
GENERALIZED t-STRUCTURES: t-STRUCTURES FOR SHEAVES OF DG-MODULES
OVER A SHEAF OF DG-ALGEBRAS AND DIAGONAL t-STRUCTURES
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Abstract. t-structures, in the abstract, apply to any triangulated category. However, for the most part, they have

been studied so far only in the context of sheaves of modules over sites provided with sheaves of rings. In this paper

we define and study t-structures for categories of modules over sites provided with sheaves of dgas and E∞-dgas.
A close variant, as we show, are the diagonal t-structures that come up in the context of crystalline cohomology

(as in the work of Ekedahl). All of this is carried out in the unified frame-work of aisles. We conclude with several

examples: `-adic equivariant derived categories of toric varieties, the diagonal t-structures in crystalline derived
categories as well as t-structures on motivic derived categories that are compatible with étale realization.
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1. Introduction.

t-structures were originally introduced in [BBD] to define and study perverse sheaves and soon afterwords in
[Ek] to study crystalline cohomology problems. Since then, they have appeared in other contexts: for example,
they appear prominently in certain conjectures on algebraic cycles where a formalism similar to `-adic derived
categories for algebraic cycles is formulated.

In this paper we utilize the techniques of pre-aisles and aisles to provide a painless way to define and study
(generalized) t-structures for many of the above contexts. As applications of our work, we also show how to apply
our results to several of the above situations.

We had prepared a draft of this paper as early as 2007: since then this preprint remained on the author’s personal
website, while he was working on more applications of the results of this paper. (See [J-3], for example.) During
this period, the existence of this preprint was apparently discovered by several colleagues who were presumably
searching for such results and who contacted the author. Clearly the author is very grateful to all such colleagues
who found interesting applications way beyond those anticipated by the author.

The following theorem is typical of our results in the paper. (The notion of pre-aisles and aisles are discussed
below.) For the purposes of this introduction we may assume the site S is the small Zariski, Nisnevich or étale
sites associated to a given Noetherian scheme X, but it could also be any of the corresponding big sites.

Theorem 1.1. Let (S,R) denote a ringed site as in 2.1 so that the underlying site S is essentially small and
has enough points. Let C(S,R) denote the category of all unbounded complexes of sheaves of R-modules on S.
Moreover we assume the following:

(i) for each object U in the site S, there exists a large enough integer N (depending on U) so that Hi(U,F ) = 0
for all i > N and all sheaves of R-modules F on the site S and

(ii) for all filtered direct systems {Fα|α} of sheaves of R-modules and every object U in the site S, colim
α

H∗(U,Fα) ∼=
H∗(U, colim

α
Fα).

Let A be a sheaf of E∞-dgas or dgas on the ringed site (S,R). Let DMod(S,A)≤0 denote the pre-aisle (see
Definition 1.6 below) in DMod(S,A) generated by jU !j

∗
U (A[n]), n ≥ 0, U in the site S.

Then (i) DMod(S,A)≤0 is an aisle in DMod(S,A) , i.e. defines a t-structure on DMod(S,A).

(ii) Assume next the hypotheses of 2.3 hold. i.e. We will assume that A is provided with an augmentation A → R
which is assumed to be a map of sheaves of E∞-dgas and that A is connected, i.e. Ai = 0 for i < 0 and A0 = R.
We will also assume that if V and W are objects in the site S and X is the terminal object of S, then the fibered
product V×

X
W exists in the site S.

Then (a) jU !(A|U ) ε DMod(S,A)≤0 ∩DMod(S,A)≥0 = the heart of the above t-structure, where jU : U → S
is the structure map of the object U and A|U = j∗U (A). In particular, A = A|X belongs to the heart of the above t-

structure. (b) Moreover, every object M in DMod(S,A)≤0 satisfies the property that the natural map τ≤0(R
L
⊗
A
M)→

R
L
⊗
A
M is a quasi-isomorphism in DMod(S,R). In other words, the functor R

L
⊗
A

( ) : DMod(S,A)→ DMod(S,R)

sends DMod(S,A)≤0 to DMod(S,R)≤0.

We discuss several applications in this paper: one of these is to the diagonal t-structures appearing in the
context of crystalline cohomology and the second is to the construction of a t-structure for certain dg-categories
associated to equivariant (`-adic) derived categories. We discuss the last only in the case of toric varieties in positive
characteristics in this paper. A third application is to the construction of t-structures on motivic derived categories
that are preserved by étale realization functors.

Example 1.2. The equivariant derived categories of sheaves of Q-vector spaces on symmetric varieties, equivariant
for the action of the corresponding complex reductive group (or its compact form) is shown to be equivalent to
the derived category of sheaves over a sheaf of dgas in [Guil] and a related equivalence is conjectured to hold
under fairly general hypotheses: see [Soe]. We obtain an extension of this to positive characteristics, for projective
toric varieties, making use of the iso-variant étale site and `-adic coefficients. This is summarized as the following
theorem.
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Theorem 1.3. Let X denote a projective toric variety for the action of a torus T over an algebraically closed field
of characteristic p ≥ 0. Let ` denote a fixed prime different from p. Let π : [X/T ]sm → [X/T ]iso.et denote the
map of sites associated to the quotient stack [X/T ]. (Here the subscript sm (iso.et) denotes the smooth site (the
isovariant étale site: see [J-2]). Let A = Rπ∗(Q`

) denote the sheaf of E∞-dgas on [X/T ]iso.et. Then the following
hold:

(i) The points of the site [X/T ]iso.et correspond to T -orbits of the geometric points on X and the stalk of A at
such a point x̄ = T x̄, x̄ ε X̄, is given by Ax̄ = H∗(BTx̄,Ql) where Tx̄ denotes the stabilizer at x̄.

(ii) A is formal in the sense that A ' H∗(A) and

(iii) one obtains an equivalence of derived categories (of bounded below complexes):

DT
b,c(X,Q`) ' Dc([X/T ]iso.et,A).

The category on the left is the usual derived category of complexes of Ql-sheaves that are bounded and with con-
structible T -equivariant cohomology sheaves while the category on the right is defined in (7.0.17). The t-structure on
the right-hand-side is defined as in the last theorem and corresponds to the usual t-structure on the left-hand-side,
under the equivalence of categories provided by the theorem.

We briefly consider the following application to motivic derived categories and étale realization. This is put
in more as a sample of what is possible in this direction, than as the most definitive result in this direction. See
section 8 and for more details. One may also consult the forthcoming paper [J-3] for more definitive results in the
framework of the more commonly adopted triangulated categories of motives.

Let X denote a smooth scheme of finite type over a field k. Let XNis (XEt) denote the corresponding big
Nisnevich site (the big étale site, respectively) consisting of smooth schemes over k, whose structure map to k
factor through X and where morphisms between two objects are compatible with the given structure maps to X.
Let ε : XEt → XNis denote the obvious maps of sites. We will fix a prime ` different from the characteristic of k
and let ν ≥ 0 be also a fixed integer. Then we let realν denote the functor K 7→ ε∗(K⊗Z/`ν) = ⊕rε∗(K(r)⊗Z/`ν)
sending the (graded) A-module K to the pull-back to the étale site of the corresponding mod-`ν-reduction. We let
A denote one of the following sheaves of E∞-dgas restricted to XNis.

(i) Z = ⊕
r
Z(r) will denote the integral motivic complex on the sites (Smk)Nis and (Smk)Et.

(ii) Let Z/` = ⊕
r
Z/`(r) denote the corresponding mod− ` motivic complex.

Making use of [J-1, Theorem 1.1] (see also [BJ, section 5]), these are in fact sheaves of E∞-differential graded
algebras. (If one prefers, one can also work with the corresponding motivic Eilenberg-Maclane spectrum, which
is the framework adopted in [J-3].)1 We define the realization functor real : D(XNis,A) → D(XEt, µ`ν (0)) '
D(XEt, Z/`

ν) to be the composition of the functor sending K = ⊕rK(r) 7→ ⊕rrealν(K(r)) with the one taking
the graded piece in degree 0 of the graded module ⊕rrealν(K(r)). (The derived categories above are the derived
categories of complexes of sheaves of dg-modules over the corresponding sheaf of dgas and where morphisms are
defined only upto A1-equivalence.)

Theorem 1.4. Assume that the base field has a primitive lν-th root of unity, for example, that it is a perfect
field and that it has finite `-étale cohomological dimension. Then the realization functor real : D(XNis,A) →
D(XEt, µ`ν (0)) ' D(XEt, Z/`

ν) is compatible with the above t-structures where the t-structure on D(XEt, Z/`
ν) is

the usual one. i.e. There exist natural transformations

real ◦ σ≤0 → σ≤0 ◦ real and real ◦ σ≥1 → σ≥1 ◦ real.

We conclude this introduction by recalling the notion of pre-aisles and aisles (see [KV] and [TLSS]).

1.0.1. Let T be a triangulated category whose translation functor is denoted by (−)[1] and its iterates by (−)[n],
with n ∈ Z. A t-structure on T in the sense of ([BBD, Définition 1.3.1]) is a pair of full subcategories (T ≤0, T ≥0)
such that, denoting T ≤n := T ≤0[−n] and T ≥n := T ≥0[−n], the following conditions hold:

(t1) For X ∈ T ≤0 and Y ∈ T ≥1, HomT (X,Y ) = 0.

1The E∞-structure on the motivic complexes discussed in [J-1] and [BJ], is quite explicit, is over the Barratt-Eccles operad and
therefore has several nice features. For the purposes of this paper though, all we require is an E∞-structure on the motivic complex

compatible with the given pairing on it. Such a structure is often assumed in the literature and therefore, one may also assume its
existence.
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(t2) T ≤0 ⊂ T ≤1 and T ≥0 ⊃ T ≥1.
(t3) For each X ∈ T there is a distinguished triangle A→ X → B→A[1] withA ∈ T ≤0 and B ∈ T ≥1.

The subcategory T ≤0 is called the aisle of the t-structure, and T ≥0 is called the co-aisle. For a subcategory
C ⊂ T , we denote the associated orthogonal subcategories as C⊥ = {Y ∈ T | HomT (Z, Y ) = 0, ∀Z ∈ C} and
⊥C = {Z ∈ T | HomT (Z, Y ) = 0, ∀Y ∈ C}. The following are immediate formal consequences of the definition.

Proposition 1.5. Let T be a triangulated category, (T ≤0, T ≥0) a t-structure in T , and n ∈ Z. Then

(1) (T ≤0, T ≥1) is a pair of orthogonal subcategories of T , i.e. T ≥1 = T ≤0⊥ and T ≤0 = ⊥T ≥1.
(2) The subcategories T ≤n are stable for positive translations and the subcategories T ≥n are stable for negative

translations.
(3) The canonical inclusion T ≤n → T has a right adjoint denoted τ≤n, and T ≥n → T a left adjoint denoted

τ≥n. Moreover, X ∈ T ≤n if, and only if, τ≥n+1(X) = 0. (X ∈ T ≥n if, and only if, τ≤n−1(X) = 0.)
(4) For X in T there is a distinguished triangle τ≤0X → X → τ≥1X→τ≤0X[1].
(5) The subcategories T ≤n and T ≥n are stable under extensions, i.e. given a distinguished triangle X → Y →

Z
+→, if X and Z belong to one of these categories, so does Y .

The subcategories T ≤n and T ≥n, in general, are not triangulated subcategories but they come close. In fact,
each subcategory T ≤n has the structure of a suspended category in the sense of Keller and Vossieck [KV]. Let us
recall this definition.

An additive category U is suspended if and only if it is graded by an additive translation functor T (sometimes
called shifting) and there is given a class of diagrams of the form X → Y → Z → TX called distinguished triangles
such that the following axioms, analogous to those for triangulated categories in Verdier’s exposition [V, p. 266]
hold:
(SP1) Every triangle isomorphic to a distinguished one is distinguished. For X ∈ U , 0 → X

id→ X → 0 is
a distinguished triangle. Every morphism u : X → Y can be completed to a distinguished triangle
X

u→ Y → Z → TX
(SP2) If X u→ Y → Z → TX is a distinguished triangle in U then so is Y → Z → TX

Tu→ TY .
(SP3) = (TR3) in Verdier’s loc. cit.
(SP4) = (TR4) in Verdier’s loc. cit.

The main difference with triangulated categories is that the translation functor in a suspended category may not
have an inverse and therefore, some objects cannot be shifted back. The formulation of axioms (SP1) and (SP2)
reflects this fact. If (T ≤0, T ≥0) is a t-structure on a triangulated category T , the aisle T ≤0 is a suspended subcat-
egory of T whose distinguished triangles are diagrams in T ≤0 that are distinguished triangles in T (Proposition
1.5). Moreover, the aisle T ≤0 determines the t-structure because the co-aisle T ≥0 is recovered as (T ≤0)⊥[1]. The
terminology “aisle” and “co-aisle” comes from [KV].

Definition 1.6. A pre-aisle is a suspended full subcategory U of a triangulated category T , where the triangulation
in U is given by the triangles which are distinguished in T and the shift functor is induced by the one in T .

Observe that, a full subcategory U of T is a pre-aisle, if it satisfies the following:
• For any X in U , X[1] is also in U .
• Given a distinguished triangle X → Y → Z → X[1], if X and Z belong to U , then so does Y .

Once these two facts hold for U , the verification of axioms (SP1) through (SP4) is immediate.

The following are the key techniques we use to construct t-structures in this paper.

Theorem 1.7. ([KV, Section 1]) A suspended subcategory U of a triangulated category T is an aisle (i.e. (U ,U⊥[1])
is a t-structure on T ) if and only if the canonical inclusion functor U → T has a right adjoint.

Definition 1.8. Let T be a triangulated category. An object E of T is called compact if the functor HomT (E,−)
commutes with arbitrary (small) co-products. Another way of expressing this condition is that a map from E to
a co-product factors through a finite subcoproduct.

