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We consider the K-theory of smooth algebraic stacks, establish λ and γ operations,
and show that the higher K-theory of such stacks is always a pre-λ-ring, and is a
λ-ring if every coherent sheaf is the quotient of a vector bundle. As a consequence,
we are able to define Adams operations and absolute cohomology for smooth
algebraic stacks satisfying this hypothesis. We also obtain a comparison of the
absolute cohomology with the equivariant higher Chow groups in certain special
cases.
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1. Introduction

In the case of smooth schemes of finite type over a field, the existence of λ-operations
on algebraic K-theory enables one to define absolute cohomology as the eigenspace
for the Adams operations on rational algebraic K-theory. In this paper we investigate
the corresponding situation for algebraic stacks, beginning with λ-operations.

To begin with, it ought to be pointed out that it has been an open question
whether there exist λ and Adams operations on the higher K-theory of algebraic
stacks. The first result in this paper is an affirmative answer to this question, at
least for many smooth quotient stacks; in fact, we show that the higher K-groups
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of smooth algebraic stacks are pre-λ-rings, and that for algebraic stacks where
every coherent sheaf is the quotient of a vector bundle, they are in fact λ-rings.
Though the last resolution property is closely related to being a quotient stack, our
proof is stack-theoretic in that it does not require an explicit presentation of the
stack as a quotient stack. In fact, finding a presentation for a stack with the above
resolution property as a quotient stack may be quite involved depending on the
situation. Moreover, invoking a minimal number of background results proved on
the K-theory and G-theory of algebraic stacks as in [Joshua 2012], the proofs here
are quite straightforward and only a little background on stacks is required.

Before we proceed any further, it seems important to point out why it is essential
to work with the K-theory of perfect complexes, using the machinery of categories
with cofibrations and weak equivalences in the sense of [Waldhausen 1985]. The
main difficulty is that the Quillen K-theory of the category of vector bundles even
on a general smooth scheme, let alone on an algebraic space or algebraic stack,
does not have good properties like Poincaré duality or Mayer–Vietoris property.
Here Poincaré duality refers to the identification between the K-theory of the exact
category of vector bundles with the K-theory of the exact category of coherent
sheaves when the stack is regular or smooth. We begin with a few basic definitions
so as to be able to state this in a precise manner.

Definition 1.0.1 [Kratzer 1980a, page 240; Weibel 2013, page 98]1. A pre-λ-ring
R is a commutative ring with unit and provided with maps λi

: R→ R, i ≥ 0,
(which are in general not homomorphisms) so that (i) λ0(r)= 1, for all r ∈ R, (ii)
λ1
= id, and (iii) λn(r + s) =

∑n
i=0 λ

i (r) · λn−i (s) for all r, s ∈ R. A pre-λ-ring
without unit is a commutative ring R without a unit element and provided with
maps λi

: R→ R, i > 0 satisfying the conditions (ii) and (iii). (For (iii) to make
sense, we use the convention that λ0(r) · λn(s)= λn(s) and λn(r) · λ0(s)= λn(r),
for all r ∈R, s ∈R.) Given a pre-λ ring R, a pre-λ-algebra over R is a commutative
ring S (not necessarily with a unit) provided with the structure of a module over R,
and so that R⊕S gets the structure of a pre-λ-ring with the following operations:

• The sum on R⊕S is the obvious sum induced by the sum on R and S.

• The product on R⊕ S is defined by (r, s)· (r ′, s ′) = (r · r ′, r · s ′ + r ′· s + s· s ′),
where the products r · s ′ and r ′· s are formed using the module structure of S over
R, and the product s· s ′ is formed using the product on S.

• One is given maps λi
: R⊕S→ R⊕S, i ≥ 0 so that the following hold:

(i) For all i ≥ 0, λi restricted to R identifies with the given operation λi on R.

(ii) For all i > 0, λi restricted to S maps to S, and

1Please note that what we call a pre-λ-ring is called a λ-ring and what we call a λ-ring is called a
special λ-ring in [Weibel 2013].
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(iii) λn(r, s)=
(
λn(r),

∑n−1
i=0 λ

i (r) · λn−i (s)
)

for all r ∈ R, s ∈ S.

The product λi (r).λn−i (s) uses the R-module structure of S.
A pre-λ-ring R is a λ-ring, if λn(1) = 0 for n > 1, and for certain universal

polynomials Pk,l and Pk with integral coefficients defined as in [Atiyah and Tall
1969, page 258] the following equations hold:

λk(r · s)= Pk(λ
1(r), . . . , λk(r); λ1(s), . . . , λk(s)) and

λk(λl(r))= Pk,l(λ
1(r), . . . , λk·l(r)), r, s ∈ R.

(1.1)

One defines a λ-ring without unit to be a pre-λ-ring without unit satisfying
the relations in (1.1). If R is a λ-ring and S is a pre-λ-algebra over R, we say S
is a λ-algebra over R if the relations above also hold for λk(λl(r + s)), and for
λk((r + s)· (r ′ + s ′)) if r, r ′ ∈ R and s, s ′ ∈ S, that is, R⊕ S is a λ-ring with the
operations defined above.

Given an algebraic stack S, K(S) will denote the space obtained by applying the
constructions of [Waldhausen 1985] to the category of perfect complexes on the
stack S; see Definition 2.0.2. For a closed algebraic substack S ′ of S, KS ′(S) will
denote the space defining the higher algebraic K-theory of S with supports in S ′ as
in Definition 2.0.2. Then we obtain the theorem stated below, which is one of the
main results of this paper.

Theorem 1.1.1. (i) Let S denote a smooth algebraic stack of finite type over a
regular Noetherian base scheme S. Then π0(K(S)) is a pre-λ-ring.

(ii) For S ′ denoting a closed algebraic substack, πn(KS ′(S)), for each fixed n ≥ 0,
is a pre-λ-algebra over the pre-λ-ring π0(K(S)).

The above pre-λ-ring structure is compatible with pull-backs: that is, if f :
S̃ → S is a map of smooth algebraic stacks and S̃ ′ = S̃×SS ′, then the induced
map f ∗ : π0(K(S))→ π0(K(S̃)) is a map of pre-λ-rings, and the induced map
f ∗ : πn(KS ′(S))→ πn(KS̃ ′(S̃)), for each fixed n ≥ 0, is a map of pre-λ-algebras
over π0(K(S)). The λ-operations are homomorphisms on πn(KS ′(S)) for all n > 0.

(iii) In case every coherent sheaf on the smooth stack S is the quotient of a vector
bundle, each πn(KS ′(S)), for n ≥ 0, is a λ-algebra over π0(K(S)) in the above
sense.

Remark 1.1.2. The proof of Theorem 1.1.1 is split into two parts: the first part that
discusses the proofs of the two statements (i) and (ii) appear at the end of Section 5.
All of Section 6 is devoted to a proof of statement (iii).

The following is a quick summary of the techniques adopted in this paper to
prove the above theorem and Theorems 1.1.3 and 1.1.4 discussed below. First, we
invoke the technique in [Bloch and Lichtenbaum 1997], whereby higher K-groups
can be reduced to certain relative Grothendieck groups. This needs to make use
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of the homotopy property for the K-theory of algebraic stacks (see [Joshua 2012,
Theorem 5.17]), which makes it necessary to restrict to smooth stacks. But then
we need to interpret the relative Grothendieck groups in terms of a relative form of
the Gillet–Grayson undelooping adapted to the Waldhausen setting. Considerable
effort (in fact, all of Section 3) is needed to carry this out. These, together with
some well-known arguments due to Grayson [1989, Section 7], suffice to put a
pre-λ-ring structure on the higher K-theory of all smooth algebraic stacks of finite
type over any regular Noetherian base scheme.

In order to verify that the higher K-theory of algebraic stacks form λ-rings, we
are forced to restrict to smooth stacks that have the resolution property, namely
where every coherent sheaf is the quotient of a vector bundle. In fact, the Quillen
K-theory of vector bundles and the K-theory of perfect complexes are known to
be isomorphic only when they have the resolution property: namely, the property
that every coherent sheaf is the quotient of a vector bundle; see [Thomason and
Trobaugh 1990, 8.6. Exercise] for the example of a scheme X, which is the union
of two copies of the affine n-space An , for n ≥ 2, glued along An

− {0}. This
scheme does not have the resolution property, as the resolution property would
imply that the diagonal morphism is affine, and it is not in this case. More details
on the resolution property may be found in [Totaro 2004]; see also [Joshua 2012,
Proposition 2.8]. One may also see [SGA 6 1971, Exposé II] and [Brenner and
Schröer 2003] for related results. Finally we adapt certain arguments of Gillet
and Soulé [1987] to prove that the corresponding relative Grothendieck groups are
λ-rings.

Here is a comparison of our results with other related results in the literature.
There is a great deal of literature on the λ-ring structure and related operations on
the higher K-theory of schemes, including schemes that are possibly singular; see
[Kratzer 1980b; 1980a; Levine 1997; Gillet and Soulé 1999; Lecomte 1998]. We
will not discuss such results any further, except to point out that when restricted to
the category of (suitably nice schemes) our results in the present paper reduce to
these. While it has been known for sometime, especially after [Grayson 1989], how
to define λ-operations for the Quillen K-theory of exact categories or the Waldhausen
analogue of it, it was not clear that the required relations are satisfied. For example,
in [Grayson 1989], λ-operations are defined for the K-theory of the exact category
of vector bundles, but it was left open whether they satisfied the required properties
to define a λ-ring in general. Even for quotient stacks, or equivalently for schemes
provided with an action by a smooth group-scheme, it has not been known till very
recently if there exists a λ-ring structure on their higher K-theory. In fact, this was
posed as a conjecture in the literature. In [Köck 1998, (2.5) Proposition], it was
shown that the Higher K-theory of quotient stacks is a pre-λ-ring and satisfies the
first relation in (1.1). It was conjectured there (see [Köck 1998, (2.7) Conjecture]
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that the second relation in (1.1) is also satisfied by the higher K-theory of quotient
stacks and it remained open till the very recent preprint [Köck and Zanchetta 2021].

Most of the recent progress in this area in the literature follows the relatively recent
results of Grayson defining higher K-theory using binary complexes as in [Grayson
2012]. Making use of this approach, the authors of [Harris et al. 2017] prove
the existence of a λ-ring structure for the higher K-theory of schemes, including
ones that are possibly singular, but still left open the corresponding question for
equivariant algebraic K-theory or for the algebraic K-theory of (quotient) stacks.
(There is also the work of Riou [2010] and Zanchetta [2021], which provide a
λ-ring structure on the higher K-theory of certain classes of schemes, including
ones that are possibly singular: while these also involve a reduction to Grothendieck
groups, this approach does not seem to extend to any larger category than schemes.)
In the very recent preprint, [Köck and Zanchetta 2021, Theorem 5.1], the authors
provide a proof that the second relation in (1.1) is also satisfied by higher equivariant
K-theory, making essential use of binary complexes.

Therefore, the corresponding question for the higher algebraic K-theory of
algebraic stacks in general has not been even looked at in the literature so far.2 3

Here are some of the main features of our work:

• Our first result in Theorem 1.1.1, proving the existence of a pre-λ-ring structure
on the higher Algebraic K-theory of all smooth Algebraic stacks satisfying certain
mild finiteness conditions therefore is the first positive result for smooth algebraic
stacks in general.

Secondly, the second statement in Theorem 1.1.1 has the following features:

• We prove the existence of a λ-ring structure on the higher K-theory of smooth
algebraic stacks satisfying the resolution property. While this property is closely
related to the stack being a quotient stack, it is not always equivalent to being a
quotient stack (see [Totaro 2004, Theorems 1.1 and 1.2] as well as the discussion
following [Totaro 2004, Proposition 1.3] for a precise comparison), and our proof
does not require the stack to be a quotient stack.

• Even when the resolution property holds and one knows the given stack is a
quotient stack, finding an explicit presentation for the stack as a quotient stack

2λ-operations can be defined at the level of Grothendieck groups for quotient stacks quite easily;
see [Edidin et al. 2017] where they define such operations on the Grothendieck groups of certain
inertia stacks associated to smooth quotient stacks that are Deligne–Mumford. In case the stack is a
quotient stack of the form [X/T] for a split torus T, the inertia stack is a disjoint union of quotient
stacks of the form [Xt/T], t ∈ T; see [Stacks 2005–, 95.17: Examples of inertia stacks, see Tag
0373]. In this case, Theorem 1.1.1 would extend the λ-operations of [Edidin et al. 2017] to the higher
K-theory of these inertia stacks, even when the stack [X/T] is not Deligne–Mumford.

