined analogously to \(r \). Moreover, \(A^*_G(G/K) \cong A^*_K(pt) \), \(A^*_T(T/T_K) \cong A^*_T{T_K}(pt) \), and this identifies \(s_Q \) with the isomorphism \(A^*_K(pt)_Q \to S_{T_K,\mathbb{Q}}^{W_K} \). Likewise, \(t_Q \) is identified with the map

\[
(S_{T_K}^{W_L} \otimes A^*_T(T/K)(Y))_{Q}^{W_{G/K}} \to (S_{T_K}^{W_L} \otimes Q)^{W_{G/K}}
\]

induced by the natural map \(A^*_T(T/K)(Y)_Q \to Q \). This implies our assertion.

(iii) Let \(\mathcal{L} \) be an invertible sheaf on \(X \), then some positive tensor power \(\mathcal{L}^n \) admits a \(G \)-linearization, and such a linearization is unique since \(G \) is semi-simple. This implies the first isomorphism of (2.3.1). The second isomorphism is a consequence of Theorem 2.2.1. To show the third isomorphism, note that

\[
\text{Pic}_T(Y)^{W_K}_Q \cong (\mathcal{X}(T_K)^{W_L}_Q \oplus \text{Pic}_{T/T_K}(Y))^{W_{G/K}}_Q
\]

by (i); moreover, \(\mathcal{X}(T_K)^{W_K}_Q = 0 \) since the group \(K \) is semi-simple. Finally, (2.3.2) follows from the decomposition of \(X_i \cap Y \) into irreducible components \(Y_{i,w} \), each of them having intersection multiplicity one. \(\square \)

Lemma 2.3.2. Let \(Z \) be a nonsingular variety carrying an action of a torus \(T \) and let \(T' \subset T \) be a closed subgroup acting trivially on \(Z \). Then there is a natural isomorphism of graded \(S_T \)-algebras

\[
A^*_T(Z) \cong S_T \otimes_{S_{T/T'}} A^*_T(T')(Z),
\]

where \(S_{T/T'} \) is identified with a subring of \(S_T \) via the inclusion of \(\mathcal{X}(T/T') \) into \(\mathcal{X}(T) \).

In particular, if \(T' \) is finite then there is a natural isomorphism of graded algebras over \(S_{T,\mathbb{Q}} \cong S_{T/T',\mathbb{Q}} \):

\[
A^*_T(Z)_{\mathbb{Q}} \cong A^*_T(T')_{\mathbb{Q}}.
\]
Proof. We begin by constructing a morphism of graded $S_{T/T'}$-algebras

$$f : \mathcal{A}^*_\mathbb{Z}_{T/T'}(Z) \to \mathcal{A}^*_\mathbb{Z}(Z)$$

such that $f([Y]_{T/T'}) = [Y]_T$ for any T-stable subvariety $Y \subseteq Z$.

For this, we work in a fixed degree n and consider a pair (V, U), where V is a finite-dimensional T-module, $U \subset V$ is a T-stable open subset such that the quotient $U \to U/T$ is a principal T-bundle, and the codimension of $V \setminus U$ is sufficiently large; see [EG98] for details. Then we can form the mixed quotient $Z \times^T U := (Z \times U)/T$, and we obtain

$$\mathcal{A}^*_\mathbb{Z}(Z) = \mathcal{A}^n(Z \times^T U) \cong \mathcal{A}^n(Z \times^{T/T'} U/T') \cong \mathcal{A}^n_{T/T'}(Z \times U/T'),$$

where the latter isomorphism follows from the freeness of the diagonal T/T'-action on $Z \times U/T'$. Now the projection $Z \times U/T' \to Z$ yields a pull-back morphism

$$f_n : \mathcal{A}^n_{T/T'}(Z) \to \mathcal{A}^n(T).$$

One may check as in [EG98] that f_n is independent of the choices of U, and hence yields the desired morphism f.