Theorem 1.9. ([TLSS, Theorem A.1]) Let S = {Eα | α ∈ A} denote a set of compact objects in a triangulated
category T . Let U the smallest co-complete (i.e. closed under all small sums) pre-aisle of T which contains the
family S. Then U is an aisle in T .

2. The Basic Contexts

In this section we discuss two of the different contexts we consider in this paper. These are the following:
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(i) Derived categories of modules over sites provided with sheaves of dgas and E∞-dgas. and
(ii) Presheaves of E∞-module spectra and CW-cell modules

A third context, namely that of crystalline derived categories is discussed separately in section 5: we will show
that this is closely related to the set-up in (i).

2.1. The common frame-work. Let S denote a site with the following properties: (i) it is essentially small (ii)
has enough points. We will denote the points of the site S by S̄. In addition we will assume the following:

(i) that every object U in the site S is quasi-compact,
(ii) that the objects of the site form a subcategory of the category of all schemes of finite type over a fixed

Noetherian base scheme B and
(iii) the site S is provided with a Grothendieck topology specified by giving a family of coverings of each object

in the site satisfying the usual axioms of coverings.

The coverings of each object U in the site will be denoted Cov(U). We will also assume the site has a terminal
object X.

We will need to consider both small and big sites, especially in the context of applications of the main results
of this paper. Therefore, we will presently set up the framework for considering both types of sites. The big site
associated to S will simply be the given site S. The objects of the corresponding associated small site will be
objects of the following form: maps u : U → X in S so that u factors as the composition U → U0 → X so that
U → U0 is a covering of U0 in the given topology and U0 → X is some Zariski open immersion. The coverings in
the small site will be the same as the coverings in the big site.

Recall the notion of coherence from [SGA4, Exposé VI] (2.3). Recall that an object U in S is quasi-separated if
for any two maps V → U and W → U in the site S (with V and W quasi-compact), the fibered product V×

U
W

is quasi-compact. An object U is coherent if it is both quasi-compact and quasi-separated. A site with a terminal
object X is coherent if every object U quasi-separated in S is quasi-separated over the terminal object X (i.e. the
map U → X is quasi-separated) and the terminal object X is coherent. Given the site S and an object X in S,
the site S/X will denote the site whose objects are morphisms u : U → X and morphisms are morphisms in S over
X. We say a site S is locally coherent if it has a covering {Ui|i} so that each of the sites S/Ui is coherent.

The main observation we make now is the following. Assume that for each object U ε S, the small site associated
to S/U has the property that it is coherent in the above sense. Then

(2.1.1) colim
α

Hn(U,Fα) ∼= Hn(U, colim
α

Fα)

for each U in the site S and for each filtered direct system {Fα|α} of abelian sheaves on S and for each n. (One
may consult [SGA4, Exposé VI] or [St, 21.16: Cohomology and colimits] for proofs.)

2.1.2. We will let R denote either one of the following: (i) a sheaf of commutative Noetherian rings (or graded
commutative Noetherian rings) with unit on the site S or (ii) the constant sphere spectrum Σ0. (For simplicity, we
will just consider the usual S1-sphere spectrum, though we could equally well consider a P1-sphere spectrum.) We
will let C(S,R) denote the category of all unbounded complexes of R-modules (with differentials of degree +1) in
the first case and the category of all sheaves of spectra on the site S in the second case.

In case R is graded, we will assume that R = ⊕
i ε Z
Ri and that C(S,R) will denote the category of complexes of

sheaves of graded modules over R: a sheaf of graded modules M = ⊕
i ε Z

Mi. For a sheaf of graded R-modules M ,

M(t) will denote the object with a shift of grading given by: M(t)i = Mt+i. Moreover, when R denotes a sheaf of
graded rings, R[s](t) will denote the complex concentrated in degree s and given by the sheaf R(t) there. In the
second case when R denotes the constant sheaf of sphere spectra Σ0, R[s](t) will denote the s-fold suspension Σs,
for all t.

We will let R ⊗ ∆[1] denote the following object in C(S,R): if R is a sheaf of rings, then this is the obvious
chain complex associated to the simplicial object defined by n 7→ ⊕

α ε ∆[1]n
R (and with the obvious structure maps).

If R denotes Σ0, then this is the suspension spectrum associated to the pointed simplicial set ∆[1]+. Observe that
we have canonical morphisms di : R ∼= R⊗∆[0]→ R⊗∆[1], i = 0, i = 1. If F is a complex of abelian sheaves on
S, Hn(F ) will denote the cohomology sheaf in degree n of the complex F ; in case F is a sheaf of spectra, this will
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denote π−n(F ) = the sheaf of −n-th homotopy groups of F . Any map f : F ′ → F that induces an isomorphism
on Hn will be called a quasi-isomorphism (following the terminology when R is a sheaf of graded rings).

Definition 2.1. For each U ε S, H(U,GF ) = Γ(U,GF ) where GF denotes a the cosimplicial object defined by the
Godement resolution. If F is chain complex (spectrum), this is also a chain complex (spectrum, respectively).

Remark 2.2. Instead of the Godement resolution, one may make use of suitable fibrant replacements. For example,
in the case of chain complexes of sheaves of modules over a sheaf of rings, one may use injective resolutions. In the
case of P1-spectra, one will in fact need to use fibrant replacements in the A1-local structure.

Proposition 2.3. Assume the following hypothesis: with R as above (i.e. denoting either a sheaf of commutative
Noetherian rings on the site S or the sphere spectrum), and for each U in the site S, there exists an integer N > 0
so that Hn(U,F ) = 0 for all n > N and all sheaves F of R-modules. Assume also that each of the small sites S/U
is coherent.

Let {Fα|α} denote a filtered direct system of objects in C(S,R) where C(S,R) denotes the category as above.

Then one obtains the quasi-isomorphism:

(2.1.3) colimHn(U,Fα) ∼= Hn(U, colimFα)

for each n and each U in the site S.

Proof. This follows by comparing the spectral sequences

Es,t2 = colim
α

Hs(U,Ht(Fα))⇒ colim
α

Hs+t(U,Fα) and

Es,t2 = Hs(U,Ht(colim
α

Fα))⇒ Hs+t(U, colim
α

Fα).

Since both spectral sequences converge strongly under the above hypotheses, and one obtains an isomorphism at
the E2-terms by ( 2.1.1), the required isomorphism of the abutments follows. �

Definitions 2.4. (i) Let R denote a sheaf of commutative Noetherian rings with 1 on the site S. A sheaf of dgas
will mean an unbounded complex A in C(S,R) which has the structure of a sheaf A of differential graded algebras
on the site S. A sheaf of E∞ dgas will similarly mean an unbounded complex A in C(S,R) which is a sheaf of
algebras over an E∞-operad.

(ii) In addition to these situations, we will also consider cases where A is a sheaf of E∞-ring spectra on the site S.
(An E∞-ring spectrum will mean an object in the category of spectra that is also an algebra over an E∞-operad.)
Denoting the constant sheaf of sphere spectra by R, such sheaves of E∞-ring spectra may be viewed as E∞-ring
objects of C(S,R).

2.1.4. Basic conventions. HenceforthA will denote a sheaf of E∞-algebras or a sheaf of E∞-ring spectra. Mod(S,A)
will denote the category of sheaves of E∞-modules over A. The obvious pairing Mod(S,A)×Mod(S,A)→ C(S,R)
will be denoted ⊗. (Here R will denote a sheaf of commutative Noetherian rings with 1 in case A is a sheaf of
E∞-algebras, and will denote the constant sheaf of sphere spectra Σ0 in case A is a sheaf of E∞-ring spectra.) We
will refer to E∞-ring spectra (sheaves of E∞-ring spectra) as E∞-dgas (sheaves of E∞-dgas, respectively). In case
R = ⊕iRi is a sheaf of graded rings and that A ε C(S,R) is an E∞-ring object, then A[s](t) = A⊗

R
R[s](t).

Next we consider the homotopy category associated to Mod(S,A): this will have the same objects as Mod(S,A),
but morphisms will be homotopy classes of morphisms, where a homotopy H between two morphisms f , g : K → L
is a morphism K ⊗ ∆[1] → L so that f = H ◦ d0 and g = H ◦ d1. We define a morphism f : K → L to be a

quasi-isomorphism if f : K → L induces an isomorphism on the cohomology sheaves. A diagram K ′
f→K g→K ′′

is a distinguished triangle if there is a map from the mapping cone, Cone(f) to K ′′ that is a quasi-isomorphism.
(Observe that Cone(f) ε Mod(S,A).) The derived category DMod(S,A) is the category obtained by inverting these
quasi-isomorphisms. We will let D+(Mod(S,A)) (D−(Mod(S,A))) denote the full sub-category of DMod(S,A)
consisting of complexes that are bounded below (above, respectively).

Proposition 2.5. DMod(S,A) is a triangulated category with the above structure.

Proof. This is skipped and left as an exercise. �
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For each U in the site S, let j∗U : C(S,R) → C(S/U,R) denote the obvious restriction functor; let jU ! (RjU∗)
denote the left-adjoint (right-adjoint) to j∗U .

2.2. The standard t-structure on D(S,R). One defines the standard t-structure on D(S,R) to be given by
the two full subcategories:

(2.2.1) D(S,R)≤0 = {K ε D(S,R)|Hi(K) = 0, i > 0}, D(S,R)≥0 = {K ε D(S,R)|Hi(K) = 0, i < 0}.

One may readily observe that D(S,R)≤0 is generated by {jU !(R|U )[n]|n ≥ 0}. The (obvious) inclusion functor
D(S,R)≤0 → D(S,R) has a right adjoint which is denoted τ≤0.

Proposition 2.6. Assume the hypotheses as in Proposition 2.3 with C(S,R) denoting any one of the categories
considered there.

Let A denote a sheaf of E∞-dgas in C(S,R). Then, for each U in the site S, and each integer n, jU !j
∗
U (A)[n] is

a compact object in D(Mod(S,A)).

Proof. Let M ε DMod(S,A). Let RHomA (RHomA) denote the external (internal) Hom in the derived category
DMod(S,A). Then

RHomA(jU !j
∗
U (A)[n],M) = RΓ(S,RHomA(jU !j

∗
U (A)[n],M)) = RΓ(S|U ,RHomj∗U (A)(j∗U (A),M [−n]))

= RΓ(S|U ,RHomR|U (R|U ,M [−n])) = RΓ(S|U ,M [−n]).

Next let {Mα|α} denote a direct system of objects in DMod(S,A). In view of the identifications in the last para-
graph, one observes, using Proposition 2.3 that colim

α
RHomA(jU !j

∗
U (A)[n],Mα) ∼= RHomA(jU !j

∗
U (A)[n], colim

α
Mα).

This proves the proposition. �

Examples 2.7. One may consider the following as typical examples where the last proposition applies:
(1) R = the constant sheaf Q and A is any sheaf of dgas in C(S,Q) with S the big Zariski, étale, Nisnevich or

cdh sites associated to schemes of finite types over a Noetherian base scheme of finite Krull dimension.
(2) R = the constant sheaf Q, Z or Z/p for some prime p and A is any sheaf of dgas or E∞-dgas in C(S, R)

with S the big Zariski, Nisnevich or cdh sites associated to schemes of finite type over a Noetherian base
scheme of finite Krull dimension.

(3) R = Z/`, where ` is a prime different from the characteristic of the base scheme, which we assume is a
field k. We will also assume that k has finite `-étale cohomological dimension, for example, it is either an
algebraically closed or a finite field. S will denote the big étale site of k or the small étale site of a scheme
of finite type over k, and A will denote a sheaf of E∞-dgas in C(S, R).

(4) In addition to the above, one may let S denote any site so that for every object U in S, the small site S/U
is coherent and has finite cohomological dimension with respect to all abelian sheaves, for example, the
transcendental site associated to the complex points of any complex algebraic variety. Now R may denote
any sheaf of of commutative rings, or the constant sheaf of sphere spectra and A any E∞-ring object in
C(S,R).

2.3. The connectedness assumption on the E∞-dga. In this framework, we will make the following basic
hypotheses throughout:

A is a sheaf of E∞-dgas or dgas on the ringed site (S,R). We will assume that A is provided with an augmentation
A → R which is assumed to be a map of sheaves of E∞-dgas and that A is weakly connected, i.e. Ai = 0 for i < 0.
We will say A is strongly connected if it is weakly connected and in addition, A0 = R. It suffices to assume that
A is weakly-connected for the rest of paper.

Here are two particularly interesting cases of such E∞-dgas.

(i) Let f : X → Y denote a map of sites and let R denote a sheaf of rings on X . Then Rf∗(R) is a sheaf of
E∞-rings on the site Y. This follows from the discussion in 9.1. (We also discuss an `-adic variant there.) The
connectedness is clear since abelian sheaf cohomology is trivial in negative degrees.

(ii) Another particularly interesting case is when A denotes the rational motivic dga (constructed in [J-1]): in
this case the above condition that A is weakly connected (strongly connected) is equivalent to the weak form
(strong form, respectively) of the Beilinson-Soulé vanishing conjecture. More generally one may assume A is a
sheaf of bi-graded dgas, A = ⊕r,sA(s)r with r denoting the degree of the chain complex and s another index we
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call the weight, so that A• = ⊕A•(s), i.e. each A•(s) is a sub-complex of A•. Then, if A•(0) = R[0] one clearly
obtains an augmentation in the above sense. Observe that these conditions are met by the (integral) motivic
E∞-dga. The weak-connectedness (strong-connectedness) is then equivalent to an appropriate integral form of the
Beilinson-Soulé vanishing conjecture.

3. Construction of (standard) t-structures on sites provided with E∞ sheaves of dgas

In this section we will provide each of the basic situations considered in the last section with standard t-structures.

