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Abstract. t-structures, in the abstract, apply to any triangulated category. However, for the most part, they have

been studied so far only in the context of sheaves of modules over sites provided with sheaves of rings. In this paper

we define and study t-structures for categories of modules over sites provided with sheaves of dgas and E∞-dgas.
A close variant, as we show, are the diagonal t-structures that come up in the context of filtered derived categories

and also in the context of crystalline cohomology (as in the work of Ekedahl). All of this is carried out in the unified

frame-work of aisles. We consider several examples: equivariant derived categories and derived categories associated
to algebraic stacks, motivic derived categories, the derived categories of presheaves of spectra on Grothendieck sites

as well as crystalline derived categories.
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1. Introduction.

t-structures were originally introduced in [BBD] to define and study perverse sheaves and soon afterwords in [Ek]
to study crystalline cohomology problems. Since then, they have appeared in other contexts (see [De], [KM], [J-1]
for example). They appear prominently in certain conjectures (see [Jan]) on algebraic cycles where a formalism
similar to l-adic derived categories for algebraic cycles is formulated. Questions on the existence of generalized t-
structures have been around for over 25 years: see, for example, [Bo] where questions on the existence of generalized
intersection cohomology theories were raised.

In this paper we utilize the techniques of pre-aisles and aisles introduced in [KV1] to provide a painless way to
define and study (generalized) t-structures for many of the above contexts. As applications of our work, we also
show how to apply our results to several of the above situations. Our interest in the material discussed here was
awakened by some questions posed by N. Ramachandran to the author in 2003 while both of us were members of
the MPI, Bonn. We thank Ramachandran for raising these questions and to the MPI for its hospitality.

The following theorem is typical of our results in the paper. (The notion of pre-aisles and aisles are discussed
below.) For the purposes of this introduction we may assume the site S is the small Zariski, Nisnevich or étale
sites associated to a given Noetherian scheme S.

Theorem 1.1. Let (S,R) denote a ringed site as in 2.1 so that the underlying site S is essentially small and
has enough points. Let C(S,R) denote the category of all unbounded complexes of sheaves of R-modules on S.
Moreover we assume the following:

(i) for each object U in the site S, there exists a large enough integer N (depending on U) so that Hi(U,F|U ) = 0
for all i > N and all sheaves of R-modules F on the site S and

(ii) for all filtered direct systems {Fα|α} of sheaves of R-modules and every object U in the site S, colim
α

H∗(U,Fα) ∼=
H∗(U, colim

α
Fα).

Let A be a sheaf of E∞-dgas or dgas on the ringed site (S,R). Let DMod(S,A)≤0 denote the pre-aisle in
DMod(S,A) generated by jU !jU

∗(A[n]), n ≥ 0, U in the site S.

Then (i) DMod(S,A)≤0 is an aisle in DMod(S,A) , i.e. defines a t-structure on DMod(S,A).

(ii) Assume next the hypotheses of 2.2 hold. i.e. We will assume that A is provided with an augmentation A → R
which is assumed to be a map of sheaves of E∞-dgas and that A is connected, i.e. Ai = 0 for i < 0 and A0 = R.

Then (a) jU !(A|U )εDMod(S,A)≤0 ∩DMod(S,A)≥0 = the heart of the above t-structure, where jU : U → S is
the structure map of the object . (b) Moreover, every object M in DMod(S,A)≤0 satisfies the property that the

natural map τ≤0(R
L
⊗
A
M) → R

L
⊗
A
M is a quasi-isomorphism in DMod(S,R). In other words, the functor R

L
⊗
A

( ) :

DMod(S,A) → DMod(S,R) sends DMod(S,A)≤0 to DMod(S,R)≤0.

We briefly mention two examples here, which are discussed in more detail in the last section of the paper.

Example 1.2. Utilizing the E∞-structure on the motivic complexes (see [J-1]), it is possible to define motivic
derived categories as derived categories of dg-modules over the motivic E∞-dga.

Example 1.3. The equivariant derived categories of l-adic sheaves on a scheme provided with an action by a
smooth group-scheme is shown to be equivalent to the derived category of sheaves over a sheaf of dgas in certain
cases (see [?] and [Guil]) and such an equivalence is conjectured to hold under fairly general hypotheses: see [So].
We obtain the following result in this context (which is essentially an extension to positive characteristics the result
in [?]: such an extension needs the isovariant étale site considered in [T] and [J-2]. (These are briefly recalled in
the last section where the following theorem is discussed in more detail.)

Theorem 1.4. Let X denote a projective toric variety for the action of a torus T over an algebraically closed field
of characteristic p ≥ 0. Let l denote a fixed prime different from p. Let p : [X/T ]lis.et → [X/T ]iso.et denote the
map of sites associated to the quotient stack [X/T ]. and let A = Rp∗(Ql

) denote the sheaf of dgas on [X/T ]iso.et.
Then the following hold:

(i) The points of the site [X/T ]iso.et correspond to T -orbits and the stalk of A at such a point p̄ = Tp, pεX, is
given by Ap̄ = H∗(BTp,Ql) where Tp denotes the stabilizer at p.
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(ii) A is formal in the sense that A ' H∗(A) and

(iii) one obtains an equivalence of derived categories (bounded below complexes): DT
+(X,Ql) ' D+([X/T ]iso.et,A).

The t-structure on the right-hand-side is defined as in the last theorem and corresponds to the usual t-structure on
the left-hand-side.

We conclude this introduction by recalling the notion of pre-aisles and aisles (see [KV1], [KV2] and [TLSS]).

1.0.1. Let T be a triangulated category whose translation functor is denoted by (−)[1] and its iterates by (−)[n],
with n ∈ Z. A t-structure on T in the sense of ([BBD, Définition 1.3.1]) is a pair of full subcategories (T ≤0, T ≥0)
such that, denoting T ≤n := T ≤0[−n] and T ≥n := T ≥0[−n], the following conditions hold:

(t1) For X ∈ T ≤0 and Y ∈ T ≥1, HomT (X,Y ) = 0.
(t2) T ≤0 ⊂ T ≤1 and T ≥0 ⊃ T ≥1.
(t3) For each X ∈ T there is a distinguished triangle A→ X → B

+→ A[1] withA ∈ T ≤0 and B ∈ T ≥1.

The subcategory T ≤0 is called the aisle of the t-structure, and T ≥0 is called the co-aisle. As usual for a subcategory
C ⊂ T we denote the associated orthogonal subcategories as C⊥ = {Y ∈ T /HomT (Z, Y ) = 0, ∀Z ∈ C} and
⊥C = {Z ∈ T /HomT (Z, Y ) = 0, ∀Y ∈ C}. The following are immediate formal consequences of the definition.

Proposition 1.5. Let T be a triangulated category, (T ≤0, T ≥0) a t-structure in T , and n ∈ Z, then

(1) (T ≤0, T ≥1) is a pair of orthogonal subcategories of T , i.e. T ≥1 = T ≤0⊥ and T ≤0 = ⊥T ≥1.
(2) The subcategories T ≤n are stable for positive translations and the subcategories T ≥n are stable for negative

translations.
(3) The canonical inclusion T ≤n → T has a right adjoint denoted τ≤n, and T ≥n → T a left adjoint denoted

τ≥n. Moreover, X ∈ T ≤n if, and only if, τ≥n+1(X) = 0. Similarly results hold for T ≥n.
(4) For X in T there is a distinguished triangle τ≤0X → X → τ≥1X

+→ τ≤0X[1]
(5) The subcategories T ≤n and T ≥n are stable under extensions, i.e. given a distinguished triangle X → Y →

Z
+→, if X and Z belong to one of these categories, so does Y .

The subcategories T ≤n and T ≥n, in general, are not triangulated subcategories but they come close. In fact,
each subcategory T ≤n has the structure of a suspended category in the sense of Keller and Vossieck [?]. Let us
recall this definition.

An additive category U is suspended if and only if is graded by an additive translation functor T (sometimes called
shifting) and there is class of diagrams of the form X → Y → Z → TX (often denoted simply X → Y → Z

+→)
called distinguished triangles such that the following axioms, analogous to those for triangulated categories in
Verdier’s [V, p. 266] hold:

(SP1) Every triangle isomorphic to a distinguished one is distinguished. For X ∈ U , 0 → X
id→ X → 0 is

a distinguished triangle. Every morphism u : X → Y can be completed to a distinguished triangle
X

u→ Y → Z → TX
(SP2) If X u→ Y → Z → TX is a distinguished triangle in U then so is Y → Z → TX

Tu→ TY .
(SP3) = (TR3) in Verdier’s loc. cit.
(SP4) = (TR4) in Verdier’s loc. cit.

The main difference with triangulated categories is that the translation functor in a suspended category may not
have an inverse and therefore some objects can not be shifted back. The formulation of axioms (SP1) and (SP2)
reflect this fact. If (T ≤0, T ≥0) is a t-structure on a triangulated category T , the aisle T ≤0 is a suspended subcategory
of T whose distinguished triangles are diagrams in T ≤0 that are distinguished triangles in T (Proposition 1.5).
Moreover, the aisle T ≤0 determines the t-structure because the co-aisle T ≥0 is recovered as (T ≤0)⊥[1]. The
terminology “aisle” and “co-aisle” comes from [?].