Using the description of the $S_{T/T'}$-module $\mathcal{A}^*_\mathbb{Z}_{T/T'}(Z)$ (resp. the S-module $\mathcal{A}^*_\mathbb{Z}(Z)$) in terms of invariant cycles (see [Br97, Thm. 2.1]), we obtain an isomorphism of graded S_T-modules

$$\text{id} \otimes f : S_T \otimes \mathcal{A}^*_\mathbb{Z}_{T/T'}(Z) \to \mathcal{A}^*_\mathbb{Z}(Z).$$

Next, we show that $\mathcal{A}^*_\mathbb{Z}(X)_\mathbb{Q}$ is a free module over a big polynomial subring:

Proposition 2.3.3. Let R denote the \mathbb{Q}-subalgebra of $\mathcal{A}^*_\mathbb{Z}(X)_\mathbb{Q}$ generated by the image of $\mathcal{A}^*_\mathbb{Z}(pt)$ (defined in Proposition 2.3.1(ii)) and by the equivariant classes $[X_1]_G, \ldots, [X_r]_G$ of the boundary divisors. Then R is a graded polynomial ring, and the R-module $\mathcal{A}^*_\mathbb{Z}(X)_\mathbb{Q}$ is free of rank $|W_G/K|$.

Proof. The R-module $\mathcal{A}^*_\mathbb{Z}(X)_\mathbb{Q}$ is finite by [BP02, Lemma 6] (the latter result is proved there in the setting of equivariant cohomology, but the arguments may be readily adapted to equivariant intersection theory). Furthermore, by [Br97, 6.7 Corollary] and Lemma 2.1.1, $\mathcal{A}^*_\mathbb{Z}(X)_\mathbb{Q}$ is a free module over $\mathcal{A}^*_\mathbb{Z}(pt)_\mathbb{Q}$ of rank being the index $|W_G : W_L|$. As a consequence, the ring $\mathcal{A}^*_\mathbb{Z}(X)_\mathbb{Q}$ is Cohen–Macaulay of dimension $\text{rk}(G)$. Since R is a quotient of a polynomial ring in $\text{rk}(K) + r = \text{rk}(G)$ variables, it follows that R equals this polynomial ring. This proves all assertions except that on the rank of the R-module $\mathcal{A}^*_\mathbb{Z}(X)_\mathbb{Q}$, which may be checked by adapting the Poincaré series arguments of [BP02]. \hfill \Box

3. Equivariant Chern classes

3.1. The normal bundle of the associated toric variety.

We maintain the notation and assumptions of Subsec. 2.1. In particular, X denotes a wonderful symmetric variety of minimal rank, with associated toric variety Y.

Let $\mathcal{N}_{Y/X}$ denote the normal sheaf to Y in X. This is a $LN_\mathbb{K}$-linearized locally free sheaf on Y, which fits into an exact sequence of such sheaves

$$0 \to \mathcal{T}_Y \to \mathcal{T}_X|_Y \to \mathcal{N}_{Y/X} \to 0.$$

(3.1.1)
Kere T_X denote the tangent sheaf to X (this is a G-linearized locally free sheaf on X) and $T_X|_Y$ denotes its pull-back to Y.

The action of G on X yields a morphism of G-linearized sheaves

$$\rho_X : \mathcal{O}_X \otimes g \to T_X,$$

where g denotes the Lie algebra of G. In turn, this yields a morphism of T-linearized sheaves $\mathcal{O}_Y \otimes g \to \mathcal{N}_{Y/X}$ which factors through another such morphism

$$\varphi : \mathcal{O}_Y \otimes g \to \mathcal{N}_{Y/X}$$

(where I denotes the Lie algebra of L), since Y is stable under L. Also, note the isomorphism of T-modules

$$g/I \cong \bigoplus_{\alpha \in \Phi_K \setminus \Phi_L} g_{\alpha}.$$

We may now formulate a splitting theorem for $\mathcal{N}_{Y/X}$:

Theorem 3.1.1. (i) We have a decomposition of T-linearized sheaves

$$\mathcal{N}_{Y/X} = \bigoplus_{\beta \in \Phi_K \setminus \Phi_L} \mathcal{L}_\beta$$

where each \mathcal{L}_β is an invertible sheaf on which T_K acts via its character β. The action of N_K on $\mathcal{N}_{Y/X}$ permutes the \mathcal{L}_β’s according to the action of W_K on $\Phi_K \setminus \Phi_L$.

(ii) The map (3.1.3) restricts to surjective maps

$$\varphi_{\beta} : \mathcal{O}_Y \otimes (g_{\alpha} \oplus g_{\theta(\alpha)}) \to \mathcal{L}_\beta \quad (\beta = q(\alpha), \ \alpha \in \Phi_G^+ \setminus \Phi_L^+)$$

which induce isomorphisms of T-modules

$$\Gamma(Y, \mathcal{L}_\beta) \cong g_{\alpha} \oplus g_{\theta(\alpha)}.$$

In particular, φ is surjective, and each invertible sheaf \mathcal{L}_β is generated by its global sections. Moreover, the corresponding morphism

$$F_\beta : Y \to \mathbb{P}(g_{\alpha} \oplus g_{\theta(\alpha)})^* \cong \mathbb{P}^1$$

equals the morphism $f_{\alpha - \theta(\alpha)}$ (defined in Prop. 1.1.1).