Proposition 3.1. Assume the hypotheses as in Proposition ( 2.6) and that A ε C(S,R) is a sheaf of E∞ dgas.
Let C = {jU !(A|U )[n]|U ε S, n ≥ 0}.

(i) Then C is a set of compact objects in the triangulated category DMod(S,A).

Let Coh(C)≤0 denote the smallest sub-category of Mod(S,A) containing all of C and closed under the follow-

ing operations: (i) finite sums, (ii) mapping cones, (iii) translations [1] and (iv) extensions (i.e. if F ′
f→F →

Cone(f)→ F ′[1] is a distinguished triangle with F ′, Cone(f) and F ′[1] ε Coh(S)≤0, then F ε Coh(C)≤0.)

(ii) Let QCoh(C)≤0 denote the full sub-category of Mod(S,A) consisting of filtered colimits colim
α

Fα, each

Fα ε Coh(C)≤0 and with the indexing set for the filtered colimit being small. Then the smallest co-complete
pre-aisle of DMod(S,A) containing all of C identifies with the image of QCoh(C)≤0 in DMod(S,A).

(iii) Let Comp(C) denote the smallest full sub-category of QCoh(C)≤0 containing Coh(C)≤0 and closed under
summands. Now Comp(C) identifies with the full sub-category of compact objects in QCoh(C)≤0.

Proof. The first assertion follows from Proposition 2.6. Clearly QCoh(C)≤0 is closed under all small sums: any
such sum may be written as a filtered colimit of finite sums. Next observe that the sub-category Coh(C)≤0 consists
of compact objects. Now it suffices to show that QCoh(C)≤0 is closed under mapping cones, translations [1] and
extensions. Let F ′ = colim

i
{F ′i |i ε I} → F = colim

j
{Fi|i ε J} denote a map of objects in QCoh(C)≤0 with each F ′i ,

Fi ε Coh(C)≤0. Since each F ′i is a compact object, one observes that for each i ε I, there exists an index ji ε J so that
the map F ′i → F ′ → colim

j
{Fj |j} factors through Fji . Therefore, after re-indexing F = {Fj |j ε J} one may assume

that both F ′ and F are indexed by the same indexing set I and the map f is given by a map {fi : F ′i → Fi|i ε I}.
Clearly the mapping cone Cone(fi) ε Coh(C)≤0 and therefore Cone(f) ∼= lim

→ i
Cone(fi) ε QCoh(C)≤0. Similarly

one may show that QCoh(C)≤0 is closed under the translations [1]. Next consider an extension: F ′
f→F g→F ′′ h→F ′[1]

with F ′, F ′′ ε QCoh(C)≤0. Now F identifies with Cone(h)[−1]. Clearly the argument above shows that one may
write the map h as colim

i
hi : F ′′i → F ′i [1]; therefore one has a diagram of extensions F ′i → Cone(hi)[−1] →

Gi → F ′i [1]. Therefore Cone(hi)[−1] ε Coh(C)≤0; since F ∼= colim
i

Cone(hi)[−1], it follows that F ε QCoh(C)≤0.

Therefore QCoh(C)≤0 is a co-complete pre-aisle containing all of C. This proves (ii).

(iii). Let F = lim
→ i

Fi denote an object in QCoh(C)≤0 which is a compact object. Then the identity map of

F must factor through some Fj , so that F is a split summand of Fj which clearly belongs to Coh(C)≤0. This
proves that the full subcategory of compact objects in QCoh(C)≤0 contains Coh(C)≤0, and the objects in the
former are in general summands of objects in Coh(C)≤0. Therefore, the full subcategory of compact objects in
QCoh(C)≤0 is a subcategory of Comp(C). One may also show readily that the full subcategory of compact objects
in QCoh(C)≤0 contains Coh(C)≤0 and is closed under taking summands. Therefore, Comp(C) is a subcategory
of the full subcategory of compact objects in QCoh(C)≤0. This proves the last assertion. �

One of the main results we prove in this paper is the following:

Theorem 3.2. Assume the hypotheses as in Proposition ( 2.6) and that A ε C(S,R) is a sheaf of E∞ dgas. Let
DMod(S,A)≤0 denote the pre-aisle in DMod(S,A) generated by jU !j

∗
U (A[n]), n ≥ 0, U in the site S.

Then (i) DMod(S,A)≤0 is an aisle in DMod(S,A) , i.e. defines a t-structure on DMod(S,A).

(ii) Assume next that A is weakly-connected as in the hypotheses of 2.3. Assume also that if X denotes the terminal
object of the site S, and U → X and W → X are maps in the site, then the fibered product U×

X
W exists in the site

S. Let V denote an object in the site S and let jV : V → X denote the structure map. Then
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(a) jV !(A|V ) ε DMod(S,A)≤0 ∩DMod(S,A)≥0 = the heart of the above t-structure. In particular, A = A|X
belongs to the heart of the above t-structure.

(b) Moreover, every object M in DMod(S,A)≤0 satisfies the property that the natural map τ≤0(R
L
⊗
A
M)→ R

L
⊗
A
M

is a quasi-isomorphism in DMod(S,R). In other words, the functor

R
L
⊗
A

( ) : DMod(S,A)→ DMod(S,R)

sends DMod(S,A)≤0 to DMod(S,R)≤0.

Proof. The first statement is clear from the last proposition in view of Theorem 1.9. We will now prove the
remaining statements. To prove (ii)(a), observe that RHomA(jU !(A|U )[n], jV !(A|V )) ' RΓ(U, j!AU×

X
V [−n]), where

j : U×
X
V → U is the obvious map so that

HomDMod(S,A)(jU !(A|U )[n], jV !(A|V )) = H0(RHomA(jU !(A|U )[n], jV !(A|V )) = H0(RΓ(U, j!AU×
X
V [−n])) = 0

for any n ≥ 1. The last equality follows from the hypothesis that Ai = 0 for all i < 0 and some basic properties
of the functor j! including, in particular, that it is exact in this case. (See [Mi, p. 78] or [St, Sites: localization]
for a proof that the functor j! is exact in this case and that jU !j

∗
U (jV !(A|V )) identifies with j!AU×

X
V .) Next one

shows that the collection of objects K in D(Mod(S,A)) for which HomDMod(S,A)(K, jV !(A|V )) = 0 is closed under
finite sums, translations [n], n ≥ 0, extensions and mapping cones. The assertion for mapping cones follows by
considering the exact sequence

HomDMod(S,A)(K ′[1], jV !(A|V ))→ HomDMod(S,A)(Cone(α), jV !(A|V ))→ HomDMod(S,A)(K, jV !(A|V ))

associated to the distinguished triangle: K ′ α→K → Cone(α)→ K ′[1]. This shows that

HomDMod(S,A)(K, jV !(A|V )) = 0

for all objects K ε Coh(C)≤−1. Next let M ε QCoh(C)≤−1. Then M is the filtered colimit of a diagram forming
a direct system of objects in Coh(C)≤−1). First observe that if the direct system is a (co)-tower {Kn|n ≥ 0} of
objects in QCoh(C)≤−1, then one obtains the short-exact sequence (where Hom denotes HomDMod(S,A)):

(3.0.1) 0→ lim
∞←n

1Hom(Kn, jV !(A|V [−1])→ Hom( lim
n→∞

Kn, jV !(A|V )→ lim
∞←n

Hom(Kn, jV !(A|V )→ 0

By what is shown above, the two end terms are zero, thereby showing the middle term is also zero.

In general, M can only be realized as the filtered colimit of some small diagram of objects in Coh(C)≤−1. In
this case, one may apply a simplicial replacement to this diagram as in [BK, Chapter XII, section 5], so that M is
identified with the homotopy colimit of a simplicial object S• in QCoh(C)≤−1, with each Sn a sum of objects in
Coh(C)≤−1. On applying RHom( , jV !(A|V ), the above homotopy colimit comes out as a homotopy inverse limit.
In fact this homotopy inverse limit may be identified with the homotopy inverse limit of a tower, by truncating the
simplicial replacement S• at finite degrees. The required conclusion that HomDMod(S,A)(K, jV !(A|V )) = 0 for all
objects M ε QCoh(C)≤−1 now follows readily in view of (3.0.1). This proves

jV !(AV ) ε (DMod(S,A)≤−1)⊥ = DMod(S,A)≥0.

Since jV !(AV ) ε DMod(S,A)≤0 by definition, the assertion (a) in (ii) is proved.

By the definition of D(Mod(S,A)≤0 above (and Proposition 3.1 above), there exist a sequence {Mi|i ε I} in
Coh(C)≤0 so that M ∼= colim

i
{Mi|i}.

One of our key observations now is that each Mi

L
⊗
A
R ε Coh(S,R)≤0. This is clear if Mi = jU !(A|U [n]) for

some U ε S and n ≥ 0: in this case M
L
⊗
A
R ∼= jU !(R|U [n]). In general, recall that M is obtained by finitely many

operations from the set {jU !(A|U )[n]|U ε S, n ≥ 0} where the allowed operations are finite sums, mapping cones,
translations [1] and extensions. Since Coh(S,R)≤0 is closed under these operations, one may show readily that

each Mi

L
⊗
A
R ε Coh(S,R)≤0. Next recall that QCoh(S,R)≤0 is the set of objects obtained as filtered colimits of
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objects in Coh(S,R)≤0. Therefore M
L
⊗
A
R = (colim

i
Mi)

L
⊗
A
R ∼= colim

i
(Mi

L
⊗
A
R) ε QCoh(S,R)≤0. This completes the

proof of the second statement and hence that of the theorem. �

Remark 3.3. It does not seem possible to say, in general, thatDMod(S,A)≤0 is the full sub-category ofDMod(S,A)

that the functor R
L
⊗
A

( ) sends to DMod(S,R)≤0. Nevertheless, the above theorem shows that one has meaningful,

non-trivial t-structures defined on the category DMod(S,A).

Definition 3.4. (The truncation functors for the standard t-structure) Assume the above situation. We will define

σ≤n : DMod(S,A)→ DMod(S,A)≤n

as right-adjoint to the obvious imbedding DMod(S,A)≤n ⊆ DMod(S,A). Let K ε DMod(S,A). We will define
σ≥n+1(K) by requiring

σ≤n(K)→ K → σ≥n+1(K)→ σ≤nK[1]

to be a distinguished triangle. Then σ≥n+1 will be left-adjoint to the obvious imbedding DMod(S,A)≥n+1 →
DMod(S,A).

In the next section, we proceed to define and study the notion of constructibility in the category D(Mod(S,A)),
in particular how the t-structures defined above relate to the full sub-category of constructible objects.

3.1. Constructibility and t-structures.

Definition 3.5. In general, we will say that a sheaf of A-modules M is of finite type if is a compact object in
DMod(S,A). In case R is the constant sheaf of rings associated to a commutative ring R, we will say that a sheaf
of A-modules M is a constructible A-module, if it is of finite type. The full sub-category of compact objects in
DMod(S,A) will be denoted Dc(Mod(S,A)).

Proposition 3.6. The truncation functors σ≤n and σ≥n+1 as in Definition 3.4 preserve compactness and hence
the property of being of finite type as well as being constructible.

Proof. Let K ′ → K → K ′′ → K ′[1] denote a distinguished triangle in DMod(S,A). Then if two of K ′,K and
K ′′ are compact, so is the third. This follows by comparing the distinguished triangle obtained by applying
colim
i
RHomA( , Li) and RHomA( , colim

i
Li) to the distinguished triangle K ′ → K → K ′′ → K ′[1] where

{Li|i} is a filtered direct system of objects in DMod(S,A). Therefore, in view of the fact that σ≤n(K) → K →
σ≥n+1(K)→ σ≤n(K)[1] is a distinguished triangle for any K ε DMod(S,A), it suffices to prove this for the functor
σ≥0.

Next we will show that the filtered colimit of a collection {Ki|i ε I} of objects Ki ε DMod(S,A)≥0 also belongs
to DMod(S,A)≥0. To see this, consider

HomDMod(S,A)(jU !(A|U )[n], lim
→ i

Ki) = H0(RHomA(jU !(A|U )[n], lim
→ i

Ki))

∼= H0(RΓ(U, lim
→ i

j∗U (Ki)[−n])) ∼= lim
→ i

H0(RΓ(U, j∗U (Ki)[−n]) = lim
→ i

H0(RHomA(jU !A|U )[n],Ki)) = 0

for all n ≥ 1. The last equality is from the hypothesis that each Ki ε DMod(S,A)≥0 and n ≥ 1. The isomorphism
prior to that follows from our hypotheses on the site as in 2.1: see Proposition 2.3.

Let φ : DMod(S,A)≥0 → DMod(S,A) denote the obvious inclusion functor. Clearly φ commutes with filtered
colimits since the former category is a full sub-category of the latter and the former category is itself closed under
the formation of filtered colimits as we just showed.

Next letM εDMod(S,A) denote a compact object and let {Ki|i ε I} be a collection of objectsKi ε DMod(S,A)≥0.
Then:

RHomA(σ≥0(M), lim
→ i

Ki) ∼= RHomA(M,φ(lim
→ i

Ki)) ∼= RHomA(M, lim
→ i

φ(Ki))

∼= lim
→ i

RHomA(M,φ(Ki)) ∼= lim
→ i

RHomA(σ≥0(M),Ki).

The last and first isomorphisms use the fact that σ≤0 is left adjoint to φ. These prove that σ≥0 preserves compact-
ness. �
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Corollary 3.7. In case A is provided with an augmentation A → R, then the functor M 7→M
L
⊗
A
R, DMod(S,A)→

DMod(S,R) induces a functor Dc(Mod(S,A))≤0 → Dc(Mod(S,R))≤0. Every object in Dc(Mod(S,R))≤0 is in
the image of this functor.