3Quotient stacks of the form [X/G], for a scheme X and an affine group scheme G are quite
special, and there are as many algebraic stacks which are not such global quotient stacks.

https://stacks.math.columbia.edu/tag/0373
https://stacks.math.columbia.edu/tag/0373
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for the action of an affine group scheme on a scheme is rather involved, and our
techniques do not require knowing explicitly any such presentation.

• Moreover, as shown in Theorem 1.1.1(iii), our results on λ-algebra structures hold
for the relative case also, that is, also for the higher K-theory with supports in a
closed substack. (The results of [Köck and Zanchetta 2021, Theorem 5.1], as stated
are only for the absolute case.) This is important, as we are then able to obtain certain
long-exact sequences in the associated absolute cohomology as in Theorem 1.1.4.

• Finally, our techniques do not make use of the definition of higher algebraic
K-theory using binary complexes, but instead use more traditional (topological)
methods, such as a relative form of the Gillet–Grayson G•-construction. The price
we pay for this may be that we have to restrict to smooth stacks, so that the higher
K-theory of these stacks have the homotopy property, and we are able to invoke the
methods of [Bloch and Lichtenbaum 1997] to reduce higher K-theory to certain
relative Grothendieck groups.

Making use of Theorem 1.1.1, we define γ and Adams operations on the higher
K-groups of algebraic stacks that satisfy the property that every coherent sheaf is
the quotient of a vector bundle; further, making use of these operations we are also
able to define the absolute cohomology with Q-coefficients for such algebraic stacks.
These results may be summarized in the following theorems.

Theorem 1.1.3. Let S denote a smooth algebraic stack as in Theorem 1.1.1 having
the resolution property, and let S ′ denote a closed algebraic substack:

(i) Then there are γ and Adams operations on each πn(KS ′(S)) that satisfy the
(usual) relations

γ 1
= id, γ k(K )=

∑
k′+k′′=k

γ k′(K ′).γ k′′(K ′′),

if K = K ′ + K ′′ in the λ-ring πn(KS ′(S)), and if S ′ = S, then γ 0(K ) = [OS] =

the class of the structure sheaf OS for any K ∈ w Perf f l(S). Moreover, for certain
universal polynomials Qk,l and Qk with integral coefficients (see [Atiyah and Tall
1969, page 262]) the following relations hold:

γ k(γ l(α))= Qk,l(γ
1(α), . . . , γ k.l(α))

and
γ k(α.β)= Qk(γ

1(α), . . . , γ k(α); γ 1(β), . . . , γ k(β)),

for α, β ∈ πn(KS ′(S)).
The Adams operations ψk preserve the additive and multiplicative structures on

π∗(KS ′(S)). The Adams operations and the γ -filtration are natural with respect to
pull-back. The graded piece grn(π∗(KS ′(S))⊗Q) is the eigenspace for the induced
action of ψk with eigenvalue kn .
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(ii) In case there exists a coarse moduli space M (M′) for the stack S(the substack
S ′, respectively) as an algebraic space, the γ -filtration on π∗(KS ′(S))⊗Q above is
compatible with the γ -filtration on π∗(KM′(M))⊗Q.

One important distinction from the corresponding situation for schemes is that
the γ -filtration is almost never nilpotent for algebraic stacks, as may be seen in
Remarks 7.2.1. Though the hypothesis that the resolution property holds seems
strong, it is clearly satisfied by many quotient stacks thanks to the work of Thomason
[1986; 1987a; 1987b] and the work of Totaro [2004].

We will define absolute cohomology by

Hi
S ′,abs(S,Q( j))= gr j (π2 j−i (KS ′(S))⊗Q);

see Definition 7.3.1 for more details.

Theorem 1.1.4 (localization theorem for absolute cohomology). Let S denote a
smooth algebraic stack as in Theorem 1.1.1, and let S ′0 ⊆ S ′1 denote two closed
algebraic substacks. We will further assume that every coherent sheaf on the stack
S is the quotient of a vector bundle. Then one obtains the long exact sequence of
absolute cohomology groups:

· · · → Hn
S ′0,abs(S,Q(i))→ Hn

S ′1,abs(S,Q(i))→ Hn
S ′1−S

′

0,abs(S −S ′0,Q(i))

→ Hn+1
S ′0,abs(S,Q(i))→ · · · .

Here is the layout of the paper. Section 2 is a quick review of the basic properties
of the K-theory and G-theory of algebraic stacks proved in [Joshua 2007; 2012].
We make a special effort here in order to make the paper accessible to readers who
are primarily interested in the case of quotient stacks.

Section 3 introduces a key technique: we obtain an explicit description of relative
K-theory in terms of a relative version of the Gillet–Grayson G-construction (see
[Gillet and Grayson 1987] and [Grayson 1989]), adapted to the setting of categories
with cofibrations and weak equivalences by the methods of [Gunnarsson et al. 1992]
and [Gunnarsson and Schwänzl 2002]. (Though there is another description of
relative K-theory due to Waldhausen [1985, Definition 1.5.4], that description does
not use the G-construction and therefore we cannot use it in our context.)

A nontrivial issue that shows up in this section is the difficulty of finding a categor-
ical model for path spaces, that is, a categorical construction whose nerve gives the
usual path space. This is possible with the Waldhausen S•-construction, as is shown
in [Gunnarsson et al. 1992, Section 2], but does not extend to the G•-construction.
We circumvent this issue by defining the path space only after topological realization.
On the other hand, the mapping cone construction (which is in a sense dual to the
path space construction) readily extends to functors between simplicial categories.
We invoke this construction in Section 4 to establish an additivity theorem for
relative K-theory defined using a relative form of the G•-construction.
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Section 5 is a key section, where we start by defining λ-operations on the
Waldhausen K-theory of perfect complexes in the framework of the G•-construction.
Since λ-operations are nonadditive, we make use of simplicial methods to do this,
as in [Dold and Puppe 1961] and [Gillet and Soulé 1987]. Making use of techniques
developed in the earlier sections, this is then extended to relative K-theory defined
using the relative G•-construction. The above techniques, along with the technique
of reducing higher K-theory to relative Grothendieck groups (as in [Bloch and
Lichtenbaum 1997]) enable us to prove the first part of the main theorem. This puts
a pre-λ-ring structure on the higher K-theory of all smooth algebraic stacks that
are of finite type over any regular Noetherian base scheme, thereby completing the
proofs of the first two statements in Theorem 1.1.1.

In order to verify that the higher K-groups of algebraic stacks form λ-rings, we are
forced to restrict to smooth algebraic stacks that have the resolution property, namely
where every coherent sheaf is the quotient of a vector bundle. Finally we adapt
certain arguments of [Gillet and Soulé 1987] to prove that the corresponding relative
Grothendieck groups are λ-rings. These occupy all of Section 6 and complete the
proof of the last statement of Theorem 1.1.1.

In Section 7 we define and study γ -operations and absolute cohomology for alge-
braic stacks. This section also contains the proofs of Theorems 1.1.3 and 1.1.4. We
conclude with several explicit examples in Section 8. This section already has a brief
comparison of absolute cohomology with the equivariant higher Chow groups in a
few special cases. As pointed out here, the relationship with the equivariant higher
Chow groups needs the machinery of derived completion (as in [Carlsson and Joshua
2023]) in general. Therefore, we have decided to explore this in a sequel, where
we also plan to discuss Riemann–Roch theorems. A couple of short appendices are
added to make the paper self-contained. Appendix A summarizes the main results of
Waldhausen K-theory. Appendix B summarized some well-known relations between
simplicial objects, cosimplicial objects and chain complexes in abelian categories.

Quick summary of the notational terminology. The basic terminology on algebraic
stacks as well as algebraic K-theory is discussed in the beginning of Section 2:
therefore, we do not repeat them here. The Gillet–Grayson G-construction will
be denoted G•, while the Waldhausen S-construction will be denoted S•: these
are discussed in Section 3. Nerve denotes the functor sending a small category to
the simplicial set which is its nerve: this appears in Sections 3 and 4. Given an
exact category A, Cos.mixt(A) will denote the category of cosimplicial-simplicial
objects in A: this set-up is used in the definition of the derived functors of the
exterior power operation in Section 5. Given a simplicial set X•, subk X• produces
a multisimplicial set of order k: this is discussed in [Grayson 1989, Section 4] and
recalled in Section 5 along with certain other functors such as 4.
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2. K-theory and G-theory of quotient stacks and algebraic stacks:
a quick review

This section is a quick summary of the basic results on the K-theory and G-theory
of algebraic stacks proved in [Joshua 2007; 2012]. Assuming these results, there is
very little new stack-theoretic material needed in the later sections so that several
of the basic results of this paper are no harder to state and prove for general Artin
stacks than for the special case of quotient stacks.

We will fix a regular Noetherian base scheme S throughout the paper and will
consider only objects defined and finitely presented over S.

Definition 2.0.1. (i) An algebraic stack S will mean an algebraic stack (of Artin
type) which is finitely presented over a regular Noetherian base scheme S. An
action of a group scheme G on a stack S will mean morphisms µ, pr2 :G×S→ S
and e : S→ G×S satisfying the usual relations.

(ii) A quotient stack [X/G] will denote the Artin stack associated to the action of a
smooth affine group-scheme G on an algebraic space X, both defined over S.4

It is shown in [Joshua 2003, Appendix] that if G is a smooth group scheme acting
on an algebraic stack S, a quotient stack [S/G] exists as an algebraic stack. In this
case, there is an equivalence between the category of G-equivariant OS-modules
on S and the category of O[S/G]-modules; see [Joshua 2003, Appendix]. Therefore,
one may incorporate the equivariant situation into the following discussion by
considering quotient stacks of the form [S/G].

We have chosen to work mostly with the lisse-étale site (see [Laumon and Moret-
Bailly 2000, Chapter 12; Olsson 2007]), though it seems possible to work instead
with the smooth site. Observe that if S is an algebraic stack, the underlying category
of Slis−et is the same as the underlying category of the smooth site Ssmt , whose
objects are smooth maps u :U→ S, with U an algebraic space. The coverings of an
object u : U→ S in the site Slis−et are étale surjective maps {ui : Ui → U | i}. We
will provide Slis−et with the structure sheaf OS . One defines a sheaf of OS-modules
M on Slis−et to be cartesian as in [Laumon and Moret-Bailly 2000, Definition 12.3],
that is, if for each map φ : U→ V in Slis−et, the induced map φ−1(M|Vet)→ M|Uet

is an isomorphism. In fact, it suffices to have this property for all smooth maps φ.
In this paper, we will restrict to complexes of OS-modules M whose cohomology
sheaves are all cartesian.

Definition 2.0.2. (i) Throughout the paper, unless explicitly mentioned to the
contrary, a complex will mean a cochain complex, that is, where the differentials

4In fact, the reader may observe as in the discussion in Definition 2.0.4 that working with
quotient stacks corresponds to working in the equivariant framework, and does not require any special
knowledge of stack-theoretic machinery.
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are of degree +1. A bounded complex of OS-modules M is strictly perfect, if
its cohomology sheaves are all cartesian and locally on the site Slis−et, M is a
bounded complex of locally free coherent OS-modules. The complex M is perfect
if the cohomology sheaves are all cartesian, and locally on the site Slis−et, M is
quasiisomorphic to a strictly perfect complex of OS-modules.

(ii) M is pseudocoherent, if it is locally quasiisomorphic to a bounded above
complex of OS-modules with bounded coherent cohomology sheaves, which are
cartesian. (One may readily prove that if M is perfect, it is pseudocoherent. Observe
that the usual definition of pseudocoherence as in [SGA 6 1971] does not require
the cohomology sheaves to be bounded; we have included this hypothesis in the
definition of pseudocoherence mainly for convenience.)

(iii) Let S ′ denote a closed algebraic substack of S. Then the category of all perfect
(pseudocoherent, strictly perfect) complexes with supports contained in S ′, along
with quasiisomorphisms forms a category with cofibrations and weak equivalences
(see Definition 3.0.1): the cofibrations are those maps that are degree-wise split
monomorphisms. It will be denoted by PerfS ′(S) (PseudoS ′(S), StPerfS ′(S), re-
spectively); the K-theory space (G-theory space) of S with supports in S ′ will
be defined to be the K-theory space of the category with cofibrations and weak
equivalences PerfS ′(S) (PseudoS ′(S), respectively) and denoted KS ′(S) (GS ′(S),
respectively): the weak equivalences in these categories with cofibrations and weak
equivalences are quasiisomorphisms. We distinguish these from the corresponding
K-theory spectra which will be denoted KS ′(S) (GS ′(S), respectively).