We will call a suspended subcategory U of a triangulated category T where the triangulation in U is given by
the triangles which are distinguished in T and the shift functor is induced by the one in T , a pre-aisle. We see
easily that to check that a full subcategory U of T is a pre-aisle, it is enough to verify that

• For any X in U , X[1] is also in U .
• Given a distinguished triangle X → Y → Z → X[1], if X and Z belong to U , then so does Y .

Once these two facts hold for U , the verification of axioms (SP1) through (SP4) is immediate.

The following are the key techniques we use to construct t-structures in this paper.
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Theorem 1.6. ([KV2, Section 1]) A suspended subcategory U of a triangulated category T is an aisle (i.e.
(U ,U⊥[1]) is a t-structure on T ) if and only if the canonical inclusion functor U → T has a right adjoint.

Definition 1.7. Let T be a triangulated category. An object E of T is called compact if the functor HomT (E,−)
commutes with arbitrary (small) co-products. Another way of expressing the condition is that a map from E to a
co-product factors through a finite subcoproduct.

Theorem 1.8. ([TLSS]) Let S = {Eα/α ∈ A} a set of compact objects in a triangulated category T . Let U the
smallest co-complete (i.e. closed under all small sums) pre-aisle of T which contains the family S. Then U is an
aisle in T .

2. The Basic Contexts

In this section we discuss three of the different contexts we consider in this paper. A fourth one, namely that
of crystalline derived categories is discussed separately in section 5. We begin by discussing a frame-work that is
common to two of the basic contexts.

2.1. The common frame-work. Let S denote a site with the following properties: (i) it is essentially small (ii)
has enough points. We will denote the points of the site S by S̄. In addition we will assume that every object
U in the site S is quasi-compact and that the site S is locally coherent in the sense of [SGA]4 Exposé VI (2.3).
(Recall the latter notion is defined as follows: an object U in S is quasi-separated if for any two maps V → U and
W → U , the fibered product V×

U
W is quasi-compact. An object U is coherent if it is both quasi-compact and

quasi-separated. A site with a terminal object X is coherent if every object quasi-separated in S is quasi-separated
over the terminal object X and the terminal object X is coherent. Given the site S and an object X in S, the site
S/X will denote the site whose objects are morphisms u : U → X and morphisms are morphisms in S over X. We
say a site S is locally coherent if it has a covering {Ui|i} so that each of the sites S/Ui is coherent.

The main observation we make now is the following:

(2.1.1) colim
α

Hn(U,Fα) ∼= Hn(U, colim
α

Fα)

for each U in the site S and for each filtered direct system {Fα|α} of abelian sheaves on S and for each n.

2.1.2. We will let R denote either one of the following: (i) a sheaf of commutative Noetherian rings (or graded
commutative Noetherian rings) with unit on the site S or (ii) the constant sphere spectrum Σ0. We will let C(S,R)
denote the category of all unbounded complexes of R-modules (with differentials of degree +1) in the first case
and the category of all sheaves of spectra on the site S in the second case. (In case R is graded, we will assume
that R = ⊕

iεZ
Ri and that C(S,R) will denote the category of complexes of sheaves of graded modules over R: a

sheaf of graded modules M = ⊕
iεZ
Mi. For a sheaf of graded R-modules M , M(t) will denote the object with a shift

of grading given by: M(t)i = Mt+i.)

We will let R ⊗ ∆[1] denote the following object in C(S,R): if R is a sheaf of rings, then this is the obvious
chain complex associated to the simplicial object defined by n 7→ ⊕

αε∆[n]
R (and with the obvious structure maps).

If R denotes Σ0, then this is the suspension spectrum associated to the pointed simplicial set ∆[1]+. Observe that
we have canonical morphisms di : R ∼= R⊗∆[0] → R⊗∆[1], i = 0, i = 1. If F is a complex of abelian sheaves on
S, Hn(F ) will denote the cohomology sheaf in degree n of the complex F ; in case F is a sheaf of spectra, this will
denote π−n(F ) = the sheaf of −n-th homotopy groups of F .

Proposition 2.1. Assume the following hypothesis:

for each U in the site S, there exists an integer N > 0 so that Hn(U,F ) = 0 for all n > N and all abelian sheaves
F

Let {Fα|α} denotes a filtered direct system of complexes in C(S,R) where C(S,R) denotes the category as above.

Then one obtains the quasi-isomorphism:

(2.1.3) colimHn(U,Fα) ∼= Hn(U, colimFα)

for each n and each U in the site S.
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Proof. This follows by comparing the spectral sequences

Es,t2 = colim
α

Hs(U,Ht(Fα)) ⇒ colim
α

Hs+t(U,Fα) and

Es,t2 = Hs(U,Ht(colim
α

Fα)) ⇒ Hs+t(U, colim
α

Fα)

Since both spectral sequences converge strongly under the above hypotheses, and one obtains an isomorphism at
the E2-terms by ( 2.1.3), the required isomorphism of the abutments follows. �

Definitions 2.2. (i) Let R denote a sheaf of commutative Noetherian rings with 1 on the site S. A sheaf of dgas
will mean a sheaf A of differential graded algebras on the site S, with values in C(S,R). A sheaf of E∞ dgas will
similarly mean an unbounded complex A in C(S,R) which is a sheaf of algebras over an E∞-operad.

(ii) In addition to these situations, we will also consider cases where A is a sheaf of E∞-ring spectra on the site S.
(An E∞-ring spectrum will mean an object in the category of spectra that is also an algebra over an E∞-operad.)
Denoting the constant sheaf of sphere spectra by R, such sheaves of E−∞-ring spectra may be viewed as E∞-ring
objects of C(S,R).)

2.1.4. Basic conventions. HenceforthA will denote a sheaf of E∞-algebras or a sheaf of E∞-ring spectra. Mod(S,A)
will denote the category of sheaves of E∞-modules over A. The obvious pairing Mod(S,A)×Mod(S,A) → C(S,R)
will be denoted ⊗. (Here R will denote a sheaf of commutative Noetherian rings with 1 in case A is a sheaf of
E∞-algebras and will denote the constant sheaf of sphere spectra Σ0 in case A is a sheaf of E∞-ring spectra.) We
will refer to E∞-ring spectra (sheaves of E∞-ring spectra) as E∞-dgas (sheaves of E∞-dgas, respectively).

Next we consider the homotopy category associated to Mod(S,A): this will have the same objects as Mod(S,A)
but morphisms will be homotopy classes of morphisms where a homotopy H between two morphisms f , g : K → L
is a morphism K ⊗ ∆[1] → L so that f = H ◦ d0 and g = H ◦ d1. We define a morphism f : K → L to be a

quasi-isomorphism if f : K → L induces an isomorphism on the cohomology sheaves. A diagram K ′ f→K
g→K ′′

is a distinguished triangle if there is a map from the mapping cone, Cone(f) to K ′′ that is a quasi-isomorphism.
(Observe that Cone(f)εMod(S,A). The derived category DMod(S,A) is the category obtained by inverting these
quasi-isomorphisms.

Proposition 2.3. DMod(S,A) is a triangulated category with the above structure

Proof. is skipped and left as an exercise. �

For each U in the site S, let j∗U : C(S,R) → C(S/U,R) denote the obvious restriction functor; let jU ! (RjU∗)
denote the left-adjoint (right-adjoint) to j∗U .

Proposition 2.4. Assume the hypotheses as in Proposition 2.1 with C(S,R) denoting any one of the categories
considered there.

Let A denotes a sheaf of E∞-dgas in C(S,R). Then, for each U in the site S, jU !j
∗
U (A)[n] is a compact object in

D(Mod(S,A)).

Proof. Let MεDMod(S,A). Let RHomA (RHomA) denote the external (internal) Hom in the derived category
DMod(S,A). Then

RHomA(jU !j
∗
U (A)[n],M) = RΓ(S,RHomA(jU !j

∗
U (A)[n],M) = RΓ(S|U ,RHomj∗U (A)(j∗U (A),M [−n]))

= RΓ(S|U ,RHomR|U (R|U ,M [−n])) = RΓ(S|U ,M [−n]).

Now let {Mα|α} denote a direct system of objects in DMod(S,A). In view of the identifications in the last para-
graph, one observes, using Proposition 2.1 that colim

α
RHom(jU !j

∗
U (A)[n],Mα) ∼= RHom(jU !j

∗
U (A)[n], colim

α
Mα).

This proves the proposition. �

Examples 2.5. One may consider the following as typical examples where the last proposition applies:
(1) R = the constant sheaf Q and A is any sheaf of dgas in C(S,Q) with S the big Zariski, étale, Nisnevich or

qfh sites associated to schemes of finite types over a Noetherian base scheme of finite Krull dimension.
(2) R = the constant sheaf Q, Z or Z/p for some prime p and A is any sheaf of dgas in C(S,R) with S the big

Zariski Nisnevich or qfh sites associated to schemes of finite type over a Noetherian base scheme of finite
Krull dimension.
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(3) In addition to the above one may let S denote any site that has finite cohomological dimension with respect
to all abelian sheaves, for example, the transcendental site associated to any complex algebraic variety. Now
R may denote any sheaf of of commutative rings or the constant sheaf of sphere spectra and A any E∞-ring
object in C(S,R).