Proof. In view of Theorem 3.2 (ii)(b), it suffices to show that the above functor preserves compactness for objects
in QCoh(C)≤0 as in Proposition 3.1. As shown there, the compact objects in QCoh(S,A)≤0 identify with split

summands of objects in Coh(S,A)≤0. Clearly the functor M 7→ M
L
⊗
A
R sends split summands of objects in

Coh(S,A)≤0 to split summands of objects in Coh(S,R)≤0. The last statement follows since the composition of

the functor K 7→ K
L
⊗
R
A, K ε Coh(S,R) with the functor M 7→M

L
⊗
A
R, M ε Coh(S,A) is the identity. �

Let C = DMod(S,A)≤0 ∩DMod(S,A)≥0 denote the heart of the above t-structure on DMod(S,A). Observe
that this is an abelian category. Let Cc = C ∩Dc(Mod(S,A)), i.e. the full sub-category of all objects in the heart
that are also compact.

Theorem 3.8. Cc is an additive sub-category of C closed under extensions.

Proof. Observe that any short-exact sequence M ′ → M → M ′′ in C corresponds to a distinguished triangle in
DMod(S,A) with each M ′, M and M ′′ in C. (i.e. If i : M ′ →M is a monomorphism in C, the mapping cone of i
identifies with M ′′ which is the cokernel of i in C.) Moreover, in such a short-exact sequence M ′ →M →M ′′, M
is compact if both M ′ and M ′′ are. �

Remark 3.9. One may also prove the following identity straight from the definition:

(3.1.1) σ≤n−1(K[1]) ' (σ≤nK)[1],K ε DMod(S,A)

3.1.2. The induced t-structures on bounded derived categories.

Proposition 3.10. (i) The t-structure defined above induces a t-structure on D+Mod(S,A), which is the full
subcategory of bounded below complexes in DMod(S,A), i.e. complexes K ε DMod(S,A) whose cohomology
sheaves Hi(K) = 0 for all i << 0.

(ii) In case A is bounded above, i.e. Ai = 0 for i >> 0, then the above t-structure induces a t-structure on
D−Mod(S,A) which is the full subcategory of DMod(S,A) consisting of complexes that are bounded above i.e.
complexes K ε DMod(S,A) whose cohomology sheaves Hi(K) = 0 for all i >> 0. In this case it also induces a
t-structure on the bounded derived category DbMod(S,A).

Proof. We will first show that every object in DMod(S,A)≥1 is bounded below. Let M ε DMod(S,A)≥1 . Now
observe that for each i < 0,

HiRΓ(U,M) = RHomA(jU !(A|U [−i]),M) = 0.

The last equality comes from the observation that jU !(A|U [−i]) ε DMod(S,A)≤0, (since i < 0) and the assumption
that M ε DMod(S,A)≥1. Varying U in the site, it follows that Hi(M) = 0 for all i < 0. In particular M is
bounded below. Therefore, for any K ε DMod(S,A), σ≥1(K) belongs to DMod(S,A)≥1 and therefore is bounded
below. Now it follows from the distinguished triangle

σ≤0K → K → σ≥1K → σ≤0K[1]

that, if K ε D+Mod(S,A) also, then so does σ≤0K. This proves that the functor σ≤0 preserves D+Mod(S,A).
Next observe that D+Mod(S,A) is stable by finite applications of both the positive shift [1] and the negative shift
[−1]. Making use of (3.1.1), (i) follows from these observations.

Next we will consider (ii). Since A is bounded above, there exists an integer N so that Hi(A) = 0 for all i > N .
Now the aisle DMod(S,A)≤0 is generated by the objects jU !(A|U )[n], n ≥ 0, which all have cohomology sheaves
trivial in degrees > N . Moreover, one may see readily that any object generated by the above objects by taking
positive shifts, extensions, mapping cones, finite sums and small filtered colimits all have cohomology sheaves trivial
above degree N . For any K ε DMod(S,A), σ≤0(K) ε DMod(S,A)≤0 and therefore has cohomology sheaves trivial
above degree N . Now the distinguished triangle

σ≤0K → K → σ≥1K → σ≤0K[1]

shows that, if K is also bounded above, then so is σ≥1K. This proves the first statement in (ii). The second
statement now follows from (i) and the first statement in (ii). �
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4. Non-standard t-structures, generalized perverse sheaves and perverse extensions

In this section we will show briefly how to define generalized perverse sheaves and perverse extensions of gener-
alized perverse sheaves.

Assume one is given a stratified site i.e. one is provided with a decomposition of the terminal object X of
the site S into a disjoint union of finitely many locally closed sub-objects. By taking the unions of the strata one
defines a finite increasing filtration X0 ⊆ X1 ⊆ · · · ⊆ Xn = X of the object X as well as a filtration of sites
S0 ⊆ S1 ⊆ · · · ⊆ Sn = S, where each inclusion is an open immersion (i.e. the corresponding functor of the
associated topoi of sheaves of sets is an open immersion.) For the most part, the site S will denote either the étale
site of a scheme or the Nisnevich site of a smooth scheme, in which the case the stratification of X will be by locally
closed smooth subschemes, though the example considered in section 7 shows that one may also consider quotient
stacks provided with suitable topologies and stratifications. It is shown in [J-3] that one may also consider possibly
singular schemes over fields of characteristic 0 and provided with the cdh-topology.

Let a (perversity) function p : {Si+1−Si|i} → (integers) be given. We will assume that p is non-decreasing and
p(S0) = 0. Let A denote sheaf of E∞ dgas on S. Now DMod(S,A) and DMod(Si − Si−1,ASi−Si−1) will denote
the obvious derived categories of A-modules. Now one may glue together standard t-structures on each stratum,
shifted suitably by the perversity p(Si − Si−1) to define a non-standard t-structure on DMod(S,A) exactly as in
[BBD, Chapter 1].

In fact we will follow the terminology in [BBD, Chapter 1, 1.4] rather closely. (The only difference will be
that we take the t-structure on the open stratum to be given by the usual t-structure, whereas in [BBD], they
shift this.) Accordingly if ji : Si − Si−1 → S is the obvious inclusion, then ASi−Si−1 will denote j∗i (A) which is
simply the restriction of A to the stratum Si−Si−1. For such a stratified object, j!

i will denote the right-adjoint to
ji! : DMod(Si − Si−1,ASi−Si−1)→ DMod(S,A) whose existence can be shown fairly easily. However, we need to
assume that the following distinguished triangle (i.e. localization sequence) holds, whenever i : Y → X is a closed
immersion with open complement j : U → X:

(4.0.3) j!j
∗(M)→M → i∗i

∗(M)→ j!j
∗(M)[1],M ε DMod(S,A).

We will also require that the two compositions

(4.0.4) j∗i∗ and i∗j! are both trivial.

One may observe that taking adjoints in (4.0.3) provides a second localization sequence: i∗Ri
!(M) → M →

Rj∗j
∗(M)→ i∗Ri

!(M)[1], for any M ε DMod(S,A) and that taking adjoints of the first relation in (4.0.4) implies,
Ri!Rj∗ is also trivial. We will call the combination of (4.0.3) and (4.0.4) the gluing property. Depending on the
situation, one may only need to assume this when all the schemes are smooth. (This is what often happens in
the motivic case, since the schemes are all assumed to be smooth.) In [J-3], we also consider the motivic case for
non-smooth schemes over a field of characteristic 0 using the cdh-topology. Accordingly we will define

DMod(S,A)≤0 = {K ε DMod(S,A)|j∗i (K) ε DMod(Si − Si−1,ASi−Si−1)≤p(Si−Si−1) for all i}(4.0.5)

DMod(S,A)≥0 = {K ε DMod(S,A)|j!
i(K) ε DMod(Si − Si−1,ASi−Si−1)≥p(Si−Si−1) for all i}.

Definition 4.1. (Generalized Perverse Sheaves) Since we prove in the theorem below that the above objects define
a t-structure on DMod(S,A), we call objects in DMod(S,A)≤0 ∩DMod(S,A)≥0 Generalized Perverse Sheaves.

Definition 4.2. The functors σS≤0 and σS≥1. We define the functor σS≤0 : DMod(S,A) → DMod(S,A)≤0

as follows. Let K ε DMod(S,A) be given. We let L = the canonical homotopy fiber of the map K →
Rj∗(σ≥p(S0)+1j

∗(K)). Then we define σS≤0(K) = the canonical homotopy fiber of the map L→ i∗(σ≥p(S1−S0)+1i
∗(L)).

One checks that, so defined σS≤0(K) ε DMod(S,A)≤0. σS≥1(K) is defined to be the mapping cone of the obvious
map σS≤0(K)→ K.

Theorem 4.3. (i) The above structures define a t-structure on DMod(S,A) with the aisle DMod(S,A)≤0 and
co-aisle DMod(S,A)≥0.

(ii) Given a generalized perverse sheaf P0 ε DMod(S0,AS0)≤p(S0)∩DMod(S0,AS0)≥p(S0), there exist extensions

P ε DMod(S,A)≤0 ∩DMod(S,A)≥0

of P0, i.e. j∗0 (P ) ' P0.
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(iii) Given a generalized perverse sheaf P0 ε DMod(S0,AS0)≤p(S0) ∩DMod(S0,AS0)≥p(S0), the extension

P ε DMod(S,A)≤0 ∩DMod(S,A)≥0 of P0

is unique if j∗i (P ) ε DMod(Si−Si−1,ASi−Si−1)≤p(Si−Si−1)−1 and j!
i(P ) ε DMod(Si−Si−1,ASi−Si−1)≥p(Si−Si−1)+1.

Proof. This is essentially the argument in [BBD, Theorem 1.4.10]: we provide some details mainly for the sake of
completeness. We will restrict to the case where there are only two strata, i.e. S1 = S. Let K ε DMod(S,A)≤0

and L ε DMod(S,A)≥1. To show Hom(K,L) = 0, one may argue as follows. First one observes the existence of
the distinguished triangle:

j!(j∗(K))→ K → i∗i
∗(K)→ j!j

∗(K)[1]

where j : S0 → S and i : S − S0 → S are the obvious maps. This provides us with the long-exact-sequence:

· · · → H0(RHomA(i∗i∗(K), L))→ H0(RHomA(K,L))→ H0(RHomA(j!j∗(K), L))→ H1(RHomA(i∗i∗(K), L)) · · · .

Now
H0(RHomA(i∗i∗(K), L)) ∼= H0(RHomA(i∗(K), i!(L)) ∼= 0 and
H0(RHomA(j!j∗(K), L)) ∼= H0(RHomA(j∗(K), j∗(L))) ∼= 0

by our hypotheses. ThereforeH0(RHomA(K,L)) = 0 as well. It is clear from the definitions that DMod(S,A)≤n ⊆
DMod(S,A)≤n+1 and similarly DMod(S,A)≥n+1 ⊆ DMod(S,A)≥n. These prove (i).

Given P0 as in (ii), we will discuss one extension. First let Y = S − S0 denote the closed stratum. Then for a
K ε DMod(S,A), we define

(4.0.6) σY≤nK = homotopy fiber of (K → i∗σ≥p(Y )+n+1i
∗(K)).

Now we let

(4.0.7) P = σY≤0(Rj∗(P0)).

To see this is an extension of P0 we proceed as follows. Clearly j∗◦i∗ is trivial, so that j∗i∗σ≥p(Y )+1i
∗(Rj∗(P0)) ' ∗

and therefore, j∗(σY≤0(Rj∗(P0)) ' j∗(Rj∗(P0)) ' P0.

To show P is in fact a generalized perverse sheaf, now it suffices to show the following:

i∗(σY≤0(Rj∗(P0)) ε DMod(Y,AY )≤p(Y ) and Ri!(σY≤0(Rj∗(P0)) ε DMod(Y,AY )≥p(Y ).

Applying i∗ to to the fiber sequence in (4.0.6) with K = Rj∗(P0), shows that

i∗(σY≤0Rj∗(P0) ' σ≤p(Y )i
∗(Rj∗(P0)).

Since Ri!Rj∗ is trivial, applying Ri! to the fiber sequence in (4.0.6) also shows that

Ri!σY≤0(Rj∗(P0)) ' (Ri!i∗σ≥p(Y )+1i
∗(Rj∗(P0)))[−1] = σ≥p(Y )+2i

∗Rj∗(P0).

These complete the verification that P defined in (4.0.7) is indeed a generalized perverse sheaf and completes the
proof of (ii).

(iii) Let P denote a generalized perverse sheaf extending the perverse sheaf

P0 ε DMod(S0,A|S0)≤p(S0) ∩DMod(S0,A|S0)≥p(S0)

satisfying the hypotheses in (iii). The key diagram is:

i∗i
∗(P )

''PPPPPPPPPPPP

P

;;vvvvvvvvvv

##GG
GG

GG
GG

GG
i∗(Rj∗/j!)j∗(P )

((PPPPPPPPPPPP

j!(j∗(P ))

;;wwwwwwwwww

Rj∗j
∗(P )

//
i∗Ri

!(P )[1]

where

(4.0.8)
j!(j∗(P ))→ P → i∗i

∗(P )→ j!(j∗(P ))[1], i∗i∗(P )→ i∗(Rj∗/j!)j∗(P )→ i∗Ri
!(P )[1]→ i∗i

∗(P )[1] and

P → Rj∗j
∗(P )→ i∗Ri

!(P )[1]→ P [1]
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are distinguished triangles. Now the hypotheses imply that i∗(P ) ε DMod(S − S0,AS−S0)≤p(S−S0)−1 and that
Ri!(P ) ε DMod(S − S0,AS−S0)≥p(S−S0)+1. Therefore, the following lemma with A = i∗(P ) applied to the dis-
tinguished triangle i∗i∗(P ) → i∗(Rj∗/j!)j∗(P ) → i∗Ri

!(P )[1] → i∗i
∗(P )[1] as well as to the distinguished triangle

i∗P → i∗Rj∗j
∗(P )→ i∗i∗Ri

!(P )[1] ∼= Ri!(P )[1] shows that

i∗Ri
!(P )[1] ' i∗(σ≥p(S−S0)(Rj∗/j!)j∗(P )) ' i∗(σ≥p(S−S0)i

∗Rj∗j
∗(P )).