Proof. (i) Since T_K fixes Y pointwise and Y is connected, then each fiber $\mathcal{N}_{Y/X}(y)$, $y \in Y$, is a T_K-module, independent of the point y. Considering the base point of G/K and denoting by t (resp. \mathfrak{t}) the Lie algebra of T (resp. K), we obtain an isomorphism of T_K-modules

$$\mathcal{N}_{Y/X}(y) \cong g/(t + \mathfrak{t}) \cong \bigoplus_{\alpha \in \Phi_G^+ \setminus \Phi_L^+} g_{\alpha}$$

which yields the decomposition (3.1.4) of the normal sheaf regarded as a T_K-linearized sheaf. Since the summands \mathcal{L}_β are exactly the T_K-eigenspaces, they are all stable under T, and permuted by N_K according to their weights.

(ii) Consider the restriction

$$\varphi_0 : \mathcal{O}_{Y_0} \otimes g \to \mathcal{N}_{Y_0/X_0}.$$
By the isomorphism (1.3.2), the composite map
\[(3.1.5) \quad \mathcal{O}_Y \otimes p_u \rightarrow \mathcal{O}_Y \otimes g \rightarrow \mathcal{N}_{Y_0/X_0} \]
is an isomorphism. Thus, \(\varphi_0 \) is surjective; by \(\mathcal{N}_K \)-equivariance, it follows that \(\varphi \) is surjective as well. Considering \(T_K \)-eigenspaces, this implies in turn the surjectivity of each \(\varphi_\beta \).

Thus, the sheaf \(\mathcal{L}_\beta \) is generated by a 2-dimensional \(T \)-module of global sections with weights \(\alpha \) and \(\theta(\alpha) \). This yields the \(T \)-equivariant morphism \(F_\beta : Y \rightarrow \mathbb{P}^1 \). Its restriction to the open orbit \(T/T_K \) is equivariant of weight \(\alpha - \theta(\alpha) \) for the action of \(T \) by left multiplication; thus, we may identify this restriction with the character \(\alpha - \theta(\alpha) \). Now Proposition 1.1.1 implies that \(F_\beta = f_{\alpha - \theta(\alpha)} \). By (1.1.1) and the projection formula, it follows that the map
\[g_\alpha \oplus g_{\theta(\alpha)} = \Gamma(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(1)) \rightarrow \Gamma(Y, F_\beta^* \mathcal{O}_{\mathbb{P}^1}(1)) = \Gamma(Y, \mathcal{L}_\beta) \]
is an isomorphism. \(\square \)

3.2. The (logarithmic) tangent bundle. Recall that \(\mathcal{T}_X \) denotes the tangent sheaf of \(X \), consisting of all \(k \)-derivations of \(\mathcal{O}_X \). Let \(\mathcal{S}_X \subseteq \mathcal{T}_X \) be the subsheaf consisting of derivations preserving the ideal sheaf of the boundary \(\partial X \). Since \(\partial X \) is a divisor with normal crossings, the sheaf \(\mathcal{S}_X \) is locally free; it is called the logarithmic tangent sheaf of the pair \((X, \partial X)\), also denoted by \(\mathcal{T}_X(-\log \partial X) \).

Since \(G \) acts on \(X \) and preserves \(X \), the map \(op_X \) of (3.1.2) factors through a map
\[(3.2.1) \quad op_{X,\partial X} : \mathcal{O}_X \otimes \mathfrak{g} \rightarrow \mathcal{S}_X. \]
In fact, \(op_{X,\partial X} \) is surjective; this follows, e.g., from the local structure of \(X \), see [BB96, Prop. 2.3.1] for details. In other words, \(\mathcal{S}_X \) is the subsheaf of \(\mathcal{T}_X \) generated by the derivations arising from the \(G \)-action.