2.2. Derived categories of modules over sites provided with sheaves of dgas and E∞-dgas. We will
make the following basic hypotheses throughout this sub-section:

A is a sheaf of E∞-dgas or dgas on the ringed site (S,R). We will assume that A is provided with an augmentation
A → R which is assumed to be a map of sheaves of E∞-dgas and that A is connected, i.e. Ai = 0 for i < 0 and
A0 = R.

A particularly interesting case is when A denotes the rational motivic dga (constructed in [J-1]): in this case the
above condition is equivalent to the Beilinson-Soulé vanishing conjecture. More generally one may assume A is a
sheaf of bi-graded dgas, A = ⊕r,sA(s)r with r denoting the degree of the chain complex and s another index we call
the weight, so that A• = ⊕A•(s), i.e. each A•(s) is a sub-complex of A•. Then, if A•(0) = R[0] one clearly obtains
an augmentation in the above sense. Observe that these conditions are met by the (integral) motivic E∞-dga. The
connectedness is then equivalent to an integral form of the Beilinson-Soulé vanishing conjecture.

We will let D+(Mod(S,A)) (D−(Mod(S,A))) denote the full sub-category of DMod(S,A) consisting of com-
plexes that are bounded below (above, respectively).

This frame-work will provide one class of examples we consider.

2.3. Presheaves of E∞-module spectra and CW-cell modules. This frame-work will provide the second
class of examples we consider. Throughout the following discussion we will assume the basic situation of 2.2 where
R = ⊕

iεZ
R(i) is a sheaf of graded commutative rings with 1 or where R denotes the constant sheaf of sphere spectra.

In the first case, R[s](t) will denote the complex concentrated in degree s and given by the sheaf R(t) there; in
the second case when R denotes the constant sheaf of sphere spectra Σ0, it will denote the s-fold suspension Σs.
Assume that we are in the first situation and that AεC(S,R) is an E∞-ring object. Then A[s](t) = A⊗

R
R[s](t).

Definitions 2.6. (i) We will assume henceforth, but only in this section, that the sheaf of E∞-dgas A is −1-
connected, i.e. Hs(A) = 0 for all s ≥ 1. (This terminology is derived from the case where Ai = B−i for a
chain-complex B (i.e. one whose differentials are of degree −1.)) In this case, the theory developed below is
entirely similar to the homotopy theory of CW -complexes. We say a sheaf of A-modules M is −n-connected if
Hi(M) = 0 for all i ≥ n. Since HomA(A,M) ∼= HomR(R,M) ∼= M , this is equivalent to Hi(RHomA(A,M)) ∼=
Hi(HomR(R,M)) = 0 for all i ≥ n. We say M is connected if it is −n-connected for some n > 0.

(ii) A map f : M ′ → M in DMod(S,A) is a k-equivalence if the induced map Hi(f) : Hi(M ′) → Hi(M) is an
isomorphism for all i > k and an epimorphism for i = k.

Definition 2.7. (i) A free R-module is an object MεC(S,R) so that M is given by a sum ⊕
sU ,tU εZ

jU !j
∗
U (R)[sU ](tU ),

where U ranges over the objects of the site S. A free A-module is an object MεDMod(S,A) so that M is given
by a sum ⊕

sU ,tU εZ
jU !j

∗
U (R)[sU ](tU ), where U ranges over the objects of the site S. We call sU (tU ) the dimension

(weight) of the free module jU !j
∗
U (A)[sU ](tU ).

(ii)An R-module M is a cone R-module if M = Cone(id : ⊕
sU ,tU εZ

jU !j
∗
U (R)[sU ](tU ) → ⊕

sU ,tU εZ
jU !j

∗
U (R)[sU ](tU ))

for some free R-module ⊕
sU ,tU εZ

jU !j
∗
U (R)[sU ](tU ). A cone A-module is defined similarly. A cell-module MεC(S,R)

is an object MεC(S,R) provided with a decreasing filtration {FiM |i ≤ 0} by sub-objects in C(S,R) so that F0(M)
is a free R-module for some fixed integer N and each successive quotient FiM/Fi+1M is also a free R-module, for
all i ≤ 0. Moreover FiM is the mapping cone of a map fi : Fi → Fi+1M of a map in C(S,R)) with Fi a free
R-module. (Observe that this mapping cone may be realized as a quotient of Fi+1M ⊕Cone(Fi).) In this case we
say that FiM is obtained from Fi+1M by attaching free R-cell modules for each summand in Fi. One defines cell
A-modules MεD(Mod(S,A)) similarly.

(iii) A CWR-module is a cellR-moduleMεC(S,R) so that the dimension of each of the summands jU !j
∗
U (R)[sU ](tU )

in FiM/Fi+1M are strictly greater than the dimension of each of the summands jU !j
∗
U (R)[s′U ](t′U ) in Fi−1/FiM .

One defines CW A-modules similarly.
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2.4. Filtered derived categories. C(S,R) will denote the category considered in 2.1.2 and A will denote an
E∞-dga in C(S,R). Next we will consider objects MεMod(S,A) provided with a decreasing filtration F (i.e.
Fi(M) ⊆ Fi−1(M)) indexed by the non-negative integers. Morphisms between two such objects will be morphisms
in Mod(S,A) that preserve the filtrations. FMod(S,A) will denote this category of filtered objects and filtration-
preserving maps. We will invert maps f : M ′ →M in FMod(S,A) that induce quasi-isomorphisms on each Fi to
define the corresponding derived category: this will be denoted DFMod(S,A).

Observe that when A = R, we obtain the usual filtered derived category of complexes of R-modules provided
with decreasing filtrations.

This will be another of the basic situations we consider.

3. Construction of (standard) t-structures on sites provided with E∞ sheaves of dgas

In this section we will provide each of the basic situations considered in the last section with standard t-structures.

Proposition 3.1. Assume the hypotheses as in Proposition ( 2.4) and that AεC(S,R) is a sheaf of E∞ dgas. Let
C = {jU !(A|U )[n]|UεS, n ≥ 0}.

(i) Then C is a set of compact objects in the triangulated category DMod(S,A).

Let Coh(C)≤0 denote the smallest sub-category of Mod(S,A) containing all of C and closed under the follow-

ing operations: (i) finite sums, (ii) mapping cones, (iii) translations [1] and (iv) extensions (i.e. if F ′
f→F →

Cone(f) → F ′[1] is a distinguished triangle with F ′, Cone(f) and F ′[1]εCoh(S)≤0, then FεCoh(C)≤0.

(ii) Let QCoh(C)≤0 denote the full sub-category of Mod(S,A) consisting of filtered colimits colim
α

Fα, each

FαεCoh(C)≤0 and with the indexing set for the filtered colimit being small. Then the smallest co-complete pre-aisle
containing all of C identifies with QCoh(C)≤0.

(iii) Let Comp(C) denote the full sub-category of QCoh(C)≤0 containing Coh(C)≤0 and closed under summands.
Now Comp(C) identifies with the full sub-category of compact objects in QCoh(C)≤0.

Proof. The first assertion follows from Proposition 2.4. Clearly QCoh(C)≤0 is closed under all small sums: any
such sum may be written as a filtered colimit of finite sums. Next observe that the sub-category Coh(C)≤0 consists
of compact objects. Now it suffices to show that QCoh(C)≤0 is closed under mapping cones, translations [1] and
extensions. Let F ′ = colim

i
{F ′i |iεI} → F = colim

j
{Fi|iεJ} denote a map of objects in QCoh(C)≤0 with each F ′i ,

FiεCoh(C)≤0. Since each F ′i is a compact object, one observes that for each iεI, there exists an index jiεJ so that
the map F ′i → F ′ → colim

j
{Fj |j} factors through Fji . Therefore, after re-indexing F = {Fj |jεJ} one may assume

that both F ′ and F are indexed by the same indexing set I and the map f is given by a map {fi : F ′i → Fi|iεI}.
Clearly the mapping cone Cone(fi)εCoh(C)≤0 and therefore Cone(f) ∼= lim

→ i
Cone(fi)εQCoh(C)≤0. Similarly one

may show that QCoh(C)≤0 is closed under the translations [1]. Next consider an extension: F ′
f→F

g→F ′′
h→F ′[1]

with F ′, F ′′εQCoh(C)≤0. Now F identifies with Cone(h)[−1]. Clearly the argument above shows that one may
write the map h as colim

i
hi : F ′′i → F ′i [1]; therefore one has a diagram of extensions F ′i → Cone(hi)[−1] → Gi →

F ′i [1]. Therefore Cone(hi)[−1]εCoh(C)≤0; since F ∼= colim
i

Cone(hi)[−1], it follows that FεQCoh(C)≤0. Therefore

QCoh(C)≤0 is a co-complete pre-aisle containing all of C. This proves (ii).

(iii). Let F = lim
→ i

Fi denote an object in QCoh(C)≤0 which is a compact object. Then the identity map of F

must factor through some finite colimit F ′ = lim
→ j

Fj , so that F is a split summand of F ′ which clearly belongs to

Coh(C)≤0. This proves the last assertion. �

One of the main results we prove in this paper is the following:

Theorem 3.2. Assume the hypotheses as in Proposition ( 2.4) and that AεC(S,R) is a sheaf of E∞ dgas. Let
DMod(S,A)≤0 denote the pre-aisle in DMod(S,A) generated by jU !jU

∗(A[n]), n ≥ 0, U in the site S.