We also let Perf f l,S ′(S) (Pseudo f l,S ′(S)) denote the full subcategory of PerfS ′(S)
(PseudoS ′(S)) consisting of complexes of flat OS-modules in each degree. Observe
from [Illusie 1971, Chapitre I, Théorème 4.2.1.1] that flat OS-modules have the
additional property that they are direct limits of finitely generated flat submodules
at each stalk. (Observe also that the existence of flat resolutions and the Wald-
hausen approximation theorem (see Theorem A.0.4) imply that one obtains a weak
equivalence: K(PerfS ′(S))≃ K(Perf f l,S ′(S)).)

Definition 2.0.3. We define a sheaf of OS-modules on Slis−et to be quasicoherent
with respect to a given atlas, if its restriction to the étale site of the given atlas for
S is quasicoherent. Coherent sheaves and locally free coherent sheaves are defined
similarly. (Observe that this is slightly different from the usage in [Laumon and
Moret-Bailly 2000], where a quasicoherent sheaf is also assumed to be cartesian
as in [loc. cit., Definition 12.3]. However, such a definition would then make it
difficult to define a quasicoherator that converts a complex of OS-modules to a
complex of quasicoherent OS-modules. This justifies our choice. Since we always
restrict to complexes of OS-modules whose cohomology sheaves are cartesian, the
present definition works out in practice to be more or less equivalent to the one
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in [loc. cit.].) An OS-module will always mean a sheaf of OS-modules on Slis−et.
The category of OS-modules will be denoted Mod(S,OS) (or Mod(Slis−et,OS) to
be more precise).

Let Mod(S,OS) (QCoh(S,OS), Coh(S,OS)) denote the category of all OS-
modules (all quasicoherent OS-modules, all coherent OS-modules, respectively).

Let X denote a scheme of finite type over a regular Noetherian base scheme S
and let G denote a smooth affine group scheme of finite type over S acting on X.
Then we point out that, if one restricts to quotient stacks of the form [X/G], then
we may choose to work with the following (somewhat more familiar) choices.

Definition 2.0.4 (the case of quotient stacks). Assuming the above framework, let
Pseudo([X/G])= PseudoG(X) where the right-hand side denotes the category of
bounded above complexes of G-equivariant OX-modules (on the Zariski site of X),
with bounded coherent cohomology sheaves. Similarly, one may let Perf([X/G])=
PerfG(X) denote the category of complexes of G-equivariant OX-modules that are
locally quasiisomorphic on the Zariski site of X to bounded complexes of locally
free OX-modules with bounded coherent cohomology sheaves.

In this case we may replace Mod(S,OS) (QCoh(S,OS), Coh(S,OS)) by the
category ModG(X) (QCohG(X), CohG(X)), which will denote the category of all G-
equivariant OX-modules (G-equivariant quasicoherent OX-modules, G-equivariant
coherent OX-modules, respectively). Moreover, in this context, cartesian sheaves
of OS-modules correspond to sheaves of OX -modules that are G-equivariant.

Let A denote any of the abelian categories considered in Definitions 2.0.3 or 2.0.4.
Let Cb

cc(A) (Cb
cart(A)) denote the category of all bounded complexes of objects in A

with cohomology sheaves that are cartesian and coherent (cartesian, respectively).
Similarly, we will let Cbcc(A) denote the full subcategory of complexes in A with
cohomology sheaves that are cartesian, coherent and vanish in all but finitely many
degrees. These are all bi-Waldhausen categories (see Definition 3.0.1(iv)) with the
same structure as above, that is, with cofibrations (fibrations) being maps of com-
plexes that are degree-wise split monomorphisms (degree-wise split epimorphisms,
respectively), and weak equivalences being maps that are quasiisomorphisms.

We summarize in the next theorem several basic properties of the K-theory and
G-theory of such stacks proven elsewhere; see [Joshua 2007, Section 2; 2012,
Sections 2, 3 and 5].

Theorem 2.0.5. (i) S 7→ π∗(K(S)) is a contravariant functor from the category of
algebraic stacks and morphisms of finite type to the category of graded rings.

(ii) Let S denote a smooth algebraic stack. Then the natural map K(S)→ G(S) is
a weak equivalence. In case S ′ is a closed algebraic substack of S, the natural map
KS ′(S)→ G(S ′) is a weak equivalence.



530 ROY JOSHUA AND PABLO PELAEZ

(iii) The obvious inclusion functors

Cb
cart(Coh(S,OS))→ Cb

cc(Mod(S,OS))→ Cbcc(Mod(S,OS))→ Pseudo(S)

induce weak equivalences on taking the corresponding K-theory spaces.

(iv) Assume that every coherent sheaf on the algebraic stack S is the quotient of
a vector bundle. Then the obvious map Knaive(S)→ K(S) is a weak equivalence,
where Knaive(S)= K(StPerf(S)).

Examples. • Assume the base scheme is a field k and G is a linear algebraic group.
On a quotient stack [X/G], where the scheme X is assumed to be G-quasiprojective
(that is, admits a G-equivariant locally closed immersion into a projective space Pn

on which G acts linearly), every coherent sheaf is the quotient of a vector bundle.
This follows from the work of Thomason [1987b] (see and also Theorem 8.0.1).

• Converse (see [Totaro 2004, Theorems 1.1 and 1.2] and [Edidin et al. 2001,
Theorem 2.18]): Any smooth Deligne–Mumford stack S over a Noetherian base
scheme, with generically trivial stabilizer is a quotient stack, [X/G] for an algebraic
space X. If in addition, the stack S is defined over a field, and the coarse moduli
space is a scheme with affine diagonal, then the stack has the resolution property.
If S is a normal Noetherian algebraic stack over Spec Z whose stabilizer groups
at closed points are affine, and every coherent sheaf on S is a quotient of a vector
bundle, then S is a quotient stack.

Theorem 2.0.6 [Joshua 2012, Section 5]. (i) (closed immersion) Let i : S ′→ S
denote the closed immersion of an algebraic substack. Then the obvious map
G(S ′) = K(Cb

cart(Coh(S ′)))→ K(Cb
cart,S ′(Coh(S))) is a weak equivalence, where

Cb
cart,S ′(Coh(S)) denotes the full subcategory of Cb(Coh(S)) of complexes whose

cohomology sheaves are cartesian and have supports in S ′.

(ii) (localization) Let i : S ′ → S denote a closed immersion of algebraic stacks
with open complement j : S ′′ → S. Then one obtains the fibration sequence
G(S ′)→ G(S)→ G(S ′′)→

∑
G(S ′).

(iii) (homotopy property) Let S denote an algebraic stack and let π : S ×A1
→ S

denote the obvious projection. Then π∗ :G(S)→G(S×A1) is a weak equivalence.

3. The G-construction and relative K-theory

The G-construction is an undelooping of K-theory. Recall that the Waldhausen
K-theory (defined as in [Waldhausen 1985]) involves a delooping of K-theory given
by the S•-construction. However, this means to define the K-groups, one needs
to perform an undelooping. One way to do this is to simply take the loop-space
on the space produced by the S•-construction. The G-construction is a way to
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perform this instead at the categorical level. Such a construction is in fact needed
to obtain a presentation of (higher) K-theory groups, as well as in being able to
define λ-operations on higher K-theory.

Though the basics of such a construction are outlined in [Gunnarsson et al. 1992]
for categories with cofibrations and weak equivalences (and in [Gillet and Grayson
1987] for the Q-construction on exact categories), their construction cannot be used
in this paper, because of the following issue. In this paper, a key technique we use
is to reduce higher K-theory to the Grothendieck group of a relative K-theory space.
We would need a suitable G-construction that applies to this relative K-theory space.
The construction appearing in [Gunnarsson et al. 1992, Definition 2.2] (and which
is related to the one in [Gillet and Grayson 1987]), only applies to the absolute
case. Therefore, we provide a somewhat different, but related G-construction that
applies to relative K-theory and is a suitable relative variant of the one considered
in [Gunnarsson et al. 1992, Definition 2.2]. The main difference stems from the
fact that for the S•-construction applied to a category with cofibrations and weak
equivalences B, a path space may be defined readily by shifting the constituent
categories in the simplicial category S•(B) by 1 and throwing away the face map d0.
This works fine since S0(B) is a point, so that the resulting path space is simplicially
contractible. But with G•(B), G0(B)= B× B, so that the above shifting technique
does not define a path space for wG•(B).

Instead, we directly define the homotopy fiber of a map on the G•-construction
as in (3.2) and make use of that to define the relative K-theory space using the
G•-construction.

We will presently recall the G-construction for categories with cofibrations and
weak equivalences from [Gunnarsson et al. 1992, Section 2].

Definition 3.0.1. First, a category is pointed, if it is equipped with a distinguished
zero object: this zero object will often be denoted ∗. Then, a category with
cofibrations and weak equivalences will mean the following throughout the paper;
see [Waldhausen 1985, 1.1]:

(i) A pointed category A, provided with a subcategory coA of cofibrations sat-
isfying the axioms [loc. cit., Cof.1 through Cof.3 in 1.1] and also provided
with a subcategory wA of weak equivalences satisfying the axioms [loc. cit.,
Weq.1 and Weq.2 in 1.2], as well as the Saturation and Extension axioms in
[Waldhausen 1985, 1.2]. We will often refer to this as a Waldhausen category.5

(ii) A subcategory of fibrations will denote a subcategory of the pointed category
A satisfying the dual of the axioms [loc. cit., Cof.1 through Cof.3 in 1.1]. A
bi-Waldhausen category will denote a pointed category A provided with a

5This terminology is consistent with [loc. cit.], and is convenient, though we are told Waldhausen
personally does not prefer to use it.
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subcategory of cofibrations, a subcategory of fibrations and a subcategory of
weak equivalences, satisfying the above axioms, as well as the dual of [loc. cit.,
Weq.2 in 1.2].

(iii) A functor f : A→ B between categories with cofibrations (fibrations) and
weak equivalences is an exact functor if it preserves the subcategories of
cofibrations (fibrations) and weak equivalences.

Given a category A with cofibrations and weak equivalences, wS•(A) will denote
the simplicial category (that is, a simplicial object in the category of all small
categories), so that the objects of wSn(A) are sequences A1 ↣ A2 ↣ · · ·↣ An

of cofibrations in A (with a choice of subquotients Ai/Ai−1). A morphism in this
category between

A1 ↣ A2 ↣ · · ·↣ An and B1 ↣ B2 ↣ · · ·↣ Bn

is given by a sequence of weak equivalences Ai → Bi and Ai/Ai−1→ Bi/Bi−1,
compatible with the given cofibrations. The path-object PwS•(A) associated to
wS•(A) is the simplicial category given by PwS•(A)n = wSn+1(A), together with
the functor d0 : wSn+1(A)→ wSn(A). The face map di (the degeneracy si ) of the
simplicial category PwS•(A) is the face map di+1 (the degeneracy si+1, respectively)
of the simplicial category wS•(A); see [Waldhausen 1985, page 341]. Then the G-
construction on A is the simplicial category defined by the fibered product wG•(A)=
PwS•(A)×d0,wS•(A),d0PwS•(A), with the cofibrations and weak equivalences defined
in the obvious manner using these structures on PwS•(A) and wS•(A).

Remark 3.0.2. Recall that the map d0
: [n] → [n+ 1] in 1 omits 0 in its image.

Therefore, one may readily see that the description of wGn A as in [Gunnarsson and
Schwänzl 2002, Section 1, (2)] holds, which is also the same as that in [Grayson
1989, Section 3]. An n simplex of this simplicial category is given by two n+1
simplices of wS•A whose successive quotients are provided with compatible iso-
morphisms. In particular, a vertex of this simplicial category is given by a pair of
objects in wA.

Let wCof denote the category whose objects are categories with cofibrations
and weak equivalences in the above sense. Since the construction A 7→ wG•(A) is
covariantly functorial, we will view it as a functor

wG• : wCof→1op
−wCof, (3.1)

where 1op
−wCof denotes the category of all simplicial objects in wCof.

We will apply these constructions to various categories with cofibrations and
weak equivalences we encounter, for example, the following ones. Let S denote an
algebraic stack and let Perf(S) denote the category of perfect complexes on S. For
what follows, one may let S ′ denote a closed algebraic substack of the given stack
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S and consider PerfS ′(S) also in the place of Perf(S); however, for the most part
we will explicitly discuss only the case where S ′ = S.

One may readily verify that the category Perf(S) is pseudoadditive (see [Gun-
narsson et al. 1992, Definition 2.3]: observe that it suffices to show that if A ↣C is
a degree-wise split monomorphism of complexes, then the natural maps C⊕AC→
C×C/A←C⊕C/A are quasiisomorphisms. In fact, the second map is clearly an
isomorphism and one may show that the first map is an isomorphism in each degree
as follows. The assumption that A↣C is a degree-wise split monomorphism shows
that one has an isomorphism in each degree n: Cn ∼= An

⊕Cn/An . This then implies
that in each degree n, one obtains the isomorphism: Cn

⊕An Cn ∼=Cn
⊕ (Cn/An). It

is shown in [Gunnarsson et al. 1992, Theorem 2.6] that |wG•(A)| ≃�(|wS•(A)|),
provided A is pseudoadditive.