Clearly, the sheaf \(\mathcal{T}_X \) is \(G \)-linearized compatibly with the subsheaf \(\mathcal{S}_X \). Moreover, the natural maps
\[\mathcal{T}_X \rightarrow \mathcal{N}_{X_i/X} \cong \mathcal{O}_X(X_i)|_{X_i} \]
(where \(X_1, \ldots, X_r \) denote the boundary divisors) fit into an exact sequence of \(G \)-linearized sheaves
\[(3.2.2) \quad 0 \rightarrow \mathcal{S}_X \rightarrow \mathcal{T}_X \rightarrow \bigoplus_{i=1}^r \mathcal{N}_{X_i/X} \rightarrow 0, \]
see e.g. [BB96, Prop. 2.3.2].

The pull-backs of \(\mathcal{T}_X \) and \(\mathcal{S}_X \) to \(Y \) are described by the following:

Proposition 3.2.1. (i) The exact sequence of \(TN_K \)-linearized sheaves
\[0 \rightarrow \mathcal{T}_Y \rightarrow \mathcal{T}_X|_Y \rightarrow \mathcal{N}_{Y/X} \rightarrow 0 \]
admits a unique splitting.

(ii) We also have a uniquely split exact sequence of \(TN_K \)-linearized sheaves
\[(3.2.3) \quad 0 \rightarrow \mathcal{S}_Y \rightarrow \mathcal{S}_X|_Y \rightarrow \mathcal{N}_{Y/X} \rightarrow 0, \]
where \mathcal{S}_Y denotes the logarithmic tangent sheaf of the pair $(Y, \partial Y)$. Moreover, the TN_K-linearized sheaf \mathcal{S}_Y is isomorphic to $\mathcal{O}_Y \otimes \mathfrak{a}$, where TN_K acts on \mathfrak{a} (the Lie algebra of A) via the natural action of its quotient $W_{G/K}$.

Proof. (i) is checked by considering the T_K-eigenspaces as in the proof of Theorem 3.1.1. Specifically, the T_K-fixed part of $T_X|_Y$ is exactly T_Y, while the sum of all the T_K-eigenspaces with non-zero weights is mapped isomorphically to $\mathcal{N}_{Y/X}$.

(ii) First, note that the natural map

$$\mathcal{O}_Y \otimes \mathfrak{a} \to \mathcal{S}_Y$$

is an isomorphism, since Y is a nonsingular toric variety under the torus $A/A \cap K$; see e.g. [Od88, Prop. 3.1].

Next, consider the map $T_X|_Y \to \mathcal{N}_{Y/X}$ and its restriction

$$\pi : S_X|_Y \to \mathcal{N}_{Y/X}.$$

Clearly, the kernel of π contains the image of the natural map

$$i : \mathcal{O}_Y \otimes \mathfrak{a} \to S_X|_Y.$$

We claim that the resulting complex of TN_K-linearized sheaves

$$\mathcal{O}_Y \otimes \mathfrak{a} \to S_X|_Y \to \mathcal{N}_{Y/X}$$

is exact. By equivariance, it suffices to check this on Y_0. Then the local structure (1.3.2) yields an exact sequence of P-linearized sheaves

$$0 \to \mathcal{O}_{X_0} \otimes p_u \to S_X|_{X_0} \to \mathcal{O}_{X_0} \otimes \mathfrak{a} \to 0,$$

see [BB96, Prop. 2.3.1]. This yields, in turn, an isomorphism

$$\mathcal{O}_{Y_0} \otimes (p_u \oplus \mathfrak{a}) \cong S_X|_{Y_0}$$

which implies our claim by using the isomorphisms (3.1.5) and (3.2.4).

In turn, this implies the exact sequence (3.2.3); its splitting is shown by arguing as in (i).

Corollary 3.2.2. We have isomorphisms of TN_K-linearized sheaves

$$T_X|_Y \cong T_Y \oplus \bigoplus_{\beta \in \Phi_K \setminus \Phi_L} \mathcal{L}_\beta,$$

$$S_X|_Y \cong (\mathcal{O}_Y \otimes \mathfrak{a}) \oplus \bigoplus_{\beta \in \Phi_K \setminus \Phi_L} \mathcal{L}_\beta,$$

and an exact sequence of TN_K-linearized sheaves

$$0 \to \mathcal{O}_Y \otimes \mathfrak{a} \to T_Y \to \mathcal{O}_Y(Y_1)|_{Y_1} \oplus \cdots \oplus \mathcal{O}_Y(Y_m)|_{Y_m} \to 0,$$

where Y_1, \ldots, Y_m denote the boundary divisors of the toric variety Y.