Then (i) DMod(S,A)≤0 is an aisle in DMod(S,A) , i.e. defines a t-structure on DMod(S,A).
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(ii) Assume next the hypotheses of 2.2 hold. Then (a) jU !(A|U )εDMod(S,A)≤0 ∩ DMod(S,A)≥0 = the heart
of the above t-structure. (b) Moreover, every object M in DMod(S,A)≤0 satisfies the property that the natu-

ral map τ≤0(R
L
⊗
A
M) → R

L
⊗
A
M is a quasi-isomorphism in DMod(S,R). In other words, the functor R

L
⊗
A

( ) :

DMod(S,A) → DMod(S,R) sends DMod(S,A)≤0 to DMod(S,R)≤0.

Proof. The first statement is clear from the last proposition in view of Theorem 1.8. We will now prove the
remaining statements. To prove (a), observe that RHomA(jU !(A|U )[n], jV !(A|V )) ' RΓ(U×

X
V,AU×

X
V [−n]) so that

HomDMod(S,A)(jU !(A|U )[n], jV !(A|V )) = H0(RHomA(jU !(A|U )[n], jV !(A|V )) = H0(RΓ(U×
X
V,AU×

X
V [−n])) = 0

for any n ≥ 1. The last equality follows from the hypothesis that Ai = 0 for all i < 0. This proves
jV !(AV )ε(DMod(S,A)≤−1)⊥ = DMod(S,A)≥0.

Since jV !(AV )εDMod(S,A)≤0 by definition, the assertion (a) in (ii) is proved.

By the definition of D(Mod(S,A)≤0 above (and Proposition 3.1 above), there exist a sequence {Mi|iεI} in
Coh(C)≤0 so that M ∼= colim

i
{Mi|i}.

One of our key observations now is that each Mi

L
⊗
A
RεCoh(S,R)≤0. This is clear if Mi = jU !(A|U [n]) for

some UεS and n ≥ 0: in this case M
L
⊗
A
R ∼= jU !(R|U [n]). In general, recall that M is obtained by finitely many

operations from the set {jU !(A|U )[n]|UεS, n ≥ 0} where the allowed operations are finite sums, mapping cones,
translations [1] and extensions. Since Coh(S,R)≤0 is closed under these operations, one may show readily that

each Mi

L
⊗
A
RεCoh(S,R)≤0. Next recall that QCoh(S,R)≤0 is the set of objects obtained as filtered colimits of

objects in Coh(S,R)≤0. Therefore M
L
⊗
A
R = (colim

i
Mi)

L
⊗
A
R ∼= colim

i
(Mi

L
⊗
A
R)εQCoh(S,R)f≤0. This completes the

proof of the second statement and hence that of the theorem. �

Remark 3.3. Next recall from Definitions 2.2(iii) that in case R denotes the constant sheaf of sphere spectra, and
AεC(S,R) is any E∞-ring object, there is an augmentation Z(A) → Z of sheaves of E∞-algebras. Moreover the
functor Z : D(Mod(S,A)) → D(Mod(S,Z(A)) is a functor of triangulated categories and Z(A)εC(S,Z) is an E∞
ring-object.

In this case, every object M in DMod(S,A)≤0 satisfies the property that the natural map τ≤0(Z
L
⊗

Z(A)
Z(M)) →

Z
L
⊗

Z(A)
Z(M) is a quasi-isomorphism in DMod(S,Z). In other words, the functor Z

L
⊗

Z(A)
( ) : DMod(S,A) →

DMod(S,Z) sends DMod(S,A)≤0 to DMod(S,Z)≤0.

Examples 3.4. Observe that the theorem applies to all the examples considered in 2.5.

Remark 3.5. It does not seem possible to say, in general, thatDMod(S,A)≤0 is the full sub-category ofDMod(S,A)

that the functor R
L
⊗
A

( ) sends to DMod(S,R)≤0. Nevertheless, the above theorem shows that one has meaningful,

non-trivial t-structures defined on the category DMod(S,A).

In the next section we proceed to define and study the notion of constructibility in the category D(Mod(S,A)), in
particular how the t-structures defined above relate to the full sub-category of constructible objects.

Definition 3.6. Assume the above situation. We will define σ≤n : DMod(S,A) → DMod(S,A)≤n as right-
adjoint to the obvious inclusion DMod(S,A)≤n ⊆ DMod(S,A). Let KεDMod(S,A). We will define σ≥n+1(K)
by requiring σ≤n(K) → K → σ≥n+1(K) → σ≤nK[1] to be a distinguished triangle. Then σ≥n+1 will be right-
adjoint to the obvious inclusion DMod(S,A)≥n+1 → DMod(S,A).

3.1. Constructibility and t-structures.

Definition 3.7. In general, we will say that a sheaf of A-modules M is of finite type if is a compact object in
DMod(S,A). In case R is the constant sheaf of rings associated to a commutative ring R, we will say that a sheaf
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of A-modules M is a constructible A-module, if it is of finite type. The full sub-category of compact objects in
DMod(S,A) will be denoted Dc(Mod(S,A)).

Proposition 3.8. The truncation functors σ≤n and σ≥n+1 as in Definition 3.6 preserve compactness and hence
the property of being of finite type as well as being constructible.

Proof. In view of the fact that σ≤n(K) → K → σ≥n+1(K) → σ≤n(K)[1] is a distinguished triangle for any
KεDMod(S,A), it suffices to prove this for the functor σ≥0.

First observe that the filtered colimit of a collection {Ki|iεI} of objects KiεDMod(S,A)≥0 also belongs to
DMod(S,A)≥0. To see this, consider

HomDMod(S,A)(jU !(A|U )[n], lim
→ i

Ki) = H0(RHomA(jU !(A|U )[n], lim
→ i

Ki))

∼= H0(RΓ(U, lim
→ i

j∗U (Ki)[−n])) ∼= lim
→ i

H0(RΓ(U, j∗U (Ki)[−n]) = lim
→ i

H0(RHomA(jU !A|U )[n],Ki)) = 0

for all n ≥ 1. The last equality is from the hypothesis that each KiεDMod(S,A)≥0 and the isomorphism prior to
that follows from our hypotheses on the site as in 2.1.

Let φ : DMod(S,A)≥0 → DMod(S,A) denote the obvious inclusion functor. Clearly φ commutes with filtered
colimits since the former category is a full sub-category of the latter and the former category is itself closed under
the formation of filtered colimits as we just showed.

Next letMεDMod(S,A) denote a compact object and let {Ki|iεI} be a collection of objectsKiεDMod(S,A)≥0.
Then:

RHomA(σ≥0(M), lim
→ i

Ki) ∼= RHomA(M,φ(lim
→ i

Ki))

∼= RHomA(M, lim
→ i

φ(Ki)) ∼= lim
→ i

RHomA(M,φ(Ki))

∼= lim
→ i

RHomA(σ≥0(M),Ki).

These prove that σ≥0 preserves compactness. �

Corollary 3.9. In case A is provided with an augmentation A → R, then the functor M 7→M
L
⊗
A
R, DMod(S,A) →

DMod(S,R) induces a functor Dc(Mod(S,A))≤0 → Dc(Mod(S,R))≤0.

Proof. In view of Theorem 3.2 (ii)(b), it suffices to show that the above functor preserves compactness for objects
in QCoh(C)≤0 as in Proposition 3.1. As shown there, the compact objects in QCoh(S,A)≤0 identify with split

summands of objects in Coh(S,A)≤0. Clearly the functor M 7→ M
L
⊗
A
R sends split summands of objects in

Coh(S,A)≤0 to split summands of objects in Coh(S,R)≤0. �

Let C = DMod(S,A)≤0 ∩DMod(S,A)≥0 denote the heart of the above t-structure on DMod(S,A). Observe
that this is an abelian category. Let Cc = C ∩Dc(Mod(S,A)), i.e. the full sub-category of all objects in the heart
that are also compact.

Theorem 3.10. Cc is an additive sub-category of C closed under extensions.

Proof. This is clear since any short-exact sequence M ′ → M → M ′′ in C corresponds to a distinguished triangle
in DMod(S,A) with each M ′, M and M ′′ in C. Moreover, in such a short-exact sequence M ′ → M → M ′′, M is
compact if both M ′ and M ′′ are. �

3.2. Example: Non-standard t-structures, generalized perverse sheaves and perverse extensions. In
this section we will show briefly how to define generalized perverse sheaves and perverse extensions of generalized
perverse sheaves.

Assume one is given a stratified site, S, i.e. one is provided with a collection of locally closed smooth sub-
objects Xi of the terminal object X of X. Let S ′i = S×

X
Xi. By taking the unions of the strata one defines

a finite increasing filtration S0
j1→S1

j2→· · · jn→Sn = S, where each ji is an open immersion. Let a (perversity)
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function p : {Si+1 − Si|i} → (integers) be given. Let A denote sheaf of E∞ dgas on S. Now DMod(S,A) and
DMod(Si − Si−1,ASi−Si−1) will denote the obvious derived categories of A-modules. Assume that every object
in each of these categories has finite cohomological dimension for each object in the corresponding site. Now one
may glue together standard t-structures on each stratum, shifted suitably by the perversity p(Si − Si−1) to define
a non-standard t-structure on DMod(S,A) exactly as in [BBD, Chapter 1]. Accordingly we will define

DMod(S,A)≤0 = {KεDMod(S,A)|j∗i (K)εDMod(Si − Si−1,A|Si−Si−1)
≤p(Si−Si−1)}(3.2.1)

DMod(S,A)≥0 = {KεDMod(S,A)|j!i(K)εDMod(Si − Si−1,ASi−Si−1)
≥p(Si−Si−1)}

Theorem 3.11. (i) The above structures define a t-structure on DMod(S,A) with the aisle DMod(S,A)≤0 and
co-aisle DMod(S,A)≥0.