Next let f : A→ B denote an exact functor of categories with cofibrations
and weak equivalences. We will assume that A and B are both pseudoadditive
categories. First we let |wG•(A)| (|wG•(B)|) denote the topological realization of
the diagonal of the bisimplicial set obtained by taking the nerve of the simplicial
category wG•(A) (wG•(B), respectively). Since wG•(B) is a simplicial category,
the nerve functor Nerve applied to it produces a bisimplicial set. 1Nerve(wG•(B))
will denote its diagonal. Now one may observe that each 0-simplex of the simplicial
space1Nerve(wG•(B)), which is a pair of objects (P, Q)∈ B, defines a connected
component of the space |wG•(B)|. We will choose for each connected component
of |wG•(B)| a 0-simplex that will remain fixed throughout the following discussion,
and will serve as the base point for that component.

We next consider the path space P(|wG•(B)|) of pointed paths: it will consist
of paths p : I = |1[1]| → |wG•(B)|, so that p(1) is at the chosen base point for
some connected component of |wG•(B)|. Clearly the map sending a path p to p(0)
defines a map π : P(|wG•(B)|)→ |wG•(B)|. We define wG( f ) by the pullback
square:

wG( f )

��

// P(|wG•(B)∗|)

π

��

|wG•(A)|
|wG•( f )|

// |wG•(B)|,

(3.2)

where P(|wG•(B)∗|) denotes the path component of P(|wG•(B)|) that is sent by
π to the path component of |wG•(B)| containing the base point ( ∗ , ∗ ), with ∗
denoting the base point of the category B.

3.3. The connected components of wG( f ). Observe that each triple ((P, Q),
(P, Q), p) defines a connected component of wG( f ), where (P, Q) is a 0-simplex
of wG•(A), (P, Q) is a 0-simplex of wG•(B) in the same connected component of
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the base point (∗, ∗) of |wG•(B)| so that

f (P)= P, f (Q)= Q, and (3.4)

p is a path in |wG•(B)| joining the vertex (P, Q) to the base point(∗, ∗).

One may observe that the 1-simplices of the simplicial set 1(Nerve(wG•(B))),
will be given by pairs of commutative squares:

P1
0
��

��

≃
// P2

0
��

��

P1
1
≃
// P2

1

Q1
0
��

��

≃
// Q2

0
��

��

Q1
1
≃
// Q2

1

(3.5)

together with an isomorphism P j
1/P j

0
∼= Q j

1/Q j
0 , for j = 1, 2, where (P j

i , Q j
i ) are

0-simplices in wG•(B), the vertical maps are cofibrations, while the horizontal
maps are weak equivalences.

The path components of the topological space |wG•(B)| correspond to the path
components of the simplicial set 1(Nerve(wG•(B))). Therefore, we obtain the
following equivalent description of the connected components of wG( f ) by viewing
the path p in (3.4) as a zig-zag-path (see, for example: [Gabriel and Zisman 1967,
Chapter II, 7.3]) in 1(Nerve(wG•(B)))

(P, Q)= (P0, Q0)↣ (P1, Q1)↢ (P2, Q2)↣

· · ·↢ (Pm−1, Qm−1)↣ (Pm, Qm)= (∗, ∗), (3.6)

where each arrow (P i , Qi ) ↣ (P i+1, Qi+1) ((P i , Qi ) ↢ (P i+1, Qi+1)) is a 1-
simplex of 1(Nerve(wG•(B))) in the above sense. (To see this, observe that such
a zig-zag path in 1(Nerve(wG•(B))) corresponds to a simplicial map q : In →

1(Nerve(wG•(B))), and therefore to a map on the realizations: p : I = |In| →

|1(Nerve(wG•(B)))|. Here In is the simplicial set considered in [Gabriel and
Zisman 1967, 2.5.1].)

Example 3.6.1. The basic application of the construction in (3.2) is to the following
situation. Let S1 denote a smooth algebraic substack of the given stack S and let
1[n] = Spec

(
OS[x0, . . . , xn]/

∑
xi − 1

)
, where S is the base scheme, which is

assumed to be a regular Noetherian scheme. We may let S0 = S1×S1[n]. Since
1[n] ∼= An , S0 is also smooth. Then the following are closed substacks of S0:

(i) S1×S δ1[n], where δ1[n] =
⋃

i=0,...,nδ
i1[n] with δi1[n] denoting the i-th

face of 1[n].

(ii) S1×S6, where 6 =
⋃

i=0,...,n−1δ
i1[n].

(iii) S2×S1[n], where S2 is any closed algebraic substack of S1.
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In each of the above cases, one may let f denote the corresponding closed immersion,
and f denote the corresponding functor of categories with cofibrations and weak
equivalences.

4. Another model for the homotopy fiber of the G-construction

It is clearly preferable to obtain a categorical model for the homotopy fiber, whose
realization identifies with the homotopy fiber of the realizations constructed in the
last section. Here the difficulty is with obtaining a suitable model for the path
space, which seems to be possible only in special cases, like in the case of the
S•-construction. On the other hand, it is relatively straightforward to obtain a model
for the homotopy cofiber, which we proceed to discuss next.

For this we begin with a rather general construction. First, a simplicial category
will denote a simplicial object in the category of all (small) categories, rather than
a category that is simplicially enriched. Then a functor f• : S•′ → S• between
simplicial categories will denote a collection of functors { fn : Sn

′
→ Sn | n} so

that they commute with the face maps and degeneracies. Let ∗ denote a chosen
category with just one object denoted ∗, and only one morphism, namely the identity
morphism of ∗.

Definition 4.0.1. Let f :S•′→S• denote a functor between two simplicial categories.
Then we let Cone( f )• denote the simplicial category that is given in degree n by
the category:

Cone( f•)n = ∗⊔
( ⊔
α∈1[1]n−{(0,...,0),(1,...,1)}

Sn
′

)
⊔Sn, (4.1)

where we regard Sn as indexed by (1, . . . , 1)∈1[1]n and ∗ as indexed by (0, . . . , 0)
∈1[1]n , with the face maps and degeneracies induced from those of S•′ , S• and those
of 1[1]. More precisely, we define the face map di : Cone( f )n→ Cone( f )n−1 by:

(i) The summand ∗ is sent to the summand * by the identity.

(ii) The summand Sn indexed by (1, . . . , 1) ∈1[1]n is sent to the summand Sn−1

indexed by (1, · · · , 1) ∈1[1]n−1 by the face map d S•
i .

(iii) If di (α) = α
′, with α ∈1[1]n − {(0, . . . , 0), (1, . . . , 1)} and α′ ∈1[1]n−1−

{(0, . . . , 0), (1, . . . , 1)}, then di sends the summand S′n indexed by α to the
summand S′n−1 indexed by α′ by the face map dS•′

i .

(iv) If di (α)= (0, . . . , 0), α ∈1[1]n −{(0, . . . , 0), (1, . . . , 1)}, then di sends the
S′n indexed by α to ∗.

(v) If di (α)= (1, . . . , 1), α ∈1[1]n −{(0, . . . , 0), (1, . . . , 1)}, then di sends the
summand S′n indexed by α to Sn−1 by fn−1 ◦ dS•′

i = dS•
i ◦ fn : Sn

′
→ Sn−1.
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We define the degeneracy si : Cone( f )n−1→ Cone( f )n by:

(i) The summand ∗ is sent to the summand * by the identity.

(ii) The summand Sn−1 indexed by (1, . . . , 1) ∈1[1]n−1 is sent to the summand
Sn indexed by (1, . . . , 1) ∈1[1]n by the degeneracy sS•

i .

(iii) The summand S′n−1 indexed by α ∈1[1]n−1−{(0, . . . , 0), (1, . . . , 1)} is sent
to the summand S′n indexed by si (α) ∈ 1[1]n − {(0, . . . , 0), (1, . . . , 1)} by
si : S′n−1→ S′n .

We skip the verification that, so defined, Cone( f )• is a simplicial category,
together with a natural functor S• → Cone( f )•, sending Sn to the summand in
Cone( f )n indexed by (1, . . . , 1)∈1[1]n . In fact, one may also define a bisimplicial
category

Cone( f )•,• (4.2)

so that in bidegree (n,m) one has S′m (Sm) replacing Sn
′ (Sn , respectively) in (4.1),

and with the face maps and degeneracies defined suitably. Then the simplicial
category in (4.1) will be the diagonal of this bisimplicial category.

Proposition 4.2.1. Let f : S•′→ S• denote a functor of simplicial categories. Let
Cone(1Nerve( f )) denote the mapping cone of the map of simplicial sets

1Nerve( f ) :1Nerve(S•′)→1Nerve(S•),

which is defined as in Definition 4.0.1, with the simplicial set Nerve(Sn
′) (Nerve(Sn))

replacing Sn
′ (Sn , respectively). Then 1Nerve(Cone( f )•) can be identified with

Cone(1Nerve( f )).

Proof. One may readily observe from its definition that the nerve functor Nerve
commutes with finite coproducts. Therefore, it follows that

(1Nerve(Cone( f )))n

= Nerven(∗)⊔

( ⊔
α∈1[1]n−{(0,...,0),(1,...,1)}

Nerven(Sn
′)

)
⊔Nerven(Sn),

while Cone(1Nerve( f ))n is also given by the same set. We skip the verifi-
cation that the structure maps for both simplicial sets 1Nerve(Cone( f )) and
Cone(1Nerve( f )) are the same. □

Next let f : A→ B denote an exact functor between categories with cofibrations
and weak equivalences.
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Theorem 4.2.2. Let wG•( f ) : wG•(A)→ wG•(B) denote the induced functor of
the G-constructions. Then one obtains the natural identification:

1Nerve(Cone(wG•( f )))

= Cone(1Nerve(wG•(A))
1Nerve(wG•( f ))
−−−−−−−−→1Nerve(wG•(B))).

Proof. This is clear from Proposition 4.2.1. □

Corollary 4.2.3. Assume the same hypotheses as in Theorem 4.2.2. Then we obtain
the natural weak equivalence:

wG( f )≃�(|Nerve(Cone(wG•( f )))|),

where wG( f ) is the space defined in (3.2).

Proof. This is clear in view of Theorem 4.2.2 and the observation that wG( f ) is in
fact an infinite loop space. Since wG( f ) is the homotopy fiber of a map induced by
wG•( f ) : wG•(A)→ wG•(B), it suffices to observe that |wG•(A)| and |wG•(B)|
are both infinite loop spaces.

Here are some additional details. First, observe that for any category C with
cofibrations and weak equivalences, there is a natural map

|wG•(C)| →�|wS•(C)|.

Applying this to the functor f : A→ B of categories with cofibrations and weak
equivalences, we obtain the homotopy commutative diagram:

|wG•(A)| //

��

|wG•(B)| //

��

|Nerve(Cone(wG•( f )))|

��

�|wS•(A)| // �|wS•(B)| // �|Nerve(Cone(wS•( f )))|,

where the vertical maps are weak equivalences. The bottom row is clearly a
diagram of infinite loop spaces. Therefore, the homotopy fiber of the first
map in the second row is �2

|Nerve(Cone(wS•( f )))|. Since |wG•( f )| is the
homotopy fiber of the map |wG•(A)| → |wG•(B)|, one sees that it is weakly
equivalent to �2

|Nerve(Cone(wS•( f )))|, which in turn is weakly equivalent to
�|Nerve(Cone(wG•( f )))|; see [Gunnarsson et al. 1992] or [Waldhausen 1985] for
further details. □

Next we consider additivity on exact sequences for Cone(wG•( f )). Let f :A→B
denote an exact functor of categories with cofibrations and weak equivalences, and
let

g = wG•( f ) : wG•(A)→ wG•(B) (4.3)
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denote the induced functor of simplicial categories. Let E(A) (E(B)) denote the
Waldhausen category of cofibration sequences, that is, the category whose objects
are short exact sequences of the form F ′ ↣ F ↠ F ′′ in A (B, respectively).
These induce the simplicial categories E(wG•(A))=wG•(E(A)) and E(wG•(B))=
wG•(E(B)). Let E(g) = EwG•( f ) : EwG•(A) → EwG•(B). This is a functor
between the simplicial categories EwG•(A) and EwG•(B). We consider its mapping
cone, Cone(E(g))= E(Cone(g)) as in Definition 4.0.1. Let

Cone(wG•( f ))⊠Cone(wG•( f )) (4.4)

denote the simplicial category given in degree n by

∗⊔

( ⊔
α∈1[1]n−{(0,...,0),(1,··· ,1)}

(wGn(A)×wGn(A))
)
⊔ (wGn(B)×wGn(B)), (4.5)

with the face maps and degeneracies defined as in Definition 4.0.1. We define a
functor of simplicial categories

8 : Cone(E(g))= E(Cone(g))→ Cone(wG•( f ))⊠Cone(wG•( f )), (4.6)

which will be induced by the projections to either factor, that is, sending a cofiber
sequence (X ↣ Z ↠ Y ) 7→ (X, Y ).