This implies that P identifies with the canonical homotopy fiber of the map Rj∗(P0) → i∗σ≥p(S−S0)i
∗(Rj∗(P0)).

Therefore it is unique. This completes the proof of the theorem. �

Lemma 4.4. Let A → B → C → A[1] denote a distinguished triangle in DMod(S,A) and let n be an integer
so that the natural map σ≤n−1A → A is a quasi-isomorphism. Then the natural map σ≥n(B) → σ≥n(C) is a
quasi-isomorphism.

Proof. Let K ε DMod(S,A)≥n. Since σ≤n−1A→ A is a quasi-isomorphism, it follows that HomDMod(S,A)(A,K) =
0 = HomDMod(S,A)(A[1],K). Therefore the map B → C induces an isomorphism

HomDMod(S,A)(C,K)
∼=→HomDMod(S,A)(B,K).

Now the definition of the functor σ≥n as left-adjoint to the inclusion DMod(S,A)≥n → DMod(S,A) shows that
the induced map σ≥n(B)→ σ≥n(C) is also a quasi-isomorphism. �

5. A counter-example to the existence of non-trivial t-structures: modules over −1-connected dgas

The main result of this section is Theorem 5.8 which shows that under the hypothesis that the sheaf of E∞-dgas
A is −1-connected (as in Definitions 5.1 below), the functor σ≤n identifies with the functor that kills cohomology
in degrees above n. This puts strong restrictions on what can be in the heart of the corresponding t-structure on
DMod(S,A).

Definitions 5.1. (i) We will assume henceforth, but only in this section, that R = ⊕iR(i) is a sheaf of graded
rings and that the sheaf of E∞-dgas A is −1-connected, i.e. Hs(A) = 0 for all s ≥ 1. This terminology is derived
from the case where Ai = B−i for a chain-complex B (i.e. one whose differentials are of degree −1.) In this case, the
theory developed below is entirely similar to the homotopy theory of CW -complexes. We say a sheaf of A-modules
M is −n-connected if Hi(M) = 0 for all i ≥ n. Since HomA(A,M) ∼= HomR(R,M) ∼= M , this is equivalent to
Hi(RHomA(A,M)) ∼= Hi(HomR(R,M)) = 0 for all i ≥ n. We say M is connected if it is −n-connected for some
n > 0.

(ii) A map f : M ′ → M in DMod(S,A) is a k-equivalence if the induced map Hi(f) : Hi(M ′) → Hi(M) is an
isomorphism for all i > k and an epimorphism for i = k.

Definition 5.2. (i) A freeR-module is an objectM ε C(S,R) so thatM is given by a sum ⊕
sU ,tU ε Z

jU !j
∗
U (R)[sU ](tU ),

where U ranges over the objects of the site S. A free A-module is an object M ε DMod(S,A) so that M is given by
a sum ⊕

sU ,tU ε Z
jU !j

∗
U (A)[sU ](tU ), where U ranges over the objects of the site S. We call −sU (−tU ) the dimension

(weight) of the free module jU !j
∗
U (A)[sU ](tU ).

(ii)AnR-moduleM is a cone R-module ifM = Cone(id : ⊕
sU ,tU ε Z

jU !j
∗
U (R)[sU ](tU )→ ⊕

sU ,tU ε Z
jU !j

∗
U (R)[sU ](tU ))

for some freeR-module ⊕
sU ,tU ε Z

jU !j
∗
U (R)[sU ](tU ). A cone A-module is defined similarly. A cell-moduleM ε C(S,R)

is an object M ε C(S,R) provided with a decreasing filtration {FiM |i ≤ 0} by sub-objects in C(S,R) so that
F0(M) is a free R-module and each successive quotient FiM/Fi+1M is also a free R-module, for all i ≤ 0. Moreover
FiM is the mapping cone of a map fi : Fi → Fi+1M of a map in C(S,R)) with Fi a free R-module. (Observe
that this mapping cone may be realized as a quotient of Fi+1M ⊕ Cone(Fi).) In this case we say that FiM
is obtained from Fi+1M by attaching free R-cell modules for each summand in Fi. One defines cell A-modules
M ε D(Mod(S,A)) similarly.

(iii) A CW R-module is a cell R-module M ε C(S,R) so that the dimension of each of the summands

jU !j
∗
U (R)[sU ](tU ) in FiM/Fi+1M

are strictly smaller than the dimension of each of the summands jU !j
∗
U (R)[s′U ](t′U ) in Fi−1/FiM . One defines CW

A-modules similarly.
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Remark 5.3. To see the intuition behind the last definition, consider the case where FiM/Fi+1M is a wedge of
terms of the form AU [i] for each i ≤ 0. In particular, Fi−1M/FiM is a wedge of terms of the form AV [i− 1]. Now
the dimension of AU [i] = −i and the dimension of AV [i− 1] = −i+ 1 and −i < −i+ 1.

Throughout this section we will assume the basic hypotheses as in 5.1, i.e. A is −1-connected or equivalently
Hs(A) = 0 for all s > 0. We will assume that R is a constant sheaf. In this section we develop the basic theory
of cell and CW cell-modules over a sheaf of E∞-dgas. Now the following basic results show that the theory of
CW − A-modules is indeed similar to the homotopy theory of CW -complexes: see, for example, [Gray, Chapter
16].

5.0.8. Convention. : Henceforth, we will denote jU !j
∗
U (R) (jU !j

∗
U (A)) by RU (AU , respectively).

Proposition 5.4. Throughout let P , K be A-modules. (i) Let g : AU [n − 1] → P , f : P → K be A-maps and
assume Hi(K) = 0 for i = −n+ 1. Then there exists a covering {Vα → U |α} of U so that each f|Vα extends to a
map Cone(g|Vα)→ K|Vα where Cone(g|Vα)) denotes the mapping cone of g|Vα . (In this case we say that f extends
locally to a map from Cone(g) to K.)

(ii) Let S denote a finite set of integers and (P,Q) a relative CW − A-module, i.e. Q is obtained from P by
attaching finitely many free A-modules AU [nα,U ] with nα,U ε S. Suppose K is an A-module so that H−i(K) = 0
for all i ε S. Then any map f : P → K of A-modules admits a local extension f̃ : Q → K, i.e. there exists a
covering {Vα → S|α} so that each restriction f|Vα : P|Vα → K|Vα extends to a map f̃|Vα : Q|Vα → R|Vα .

(iii) Suppose that there exists a covering {Vα → S} so that (P|Vα , Q|Vα) is a relative CW − A-module in the
above sense so that Q|Vα is obtained from P|Vα by attaching free-A-cells in dimensions ≤ −n. Then Hi(Q/P ) = 0
for all i > −n.

(iv) If Q is a CW-A-module obtained by attaching free A-cells in dimensions ≤ −n, then Hi(Q) = 0 for all
i > −n.

Proof. For each point p of the site S, the only obstruction to extending fp to Cone(gp) is that the composition
fp ◦ gp be null-homotopic: this is clear since H0(RHomAp(Ap[n − 1], Qp)) = H−n+1(Qp) = 0 by the hypothesis.
This proves (i). To prove (ii) one uses (i) as a starting point to handle the case when Qp is obtained from Pp by
attaching a single Ap-cell. In general one uses ascending induction on the cardinality of the set S.

(iii) It is enough to assume that Q is obtained by attaching finitely many free A-cells to P . In this case one uses
an ascending induction on the number of these cells and the exact sequence Hi(Q′/P ) → Hi(Q/P ) → Hi(Q/Q′)
where Q′ is obtained from P by attaching one less free A-cell. Observe that key use is made of the hypothesis that
Hi(A) = 0 for all i > 0: in fact, the last assertion is false if this is not the case. Clearly (iii) implies (iv). �

Theorem 5.5. Let M ε DMod(S,A) so that M is −n-connected in the above sense for some n.

(i) Then there exists a CW-cell A-module P (M) ε DMod(S,A) with a map P (M) → M which is a quasi-
isomorphism. If Hi(M) = 0 for all i > N , then P (M) can be constructed with A-cells of dimension ≤ N (We say
P (M)→M is a CW-A-resolution.)

(ii) Moreover, if M ′ → M is a map between two such objects in DMod(S,A), there exist CW-A-resolutions
P (M ′) → M ′, P (M) → M and a map P (M ′) → P (M) preserving the given filtrations so that one obtains a
commutative square

P (M ′)
//

��

P (M)

��
M ′

//
M

Proof. Assume that Hi(M) = 0 and Hi(M ′) = 0 for all i > N0. For each class [αN0 ] ε HN0(M), let αN0 :
AU [−N0]→ jU !j

∗
U (M)→M denote a map representing [αN0 ]. Now let PN0(M) = ⊕

[αN0 ] ε HN0 (M)
AU [−N0]: we will

map this to M by mapping the summand indexed by [αN0 ] by the corresponding map αN0 to M . We will denote
this map PN0(M)→M by pN0(M).

Consider the cone A-module Cone(PN0(M)) and also the mapping cone Cone(pN0(M)). Observe that one

has the distinguished triangle: PN0(M)
pN0 (M)
→ M → Cone(pN0(M)) → PN0(M)[1] which results in the long-exact
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sequence:
· · · → Hi(PN0(M))→ Hi(M)→ Hi(Cone(pN0(M)))→ Hi+1(PN0(M))→ · · · .

Since HN0+k(PN0(M)) = 0 for all k > 0 and HN0(PN0(M)) → HN0(M) is a surjection by our choice of PN0(M),
it follows that

(5.0.9) Hi(Cone(pN0(M)) = 0, i ≥ N0

i.e. the map pN0 : PN0(M)→M is an N0-equivalence.

5.0.10.

5.0.11. We will construct a sequence of complexes Pk(M), k ≤ N0, which are A-modules, which in each degree
consist of terms of the form ⊕αAUα [nα] and are provided with compatible maps pk : Pk(M) → M which are
k-equivalences, i.e. induce an isomorphism on Hi for i > k and an epimorphism on Hk. In order to construct
these inductively, we will assume that N is an integer for which such a PN (M) has been already constructed.
To start the induction, we may let N = N0 and let PN (M) denote the complex constructed above. Observe
that Hi(Cone(pN )) = 0 for all i ≥ N . Therefore, we will now replace M by Cone(pN ) and for each class
[α−N+1] ε HN−1(Cone(pN ), let

AUα−N+1
[−N + 1]→ Cone(pN ) = Cyl(pN )/PN (M)

denote a representative. This provides us a map

α−N+1 : ⊕α−N+1AUα−N+1
[−N + 1]→ Cone(pN ) = Cyl(pN )/PN (M)→ PN (M)[1]

ı.e. a map
q−N+1 = α−N+1[−1] : ⊕α−N+1AUα−N+1

[−N ]→ PN (M).

We let PN−1(M) = Cone(q−N+1). We now observe that the induced map q−N+1 : ⊕α−N+1AUα−N+1
[−N ] →

PN (M) also factors through Cone(pN )[−1], which is the homotopy fiber of the obvious map pN : PN (M) → M .
This shows that the composition pN ◦q−N+1 is chain homotopically trivial. Therefore, one obtains an induced map
pN−1 : PN−1(M) = Cone(q−N+1)→M making the triangle

PN (M)
pN //

��

M

PN−1(M) = Cone(q−N+1)

pN−1

66mmmmmmmmmmmmmmm

commute. Observe also that the induced map

(5.0.12) HN−1(⊕α−N+1AUα−N+1
[−N + 1])→ HN−1(Cone(pN ))

is an epimorphism by our assumptions.

Since ⊕α−N+1AUα−N+1
[−N ]) is the homotopy fiber of the map PN (M) → PN−1(M), a comparison of the long

exact sequences in cohomology associated to the distinguished triangles PN (M)
pN→M → Cone(pN ) → PN (M)[1]

and PN−1(M) = Cone(qN−1)
pN−1→ M → Cone(pN−1)→ PN−1(M)[1] shows that the homotopy fiber of the induced

map Cone(pN )→ Cone(pN−1) identifies with ⊕α−N+1AUα−N+1
[−N + 1]). In view of (5.0.12) and the observation

that Hi(⊕α−N+1AUα−N+1
[−N + 1]) = 0 for all i > N − 1, it follows that HN−1(Cone(pN−1)) = 0. Therefore,

Hi(pN−1) is an epimorphism for i = N −1. By construction, one may readily see that Hi(pN−1) is an isomorphism
for i ≥ N . Therefore, pN−1 is an N − 1-equivalence.

We may therefore, continue the inductive construction and define Pk(M) as an A-module, consisting of free cell
A-modules in each degree and provided with a map pk(M) : Pk(M) → M , k ≤ N0 which is a k-equivalence, i.e.
where Hi(pk(M)) is an isomorphism for i > k and an epimorphism for i = k. Finally one lets P (M) = colim

k→−∞
Pk(M)

along with the map p(M) : P (M) → M defined as colim
k→−∞

pk(M). One verifies immediately that p(M) is a quasi-

isomorphism: clearly P (M) is a CW A-module. This proves the first statement in the theorem. The construction
also shows that P (M) was built with A-cells of dimension no greater than N0.