(ii) Given a generalized perverse sheaf P0εDMod(S0,A|S0)
≤0 ∩ DMod(S0,A|S0)

≥0, there exists extensions
PεDMod(S,A)≤0 ∩DMod(S,A)≥0 of P0, i.e. j∗0 (P ) ' P .

(iii) Given a generalized perverse sheaf P0εDMod(S0,A|S0)
≤0∩DMod(S0,A|S0)

≥0, the extension PεDMod(S,A)≤0∩
DMod(S,A)≥0 of P0 is unique if j∗i (P )εDMod(Si − Si−1,A|Si−Si−1)

≤p(Si−Si−1)−1

and j!i(P )εDMod(Si − Si−1,A|Si−Si−1)
≤p(Si−Si−1)+1.

Proof. This is essentially the argument in [BBD, Theorem 1.4.10]: we provide some details mainly for the sake of
completeness. We will restrict to the case where there are only two strata, i.e. S1 = S. Let KεDMod(S,A)≤0

and LεDMod(S,A)≥1. To show Hom(K,L) = 0, one may argue as follows. First one observes the existence of
the distinguished triangle:

j!(j∗(K)) → K → i∗i
∗(K) → j!j

∗(K)[1]

where j : S0 → S and i : S − S0 → S are the obvious maps. This provides us with the long-exact-sequence:

· · · → H0(RHomA(i∗i∗(K), L)) → H0(RHomA(K,L)) → H0(RHomA(j!j∗(K), L)) → H1(RHomA(i∗i∗(K), L)) · · ·

Now H0(RHomA(i∗i∗(K), L)) ∼= H0(RHomA(i∗(K), i!(L)) ∼= 0 and H0(RHomA(j!j∗(K), L))
∼= H0(RHomA(j∗(K), j∗(L))) ∼= 0 by our hypotheses. Therefore H0(RHomA(K,L)) = 0 as well. It is clear from
the definitions that DMod(S,A)≤n ⊆ DMod(S,A)≤n+1 and similarly DMod(S,A)≥n+1 ⊆ DMod(S,A)≥n.

We define the functor σ≤0 as follows. Let KεDMod(S,A) be given. We let Y = the canonical homotopy
fiber of the map K → Rj∗(σ≥1j

∗(K)). Then we define σ≤0(K) = the canonical homotopy fiber of the map
Y → i∗(σ≥1i

∗(Y )). σ≥1(K) is defined to be the mapping cone of the obvious map σ≤0(K) → K. These prove (i).

Give P0 as in (ii), we let P = σ≤0(Rj∗(P0)). To see this is an extension of P0 we proceed as follows. Let
φi : DMod(Si,A|Si

)≤0 → DMod(Si,A|Si
) denote the obvious (inclusion). We will denote φ1 by φ. The definition

of the above aisles shows that φ ◦ j! = j! ◦ φ0. Since j∗ (σ≤0) is right-adjoint to j! (φ, respectively), it follows
that j∗ commutes with σ≤0. Since j∗ ◦ Rj∗ = the identity, we observe that j∗(P ) ' σ≤0(P0) ' P0 where the last
identification is by the assumptions on P0.

To show P is in fact a generalized perverse sheaf, one first observes the distinguished triangle: i∗Ri!(σ≤0Rj∗(P0)) →
σ≤0Rj∗(P0) → Rj∗(P0) → i∗Ri

!(σ≤0Rj∗(P0))[1]. (The identification Rj∗(j∗(σ≤0(Rj∗(P0)))) ' Rj∗(P0) fol-
lows from the observation above that σ≤0Rj∗(P0) is an extension of P0.) One also has a distinguished trian-
gle σ≤0Rj∗(P0) → Rj∗(P0) → σ≥1Rj∗(P0) → σ≤0Rj∗(P0)[1]. Therefore, one obtains the quasi-isomorphism
σ≥1(Rj∗(P0) ' i∗Ri!(σ≤0Rj∗(P0))[1] and hence Ri!(σ≤0Rj∗(P0))εDMod(S − S0,A|S−S0)

≥0. This proves the re-
quired assertion and completes the proof of (ii).

(iii) Let P denote a generalized perverse sheaf extending the perverse sheaf P0εDMod(S0,A|S0)
≤0∩DMod(S0,A|S0)

≥0

satisfying the hypotheses in (iii). The key diagram is:
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j!(j∗(P ))
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Rj∗j
∗(P )
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i∗Ri
!(P )[1]

where the left-side, right-side and the diagram P → Rj∗j
∗(P ) → i∗(Rj∗/j!)j∗(P ) → P [1] are distinguished

triangles. Now the hypotheses imply that i∗(P )εDMod(S − S0,AS−S0)
≤p(S−S0)−1 and that Ri!(P )εDMod(S −

S0,AS−S0)
≥p(S−S0)+1. Therefore, the following lemma shows that i∗Ri!(P )[1] ' i∗(σ≥p(S−S0)(Rj∗/j!)j

∗(P )) '
i∗(σ≥p(S−S0)Rj∗j

∗(P )). This implies that P identifies with the canonical homotopy fiber of the map Rj∗(P0) →
i∗σ≥p(S−S0)i

∗(Rj∗(P0)). Therefore it is unique. This completes the proof of the theorem. �

Lemma 3.12. Let A → B → C → A[1] denote a distinguished triangle in DMod(S,A) and let n be an integer
so that the natural map C → σ≥n(C) is a quasi-isomorphism. Then the natural map σ≤n−1(A) → σ≤n−1(B) is a
quasi-isomorphism.

Proof. Let KεDMod(S,A)≤n−1. Since C → σ≥nC is a quasi-isomorphism, it follows that HomDMod(S,A)(K,C) =
0 = HomDMod(S,A)(K,C[−1]). Therefore the map A→ B induces an isomorphism

HomDMod(S,A)(K,A)
∼=→HomDMod(S,A)(K,B).

Now the definition of the functor σ≤n−1 as right-adjoint to the inclusion DMod(S,A)≤n−1 → DMod(S,A) shows
that the induced map σ≤n−1(A) → σ≤n−1(B) is a quasi-isomorphism. �

4. Cell and CW-cell modules

Throughout this section we will assume the basic hypotheses as in 2.3, i.e. A is −1-connected or equivalently
Hs(A) = 0 for all s > 0. We will assume that R is a constant sheaf. In this section we develop the basic theory of
cell and CW cell-modules over a sheaf of E∞-dgas.

Now the following basic results show that the theory of CW − A-modules is indeed similar to the homotopy
theory of CW -complexes: see, for example, [Gray, Chapter 16].

4.0.2. Convention. : Henceforth, we will denote jU !j
∗
U (R) (jU !j

∗
U (A)) by RU (AU , respectively).

Proposition 4.1. Throughout let P , Q be A-modules. (i) Let g : AU [n − 1] → P , f : P → R be A-maps and
assume Hi(Q) = 0 for i = −n+ 1. Then there exists a covering {Vα → U |α} of U so that each f|Vα

extends to a
map Cone(g|Vα

) → R|Vα
where Cone(g|Vα

)) denotes the mapping cone of g|Vα
. (In this case we say that f extends

locally to a map from Cone(g) to R.)

(ii) Let S denote a set of integers and (P,Q) a relative CW −A-module, i.e. Q is obtained from P by attaching
free A-modules AU [nα,U ] with nα,UεS. Suppose R is an A-module so that H−i(R) = 0 for all iεS. Then any map
f : P → R of A-modules admits a local extension f̃ : Q→ R, i.e. there exists a covering {Vα → S|α} so that each
restriction f|Vα

: P|Vα
→ R|Vα

extends to a map f̃|Vα
: Q|Vα

→ R|Vα
.

(iii) Suppose that there exists a covering {Vα → S} so that (P|Vα
, Q|Vα

) is a relative CW − A-module in the
above sense so that Q|Vα

is obtained from P|Vα
by attaching free-A-cells in dimensions ≤ −n. Then Hi(Q/P ) = 0

for all i > −n.

(iv) If Q is a CW-A-module so that Fi+1(Q) = Fi(Q) for all i ≥ −n+ 1, then Hi(Q) = 0 for all i > −n.

Proof. For each point p of the site S, the only obstruction to extending fp to Cone(gp) is that the composition
fp ◦ gp be null-homotopic: this is clear since H0(RHomAp(Ap[n − 1], Qp)) = H−n+1(Qp) = 0 by the hypothesis.
This proves (i). To prove (ii) one uses (i) as a starting point to handle the case when Qp is obtained from Pp by
attaching a single Ap-cell. In general one uses Zorn’s lemma as in [Gray, Corollary 16.3].