Theorem 4.6.1 (additivity theorem, I). Assuming the above situation, the functor
8 induces a weak equivalence on taking the Nerve.

Proof. For the proof it is convenient to view the Cone construction for a map of
simplicial categories as first defining a bisimplicial category (as in (4.2)), and then
taking its diagonal. Therefore, we reduce to considering a corresponding functor8•,•
of bisimplicial categories: then the proof reduces to showing that the corresponding
functors wG•E(A)→ wG•(A)×wG•(A) and wG•E(B)→ wG•(B)×wG•(B) are
weak equivalences. But this is proven in [Gunnarsson et al. 1992, Theorem 2.10]. □

Definition 4.6.2. Let A, B denote categories with cofibrations and weak equiv-
alences. Let F ′, F, F ′′ : A→ B denote exact functors. Then F ′↣ F ↠ F ′′ is
a cofibration sequence, if for each object A ∈ A, F ′(A)↣ F(A)↠ F ′′(A) is a
cofibration sequence in B.

Corollary 4.6.3 (additivity theorem for the mapping cone). Let f : A→ B denote
an exact functor of categories with cofibrations and weak equivalences and let
g = wG•( f ):

(i) Assume {X ′m ↣ Z ′m ↠ Y ′m | m} is a cofibration sequence in wG•(A), (that is,
an object of E(wG•(A))) and {Xm ↣ Zm ↠ Ym | m} is a cofibration sequence in
wG•(B), (that is, an object of E(wG•(B))) so that they are compatible under the
functor g, that is, g(X ′m) ∼= Xm , g(Y ′m) ∼= Ym and g(Z ′m) ∼= Zm , for all m, where
∼= denotes isomorphisms. Then the above data provides a cofibration sequence in
Cone(wG•( f )).
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(ii) Let F ′↣ F ↠ F ′′ denote a cofibration sequence of exact functors from the
Waldhausen category C to A, and let F ′↣ F ↠ F ′′ denote a cofibration sequence
of exact functors from the Waldhausen category C to B, so that the diagram of
functors

f ◦ F ′ // //

∼=
��

f ◦ F // //

∼=
��

f ◦ F ′′

∼=
��

F ′ // // F // // F ′′

(4.7)

commutes. Denoting by F (F′, F′′) the induced functor defined on C and taking
values in Cone(wG•( f )) induced by the pair ((F, F), (F ′, F ′), (F ′′, F ′′), we obtain
a weak equivalence:

F≃ F′ ∨F′′,

where F′∨F′′ is the functor defined by (F′∨F′′)(C)=F′(C)∨F′′(C) for all objects
C ∈ C. In other words, we obtain a weak equivalence F(C)≃ F′(C)∨F′′(C) for
all objects C ∈ C .

Proof. (i) follows readily from the definition of Cone(wG•( f )) as in Definition 4.0.1.
(ii) follows from Theorem 4.6.1, along the same lines as the proof of the corre-
sponding result in [Waldhausen 1985, Proposition 1.3.2]. □

Remark 4.7.1. Corollary 4.2.3 translates the additivity theorem in Corollary 4.6.3
to an additivity theorem for the homotopy fiber of the K-theory spaces associated
to an exact functor of categories with cofibrations and weak equivalences. This is
then invoked in a key step showing that the relative Higher K-groups of smooth
algebraic stacks have a pre-λ-ring structure: see (5.20).

5. Lambda operations on the higher K-theory of algebraic stacks: the
prelambda ring structure

We first recall briefly the construction of lambda and Adams operations for Wald-
hausen style K-theory in [Gunnarsson and Schwänzl 2002]. This involves first
finding an undelooping of algebraic K-theory at the categorical level considered
first in [Gunnarsson et al. 1992] and then defining operations corresponding to the
exterior powers at the level of categories with cofibrations and weak equivalences.
The definitions of these operations have been given in [Gunnarsson and Schwänzl
2002] for categories with cofibrations and weak equivalences and based on the
approach in [Grayson 1989] (which is worked out in the framework of the Quillen
K-theory of exact categories), but under the assumption that the power operations
preserve weak equivalences. To make sure that this hypothesis is satisfied in our
context, we consider the left derived functors of these operations in the sense
of [Dold and Puppe 1961] and [Illusie 1971, Chapitre I]; see also [Soulé 1992,
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pages 22–27] for a readable account. The techniques of the last 2 sections, and
the technique of [Bloch and Lichtenbaum 1997] whereby higher K-groups can be
reduced to a relative form of Grothendieck groups then enable us to show that the
higher K-groups of all smooth algebraic stacks are pre-λ-rings.

We next recall the definition of
∧k (as in [Grayson 1989]). Let Mod(S,OS)

denote the category of all OS-modules. Let Filtk(S) denote the category whose
objects are sequences of split monomorphisms in Mod(S,OS):

M = M0,1 ↣ M0,2 ↣ · · ·↣ M0,k

together with subquotients Mi, j = M0, j/M0,i ∈Mod(S,OS), for i < j . We let∧k
(M)= M0,1 ∧M0,2 ∧ · · · ∧M0,k, (5.1)

which is defined locally on S as the quotient of (M0,1⊗M0,2⊗ · · ·⊗M0,k) by the
submodule generated by terms of the form m1⊗m2⊗· · ·⊗mi ⊗mi+1⊗· · ·⊗mn ,
with mi = mi+1 for some i . One may verify readily that the functor

∧k applied to
an object M in Filtk(S), where each M0,i is flat and is the direct limit of its finitely
generated flat submodules, will produce

∧k
(M) which is also flat. (To see this,

one may localize on S to reduce to the case of a local ring, in which case flat and
finitely generated implies free.)

Henceforth, we will denote
∧k
(M) by

∧k
(M0,1, . . . ,M0,k). Now one may ob-

serve that there is a natural map

M0,1⊗ · · ·⊗M0,k→
∧k
(M0,1, . . . ,M0,k).

6 (5.2)

Next we proceed to consider the derived functor of the exterior power; we follow
[Dold and Puppe 1961] or [Illusie 1971, Chapitre I, Section 4] in this. Observe
that the exterior power

∧k is a nonadditive functor, and therefore one needs to use
simplicial techniques in defining its derived functors. Let Pf l(S) denote the full
subcategory of flat OS-modules which are the direct limits of their finitely generated
flat submodules. Let Perf f l(S) denote the full subcategory of perfect complexes
that consist of flat OS-modules in each degree, which are also the direct limits of
their finitely generated flat submodules. If S0 is a closed algebraic substack of S,
Perf f l,S0(S) will denote the full subcategory of Perf f l(S) consisting of complexes
of flat OS-modules with supports in S0.

Lemma 5.5.1 below shows the existence of functorial flat resolutions, so that
one may restrict to flat OS-modules without loss of generality. Then one obtains an

6Definitions (5.1) and (5.2) are defined on Filtk(S) for convenience. We will be in fact applying
these often to objects belonging to wSk Perf f l,S0(S) which are filtered objects satisfying more
restrictive conditions.
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imbedding

i : Perf f l,S0(S)→ Cos.mixt(Pf l(S)), (5.3)

where Cos.mixt(Pf l(S)) denotes the category of all cosimplicial-simplicial objects
of Pf l(S) as follows; see [Illusie 1971, Chapitre I, 4.1]. Let · · ·→K−n

→K−n+1
→

· · · → K 0
→ K 1

→ · · · → K m
→ · · · denote an object in Perf f l(S). One first

sends it to the double complex in the second quadrant with · · · → K−n
→ · · · K 0

along the negative x-axis, with K 0 in position (0, 0), and the complex K 0
→ K 1

→

· · · → K m
→ · · · along the positive y-axis. Next one applies de-normalization

functors (see Appendix B) that produce the cosimplicial-simplicial object, i(K ) in
Pf l(S) from this, that is, an object in Cos.mixt(Pf l(S)).

Let N= Nv
◦Nh denote the normalization functor as in (B.2) and let Tot denote

the functor defined in (B.4). Recall N = Nv
◦Nh sends a cosimplicial-simplicial

object to a double complex, and Tot denotes taking the total complex of the corre-
sponding double complex. We define a morphism K ′→ K in Cos.mixt(Pf l(S))
to be a quasiisomorphism, if the induced map on applying the functor Tot ◦N is
a quasiisomorphism. One may now verify that the composition Tot ◦N ◦ i = id
so that the functor i in fact induces a faithful functor of the associated derived
categories obtained by inverting quasiisomorphisms. (Observe from Appendix B
that the normalization functor N and the functor i preserve flatness.)

Let wSk Perf f l,S0(S) denote the category whose objects are sequences of cofi-
brations

K0,1 ↣ K0,2 · · ·↣ K0,k

together with choices of subquotients Ki, j = K0, j/K0,i ∈ wPerf f l(S), for i < j .
One defines wSk(Cos.mixt(Pf l(S)) similarly. We define∧k

cs : wSk(Cos.mixt(Pf l(S)))→ w Cos.mixt(Pf l(S)),∧k
: wSk Perf f l,S0(S)→ wPerf f l,S0(S)

(5.4)

as functors of categories with cofibrations and weak equivalences in the following
manner.

Let K =K0,1↣K0,2↣ · · ·↣K0,k ∈wSk(Cos.mixt(P f l(S))) (∈wSk Perf f l,S0(S),
respectively). We define

∧k
cs to be the functor induced by applying

∧k
:Filtk(Pf l(S))

→ Pf l(S) in each cosimplicial-simplicial degree. The functor
∧k
:wSk Perf f l,S0(S)

→ wPerf f l,S0(S) is defined by∧k
(K )= Tot ◦N

(∧k
cs(i(K ))

)
, K ∈ wSk Perf f l,S0(S), (5.5)

where N= Nv
◦Nh once again.
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Lemma 5.5.1 (functorial flat resolutions). Let S0 denote a closed algebraic sub-
stack of the given stack S. Then there exists a functor F : wS• PerfS0(S) →
wS• Perf f l,S0(S) having the following properties. Let U : wS• Perf f l,S0(S) →
wS• PerfS0(S) denote the obvious forgetful functor. Then, there exists a natural
transformation U ◦F→ id so that for each M ∈ wS• PerfS0(S), the corresponding
map (U ◦F)(M)→ M is a quasiisomorphism.

Proof. Recall that the stack S is of finite type over the regular Noetherian base
scheme S. Therefore, the lisse-étale site Slis−et is essentially small. Given an
M ∈Mod(S,OS), one may define

F(M)=
⊕

U∈Slis−et

⊕
φ∈Hom( jU ! j∗U (OS ),M)

jU !,φ j∗U (OS).

(Here jU !,φ j∗U (OS) = jU ! j∗U (OS).) We define a surjection ϵ−1 : F(M)→ M by
mapping the summand indexed by φ ∈ Hom( jU ! j∗U (OS),M) to M by the map
φ. Given a map f : M ′ → M in Mod(S,OS), one defines the induced map
F( f ) : F(M ′)→ F(M) by sending the summand jU !,φ j∗U (OS) to jU !, f ◦φ j∗U (OS)

by the identity map. Now one may readily see that the assignment M 7→ F(M) is
functorial in M . Moreover, if M ′→ M is a split monomorphism in Mod(S,OS),
the induced map F(M ′)→F(M) is also a split monomorphism. One may repeatedly
apply the functor F to the kernel of ϵ−1 to obtain a resolution F•(M)→ M . It fol-
lows, therefore, that the functor F induces a functor S• PerfS0(S)→ S• Perf f l,S0(S)
that preserves cofibrations (that is, degree-wise split monomorphisms) and weak
equivalences. □

Recall that we only consider complexes of sheaves of O-modules whose coho-
mology sheaves are cartesian. The following proposition shows that the exterior
power operations preserve cofibrations, weak equivalences and the property that
the cohomology sheaves are cartesian.

Proposition 5.5.2. The functor
∧k
: wSk Perf f l,S0(S)→ wPerf f l,S0(S) is a functor

of categories with cofibrations and weak equivalences.