To make the construction of CW-A-resolutions functorial, we will need to make the following modifications to
the arguments above. Instead of choosing representative cohomology classes as in ( 5.0.9), we choose all possible
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maps jU !j
∗
U (A)[−N ]→ M , for all U in the site S. (Since our site S is assumed to be essentially small this causes

no difficulties.) We will then need to repeat the same construction in 5.0.11 and at every stage of the inductive
process. Next observe that since both M ′ and M are assumed to be connected, we may choose a large enough
N so that Hi(M) = Hi(M ′) = 0 for all i > N . Now the construction of the resolution P (M) is made functorial
in M . Moreover the construction of the CW-A resolution by descending induction shows that the induced map
P (f) : P (M ′)→ P (M) preserves the CW-filtration. This proves the second statement in the theorem. �

Definition 5.6. Let Modcw(S,A) denote the category whose objects are all CW − A-modules and morphisms
are morphisms that preserve the given cell-filtrations. A morphism between two CW −A-modules will be called a
quasi-isomorphism if it is a quasi-isomorphism in the underlying category DMod(S,A). The corresponding derived
category obtained by inverting these quasi-isomorphisms will be denoted DModcw(S,A).

Corollary 5.7. The obvious functor DModcw(S,A)→ DMod(S,A) is an equivalence of categories.

Proof. This follows from the last Theorem. �

The following is a key result of this section.

Theorem 5.8. Let M ε D(Mod(S,A)) denote an A-module. Then Hi(σ≤n(M)) = 0 for all i > n and ∼= Hi(M)
if i ≤ n, i.e. the functor σ≤n in Definition 3.4 identifies with the functor that kills the cohomology in degrees above
n.

Proof. This is a direct consequence of the last theorem and Proposition 5.4(iv). The definition of the t-structure
on DMod(S,A) shows that DMod(S,A)≤n is generated using the operations of small sums, mapping cones,
translations [1], extensions and by filtered colimits by the cells jU !(AU )[sU ](tU ) with sU ≥ −n. Since all such
complexes have cohomology sheaves that are trivial in degrees > n, it follows that DMod(S,A)≤n identifies with
the full sub-category of DMod(S,A) consisting of complexes M whose cohomology is trivial in degrees larger than
n. Therefore the right-adjoint to the imbedding DMod(S,A)≤n → DMod(S,A) is in fact the functor that kills the
cohomology in degrees larger than n. i.e. σ≤n is the functor killing the cohomology in degrees larger than n. �

Corollary 5.9. The dga AV cannot belong to the heart of this t-structure unless A is concentrated in degree 0,
i.e. A = R.

Remark 5.10. This shows that, in general, there are no meaningful t-structures for sites provided with presheaves
of spectra or even −1-connected spectra. From this point of view, it seems also preferable to view the motivic
complex as an E∞-dga rather than as an E∞-ring (or symmetric ring) spectrum.

Corollary 5.11. The t-structure obtained above on DMod(S,R) coincides with the usual one, i.e. if K ε DMod(S,R),
σ≤0K identifies with the functor killing cohomology sheaves above degree 0.

Proof. This is clear in view of the above discussion. �

6. Example I: the diagonal t-structures in crystalline cohomology

We will begin by recalling the basic framework from [Ek] and [Ill]. Let k denote a perfect field of characteristic
p > 0 and let W = W (k) = the ring of Witt vectors of k. The Raynaud ring, R, is the graded W -ring, and
generated by F , V in degree 0 and d in degree 1 with the following relations:

FV = V F = p,Fa = aσF, V = V aσ,(6.0.13)

da = ad,FdV = d, d2 = 0, a ε W

Here (−)σ is the Frobenius endomorphism of W . Given a scheme X defined over k, one may adapt the definition
above to define a sheaf of rings R on the Zariski site of X, called the sheaf of Raynaud rings on X. One may then
extend the discussion below to the Zariski site of the given scheme X. However, for the sake of simplicity, we will
keep X = Spec k throughout the following discussion.

We let Ri, i = 0, 1, denote the piece of R in degree i. The above relations enable us to view the graded ring R
as a (non-commutative) dga, so that the methods developed in the earlier sections of this paper apply, at least on
a heuristic level. In fact that is the reason for discussing the following as an application.
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In view of the above relations, one observes that a left R-module M is the same as a complex of R0-modules
and where the differential d : Mn → Mn+1 satisfies FdV = d. Moreover any left R0-module can be viewed as a
left R-module concentrated in degree 0. Henceforth an R-module will mean a left R-module. Given an R-module
M , M(n) will denote the R-module defined by M(n)i = Mn+i and the differential d given by (−1)nd.

A complex M of R-modules can be viewed as a double complex M•• where the first degree (called the horizontal
direction) corresponds to the R-grading. The second degree will be called the vertical direction. Thus M•,n denotes
the n-th row of M•• and this is an R-module. Observe that one may take the cohomology of the double complex
with respect to the vertical differential : these cohomology objects will be all R-modules. Thus Hn

v (M••) denotes
the n-th (vertical) cohomology. We define the derived category of cohomologically bounded R-modules, D(R)b to
be the category of all complexes of R-modules M so that Hn

v (M) = 0 for all but finitely many n and where we
invert maps that induce isomorphisms on H∗v . D(R) will denote the corresponding unbounded derived category.

For a complex M of R-modules, we define (M(n)[m]) as the complex of R-modules defined by (M(n)[m])i,j =
M(n+ i)m+j .

Next recall the diagonal t-structures of [Ek]. (See also [Ill, 6.4] for a particularly clear discussion.) First, for
each R-module M and an integer n, one defines the R-module τ̃≤nM by

(6.0.13) τ̃≤nM = (· · · →Mn−1 d→Mn → F∞Bn+1 → 0)

where Bn+1 = Im(dn : Mn → Mn+1) and F∞Bn+1 = ∪
i≥0

F iBn+1. Clearly this is a sub-R-module of M . Next

τ̃≥n+1M is defined to be the quotient M/τ̃≤nM . A complex of R-modules M•• ε D(R)≤0 if for each n, the natural
map τ̃≤nH−nv (M••)→ H−nv (M••) is an isomorphism of R-modules. We say a complex of R-modules M ε D(R)≥1

if the natural maps H−nv (M••)→ τ̃≥n+1(H−nv (M••)) is an isomorphism.

It was shown in [Ek] that this defines a t-structure on D(R)b, the diagonal t-structure with the heart of the
t-structure given by D(R)b,≤0 ∩ D(R)b,≥0. We proceed to show that the derived category D(R) is compactly
generated and that the above t-structure is defined by a family of compact objects as in Theorem 1.9.

For each pair of integers i and j we define the complex R(−j)[i] of R-modules which is the following (double)
complex: we put the R-module R(−j) (viewed as a complex) as the −i-th row and put zeros elsewhere. Observe
that Hn

v (R(−j)[i]) = R(−j) if n = −i and 0 otherwise. Therefore, if j ≤ i, R(−j)[i] ε D(R)b,≤0. We also consider
the complex of R-modules, R0(−i)[i] which is the following (double) complex: we put the R-module R0(−i) as the
−i-th row and put zeros elsewhere.

The following is the main result of this section.

Theorem 6.1. (i) Let D̄(R)≤0 denote the smallest pre-aisle generated by the R-modules R(−j)[i], j ≤ i. These
R-modules are compact objects in D(R) and hence the above pre-aisle is an aisle which defines a t-structure on
D(R).

(ii) Let D(R)b denote the full subcategory of complexes in D(R) that are bounded. Then D̄(R)b,≤0 = D(R)b ∩
D̄(R)≤0 and D̄(R)b,≥0 = D(R)b ∩ D̄(R)≥0 defines a t-structure on D(R)b. This t-structure agrees with the t-
structure defined on D(R)b in [Ek] making using the truncation functors (6.0.13).

Proof. A key observation is the following identification:

(6.0.14) HomD(R)(R(−j)[i],M••) = H−iv (M j,•).

Therefore, HomD(R)(R(−j)[i],M••) commutes with arbitrary small sums in the argument M•• and therefore,
each R(−j)[i] is a compact object in D(R). One may now invoke Theorem 1.0.1 to obtain (i). Observe that there
is a surjection R → R0 defined by the identity in degree 0 and the trivial map in degree 1. It is often convenient
to add R0(−i)[i] to the collection of generators: but the above observation shows that it suffices to consider just
{R(−j)[i]|j ≤ i} as a set of generators.

Next we consider (ii). Since R is bounded above, one may show as in the proof of Proposition 3.10 that the
above t-structure induces a t-structure on D(R)b. In view of the definition (6.0.13), one next observes that the
conditions

(6.0.15) τ̃≤i−1H
−i
v (M••) = 0 and H−iv (M j,•) = 0, for all j < i
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are equivalent.

Let D̄(R)b,≥0 = D(R)b ∩ D̄(R)≥0 and let D(R)b,≤0, D(R)b,≥0 denote the t-structure defined on D(R) by [Ek]
making use of the truncation functors (6.0.13). Then it follows from the identification (6.0.14) and the above
observation that a bounded complex M•• of R-modules belongs to D̄(R)b,≥0 if and only if M•• satisfies the
equivalent conditions in (6.0.15). But the first of these conditions characterizes M•• belonging to D(R)b,≥0 and
the second characterizes M•• belonging to D̄(R)b,≥0 in view of (6.0.14). Therefore, we have shown D(R)b,≥0 =
D̄(R)b,≥0. By [Ek], the truncation functors τ̃≤n define a t-structure on D(R)b with the co-aisle given by D(R)b,≥0.
Therefore, D(R)b,≤0 is determined as the aisle corresponding to the co-aisle D(R)b,≥0. Similarly D̄(R)b,≤0 is the
aisle corresponding to the co-aisle D̄(R)b,≥0. Therefore, D̄(R)b,≤0 = D(R)b,≤0, which completes the proof of the
theorem. �

7. Example II: Equivariant Derived Categories

We will fix an algebraically closed field k of characteristic p ≥ 0. Let G denote a smooth group scheme acting on
a scheme X of finite type over k. Now [X/G] will denote the associated quotient stack. One associates several sites
to the stack [X/G]: [X/G]sm denotes the site whose objects are smooth maps s : S → [X/G] with S an algebraic
stack of finite type over k and where the coverings of a given object s : S → [X/G] are smooth coverings. In [J-2],
we introduced the iso-variant étale site, [X/G]iso.et as follows: the objects are G-isovariant etale maps Y → X of
schemes. These correspond to iso-variant étale maps [Y/G]→ [X/G] of the associated stacks, or to G-equivariant
maps Y → X that induce isomorphism on the stabilizer groups. One may verify readily that this site is closed
under fibered products. Therefore, sending an iso-variant étale map to the same map viewed simply as an étale
map defines a morphism of sites: π : [X/G]sm → [X/G]iso.et. It is shown in [J-2] that the latter site has enough
points and that the points correspond to G-orbits of geometric points of X. (One may consult [J-2] for more details
on the isovariant étale site.)

Proposition 7.1. Let X denote a scheme of finite type over k provided with the action of an algebraic group
G where G acts with finitely many orbits. Then objects in [X/G]iso.et consist of schemes Y of finite type over
k provided with a G-action making the given map Y → X G-isovariant and étale (i.e. an étale map which is
G-equivariant and inducing an isomorphism on the stabilizer groups.) Therefore any such Y also has only finitely
many G-orbits. If X is an imbedding of G, i.e. there is an open orbit where G acts freely, then the same is true
for Y .

Proof. These are clear from the definition of isovariant maps. �

Next assume that the group G is a torus T and X is a toric variety associated to T . Observe that each object in
the site [X/T ]iso.et is a toric variety for T provided with a T -isovariant étale map to X. Now T acts with finitely
many orbits on X so that there are only finitely many points on the site [X/T ]iso.et, each corresponding to the
T -orbits of geometric points of X. In characteristic zero it is possible to define a topological space corresponding
to the site [X/T ]iso.et. However, this approach clearly fails in positive characteristic and necessitates the use of the
site [X/T ]iso.et.

Next given a geometric point x̄ of X, one observes from (7.0.16) below that it has a T -stable neighborhood of
the form T x̄× Vx̄ where Vx̄ denotes an affine toric variety for Tx̄ which contracts Tx̄-equivariantly to x̄. (Here Tx̄
denotes the stabilizer at x̄.) Therefore one may readily compute Rπ∗(Ql

) (where π : [X/G]sm → [X/G]iso.et is the
map of sites) and show that one has the isomorphism:

Rnπ∗(Ql)T x̄ ' Hn(BTx̄; Ql), for each n ≥ 0.

However, we need to consider Rπ∗(Ql) as a sheaf of E∞-dgas. This makes it necessary to first develop certain
background material, which is done in the next section.

Proposition 7.2. Rπ∗(Ql) is a sheaf of E∞-dgas on [X/T ]iso.et.

Proof. This follows from Example 9.5 in the last section. �

Observe that if K ε D+([X/T ]sm,Ql), then Rπ∗(K) has the structure of a sheaf of E∞-dg modules over Rp∗(Ql).

If L ε D+([X/T ]iso.et, Rp∗(Ql)), Lp∗(L) = Ql

L
⊗

Rp∗(Ql)
L ε D+([X/T ]sm,Ql).
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Next one observes that for toric varieties, the stabilizers Tx̄ are all connected. Therefore, every T -equivariant
`-adic local system on ET×

T
O is constant, for any T -orbit O on X. Therefore, the generators of the derived category

D+([X/T ]lis.et,Ql) are jO!(Ql), where jO : ET×
T
O → ET×

T
X is the obvious locally closed immersion.

Observe also that each orbit O has an open neighborhood VO which is stable by T so that

(7.0.16) VO ∼= O × SO
where SO is a toric variety for Tx̄, x ε O. Moreover, SO is an attractive slice (as in [BJ-1, (0.3)]) for the action
of a 1-parameter subgroup of Tx̄ and O is the only closed T -orbit in this T -stable neighborhood. Therefore, T -
equivariant `-adic local systems on VO and O correspond and they are just the constant systems. Let jVO : VO → X
denote the open immersion and let D+,c([X/T ]sm,Ql) denote the full subcategory of bounded below complexes of
`-adic sheaves on [X/T ]sm with constructible cohomology sheaves. Then it follows that, therefore, jVO!(Ql) as O
varies among the T -orbits, form a set of generators for D+,c([X/T ]sm,Ql). We let
(7.0.17)
Dc([X/T ]iso.et, Rπ∗(Ql)) denote the full subcategory of D+([X/T ]iso.et, Rπ∗(Ql)) generated by Rπ∗(jVO,!Ql)

asO varies among the T -orbits. (Since eachRp∗(jVO,!Ql) will be shown to be a compact object inD+([X/T ]iso.et, Rπ∗(Ql))
below, the above category is a full subcategory of the category of compact objects in D+([X/T ]iso.et, Rπ∗(Ql)).)