(iii) It is enough to assume that Q is obtained by attaching finitely many free A-cells to P . In this case one uses
an ascending induction on the number of these cells and the exact sequence Hi(Q′/P ) → Hi(Q/P ) → Hi(Q/Q′)
where Q′ is obtained from P by attaching one less free A-cell. Observe that key use is made of the hypothesis that
Hi(A) = 0 for all i > 0: in fact, the last assertion is false if this is not the case. Clearly (iii) implies (iv). �
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Theorem 4.2. Let MεDMod(S,A) so that M is connected in the above sense. Then there exists a CW-cell
A-module P (M)εDMod(S,A) with a map P (M) → M which is a quasi-isomorphism. (We say P (M) → M is
a CW-A-resolution.) Moreover, if M ′ → M is a map between two such objects in DMod(S,A), there exist CW-
A-resolutions P (M ′) → M ′, P (M) → M and a map P (M ′) → P (M) preserving the given filtrations so that one
obtains a commutative square

P (M ′)
//

��

P (M)

��
M ′ //

M

Proof. Assume that Hi(M) = 0 and Hi(M ′) = 0 for all i > N . For each class [αN ]εHN (M), let αN : AU [−N ] →
jU !j

∗
U (M) → M denote a map representing [αN ]. Now let PN (M) = ⊕

[αN ]εHN (M)
AU [−N ]: we will map this to

M by mapping the summand indexed by [αN ] by the corresponding map αN to M . We will denote this map
PN (M) →M by pN (M).

Consider the cone A-module Cone(PN (M)) and also the mapping cone Cone(pN (M)). Observe that one has the

distinguished triangle: PN (M)
pN (M)→ M → Cone(pN (M)) → PN (M)[1] which results in the long-exact sequence:

· · · → Hi(PN (M)) → Hi(M) → Hi(Cone(pN (M))) → Hi+1(PN (M)) → · · ·

Since HN+k(PN (M)) = 0 for all k > 0 and HN (PN (M)) → HN (M) is a surjection by our choice of PN (M), it
follows that

(4.0.3) Hi(Cone(pN (M)) = 0, i ≥ N

i.e. the map pN : PN (M) →M is an N -equivalence.

4.0.4. Now replaceM by Cone(pN (M)) and for each class [α−N+1]εHN−1(Cone(pN (M)), let α−N+1 : AUα−N+1
[−N+

1] → Cone(pN (M)) = Cyl(pN (M))/PN (M) denote a representative.

The map α−N+1 may be viewed as a map of pairs (Cone(AUα−N+1
[−N ]),AUα−N+1

[−N ]) → (Cyl(pN (M)), PN (M)).
Observe that AUα−N+1

[−N ] maps naturally to Cone(AUα−N+1
[−N ] with the cokernel ' AUα−N+1

[−N + 1]. Let

⊕
[α−N+1]εHN−1(Cone(pN (M)))

α−N+1 : ⊕
[α−N+1]εHN−1(Cone(pN (M)))

(Cone(AUα−N+1
[−N ],AUα−N+1

[−N ])

→ (Cyl(pN (M)), PN (M))

denote the obvious map.

We let PN−1(M) = (PN (M) ⊕ ⊕α−N+1Cone(AUα−N+1
[−N ]))/ ∼: here ∼ is the relation where we identify

the summand AUα−N+1
[−N ] of the corresponding Cone(Uα−N+1 [−N ]) with its image in PN (M). We map the

pair (PN−1(M), PN (M)) to (Cyl(pN (M)),M) by mapping the summand PN (M) by the obvious inclusion into
Cyl(pN (M)) and the summand Cone(AUα−N+1

[−N ]) by the map α−N+1. We will denote this map by pN−1(M)′.
Let πN : Cyl(pN (M)) →M denote the obvious map and let pN−1(M) = πN ◦ pN−1(M)′. Then pN−1(M)|PN (M) =
pN (M).

Let Cyl(pN−1(M)′) denote the mapping cylinder of pN−1(M)′. Now one has the long-exact-sequence:

· · · → Hi−1(Cyl(pN−1(M)′)/PN−1(M)) → Hi(PN−1(M)/PN (M))
Hi(pN−1(M)′)→ Hi(Cyl(pN−1(M)′)/PN (M)) ∼=

Hi(Cyl(pN (M)/PN (M))) → · · ·

By construction HN−1(pN−1(M)′) is surjective, Hi(Cyl(pN (M)/PN (M))) = Hi(Cone(pN (M))) = 0 for all i ≥ N
and Hi(PN−1(M)/PN (M)) = 0 for all i > N − 1. Therefore, it follows that Hi(Cyl(pN−1(M)′)/PN−1(M)) = 0
for all i ≥ N − 1. i.e. the map pN−1(M) is an N − 1-equivalence.

We may therefore, continue the inductive construction and define Pk(M) as a CW-cell A-module provided with
a map pk(M) : Pk(M) → M , k ≤ N which is a k-equivalence. Finally one lets P (M) = colim

k→−∞
Pk(M) along with
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the map p(M) : P (M) →M defined as colim
k→−∞

pk(M). One verifies immediately that p(M) is a quasi-isomorphism:

clearly P (M) is a CW-cell A-module. This proves the first statement in the theorem.

To make the construction of CW-A-resolutions functorial, we will need to make the following modifications to
the arguments above. Instead of choosing representative cohomology classes as in ( 4.0.3), we choose all possible
maps jU !j

∗
U (A)[−N ] → M , for all U in the site S. (Since our site S is assumed to be essentially small this causes

no difficulties.) We will then need to repeat the same construction in 4.0.4 and at every stage of the inductive
process. Next observe that since both M ′ and M are assumed to be connected, we may choose a large enough
N so that Hi(M) = Hi(M ′) = 0 for all i > N . Now the construction of the resolution P (M) is made functorial
in M . Moreover the construction of the CW-A resolution by descending induction shows that the induced map
P (f) : P (M ′) → P (M) preserves the CW-filtration. This proves the second statement in the theorem. �

Definition 4.3. Let Modcw(S,A) denote the category whose objects are all CW − A-modules and morphisms
are morphisms that preserve the given cell-filtrations. A morphism between two CW −A-modules will be called a
quasi-isomorphism if it is a quasi-isomorphism in the underlying category DMod(S,A). The corresponding derived
category obtained by inverting these quasi-isomorphisms will be denoted DModcw(S,A).

Corollary 4.4. The obvious functor DModcw(S,A) → DMod(S,A) is an equivalence of categories.

Proof. This follows from the last Theorem. �

The following is a key result of this section.

Theorem 4.5. Let MεD(Mod(S,A)) denote a constructible A-module. Then Hi(σ≤n(M)) = 0 for all i > n and
∼= Hi(M) if i ≤ n, i.e. the functor σ≤n in Definition 3.6 identifies with the functor that kills the cohomology in
degrees above n.

Proof. This is a direct consequence of Proposition 4.1(iv): this shows that one may kill all the cohomology of
M in degrees lower than a fixed integer −n by attaching Cone-A-modules (as in 2.7(ii)) with the summands
jU !j

∗
U (A)[sU ](tU ), sU ≥ n + 1. Therefore the truncation functor σ≥−n identifies with the functor that kills the

cohomology in degrees lower than −n. �

Remark 4.6. Therefore, it follows AU cannot belong to the heart of this t-structure unless A is concentrated in
degree 0.

5. t-structures for filtered derived categories adapted to filtered modules over sheaves of filtered
dgas

In this section we will adapt and extend the discussions in [BBD, Chapter 3] and [Beil, Appendix] to define a
t-structure for the filtered derived category of filtered shaves of dg-modules over a fixed given sheaf of dgas A: this
will be such that each AU (with the obvious trivial filtration) will belong to the heart of the above t-structure.

We will henceforth assume the basic situation of section 2 and consider the filtered derived categoryDF−Mod(S,A)
of objectsM in C(S,A) provided with descending (i.e. non-increasing) filtrations {FiM |iεZ} with each FiMεMod(S,A)
and Fi(M) = ∗ for i >> 0 (depending onM). Observe that to any such filtration F , one may associate an ascending
(i.e. non-decreasing) filtration F ′ given by F ′iM = F−iM . Now F and F ′ clearly determine each other.

Theorem 5.1. (See [BBD, Chapter 3] and also [Beil, Appendix ].) Let

DF−Mod(S,A)≤0 = {(M,F )εDF−Mod(S,A)|grdiF (M)εDMod(S,A)≤i} and

DF−Mod(S,A)≥0 = {(M,F )εDF−Mod(S,A)|grdiF (M)εDMod(S,A)≥i}

where the t-structure on DMod(S,A) is defined as in Theorem 3.2.

Then there exists a unique t-structure on DF−Mod(S,A) with DF−Mod(S,A)≤0 (DF−Mod(S,A)≥0) the cor-
responding aisle (co-aisle, respectively). The truncation functors on DF−Mod(S,A) corresponding to the above
t-structure will be denoted σ≤n and σ>n, respectively.