Proof. First observe that exterior powers preserve degree-wise split monomor-
phisms, so that these functors in fact preserve cofibrations. That they preserve
weak equivalences follows essentially from the observation that the exterior power∧k
:wSk Perf f l,S0(S)→wPerf f l,S0(S) is in fact a derived functor; see [Illusie 1971,

Chapter I, Proposition 4.2.1.3]. The same proposition [loc. cit., Proposition 4.2.1.3]
applies to the case where all the monomorphisms K0,i→K0,i+1 are the identity maps.
This Proposition may be extended to apply to the situation in hand as follows. Recall
that a map f : K =K0,1 ↣ K0,2 ↣ · · ·↣ K0,k→ L = L0,1 ↣ L0,2 ↣ · · ·↣ L0,k

in wSk Perf f l,S0(S) is a weak equivalence, if the induced maps f0,i : K0,i → L0,i

are all quasiisomorphisms. One may replace the mapping cone Cone( f ) by K ,
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and assume each K0,i is acyclic. Then the same argument as in the proof of
[loc. cit., Chapitre I, Proposition 4.2.1.3] applies to show that K is the locally
filtered colimit (locally filtered in the sense of [loc. cit., 2.2.5, Chapitre I]) of
complexes Kα =K0,1(α)↣ K0,2(α)↣ · · ·↣ K0,k(α), with the property that each
K0,i (α) is a bounded complex of finitely generated free Ostr .h

S,p -modules at each
geometric point p, and that there is a chain null-homotopy of each Kα at each stalk.
(Here Ostr .h

S,p denotes the strict henselization of OS at the geometric point p.)
In fact, one may apply [loc. cit., Chapitre I, Proposition 4.2.1.3] to see that each

K0,i is such a locally filtered colimit. By reindexing, we may assume that we obtain a
locally filtered direct system of complexes {K0,1(α)→K0,1(α)→· · ·→K0,k(α) |α}

so that each K0,i is such a filtered colimit. Then one may replace K0,i (α) for i ≥ 2
by the mapping cylinder (see [Thomason and Trobaugh 1990, 1.1.2]) of the given
map K0,i−1(α)→K0,i (α), so that one may assume the maps K0,i−1(α)→K0,i (α),
for all i ≥ 2 are cofibrations. This observation will then provide the required
extension of [Illusie 1971, Chapitre I, Proposition 4.2.1.3] to complexes provided
with a finite increasing filtration by subcomplexes. Since

∧k commutes with
taking stalks, filtered colimits, and preserves chain homotopies, it follows that∧k
: wSk Perf f l,S0(S)→ wPerf f l,S0(S) preserves weak equivalences.

Now it suffices to show that
∧k
(K ) has cohomology sheaves which are cartesian.

In view of [Olsson 2007, Lemma 3.6], it suffices to show the following: if f :
U→ V denotes a smooth map between schemes in Slis−et, then f ∗Hi

(∧k
(K|Vet)

)
≃

Hi
(∧k

(K|Uet)
)

for all i . The definition of
∧k above shows that

f ∗
(∧k

(K|Vet)
)
∼=

∧k
( f ∗(K|Vet))

∼=
∧k
(K|Uet).

The last quasiisomorphism follows from the observation that
∧k preserves quasiiso-

morphisms. Next observe that f ∗ is an exact functor since f is smooth. Therefore,
taking cohomology sheaves commutes with f ∗, proving that Hi

(∧k
(K|Uet)

)
∼=

Hi
(

f ∗
(∧k

(K|Vet)
))
∼= f ∗

(
Hi

(∧k
(K|Vet)

))
: this proves that

∧k
(K ) has cohomology

sheaves which are cartesian. □

In order to show that we obtain power operations in K-theory, one needs to verify
that certain conditions are satisfied by the exterior powers. These are the conditions
denoted (E1) through (E5) in [Grayson 1989], [Gunnarsson and Schwänzl 2002,
Section 2] and [Köck and Zanchetta 2021, Definition 1.1]. We summarize them
here:

(E1) Given V1 ↣ V2 ↣ · · ·↣ Vk ↣ · · ·↣ W1 ↣ · · ·↣ Wn ∈wSk+n Perf f l,S0(S),
there is a natural map∧k

(⟨Vi ⟩
k
i=1)⊗

∧n
(⟨Wi ⟩

n
i=1)→

∧k+n
(⟨Vi ⟩

k
i=1, ⟨Wi ⟩

n
i=1).

These maps are associative in the obvious sense.
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(E2) Given V1 ↣ V2 ↣ · · ·↣ Vk ↣ W1 ↣ · · ·↣ Wn ∈wSk+n Perf f l,S0(S), there
is a natural map∧k+n

(⟨Vi ⟩
k
i=1, ⟨Wi ⟩

n
i=1)→

∧k
(⟨Vi ⟩

k
i=1)⊗

∧n
(⟨Wi/Vk⟩

n
i=1).

These maps are associative in the obvious sense. The above conditions are
for any choice of quotient objects W1/Vk, . . . ,Wn/Vk.

(E3) Given V1 ↣ V2 ↣ · · ·↣ Vk ↣ W1 ↣ · · ·↣ Wn ↣ U1 ↣ · · ·↣ Ul ∈

wSk+n+l Perf f l,S0(S), the following diagram commutes:∧k+n
(⟨Vi ⟩

k
i=1, ⟨Wi ⟩

n
i=1)⊗

∧l
(⟨Ui ⟩

l
i=1)

��

// X

��∧k
(⟨Vi ⟩

k
i=1)⊗

∧n
(⟨Wi/Vk⟩

n
i=1)⊗

∧l
(⟨Ui/Vk⟩

l
i=1)

// Y

where
X =

∧k+n+l
(⟨Vi ⟩

k
i=1, ⟨Wi ⟩

n
i=1, ⟨Ui ⟩

l
i=1),

and
Y =

∧k
(⟨Vi ⟩

k
i=1)⊗

∧n+l
(⟨Wi/Vk⟩

n
i=1, ⟨Ui/Vk⟩

l
i=1)

(E4) Given V1 ↣ V2 ↣ · · ·↣ Vk ↣ W1 ↣ · · ·↣ Wn ↣ U1 ↣ · · ·↣ Ul ∈

wSk+n+l Perf f l,S0(S), the following diagram commutes:∧k
(⟨Vi ⟩

k
i=1)⊗

∧n+l
(⟨Wi ⟩

n
i=1, ⟨Ui ⟩

l
i=1)

//

��

∧k+n+l
(⟨Vi ⟩

k
i=1,⟨Wi ⟩

n
i=1,⟨Ui ⟩

l
i=1)

��∧k
(⟨Vi ⟩

k
i=1)⊗

∧n
(⟨Wi ⟩

n
i=1)⊗

∧l
(⟨Ui/Wn⟩

l
i=1)

// Z

where
Z =

∧k+n
(⟨Vi ⟩

k
i=1, ⟨Wi ⟩

n
i=1)⊗

∧l
(⟨Ui/Wn⟩).

(E5) Given V1 ↣ V2 ↣ · · ·↣ Vk ↣ W1 ↣ · · ·↣ Wn ↣ U1 ↣ · · ·↣ Ul ∈

wSk+2+l Perf f l,S0(S), the following sequence of perfect complexes is an exact
sequence:∧k+l+1
(⟨Vi ⟩

k
i=1,W1, ⟨Ui ⟩

l
i=1)→

∧k+l+1
(⟨Vi ⟩

k
i=1,W2, ⟨Ui ⟩

l
i=1)

→
∧k
(⟨Vi ⟩

k
i=1)⊗

∧l+1
(W2/W1, ⟨Ui/W1⟩

l
i=1),

that is, the first map is a cofibration and the second is its quotient.

(E5)0 We will also allow the case k = 0, which is the statement that we get an
exact sequence∧l+1
(W1, ⟨Ui ⟩

l
i=1)→

∧l+1
(W2, ⟨Ui ⟩

l
i=1)→

∧l+1
(W2/W1, ⟨Ui/W1⟩

l
i=1).
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Here is an outline of how to establish these properties.

5.5.1. Let N = Nv
◦Nh as before. Now we observe from (B.3) that the functor

Tot ◦N is compatible with the obvious tensor structures: that is, given C , C ′ ∈
Cos.mixt(Pf l(S)), there are natural maps Tot(N(C))⊗Tot(N(C ′))→ Tot ◦N(C ⊗
C ′), and Tot ◦N(C ⊗C ′)→ Tot(N(C))⊗Tot(N(C ′)), that are associative (and are
in fact quasiisomorphisms). (Observe that the tensor structure on Cos.mixt(Pf l(S))
is given by sending C ={C i

j | i, j} and C ′={C ′ij | i, j} to C⊗C ′={C i
j⊗C ′ij | i, j}.

The tensor structure on complexes is the obvious one.)
We will now consider the statement in (E1). Since the functor

∧k
cs is induced by

the functor
∧k (as in (5.1)), the existence of the corresponding map in (E1) when

V1 ↣ V2 ↣ · · ·↣ Vk ↣ W1 ↣ · · ·↣ Wn

belongs to wSk+n Cos.mixt(Pf l(S)) is clear. (In fact, this follows readily from the
case where each Vi and W j is an OS-module in Pf l(S).) Now one applies the functor
Tot ◦N to both sides and makes use of the Section 5.5.1 above to obtain the map in
(E1), when

V1 ↣ V2 ↣ · · ·↣ Vk ↣ W1 ↣ · · ·↣ Wn ∈ wSk+n Perf f l,S0(S).

One proves (E2) by first observing the corresponding statement is true when
∧k

is replaced by
∧k

cs and for

V1 ↣ V2 ↣ · · ·↣ Vk ↣ W1 ↣ · · ·↣ Wn ∈ wSk+n(Cos.mixt(Pf l(S))).

This follows readily from the definition of the functor
∧k in (5.1). Next apply

Tot ◦N and use the observation in 5.5.1 to obtain the associativity of the maps there.
The remaining assertions (E3) through (E5) are established similarly: one observes
these are true for the functor

∧k
cs , and then applies the functor Tot ◦N along with

the observation in 5.5.1.

5.5.2. Let ⊗ : wS• Perf f l,S0(S)×wS• Perf f l,S0(S)→ wS• Perf f l,S0(S) denote the
functor taking two perfect complexes of flat OS modules and sends it to their tensor
product. Observe that this preserves cofibrations and weak equivalences in each
argument.

5.5.3. Following [Grayson 1989, Sections 3 and 5] and [Gunnarsson and Schwänzl
2002, Sections 1 and 2], we next define for each A ∈ 1 and each integer k ≥ 1,
a category (actually a partially ordered set) 0k(A). First one defines γ (A) to be
the partially ordered set {L,R} ⊔ A with L< a, R< a for all a ∈ A. For c, d ∈ A,
we have c < d if c < d in the usual order in A. In fact, if A is the category
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0→ 1→ 2→ · · · → n, then γ (A) is given by the diagram

L

��

0 // 1 // 2 // · · · // n

R

??

0(A) is the category whose objects are the morphisms in the category γ (A),
except for the identity morphisms L → L and R → R. The morphism j → i
will be denoted i/j . The morphisms in the category 0(A), i ′/j ′ → i/j are the
obvious commutative squares. We define a sequence of categories 0k(A), for
k ≥ 1, with 01(A) = 0(A). We take for the objects of 0k(A), the collections
α = (i1/ l1, ∗2, i2/ l2, ∗3, . . . , ∗k, ik/ lk), where for each r the following conditions
are satisfied:

(A1) ir ∈ γ (A), lr ∈ γ (A), and ∗r ∈ {∧,⊗},

(A2) lr ≤ ir , ir ∈ A, and

(A3) if ∗r =∧ and r > 1, then lr−1 = lr and ir−1 ≤ ir .

(Note: in [Gunnarsson and Schwänzl 2002, Section 2], ∧ (⊗) is replaced by ⋄ (⊠,
respectively).) One defines morphisms and exact sequences in the category 0k(A) as
in [Gunnarsson and Schwänzl 2002, Sections 1 and 2] or [Grayson 1989, Section 5].
One may call these exact sequences cofibration sequences. With this structure, the
categories 0k(A) may be viewed as categories with cofibrations. Moreover, one
defines a functor

4 : 0(A1)× · · ·×0(Ak)→ 0k(A1 · · · Ak), (5.6)

where A1 · · · Ak is the concatenation; see [Gunnarsson and Schwänzl 2002, 2.4] or
[Grayson 1989, Section 5].