Proposition 7.3. Assume the above situation. Then one obtains the quasi-isomorphisms:

Rπ∗(jVO!(Ql)) ' jVO!(RπVO∗(Ql)) and(7.0.18)

Lπ∗(jVO!(RπVO∗(Ql))) ' jVO!(Ql)(7.0.19)

where πVO : [VO/T ]sm → [VO/T ]iso.et is the obvious map of sites.

Proof. First observe that Lπ∗ and jVO! commute. (To see this, observe that their right adjoints are Rπ∗ and j∗VO
which evidently commute since jVO is an open immersion.) Therefore the second quasi-isomorphism follows from
the observation that Lπ∗VO (RπVO∗(Ql) ' Ql.

Now we consider the proof of the first quasi-isomorphism. Let O′ denote a T -orbit so that the closure of O
contains O′. Now either O′ = O or O′ 6= O. In the first case, as observed above, j∗VO and RπVO∗ commute so that
the stalk of Rπ∗(jVO!Ql) at O identifies with RπO∗(Ql). Therefore, it suffices to consider the case when O′ 6= O.
Let X̃ → X denote any object in [X/T ]iso.et that is an isovariant étale neighborhood of the orbit O′. Then X̃ is
also a toric variety for T with orbits Õ (Õ′) lying above O (O′, respectively). Observe that the same slice structure
holds for X̃. Let ṼÕ (ṼÕ′) denote the corresponding Zariski neighborhood of the orbit Õ (Õ′, respectively).

Letting j̃ : ṼÕ′×
X̃

ṼÕ → ṼÕ′ , one obtains the identification:

(7.0.20) Hn
T (ṼÕ′ , j̃!(Ql)) ∼= Hn

T (ṼÕ′ , ṼÕ′ − ṼÕ′×
X̃

ṼÕ,Ql).

Moreover, in view of Proposition 7.1, it follows that the stalk Rnπ∗(jVO!Ql)O′ may be obtained by taking the colimit
of groups of the form Hn

T (ṼÕ′ , j̃!(Ql)), as one runs over T -toric varieties that are iso-variant étale neighborhoods
of the orbit O′. Therefore, it suffices to show that the groups in (7.0.20) are 0. Now ṼÕ′ − ṼÕ′×

X̃

ṼÕ
∼= Õ′ × (S̃Õ′ −

S̃Õ′ ∩ ṼÕ). Since both the slice S̃Õ′ and S̃Õ′ − (S̃Õ′ ∩ ṼÕ) contract to x (where x is a any chosen fixed point of Õ′)
under the attractive action of a 1-parameter subgroup of Tx, one obtains the isomorphism

Hn
Tx(S̃Õ′ − (S̃Õ′ ∩ ṼÕ),Ql)

∼=→Hn
Tx(S̃Õ′ ,Ql).

In view of the long -exact sequence

Hn
Tx(S̃Õ′ − (S̃Õ′ ∩ ṼÕ),Ql)→ Hn

Tx(S̃Õ′ ,Ql)→ Hn
Tx(S̃Õ′ , S̃O′ − (S̃Õ′ ∩ ṼÕ),Ql),

this implies that

Hn
T (ṼÕ′ , ṼÕ′ − ṼÕ′×

X̃

ṼÕ,Ql) ∼= Hn
Tx(S̃Õ′ , S̃Õ′ − (S̃Õ′ ∩ ṼÕ),Ql) ∼= 0, for all n.

This proves that Hn
T (ṼÕ′ , ṼÕ′ − ṼÕ′×

X̃

ṼÕ,Ql) = 0 for all n thereby completing the proof of the proposition. �

Theorem 7.4. Assume that X is a toric variety for the action of the torus T .

(i) Then the functor

Rπ∗ : Db,c([X/T ]sm,Ql)→ Dc([X/T ]iso.et, Rπ∗(Ql)) is fully faithful and
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Lπ∗ : Dc([X/T ]iso.et, Rπ∗(Ql))→ Db,c([X/T ]sm,Ql)
is a left-inverse.

(ii) These functors induce an equivalence of categories:

Dc([X/T ]iso.et, Rπ∗(Ql)) ' Db,c([X/T ]sm,Ql) ' DT
b,c(Et(ET×

T
X),Ql) = DT

b,c(X,Ql).

Here ET×
T
X denotes the simplicial scheme defined by the presentation of the stack X → [X/T ] and Et(ET×

T
X)

denotes the étale site of the simplicial scheme ET×
T
X. Under the above equivalence, the standard t-structure on

the left defined as in section 3, corresponds to the usual t-structure on the right while the non-standard t-structure
on the left defined as in Theorem 4.3 where the strata are the T -orbits corresponds to the t-structure on the right
obtained by gluing.

Proof. In view of the last proposition, it follows readily that the two compositions Lπ∗ ◦ Rπ∗ and Rπ∗ ◦ Lπ∗
are naturally equivalent to the corresponding identity functors. Therefore, the equivalence of the above derived
categories and the fully faithfullness of Rp∗ follows. The category D+,c([X/T ]iso.et, Rπ∗(Ql)) inherits a t-structure
from D+([X/T ]iso.et, Rπ∗(Ql)). The definition of the t-structures shows that Rπ∗ preserves these. This is clear
for the standard t-structures and for the non-standard t-structures, it suffices to consider the case where there are
only two strata, which are both T -orbits. Now the observation that the stabilizers are all connected shows that the
T -equivariant local systems on the orbits are constant. This enables one to show readily that the t-structures are
preserved by Rπ∗. The last equality is because one defines DT

b,c(X,Ql) to be DT
b,c(Et(ET×

T
X),Ql). This completes

the proof of the theorem. �

Remarks 7.5. (i) The formality of the E∞-dg algebra Rπ∗(Ql) may be shown by first observing that the stalks
Rπ∗(Ql)x̄ ∼= RΓ(BTx̄,Ql). Since BTx̄ is the product of r-copies of P∞, if r is the rank of Tx̄, one may show
readily that RΓ(BTx̄,Ql) breaks up into the sum ΣiRnΓ(BTx̄,Ql). Finally the local structure of the toric variety
considered above shows such a decomposition holds locally on the site [X/T ]iso.et.

(ii) In case the toric variety is defined over the complex numbers, making use of the transcendental topology, it is
easy to define a replacement for the isovariant étale site. However, in positive characteristics using `-adic coefficients
the use of the isovariant étale site seems unavoidable. With the above theorem in place, it would be straight-forward
to provide a proof of the conjecture of Soergel (see [Soe]) for toric varieties in positive characteristics: we will return
to this elsewhere.

8. Example III: Motivic Derived Categories

In this section we will provide certain motivic derived categories with t-structures so that this t-structure is
compatible with a t-structure on the corresponding mod-`ν étale derived categories. This is put in more as a
sample of what is possible in this direction, than as the most definitive result in this direction. More definitive
results, in particular how they relate to the motivic t-structures conjectured in [VV92], and also in the setting of
Voevdosky’s motivic derived categories are discussed in the forthcoming paper [J-3].

We will fix a ground field k, of arbitrary characteristic p throughout the paper and will only consider smooth
schemes of finite type over k. This category will be denoted (Smk). When provided with the big Zariski (Nisnevich,
étale) topologies, we obtain the big-sites (Smk)Zar, ((Smk)Nis, (Smk)Et, respectively). Z = ⊕

r
Z(r) will denote the

integral motivic complex on the sites (Smk)Zar and (Smk)Nis. ` will denote a prime different from p, ν > 0 an
integer and Z/`ν = ⊕

r
Z/`ν(r) will denote the corresponding mod−`ν motivic complex with Z/`νet the corresponding

complex on the big-étale site (Smk)Et. Making use of [J-1, Theorem 1.1], these are in fact sheaves of E∞-differential
graded algebras. Q = ⊕

r
Q(r) = ⊕

r
Z(r) ⊗ Q. The E∞-structure on the motivic complexes discussed in [J-1] and

[BJ, section 5], is quite explicit, is over the Barratt-Eccles operad and therefore has several nice features. For the
purposes of this paper though, all we require is an E∞-structure on the motivic complex compatible with the given
pairing on it. Such a structure is often assumed in the literature and therefore, one may also assume its existence.

In general, we will fix a commutative Noetherian ring R and consider Z ⊗ R, where R denotes the constant
sheaf associated to R: this is a sheaf of E∞-dgas over the ring R and we will denote this by A (with its weight
r-part denoted A(r)) throughout. Observe that now one has augmentations R → A and A → R the composition
of which is the identity. For the rest of the discussion we will take R = Z/`ν for some prime ` 6= char(k) and ν
a positive integer. Observe that, in this case the weak-form of the Beilinson-Soulé vanishing condition holds as a
consequence of the Bloch-Kato conjecture, now a theorem: see [VV, Introduction] and also [A].
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8.1. Given a scheme X ε (Smk), we let (Smk/X) denote the sub-category of (Smk) that are of finite type over
X with morphisms Y ′ → Y being morphisms of smooth schemes compatible with the given maps to X. The site
(Smk/X)Zar ((Smk/X)Nis, (Smk/X)et) is the corresponding big site and will be often denoted XZar (XNis, XEt,
respectively).

Similarly Sh(XNis,R) will denote the category of all sheaves of R-modules on the site XNis for a given scheme
X. C(Sh((Smk)Nis,R)) ( C(Sh(XNis,R))) will denote the category of all (unbounded) complexes of objects in
Sh((Smk)Nis,R) (Sh(XNis,R), respectively). We first define Mod((Smk)Nis,A) to consist of all complexes of
sheaves K on (Smk)Nis with the following properties:

(i) K = ⊕
r
K(r) has homotopy invariant cohomology sheaves and

(ii) K has the structure of a complex of sheaves of E∞-modules over the sheaf of E∞-dgas A.

A morphism f : K ′ → K between two such objects will be a map that preserves the last two structures. The
objects of the derived category D((Smk)Nis,A) are the same as those of Mod((Smk)Nis,A), but where morphisms
are defined up to A1-equivalences. D(XNis,A) will denote the corresponding derived category where morphisms
are defined up to A1-equivalences. Since A is an E∞-dga, (see [J-1, Theorem 1.1]), we may make use of Theorem 1.1
to define a t-structure on D(XNis,A).

For each map f : X → Y of smooth schemes over k, we obtain a map of sheaves of E∞-dgas: A|Y → Rf∗(A|X) as
well as f−1(A|Y )→ A|X . These induce derived functors Rf∗ : D(XNis,A)→ D(XNis,A) and Lf∗ : D(YNis,A)→
D(XNis,A).

Let ε : XEt → XNis denote the obvious maps of sites. We will assume for the rest of this discussion that the
field k has finite `-étale cohomological dimension so that the hypotheses of Theorem 1.1 apply with R = Z/`ν (i.e.
the integers mod `) to complexes of sheaves of R-modules on the étale site of X. Then we let realν denote the
functor K 7→ ε∗(K ⊗ Z/`ν) = ⊕rε∗(K(r) ⊗ Z/`ν) sending the (graded) A-module K to the pull-back to the étale
site of the corresponding mod-`ν-reduction. We let D(XEt, realν(A)) denote the derived category of complexes
of sheaves of modules over realν(A) where the morphisms are defined again up to A1-equivalence. (Observe that
A1 is acyclic in the étale topology only with respect to locally constant sheaves of Z/`ν -modules, with ` different
from char(k). Therefore, the A1-localization is needed in general to be the target of any functor from D(XNis,A).)
Since realν(A) = ⊕rrealν(A(r)) is an E∞-dga on the big étale site of X we may make use of Theorem 1.1 to define
a t-structure on D(XEt, realν(A)). Since realν(A) = ⊕rµ`(r), we obtain the equivalence of derived categories:
D(XEt, realν(A)) ' D(XEt,⊕rµ`ν (0)). Moreover, the t-structure on D(XEt, realν(A)) provided by Theorem 1.1
identifies with the usual t-structure on D(XEt,⊕rµ`ν ). We also let D(XEt, µ`ν (0)) ' D(XEt,Z/`ν) denote the
corresponding A1-localized derived categories.

Definition 8.1. Assume that the base field has a primitive `ν-th root of unity, for example, that it is a perfect
field and has finite `-étale cohomological dimension. We define the realization functor real : D(XNis,A) →
D(XEt, µ`ν (0)) ' D(XEt,Z/`ν) to be the composition of the functor sending K = ⊕rK(r) 7→ ⊕rrealν(K(r)) with
the one taking the graded piece in degree 0 of the graded module ⊕rrealν(K(r)).

Theorem 8.2. Assume that the base field has a primitive `ν-th root of unity and that it is a perfect field of finite `-
étale cohomological dimension. Then the realization functor real : D(XNis,A)→ D(XEt, µ`ν (0)) ' D(XEt,Z/`ν)
is compatible with the above t-structures where the t-structure on D(XEt,Z/`ν) is the usual one. i.e. There exist
natural transformations

real ◦ σ≤0 → σ≤0 ◦ real and real ◦ σ≥1 → σ≥1 ◦ real.