Proof. Let (M,F )εDF−Mod(S,A) be a fixed object where F denotes a descending filtration on M . We define
σ≤0(M,F ) using descending induction on Fi(M). Let N >> 0 be such that FN+1(M) = ∗ while FN (M) 6= ∗. We
let σF≤N (M) on FN (M) be defined by σF≤N (FN (M)) = σ≤N (FN (M)) where the last functor σ≤N is the one defined
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in Theorem 3.2. Assume we have defined σF≤kFk(M) and σF≤k−1(Fk(M)[1]) for all k ≥ n, where n ≤ N is a fixed
integer so that σF≤k−1(Fk(M)[1]) ∼= (σF≤k(Fk(M)))[1]. Let

(5.0.5) σF≤n(Fn−1(M)/Fn(M)) = σ≤n(Fn−1(M)/Fn(M))

with the functor σ≤n defined as in Theorem 3.2. Now observe that one has a distinguished triangle: Fn(M) →
Fn−1(M) → Fn−1(M)/Fn(M) → Fn(M)[1]. Therefore we obtain a natural map σF≤n−1(Fn−1(M)/Fn(M)) →
σF≤n−1(Fn(M)[1]) ∼= (σF≤n(Fn(M)))[1]. We let σF≤n−1(Fn−1(M)) be the canonical homotopy fiber of the map (
σF≤n−1(Fn−1(M)/Fn(M)) → (σF≤n(Fn(M)))[1]). Therefore, we obtain a distinguished triangle

(5.0.6) σF≤n(Fn(M)) → σF≤n−1(Fn−1(M)) → σF≤n−1(Fn−1(M)/Fn(M)) → (σF≤n(Fn(M)))[1]

We may now continue with the induction and define σ≤k(FkM) for all k ≤ N . We let σ≤0(M,F ) be de-
fined by Fk(σ≤0(M,F )) = σF≤k(Fk(M)): after replacing σF≤n−1(Fn−1(M)) by the mapping cylinder of the above
map σF≤n(Fn(M)) → σF≤n−1(Fn−1(M)), one may observe that σ≤k+1(Fk+1(M)) is a sub-object of σ≤k(Fk(M)).
By descending induction, one may also show that there is a natural map σ≤0(M,F ) → (M,F ) of objects in
DF−Mod(S,A). The distinguished triangle (5.0.6) shows that grdFn−1(σ≤0(M,F )) ' σF≤n−1(Fn−1(M)/Fn(M)) =
σ≤n−1(Fn−1(M)/Fn(M)) so that σ≤0(M,F )εDF−Mod(S,A)≤0 as defined above. We define σ≥1(M,F ) so that
one has a distinguished triangle: σ≤0(M,F ) → (M,F ) → σ≥1(M,F ) → σ≤0(M,F )[1] in DF−Mod(S,A).

These verify all the axioms of a t-structure as in 1.0.1 except the first. To see this one uses the spectral sequence
in [BBD, (3.1.3.5)]. Then HomDF−Mod(S,A)((M,F ), (M ′, F ′)) will identify with the E0,0

1 -term of this spectral
sequence. The latter will be trivial if (M,F )εDF−Mod(S,A)≤0 and (M ′, F ′)εDF−Mod(S,A)≥1, proving that
under the same hypothesis, HomDF−Mod(S,A)((M,F ), (M ′, F ′)) = 0. This proves the theorem. �

Remarks 5.2. 1. The case when A = R and when the filtrations are finite is considered in [Beil].

2. Any object in DMod(S,R) may be provided with the béte-filtration as in [BBD, Chapter 3]: this is the
decreasing filtration defined as follows on any KεC(S,R): Fi(K) = the sub-complex 0 → Ki+1 → Ki+2 → · · · .
Now (grdFi (K))j = Ki if j = i and = 0 otherwise. Therefore it follows readily that any KεDMod(S,R) which is
bounded above and provided with the béte-filtration F belongs to the heart of the t-structure on DF−Mod(S,R)
considered above. In particular, any sheaf of dgas A which is bounded above and provided with the béte-filtration
belongs to this heart. Therefore one may extend the formalism of perverse sheaves, extending perverse sheaves etc.
as in 3.2 above to this setting. We skip the details.

6. The crystalline case

We will begin by recalling the basic framework from [Ek] and [Ill]. The Raynaud ring is the graded W -ring,
W = W (k) = the ring of Witt vectors of a perfect field k of characteristic p and generated by F , V in degree 0
and d in degree 1 with the following relations:

FV = V F = p,Fa = aσF, V = V aσ,(6.0.7)

da = ad,FdV = d, d2 = 0, aεW

Here (−)σ is the Frobenius automorphism of W . Given a scheme X defined over k, one may adapt the definition
above to define a sheaf of rings R on the Zariski site of X, called the sheaf of Raynaud rings on X. One may then
extend the discussion below to the Zariski site of the given scheme X. However, for the sake of simplicity, we will
keep X = Spec k throughout the following discussion.

We let Ri, i = 0, 1, denote the piece of R in degree i. In view of the above relations, one observes that a left
R-module M is the same as a complex of R0-modules and where the differential d : Mn →Mn+1 satisfies FdV = d.
Moreover any left R0-module can be viewed as a left R-module concentrated in degree 0. Henceforth an R-module
will mean a left R-module. Given an R-module M , M(n) will denote the R-module defined by M(n)i = Mn+i and
the differential d given by (−1)nd.

A complex of R-modules can be viewed as a double complex M•• where the first degree (called the horizontal
direction) corresponds to the R-grading. The second degree will be called the vertical direction. Thus M•,n denotes
the n-th row of M•• and this is an R-module. Observe that one may take the cohomology of the double complex
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with respect to the vertical differential : these cohomology objects will be all R-modules. Thus Hn
v (M••) denotes

the n-th (vertical) cohomology. We define the derived category of R-modules, D(R) to be the category of all
complexes of R-modules where we invert vertical quasi-isomorphisms. We let the derived category of all R-modules
be denoted D(R).

Next recall the diagonal t-structures of [Ek]. First, for each R-module M and an integer n, one defines the
R-module τ̃≤nM by

(6.0.7) τ̃≤nM = (· · · →Mn−1 d→Mn → F∞Bn+1 → 0)

where Bn+1 = Im(dn : Mn → Mn+1) and F∞Bn+1 = ∪
i≥0

F iBn+1. Clearly this is a sub-R-module of M . Next

τ̃≥n+1M is defined to be the quotient M/τ̃≤nM . A complex of R-modules MεD(R)≤0 if for each n, the natural
map τ̃≤nH

−n
v (M••) → H−n

v (M••) is an isomorphism of R-modules. We say a complex of R-modules MεD(R)≥0

if the natural maps H−n
v (M••) → τ̃≥0(H−n

v (M••)) is an isomorphism.

It was shown in [Ek] that this defines a t-structure on D(R), the diagonal t-structure with the heart of the t-
structure given by D(R)≤0 ∩D(R)≥0. We proceed to show that the derived category D(R) is compactly generated
and that the above t-structure is defined by a family of compact objects as in Theorem 1.8.

For each pair of integers i and j we define the complex R(−j)[i] of R-modules which is the following (double)
complex: we put the R-module R(−j) (viewed as a complex) as the −i-th row and put zeros elsewhere. Observe
that Hn

v (R(−j)[i]) = R(−j) if n = −i and 0 otherwise. Therefore, if j ≤ i, R(−j)[i]εD(R)≤0. We also consider
the complex of R-modules, R0(−i)[i] which is the following (double) complex: we put the R-module R0(−i) as the
−i-th row and put zeros elsewhere.

The following is the main result of this section.

Theorem 6.1. D(R)≤0 is the smallest pre-aisle generated by the R-modules R(−j)[i], j ≤ i and R0(−i)[i]. These
R-modules are compact objects in D(R) and hence the above pre-aisle is an aisle which defines the diagonal t-
structure.

Proof. To see that each R(−j)[i] is compact, observe that RHomR(R(−j)[i],M) = RHomR(R,M(j)[−i]) =
M(j)[−i]. Therefore, the above RHom commutes with filtered colimits in the argument M . To see that each
R0(−i)[i] is compact, observe that RHomR(R0(i)[−i],M) = Ker(d : M i → M i+1) viewed as an R-module in the
obvious manner. Since finite inverse limits commute with filtered colimits, one can see that RHomR(R0(i)[−i], )
commutes with colimits in the second argument. These prove that the objects R(−j)[i], j ≤ i and R0(−i)[i] are
compact objects in the derived category DMod(R).

The main part of the rest of the proof consists in showing that given any complex of R-modules MεD(R)≤0, it
can be constructed from the R-modules R(−j)[i], j ≤ i and R0(−i)[i].

Step 1. Here we will assume the given complex of R-modules is concentrated in one row, say the −i-th. i.e.
We may assume the given complex of R-modules is of the form M [i], for some R-module M . We will now show
that one may find a resolution P0 of M by R-modules, so that each Pn is a sum of R-modules of the form R(−j),
j ≤ i and R0(−i). Since M [i]εD(R)≤0, the natural map τ̃≤i(M) → M is an isomorphism. Therefore, M j = 0 for
j > i + 1, = F∞Bi for j = i + 1. For each j ≤ i, and each element mjεM

j , one may define a map R(−j) → M
by sending 1εR0 to mj and then by extending the map in the obvious way to all of R(−j). For each element mi

that maps to zero by the differential, one may define a map R0(−i) to M by sending 1εR0 to mi. Let P0 denote
the resulting sum of the R-modules R(−j), j ≤ i and R0(−i). Clearly the maps defined above provide a surjection
d−1 : P0 →M of R-modules. Now P0[i]εD(R)≤0 by construction.