Now one considers the categories Exact(0k(A),Perf f l,S0(S)) of exact functors
(that is, functors preserving cofibrations) F : 0k(A)→ Perf f l,S0(S), for k ≥ 1,
n ≥ 0. One may define the subcategory w Exact(0k(A),Perf f l,S0(S)) to have the
same objects as Exact(0k(A),Perf f l,S0(S)), and where a morphism φ : F ′→ F
is a natural transformation, so that for each object γ ∈ 0k(A), the induced map
φ(γ ) : F ′(γ )→ F(γ ) belongs to the subcategory wPerf f l,S0(S). As in [Gunnarsson
and Schwänzl 2002, Section 1, page 5] one obtains the identification

wGA Perf f l,S0(S)= w Exact(0(A),Perf f l,S0(S)),
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for each A ∈1. Next one defines∧k
: w Exact(0(A),Perf f l,S0(S))→ w Exact(0k(A),Perf f l,S0(S)) (5.7)

by the same formula as in [Grayson 1989, Section 7]. We will recall this here: first,
we denote ∧k

: Filtk(Perf f l(S))→ Perf f l(S)

applied to an object K0,1 ↣ K0,2 ↣ · · ·↣ K0,k ∈ Filtk(Perf f l,S0(S)) by K0,1 ∧

K0,2 ∧ · · · ∧ K0,k . If ∗i denotes either ∧ or ⊗ for each 1 ≤ i ≤ k, we will let
K0,1 ∗1 K0,2 ∗2 · · · ∗k K0,k denote an iterated product involving ∧ and ⊗ with ∧
always having higher precedence than ⊗. Let M ∈ w Exact(0(A),Perf f l,S0(S)).
Now

∧k
(M) applied to the object (i1/ l1, ∗2, i2/ l2, . . . , ∗k, ik/ lk) ∈ 0

k(A) is given
by

M(i1/ l1) ∗2 M(i2/ l2) · · · ∗k M(ik/ lk).

Observe that if f : S ′→ S is a map of algebraic stacks, the induced map

f ∗ : wS• Perf f l,S0(S)→ wS• Perf f l,S ′0(S
′)

(where S ′0 = S ′×S S0), commutes with
∧k. This follows from the above definition,

the observation that f ∗ commutes with ⊗ and
∧k (as in (5.1)), as well as from

Proposition B.0.1 (in Appendix B) which shows it commutes with the functors N
and DN.

Let w Exact(4, ) denote the functor obtained by precomposing w Exact( , )
and 4 (with 4 applied to the first factor of w Exact( , )). On replacing A by the
concatenation A1 · · · Ak, and following

∧k by the composition with Exact(4, ), we
obtain

λk
: w Exact(0(A1 · · · Ak),Perf f l,S0(S))

→ w Exact(0(A1)× · · ·×0(Ak),Perf f l,S0(S)). (5.8)

(Observe that since all cofibrations are maps of complexes that are degree-wise split
injective, the extension condition in [Gunnarsson and Schwänzl 2002, 4.3 Definition
and 4.4 Remark] is satisfied. Therefore, the last term may be identified with
wGk

•
Perf f l(S), which is the k-th iterate of the construction in (3.1).) Therefore,

identifying the first term with subk wG• Perf f l,S0(S) (where subk denotes the k-th
subdivision which produces a multisimplicial set of order k; see [Grayson 1989,
Section 4]), one obtains the exterior power operation:

λk
: subk wG• Perf f l,S0(S)→ wGk

•
Perf f l,S0(S). (5.9)

It is shown in [Grayson 1989, Section 4] that the realization of the first term is
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homeomorphic to |wG• Perf f l,S0(S)| ≃ KS0(S). It is shown in [Gunnarsson et al.
1992, page 264] that the realization of the last is homeomorphic to |wG• PerfS0(S)|≃
|�wS• Perf f l,S0(S)| ≃ KS0(S). Therefore, (5.9) defines the exterior power opera-
tions on KS0(S) as the map:

λk
: |wG• Perf f l,S0(S)| → |wG• Perf f l,S0(S)|. (5.10)

Moreover, the naturality of the above operations shows that they are (strictly)
compatible with pull-back maps associated to morphisms f : S ′→ S of algebraic
stacks, that is, the operations λk are compatible with the induced map

|wG•(Perf f l,S0(S))|
|wG•( f ∗)|
−−−−−→ |wG•(Perf f l,S ′0(S

′))|,

where S ′0 = S ′×S S0. Therefore, in view of the pull-back square

wG( f )

π ′

��

// P(|wG•(Perf f l,S ′0(S
′))∗|)

π

��

|wG•(Perf f l,S0(S))|
|wG•( f ∗)|

// |wG•(Perf f l,S ′0(S
′))|,

(5.11)

and the observation that the map on the path space P(|wG•(Perf f l,S ′0(S
′))∗|) induced

by λk is compatible with the map π , one obtains induced maps

λk
: wG( f )→ wG( f ), (5.12)

compatible under π ′ with the corresponding operation λk on |wG•(Perf f l,S0(S))|.
Taking the map f to be the closed immersion S ′→ S of algebraic stacks, shows one
may define exterior power operations in relative K-theory, that is, on K(S,S ′) which
is defined as the canonical homotopy fiber of the restriction map K(S)→ K(S ′).

We proceed to verify these satisfy the usual relations so that π∗KS0(S) is a
pre-λ-ring without unit when S is smooth. For this it is necessary to define the
pullback squares, for each fixed k ≥ 1:

wGk( f )

π ′

��

// P(|subk wG•(Perf f l,S ′0(S
′))∗|)

π

��

|subk wG•(Perf f l,S0(S))|
|subk wG•( f ∗)|

// |subk wG•(Perf f l,S ′0(S
′))|

(5.13)

and
wGk( f )

π ′

��

// P(|wGk
•
(Perf f l,S ′0(S

′))∗|)

π

��

|wGk
•
(Perf f l,S0(S))|

|wGk
•( f ∗)|

// |wGk
•
(Perf f l,S ′0(S

′))|

(5.14)
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Here subk wG•(Perf f l,S ′0(S
′))∗ and wGk

•
(Perf f l,S ′0(S

′))∗ denote the corresponding
path component containing the base point. Then λk defines a map from the bottom
two vertices and the top right vertex of the first square to the corresponding vertices
of the second square, making the corresponding diagrams commute, so that one
obtains induced maps

λk
: wGk( f )→ wGk( f ). (5.15)

Making use of the observation that the vertices of the square (5.13) are homeo-
morphic to the corresponding vertices of the square (5.11) and further observing
that the vertices of the square (5.14) are weakly equivalent to the corresponding
vertices of the square (5.11), one sees that the maps λk in (5.15) are variants of
the same maps λk considered in (5.12), but able to handle k-different arguments,
(K1, . . . ,Kk) of complexes in Perf f l,S0(S)). Moreover the above extension of the
operations λk enable us to verify these satisfy the usual relations, so that we will
show π∗KS0(S) is a pre-λ-ring without unit. Making use of the above observations
and Example 3.6.1, we are able to reduce this to verifying the above relations hold
in certain relative Grothendieck groups.

Let S denote a given smooth algebraic stack over the given base scheme S. Let

1[n] = Spec
(
OS[x0, . . . , xn]/

(∑
i

xi − 1
))
,

let δi1[n] denote its i-th face, and let δ1[n] denote its boundary that is,
⋃n

i=0 δ
i1[n].

The relative K-theory space KS ′×1[n]
(
S×1[n],S×

⋃
i=0,...,kδ

i1[n]
)

is defined as
wG(i∗k), where

i∗k : Perf f l,S ′×1[n](S ×1[n])→ Perf f l,S ′×1[n]

(
S ×

⋃
i=0,...,k

δi1[n]
)

(5.16)

is the functor of categories with cofibrations and weak equivalences induced by the
closed immersion

S ×
⋃

i=0,...,k

δi1[n] → S ×1[n].

Lemma 5.16.1. KS ′×1[n]
(
S ×1[n],S ×

(⋃
i=0,...,kδ

i1[n]
))

is contractible for all
n and all 0≤ k ≤ n− 1.

Proof. One proves this using ascending induction on k. Observe that 1[n] is
isomorphic to the affine space An

S . The case k = 0 follows from the fact S ×1[n]
and S × δ01[n] ∼= S ×1[n− 1] are smooth, and therefore

KS′×1[n](S ×1[n],S × δ01[n])≃ G(S ′×1[n],S ′×1[n− 1]),
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and because G-theory has been shown to have the homotopy property; see [Joshua
2012, Theorem 5.17]. To continue the induction, one uses the fibration sequence

KS ′×1[n]

(
S ×1[n],S ×

⋃
i=0,...,k

δi1[n]
)

→ KS ′×1[n]

(
S ×1[n],S ×

⋃
i=0,...,k−1

δi1[n]
)

→ KS ′×δk1[n](S × δk1[n],S × ((δ01[n] ∪ · · · ∪ δk−11[n])∩ δk1[n]))

∼= KS ′×1[n−1]

(
S ×1[n− 1],S ×

( ⋃
i=0,...,k−1

δi1[n− 1]
))
.

The last two terms are contractible by the inductive hypothesis, so that the first one
is also. □

Let

i∗ : Perf f l,S ′×1[n](S ×1[n])→ Perf f l,S ′×δ1[n](S × δ1[n]) (5.17)

denote the functor induced by the closed immersion S × δ1[n] → S ×1[n].

Proposition 5.17.1. One obtains the isomorphism:

πnKS ′(S)∼= π0KS ′×1[n](S ×1[n],S × δ1[n])∼= π0(wG(i∗)).

Proof. The key idea is the observation that one obtains a fibration sequence:

KS ′×1[n](S ×1[n],S × δ1[n])→ KS ′×1[n](S ×1[n],S ×6)

→ KS ′×1[n−1](S ×1[n− 1],S × δ1[n− 1]),

where 6 =
⋃

i=0,...,n−1δ
i1[n], the last map is the restriction to the last face of

1[n], and the first map is the obvious inclusion of the fiber. The middle term is
contractible by the above lemma, so that the long exact sequence associated to the
above fibration provides us with an isomorphism

πk−1(KS ′×1[n](S×1[n],S×δ1[n]))∼=πk(KS ′×1[n−1](S×1[n−1],S×δ1[n−1]).

Repeating this n-times, we obtain the first isomorphism in the proposition. The
second isomorphism in the proposition follows from the fact wG(i∗) is the homotopy
fiber of the G-construction applied to the functor i∗ defined as in (3.2) and (5.11). □

Remarks 5.17.2. (i) Lemma 5.16.1 and Proposition 5.17.1 are clearly inspired
by [Bloch and Lichtenbaum 1997, Lemmas (1.2.1) and (1.2.2)], which play a
key role in the construction of the Bloch–Lichtenbaum spectral sequence.
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(ii) The product structure on relative K-theory may now be viewed as the pairing:

π0KS ′×1[n](S×1[n],S×δ1[n])⊗π0KS ′×1[m](S×1[m],S×δ1[m])
→π0KS ′×1[n]×1[m](S×1[n]×1[m],S×(δ1[n]×1[m]∪1[n]×δ1[m]))

∼=π0KS ′×1[n+m](S×1[n+m],S×δ1[n+m]). (5.18)

Proof of Theorem 1.1.1(i) and (ii). Recall S denotes a smooth algebraic stack with
S ′ a closed algebraic substack.

Then we need to show π0(K(S)) is a pre-λ-ring, and that each πn(KS ′(S))
is a pre-λ-algebra over the pre-λ-ring π0(K(S)). Moreover, we need to show
the pre-λ-algebra structure is compatible with pull-backs: that is, if f : S̃ → S
is a map of smooth algebraic stacks and S̃ ′ = S̃×SS ′, then the induced map
f ∗ : π0(K(S))→ π0(K(S̃)) is a map of pre-λ-rings, and the induced map f ∗ :
πn(KS ′(S))→ πn(KS̃′(S̃)) is a map of pre-λ-algebras over π0(K(S)), for each
fixed n ≥ 0. In addition, we need to show the λ-operations are homomorphisms on
πn(KS ′(S)) for all n > 0.

Observe first that the isomorphisms in the last Proposition are compatible with
respect to the λ-operations defined in (5.9): this follows from the naturality of these
operations with respect to pull-backs. In fact, one may verify readily that one has
the following homotopy commutative diagram of fibration sequences:

KS′×1[n](S×1[n],S×δ1[n])
λk

//

��

KS′×1[n](S×1[n],S×δ1[n])

��

KS′×1[n](S×1[n],S×6)
λk

//

��

KS′×1[n](S×1[n],S×6)

��

KS′×1[n−1](S×1[n−1],S×δ1[n−1])
λk
// KS′×1[n−1](S×1[n],S×δ1[n−1])

Therefore, it follows that the λ-operations are compatible with the boundary maps of
the corresponding long exact sequence of homotopy groups. Using the isomorphism
in Proposition 5.17.1, it suffices to show that π0KS ′×1[n](S ×1[n],S × δ1[n]) is
a pre-λ-ring without unit, and for S ′ = S and n = 0, it is a pre-λ-ring. This may
be done as for vector bundles: that is, the proof of this theorem follows along the
same lines as the proof in [Grayson 1989, Section 8]. Here are some details.