Proof. A key observation is that the realization functor realν commutes with the extension by zero functors. (One
way to see this is to observe that the right adjoint of ε∗ is ε∗ while the right adjoint of jU ! is j∗U . One may readily
show that ε∗ and j∗U commute. Therefore, their left-adjoints also commute.) Therefore, realν(jU !(A|U )[n]) '
jU !(realν(A|U [n])) = ⊕rjU !(µ`ν |U (r)[n]). Now the definition of t-structures as in Theorem 1.1 shows first that the
realization functor realν preserves the aisles. i.e. The following conclusions hold.

Let DNis (D≤0
Nis) denote the category D(XNis,A) (D(XNis,A)≤0, respectively) and let DEt (D≤0

Et ) denote the
category D(XEt, realν(A)) (D(XEt, realν(A))≤0, respectively). If iNis : D≤0

Nis → DNis and iEt : D≤0
Et → DEt are

the obvious inclusions, then realν sends D≤0
Nis to D≤0

Et and moreover realν ◦ iNis = iEt ◦ realν .
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Therefore, we obtain the following maps for any K ε D≤0
Nis and L ε DNis:

Hom
D
≤0
Nis

(K,σ≤0L)
∼=→HomDNis(iNis(K), L)→ HomDEt(realν(iNis(K)), realν(L))(8.1.1)

∼=→HomDEt(iEt(realν((K))), realν(L))
∼=→Hom

D
≤0
Et

(realν((K)), σ≤0realν(L))

Therefore, taking K = σ≤0L, the identity map σ≤0L→ σ≤0L induces a map realν(σ≤0L)→ σ≤0(realν(L)). This
proves the realization functor, realν , is compatible with the truncation functor σ≤0. Then, since the realization
functor sends distinguished triangles to distinguished triangles, it follows that it also preserves the co-aisles. i.e.
One also obtains a natural transformation

realν ◦ σ≥1 → σ≥1 ◦ realν .
Therefore, the realization is clearly compatible with the t-structures. Finally, one may see that the functor sending
the graded module ⊕rrealν(K(r)) to realν(K(0)) is induced by pull-back along the map µ`ν (0) → ⊕rµ`ν (r) of
sheaves of dgas and that therefore it also is compatible with the passage from the t-structure on D(XNis,A) to
the t-structure on D(XEt,Z/`ν). �

Remark 8.3. In view of the validity of the Beilinson-Soulé vanishing condition with mod-`ν coefficients (at least
when X is smooth), the heart of the t-structure on D(XNis,A) contains interesting objects and the notion of
motivic perverse sheaves makes sense using the non-standard t-structures obtained with respect to a stratification
of X, i.e. provided the gluing property (i.e. (4.0.3) and (4.0.4)) holds. Therefore, the functor realν would send
motivic perverse sheaves (defined as in 4) to perverse sheaves of Z/lν-modules on the étale site of X.

One could replace the derived categories considered above with the derived categories of complexes of sheaves
with transfers both on the Nisnevich and étale sites. This will lead to similar results as above.

9. The adic-formalism and adic dg-algebras

Since we would like the following discussion to be useful in rather general contexts, we start by considering an
an arbitrary site C, whose objects are schemes of finite type over a given base scheme S. We will also assume that
R is a commutative Noetherian ring with 1: by providing C with the corresponding constant sheaf R, we obtain
the ringed site (C, R). We will let Sh(C, R) denote the category of sheaves of R-modules on C. We will further
assume that C has a conservative family of points, i.e. a sequence 0 → F ′ → F → F ′′ → 0 of sheaves in Sh(C, R)
is exact if and only if the corresponding sequence 0→ F ′p → Fp → F ′′p → 0 of stalks is exact, for every point p. In
this case one may show readily that Sh(C, R) is a Grothendieck category so that it has enough injectives.

Next let Λ• = {Λn|n ε Z, n ≥ 0} denote an inverse system of rings and let Λ = lim
∞←n

Λn. For example, let

R denote a local ring of dimension 1 with maximal ideal m so that the residue field R/m is of characteristic `
which is prime to the residue characteristics of the base scheme S and R is complete in the m-adic topology. For
example, R = Zl and m = l(Z)l or E is a finite extension of Ql and R is the integral closure of Zl in E. We then
let Λn = R/mn+1. We let

(9.0.2) Sh(C,Λ•)N = lim
∞←n

Sh(C,Λn)

which is the topos of inverse systems of sheaves Fn ε Sh(C,Λn), i.e. the map Fm → Fn is compatible with the map
Λm → Λn, for all m ≥ n. In this set-up, the functor sending F ε Sh(C,Λ) to {Fn = Λn⊗

Λ
F |n} defines a map of

ringed topoi:

π : Sh(C,Λ•)N → Sh(C,Λ)

so that π∗({Fn|n}) = lim
∞←n

Fn. Recall that for any F = {Fn|n} ∈ Sh(C,Λ•)N, the sheaf Rnπ∗F is the sheaf

associated to the presheaf U 7→ Hn(U,F ). Then one obtains the following exact sequence [Ek85, 0.4.6]

(9.0.3) 0→ lim←−
1Hn−1(U,Fn)→ Hn(U,F )→ lim←−H

n(U,Fn)→ 0.

Recall (cf. [SGA5, exp. V]) that a projective system Mn, n ≥ 0 in an additive category is AR-null if there exists
an integer r such that for every n the composite Mn+r →Mn is zero. Let U ε C and let CU denote the subcategory
of all objects in C defined over U with morphisms between two such objects being morphisms in C over U .

Let jU ! : CU → C denote the functor sending an object V → U to V ε C. Then one may show that the
corresponding functor jU ! : Sh(CU , R)N → Sh(C, R)N is exact. Therefore, its right adjoint j∗ preserves injectives
and therefore, it follows that
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j∗URπ∗(F ) ' Rπ∗(j∗UF ).

Definition 9.1. A complex M of objects in Sh(C,Λ•)N is
• AR-null if all the Hi(M) are AR-null and
• is almost zero if for any U ε C, the restriction of Hi(M) to CU is AR-null.

Definition 9.2. We say that
• a system M = (Mn)n of Sh(C,Λ•)N is adic if all morphisms

Rn ⊗Rn+1 Mn+1 →Mn

are isomorphisms; it is called almost adic if for every U ∈ C there is a morphism NU → MU with almost
zero kernel and cokernel with NU adic in Sh(CU ,Λ•)N.
• a complex M = (Mn)n of objects in Sh(C,Λ•)N is called a λ-complex if all the cohomology modules Hi(M)

are almost adic. Let Cλ(C,Λ) ⊂ C(Sh(C,Λ•)N) denote the full subcategory whose objects are λ–complexes.
We let Cλ(C,Λ)⊗Q denote the quotient of the category Cλ(C,Λ) by the full sub-category of torsion sheaves.
• We let Dλ0(C,Λ) ⊆ D(Sh(C,Λ•)N) denote the full subcategory whose objects belong to Cλ(C,Λ). The full

subcategory of Dλ(Sh(C,Λ•)N) of complexes concentrated in degree 0 is called the category of λ-modules.
• The category Dλ(C,Λ) (sometimes written just D(C) if the reference to Λ is clear) is the quotient of the

category Dλ0(C,Λ) by the full subcategory of almost zero complexes. The category Dλ(C,Λ)⊗Q will denote
the quotient of the category Dλ(C,Λ) by the full subcategory of all torsion sheaves.
• Assume that the categories of complexes and the associated derived categories above are defined using Λn

being either Z/ln+1 or R/mn+1 where R is the ring of integers in a finite field extension E of Ql. We then
let Cλ(C, E) = Cλ(C,Λ) ⊗ Q, Dλ(C, E) = Dλ(C,Λ) ⊗ Q and let Cλ(C, Q̄l) = lim

→
E

Cλ(C, E). Dλ(C, Q̄l) will

denote the corresponding derived category.

9.1. Coherently homotopy associative and commutative Dg-algebras. A dg-algebra is a λ-complex
A ε Cλ(C,Λ) which is also an algebra in Cλ(C,Λ). Observe that the last condition means, there exists a coherently
associative pairing µ : A ⊗Λ A → A compatible with a unit map i : Λ → A. Moreover, the last condition means
A = {An|n}, with An ε Sh(C,Λn) being an associative algebra. Such a dg-algebra is commutative, if each of the
dg-algebras An is a commutative dg-algebra in Sh(C,Λn). For the rest of the discussion, we will assume that A is
a commutative dg-algebra.

A homotopy associative and commutative dg-algebra is a λ-complex A ε Cλ(C,Λ) where the pairing µ is only
homotopy associative and commutative and the required identities involving composition with the unit map i holds
only up to homotopy. Much more useful are coherently homotopy associative and commutative dg-algebras or E∞-
algebras which may be briefly (or informally) defined as a λ-complex A ε Cλ(C,Λ) with prescribed higher order
homotopies for all iterated compositions involving µ and i. The above informal definition may be formalized as
follows making use of the Eilenberg-Zilber operad as in [H-Sch]. ( While this notion seems familiar to topologists, it
does not seem to be familiar to algebraists (at least as much) and therefore the following paragraphs are justified.)

9.1.1. The (classical) Eilenberg-Zilber operad in Sh(C,Λ). Consider the functor Z defined by n 7→ C∗(∆[n],Λ),
where ∆[n] denotes the simplicial set {Hom∆([k], [n])| [k] ε ∆}. This will be denoted Z = C∗(∆,Λ). Clearly Z
is a cosimplicial object in Sh(C,Λ). We will denote the category of cosimplicial objects in Sh(C,Λ) by Sh(C,Λ)∆.

The (classical) Eilenberg-Zilber operad in Sh(C,Λ) is defined by the sequence OEZ(n) = HomSh(C,Λ)∆(Z,Z⊗n)
where Z⊗n(m) = Z(m)⊗

n

. The operad structure is defined by the compositions:

γn : HomSh(C,Λ)∆(Z,Z⊗n)⊗HomSh(C,Λ)∆(Z,Z⊗k1 )⊗· · ·⊗HomSh(C,Λ)∆(Z,Z⊗kn )→ HomSh(C,Λ)∆(Z,Z⊗Σiki )

(See [H-Sch] for more details.) An algebra over the above operad is a complex K in Sh(C,Λ) provided with pairings
µk : OEZ(k) ⊗ K⊗n → K which are compatible with the pairings {γk|k} and with the action of the symmetric
group Σn (which acts on the left as follows: if σ ε Σn, σ acts on OEZ(n) by permuting the n-factors Z⊗n and
it acts by permuting the n-factors of K⊗

n

using σ−1.) One may readily show that the complexes OEZ(n) are all
acyclic. The pairings µk encode the higher order homotopies.

It is shown in [H-Sch, (2.4.1) Proposition] that if A is a coismplicial object in Sh(C,Λ), then it normalization
is the co-chain complex in Sh(C,Λ) defined by Norm(A) = HomSh(C,Λ)∆(Z,A). Then a main result in [H-Sch] is
the following:
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Theorem 9.3. (Hinich and Schectmann: see [H-Sch].) If A is a cosimplicial algebra in Sh(C,Λ), then its normal-
ization Norm(A) has the structure of an algebra over the classical Eilenberg-Zilber operad.

Since we will need to make use of their proof, we will provide the following explanation of it. The required
algebra structure on Norm(A) over the Eilenberg-Zilber operad is provided by the following sequence of maps:

OEZ(n)⊗Norm(A)⊗
n

= HomSh(C,Λ)∆(Z,Z⊗
n

)⊗HomSh(C,Λ)∆(Z,A)⊗
n

→ HomSh(C,Λ)∆(Z,Z⊗
n

)⊗HomSh(C,Λ)∆(Z⊗
n

, A⊗
n

)→ HomSh(C,Λ)∆(Z,A⊗
n

)

→ HomSh(C,Λ)∆(Z,A) = Norm(A)

where the last map is given by the structure of a cosimplicial algebra on A and the one before that is the obvious
map obtained by composition.

Corollary 9.4. If A is a cosimplicial algebra in Sh(C,Λ•)N, then its normalization Norm(A) has the structure of
an algebra over the classical Eilenberg-Zilber operad.

Proof. The proof of the last theorem discussed above shows that the algebra structures on Norm(An), for
An ε C(Sh(C,Λn)) over the operad {OE.Z(m)|m ≥ 0} are compatible as n varies proving the corollary. �

9.1.2. Modules over an E∞-dga. Given such an E∞-dg-algebra A, we let Mod(C,A) denote the sub-category
of Sh(C,Λ•)N consisting of objects M = {Mn|n} which are λ-complexes, with the following extra structure: one
is given pairings λn : OEZ(n)⊗A⊗n−1 ⊗M →M which satisfy certain obvious compatibility conditions involving
the pairings {µm|m ≥ 0}: see [H-Sch]. Morphisms in this category between two E∞-dg-modules M and N will be
a map M → N in Cλ(C,Λ•)N compatible with the above structures.

Example 9.5. A basic example of such an E∞-dg algebra may be obtained as follows. Let φ : (C′,Λ′) → (C,Λ)
denote a map of ringed sites both of which have enough points and where Λ′ = lim

∞←n
Λ′n and Λ = lim

∞←n
Λn. Then

Rφ∗(Λ′•) = {Rφ∗(Λ′n)|n} is an E∞-dg-algebra in Cλ(C,Λ), where Rφ∗ is defined using the Godement resolution
(which is clearly functorial).

9.1.3. Conversion from E∞-dg algebras to dg-algebras. It is well-known that any E∞ dg-algebra may be
converted functorially to a quasi-isomorphic commutative dg-algebra after tensoring with Q. We apply this functor
to any of the E∞-dg algebras in Cλ(C,Λ) to obtain quasi-isomorphic commutative dg-algebras in Cλ(C,Λ). i.e.
Given an E∞-dg algebra A in Cλ(C,Λ), W (A⊗Q) denotes a quasi-isomorphic commutative dg-algebra in Cλ(C,Λ)⊗
Q. (The latter is the quotient of the category Cλ(C,Λ) by the full subcategory of torsion sheaves.)
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