Moreover, if K0 = kernel(d−1), then K0[i]εD(R)≤0 as well. For this, it suffices to show that the natural
map τ̃≤i(K0) → K0 is an isomorphism. For this it suffices to check that Ki+1

0 = Im(d : Ki
0 → Ki+1

0 ): this is
an immediate consequence of our definition of P0. Therefore, one may repeat the above construction with K0

replacing M to define P1 and K1. Inductively we may define the sequence Pn in the same manner. Observe that
the map dn : Pn → Pn−1 factors through Kn−1 = kernel(d : Pn−1 → Pn−2) so that the sequence {Pn|n} provides
a resolution of M . Then P [i] provides the required resolution of M [i].

Step 2. Next we will assume that 0 → M ′ → M → M ′′ → 0 is a short exact sequence of R-modules so that all
three M ′[i], M [i] and M ′′[i] belong to D(R)≤0. We may observe readily that we can find resolutions P ′• of M ′, P•
of M and P ′′• of M ′′ together with maps P ′• → P• and P• → P ′′• (over the given map M ′ → M and M → M ′′,
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respectively) so that for each n, the sequence 0 → P ′n → Pn → P ′′n → 0 is exact and where each P ′n, Pn and P ′′n is
a sum of R-modules of the form R(−j), j ≤ i and R0(−i). (Since this is only a minor modification of a standard
argument, we skip the remaining details.)

Step 3. Here we are given a bounded complex M of R-modules, i.e. there exist integers n and N , n ≤ N so that
M•j = 0 for j < n or for j > N . By using induction on N − n, it suffices to assume N = n + 2. In other words,
we are given a diagram M ′ φ→M

ψ→M ′′ of R-modules with ψ ◦ φ = 0. We will show that in this case, we may find
resolutions P ′• of M ′, P• of M and P ′′• of M ′′ with maps φ• : P ′• → P• and ψ• : P• → P ′′• so that the compositions
ψn ◦ φn = 0 for all n. Moreover each P ′n, Pn and P ′′n are a sum of terms of the form R(−j)[i], j ≤ i and R0(−i)[i].

We will make use of Step 2 to accomplish this. For this, observe that one has the following short exact sequences:
0 → ker(φ) → M ′ → Im(φ) → 0, 0 → Im(φ) → ker(ψ) → Ker(ψ)/Im(φ) → 0, 0 → ker(ψ) → M → Im(ψ) → 0
and 0 → Im(ψ) → M ′′ → M ′′/Im(ψ) → 0. By applying Step 2 to these short sequence in successive order, one
may construct the required resolutions.

Final Step. Finally we consider the case where we are given any complex M of R modules, not necessarily
bounded. We may view this as a complex in the vertical direction. For each integer N ≥ 0, let M [−N,N ] denote
the naive truncation of the complex M to degrees in the range −N to N , i.e. M [−N,N ]•j = M•j , −N ≤ j ≤ N .
The last step shows how to find resolutions P•[−N,N ] of M [−N,N ] that are compatible as N varies over all
non-negative integers. Now we let P• = lim

N→∞
P•[−N,N ]. �

7. Further Examples

7.1. Example 1: Motivic Derived Categories. We first show how motivic derived categories may be defined
in this framework. We will fix a ground field k, of arbitrary characteristic p throughout the paper and will only
consider smooth schemes of finite type over k. This category will be denoted (smt.schms). When provided with the
big Zariski (Nisnevich, étale) topologies, we obtain the big-sites (smt.schms)Zar, ((smt.schms)Nis, (smt.schms)et,
respectively). Z = ⊕

r
Z(r) will denote the integral motivic complex on the sites (smt.schms)Zar and (smt.schms)Nis.

l will denote a number prime to p and Z/l = ⊕
r
Z/l(r) denote the corresponding mod − l motivic complex with

Z/let the corresponding complex on the big-étale site (smt.schms)et. Q = ⊕
r
Q(r) = ⊕

r
Z ⊗ Q. In general, we will

fix a commutative Noetherian ring R and consider Z⊗R: this is a sheaf of E∞-dgas over the ring R and we will
denote this by A throughout. Observe that now one has augmentations R → A and A → R the composition of
which is the identity. (Here R denotes the obvious constant sheaf associated to R.)

7.2. D((smt.schms)Zar,A), D((smt.schms)Nis,A) and D((smt.schms)et,Z/l). We will consider explicitly only
the derived category D((smt.schms)Nis,A), since the other two may be defined similarly with appropriate mod-
ifications. We will let Sh((smt.schms)Nis,R) denote the category of all sheaves of R-modules on the site
(smt.schms)Nis. Similarly Sh(XNis,R) will denote the category of all sheaves of R-modules on the site XNis for a
given scheme X. C(Sh((smt.schms)Nis,R)) ( C(Sh(XNis,R))) will denote the category of all (unbounded) com-
plexes of objects in Sh((smt.schms)Nis,R) (Sh(XNis,R), respectively). We first define Mod((smt.schms)Nis,A)
to consist of all complexes of sheaves K on (smt.schms)Nis with the following properties:

(i) K = ⊕
r
K(r) has homotopy invariant cohomology sheaves and

(ii) K has the structure of a complex of sheaves of E∞-modules over the sheaf of E∞-dgas A.

A morphism f : K ′ → K between two such objects will be a map that preserves the last structure. The objects of
the derived category D((smt.schms)Nis,A) are the same as those of Mod((smt.schms)Nis,A).

Given a scheme Xε(smt.schms), we let (smt.schms/X) denote the sub-category of (smt.schms) that are of
finite type over X with morphisms Y ′ → Y being morphisms of smooth schemes compatible with the given maps
to X. The site (smt.schms/X)Zar ((smt.schms/X)Nis, (smt.schms/X)et) is the corresponding big site and will
be often denoted XZar (XNis, XEt, respectively). Mod(XNis,A) will denote the corresponding derived category
of complexes K defined on the site XNis that in addition have the structure of complexes of sheaves of E∞-
modules over A|X = the restriction of A to ((smt.schms)/X)Nis. D(XNis,A) will denote the corresponding
derived category.
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7.3. Dgm(XZar,A), Dgm(XNis,A) and Dgm(XEt,Z/l). Again we will explicitly consider only the derived category
Dgm(XNis,A). For each smooth scheme Y quasi-projective over X and with structure map f : Y → X, we consider
Rf∗(A|Y ). For a locally closed sub-scheme Y0 of Y with immersion j : Y0 → Y , we also consider Rf∗(j!(A|Y )). We
let Dgm(XNis,A) be the full subcategory of D(XNis,A) generated by such objects.

Definition 7.1. (a) Let Dgm
c (XNis,A) denote the smallest sub-category of Dgm(XNis,A) containing all of C =

{Rf∗(j!(A|Y ))|j : Y0 → Y, f} where j and f are as before and closed under the following operations: (i) finite sums,

(ii) mapping cones, (iii) translations [1] and (iv) extensions (i.e. if F ′
f→F → Cone(f) → F ′[1] is a distinguished

triangle with F ′, Cone(f) and F ′[1]εDgm
c (XNis,A), then FεDgm

c (XNis,A).)

(b) Let Dgm
s.c (XNis,A) denote the smallest sub-category of Dgm(XNis,A) containing all of {(j!(A|Y ))|j : X0 →

X} where j is a locally closed immersion as before and closed under the following operations: (i) finite sums, (ii)
mapping cones, (iii) translations [1] and (iv) extensions (as before).

These derived categories are studied in detail in a forthcoming paper, [J-3], and we relate them to Voevodsky’s
derived category of geometric motives.

7.4. Example 2: Equivariant Derived Categories. We will fix an algebraically closed field k of characteristic
p ≥ 0. Let G denote the action of a smooth group scheme on a scheme X of finite type over k. Now [X/G] will
denote the associated quotient stack: see [?, LMB]or example. One associates several sites to the stack [X/G]:
[X/G]lis.et denotes the site whose objects are smooth maps s : S → [X/G] with S an algebraic stack of finite type
over k and where the coverings of a given object s : S → [X/G] are étale coverings. One defines the iso-variant
étale site [X/G]iso.et as follows: the objects are G-isovariant etale maps Y → X (these correspond to iso-variant
étale maps [Y/G] → [X/G] of the associated stacks. Sending an iso-variant étale map to the same map viewed
simply as an étale map defines a map of sites: p∗ : [X/G]lis.et → [X/G]iso.et. It is shown in [J-2] that the latter
site has enough points and the points correspond to G-orbits of geometric points of X.

Next assume that the group G is a torus T and X is a toric variety associated to T . Now T acts with finitely
many orbits on X so that there are only finitely many points on the site [X/T ]iso.et, each corresponding to the
T -orbits of geometric points of X. In characteristic zero it is possible to define a topological space corresponding
to the site [X/T ]iso.et and this is the approach adopted in [Lun]. However, this approach clearly fails in positive
characteristic and necessitates the use of the site [X/T ]iso.et.

Next given a geometric point x̄ of X, it has a T -stable neighborhood of the form T x̄× Vx̄ where Vx̄ denotes an
affine toric variety for Tx̄ which contracts Tx̄-equivariantly to x̄. Therefore one may readily compute Rp∗(Ql

) and
show that one has the isomorphism:

Rp∗(Ql)T x̄ ' H∗(BTx̄; Ql)

Moreover one knows that for toric varieties, the stabilizers Tx̄ are all connected. Now it follows readily as in [Lun]
that one has the equivalence of categories:

D+([X/T ]iso.et, Rp∗(Ql)) ' D+([X/T ]lis.et,Ql).
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