3.3. Equivariant Chern polynomials. By [EG98], any G-linearized locally free sheaf E on X yields equivariant Chern classes
\[c^G_i(E) \in \mathbb{A}^i_G(X) \quad (i = 0, 1, \ldots, \text{rk}(E)) \]
which we may encode by the equivariant Chern polynomial
\[c^G_t(E) := \sum_{i=0}^{\text{rk}(E)} c^G_i(E) t^i. \]
The map
\[r : \mathbb{A}^*_G(X) \to \mathbb{A}^*_T(Y)^{W_K} \]
of Theorem 2.2.1 sends $c^G_t(E)$ to $c^T_t(E|_Y)$, by functoriality of Chern classes. Together with the decompositions of the restrictions $T_X|_Y$ and $S_X|_Y$ (Corollary 3.2.2), this yields product formulae for the equivariant Chern polynomials of the G-linearized sheaves T_X and S_X:

Proposition 3.3.1. With the above notation, we have equalities in $\mathbb{A}^*_T(Y)$:
\[r(c^G_t(S_X)) = \prod_{\beta \in \Phi_K \setminus \Phi_L} (1 + t c^T_1(L_\beta)), \]
\[r(c^G_t(T_X)) = \prod_{j=1}^{m} (1 + t [Y_j|_T]) \times \prod_{\beta \in \Phi_K \setminus \Phi_L} (1 + t c^T_1(L_\beta)), \]
where $c^T_1(L_\beta) \in \text{Pic}_T(Y)$ denotes the equivariant Chern class of the T-linearized invertible sheaf L_β, and $[Y_j|_T] \in \text{Pic}_T(Y)$ denotes the equivariant class of the boundary divisor Y_j.

(Note that the above products are all W_K-invariant, but their linear factors are not.)

Likewise, we may express the image under r of the equivariant Todd classes $\text{td}^G(T_X)$ and $\text{td}^G(S_X)$:
\[r(\text{td}^G(S_X)) = \prod_{\beta \in \Phi_K \setminus \Phi_L} \frac{c^T_1(L_\beta)}{1 - \exp(-c^T_1(L_\beta))}, \]
\[r(\text{td}^G(T_X)) = \prod_{j=1}^{m} \frac{[Y_j|_T]}{1 - \exp(-[Y_j|_T])} \times \prod_{\beta \in \Phi_K \setminus \Phi_L} \frac{c^T_1(L_\beta)}{1 - \exp(-c^T_1(L_\beta))}. \]

Finally, we determine the equivariant Chern classes $c^T_1(L_\beta) \in \text{Pic}^T(Y)$ in terms of the boundary divisors Y_j, re-indexed as in Subsec. 1.1. Here $\beta \in \Phi_K \setminus \Phi_L$, so that $\beta = q(\alpha)$ for a unique $\alpha \in \Phi^+_G \setminus \Phi^+_L$.

Proposition 3.3.2. With the preceding notation, we have
\[c^T_1(L_\beta) = \alpha + \sum_{i,w} \langle \alpha - \theta(\alpha), w\omega_i \rangle [Y_{i,w}|_T], \]
where ω_i denote the fundamental co-weights of the restricted root system $\Phi_{G/K}$, and the sum runs over those pairs $(i, w) \in E(\Phi_{G/K})$ such that $w^{-1}(\alpha - \theta(\alpha)) \in \Phi^+_G \setminus \Phi^+_L$.

Proof. Recall from Theorem 3.1.1 that the T-module of global sections of \mathcal{L}_β is isomorphic to $\mathfrak{g}_\alpha \oplus \mathfrak{g}_\theta(\alpha)$. Let s be the section of \mathcal{L}_β associated with a generator of the line \mathfrak{g}_α. Then $c^T_T(\mathcal{L}_\beta) = \alpha + \text{div}_T(s)$, since s is a T-eigenvector of weight α. Moreover, $\text{div}_T(s)$ is the divisor of zeroes of the character $\alpha - \theta(\alpha)$. Together with (1.1.2), this implies the equation (3.3.3). \square

References

MICHEL BRION, UNIVERSITÉ DE GRENOBLE–I, INSTITUT FOURIER, BP 74, 38402 SAINT-MARTIN D’HÈRES CEDEX, FRANCE
E-mail address: Michel.Brion@ujf-grenoble.fr

ROY JOSHUA, DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, 231 W 18TH AVENUE, COLUMBUS, OH 43210, USA
E-mail address: joshua@math.ohio-state.edu