Using the identification of π0(KS ′×1[n](S ×1[n],S × δ1[n])) as π0(wG(i∗)),
the definition of wG(i∗) as in (5.11) shows that a connected component of wG(i∗)
corresponds to a pair of perfect complexes V and W on S × 1[n], with sup-
ports contained in S ′ × 1[n] together with a zig-zag path (as in (3.6)) p join-
ing the restriction (i∗(V ), i∗(W )) to the base point, namely the pair (0, 0) in
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wG(Perf f ,S ′×δ1[n](S×δ1[n]). This pair corresponds to the difference [V ]−[W ]
in the above Grothendieck group. We will begin with the special case where W = 0.

Viewing λk as a map wGk(i∗)→ wGk(i∗)≃ wG(i∗), we see that

[λk(V )] =
[∧k

(V )
]
, (5.19)

where
∧k denotes the functor defined in (5.4) and

[∧k
(V )

]
, [λk(V )] denote the

corresponding classes in π0(wG(i∗))= π0(KS ′×1[n](S ×1[n],S × δ1[n])). This
follows from the observations as in [Grayson 1989, Section 8], but we will provide
the relevant details. The vertices of subk wG(i∗) correspond to pairs (V,W) of
perfect complexes on S×1[n] with supports contained in S ′×1[n] (together with
a zig-zag path p (as in the last paragraph) joining the restriction (i∗(V ), i∗(W )) to
(0, 0)), positioned at the vertices of a k-dimensional cube. Then the multisimplicial
map λk sends such a vertex (V,W ) to a sequence, each term of which is of the
form

∧a
(V )⊗

∧b1(W )⊗ · · ·⊗
∧bu (W ), for some choice of a, b1, . . . , bu ≥ 0, so

that a+ b1+· · ·+ bu = k. When W = 0 as we have chosen, then this has only one
nonzero term, namely

∧k
(V ).

Next let K ′↣ K denote a cofibration in Perf f l,S ′×1[n](S×1[n]), so that together
with the choice of paths joining their restrictions to (0, 0), both belong to wG(i∗).
Then one obtains the following formula in π0(wG(i∗)):

[λm(K )] =
m∑

k=0

[λk(K ′)⊗ λm−k(K/K ′)] =
m∑

k=0

[λk(K ′)]· [λm−k(K/K ′)] (5.20)

with the understanding that λ0(K ′)· λm(K/K ′)=λm(K/K ′) and λm(K ′)·λ0(K/K ′)
= λm(K ′). In view of (5.19) above, it suffices to prove this with λk(K ) replaced
by

∧k
(K ). This holds by repeatedly applying Corollaries 4.2.3, 4.6.3 and (E5) by

taking, m = k+ l+1, first with k = 0, W1= K ′, W2= K =U j , j = 1, . . . , l, which
gives

[∧m
(

m︷ ︸︸ ︷
K , K , . . . , K )

]
=

[∧m
(

m︷ ︸︸ ︷
K ′, K , . . . , K )

]
+

[∧m
(

m︷ ︸︸ ︷
K/K ′, K/K ′, . . . , K/K ′)

]
.

Then with k = 1, V1 = K ′, W1 = K ′, W2 = K =U j , j = 1, . . . , l − 1, enables us
to obtain

[∧m
(

m︷ ︸︸ ︷
K ′, K , . . . , K )

]
=

[∧1
(K ′)⊗

∧m−1
(

m−1︷ ︸︸ ︷
K/K ′, K/K ′, . . . , K/K ′)

]
+

[∧m
(

m︷ ︸︸ ︷
K ′, K ′, K , . . . , K )

]
, . . . ,
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ending with

[∧m
(

m−1︷ ︸︸ ︷
K ′, . . . , K ′, K )

]
=

[∧m−1
(

m−1︷ ︸︸ ︷
K ′, . . . , K ′)⊗

∧1
(K/K ′)

]
+

[∧m
(

m︷ ︸︸ ︷
K ′, . . . , K ′)

]
.

Moreover, in view of (5.19), one observes readily that if n = 0,
∧0
(K )=OS and

in general,
∧1
(K )= K , K ∈ π0KS ′×1[n](S ×1[n],S × δ1[n]).

5.20.4. At this point we make the following important observation. Given a perfect
complex K on S × 1[n] and acyclic on (S − S ′) × 1[n], and so that the pair
(K , 0) denotes a class in π0(wG(i∗)), the canonical construction of its cone (that
is, the mapping cone of the identity map K → K ) along with Theorem A.0.6 (see
also Corollary 4.6.3) shows that the class of K [1] denotes the additive inverse of
the class of K in the above Grothendieck group. (Given a perfect complex K in
Perf f l,S ′×1[n](S ×1[n]), so that (K , 0) represents a class in π0(wG(i∗)), we will
let [K ] denote its class in the above Grothendieck group.) Therefore, given two
perfect complexes K ′, K in Perf f l,S ′×1[n](S ×1[n]), so that (K , 0) and (0, K ′)
represent classes in π0(wG(i∗)), the class [K ] − [K ′] in the above Grothendieck
group is represented by the class of the perfect complex K ⊕ K ′[1]. It follows that
the identity in (5.20) suffices to prove the identity

λn(r + s)=
n∑

i=0

λi (r)· λn−i (s)

holds for all r, s in the group π0KS ′×1[n](S ×1[n],S × δ1[n])∼= πnKS ′(S), with
the understanding that λ0(r)· λn(s) = λn(s) and λn(r)· λ0(s) = λn(r). These ob-
servations prove that there is the structure of a pre-λ-ring without unit on each
πn(KS ′(S))∼= π0(KS ′×1[n](S×1[n],S×δ1[n])) and the structure of a pre-λ-ring
on π0(K(S)) (that is, on πn(KS ′(S))∼= π0(KS ′×1[n](S ×1[n],S × δ1[n])), when
n = 0 and S ′ = S).

In view of these observations, one may define a pre-λ algebra structure on
π0(K(S))⊕πn(KS ′(S)) by defining λm on π0(K(S))⊕πn(KS ′(S)) by λm(r, s)=(
λm(r),

∑m−1
i=0 λ

i (r)· λm−i (s)
)
. (See Lemma 5.20.1 below.) Observe that each

πn(KS′(S)) has the structure of a module over π0(K(S)) in the obvious manner
using the tensor product of perfect complexes.

The naturality with respect to pull-back is clear from the construction. It may be
also important to point out the following: the product structure on each πnKS ′(S) is
trivial for all n>0. This is because this product structure is defined making use of the
pull-back by the diagonal map 11 : S×1[n]→ S×1[n]×S×1[n], and involves
the co-H-space structure on Sn

≃1[n]/(δ1[n]): see [Kratzer 1980a, Lemme 5.2].
(This is distinct from the product πn(KS ′(S))⊗πm(KS ′(S))→πn+m(KS′(S)), which
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makes use of pull-back by the diagonal, 12 : S ×1[n] ×1[m] → (S ×1[n])×
(S ×1[m]).) In view of this observation, the λ-operations are all homomorphisms
on πn(KS ′(S)), for all n > 0.

In view of the following lemma, these observations prove the first two statements
of Theorem 1.1.1.

Lemma 5.20.1. Let R denote a prelambda ring and S an R-module, so that it is
also provided with the structure of a prelambda ring without unit. Then R⊕S has
the structure of a prelambda ring, where

(r, s)+ (r ′, t)= (r + r ′, s+ t),

(r, s) ◦ (r ′, t)= (r · r ′, r · t + r ′· s+ s· t), and

λn(r, s)=
(
λn

R(r),
n−1∑
i=0

λi
R(r).λ

n−i
S (s)

)
,

(5.21)

and where λi
R (λ j

S) denote the prelambda operations of R (S, respectively).

Proof. We define λ0(r, s) = 1, where 1 denotes the multiplicative unit in R. We
also let λi (r, 0)= λi

R(r) and λ j (0, s)= λ j
S(s), for all r ∈ R, s ∈ S and i ≥ 0, j > 0.

We also let λi (r, 0)· λ0(0, s)= λi (r, 0) for all i ≥ 0 and r ∈ R, s ∈ S. Next we let
λ1(r, s)= (λ1

R(r), λ
1
S(s)). In general, we define λn on R⊕S, by

λn(r, s)= (λn
R(r), λ

0
R(r)· λ

n
S(s)+ · · ·+ λ

n−1
R (r)· λ1

S(s))

=

(
λn

R(r),
n−1∑
i=0

λi
R(r).λ

n−i
S (s)

)
.

In view of the above definitions, clearly we may identify the right-hand side above
with

∑n
i=0 λ

i (r)· λn−i (s). One may also verify that if r, r ′ ∈ R and s, s ′ ∈ S, then

λn(r + r ′)=
n∑

i=0

λi (r)· λn−i (r ′)

and

λn(s+ s ′)=
n∑

i=0

λi (s)· λn−i (s ′)

since both R and S are assumed to be prelambda rings. In view of these observations,
it suffices to check that

λn((r, s)+ (r ′, s ′))=
n∑

i=0

λi (r, s)· λn−i (r ′, s ′). (5.22)
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In fact the term on the left side is given by:

λn(r + r ′, s+ s ′)

=
(
λn(r+r ′), λn−1(r+r ′)· λ1(s+s ′), λn−2(r+r ′)· λ2(s+s ′), . . . ,

λ1(r + r ′)· λn−1(s+ s ′), λn(s+ s ′)
)

=

( n∑
i=0

λi (r)· λn−i (r ′),
n−1∑
j=0

λ j (r)· λn−1− j (r ′)[λ1(s)+ λ1(s ′)],

n−2∑
j=0

λ j (r)· λn−2− j (r ′)[λ2(s)+ λ1(s)· λ1(s ′)+ λ2(s ′)], . . . ,

[λ1(r)+ λ1(r ′)]· (λn−1(s ′)+ λ1(s)λn−2(s ′)+ · · ·+ λn−1(s)),

λn(s ′)+ λ1(s)· λn−1(s ′)+ · · ·+ λn−1(s)· λ1(s ′)+ λn(s)
)
. (5.23)

The term on the right side of (5.22) is given by
n∑

i=0

λi (r,s)·λn−i (r ′,s ′)

=

n∑
i=0

(
λi (r),λi−1(r)·λ1(s)+·· ·+λ1(r).λi−1(s)+λi (s)

)
×(λn−i (r ′),λn−i−1(r ′)·λ1(s ′)+·· ·+λ1(r ′)·λn−i−1(s ′)+λn−i (s ′)). (5.24)

Now it is straightforward to check that we obtain equality in (5.22). (Moreover, in
case the multiplication on S is trivial, λn(s+ s ′)= λn(s)+ λn(s ′) as well.) □

Remark 5.24.1. In dealing with the K-theory of exact categories, there is no
analogue of the suspension functor K 7→ K [1] (used in 5.20.4 above), and as a result
it takes much more effort to deduce that the λ-operations defined as in (5.8) and (5.9)
define a pre-λ-ring structure even on the Grothendieck groups; see [Grayson 1989,
Section 8].

6. The lambda-ring structure on higher K-theory: proof of Theorem 1.1.1(iii)

In this section, we consider statement (iii) in Theorem 1.1.1. Recall that this is
the following statement: in case every coherent sheaf on the smooth stack S is the
quotient of a vector bundle, then each πn(KS ′(S)) is a λ-algebra over π0(K(S)) in
the sense of Definition 1.0.1.

The additional assumption that every coherent sheaf is the quotient of a vector
bundle first enables one to restrict to strictly perfect complexes. This observation,
together with an adaptation of some arguments of Gillet, Soulé and Deligne [Gillet
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and Soulé 1987, Section 4] enable us to show that the λ operations we define satisfy
all the expected relations, so that we obtain the structure of a λ-ring on the higher
K-groups of all smooth stacks satisfying this hypothesis.

We begin by recalling the framework from [Kratzer 1980b] and [Gillet and Soulé
1987]; see also [Soulé 1992, page 22–27] for a somewhat simplified account of this,
as well as [Serre 1968]. Let H=Z[MN×MN] denote the bialgebra Z[MN×MN] of
the multiplicative monoid of pairs of N×N matrices for some fixed integer N ≥ 1,
that is, it is the algebra of polynomials Z[X11, X12, . . . , XNN; Y11, Y12, . . . , YNN]

with the coproduct µ : H → H ⊗ H satisfying µ(X i j ) =
∑N

k=1 X ik ⊗ Xk j and
µ(Yi j ) =

∑N
k=1 Yik ⊗ Yk j . Let PZ(MN ×MN) denote the exact category of left-

Z[MN ×MN ] comodules that are free and finitely generated over Z: an element of
this category is called a representation of MN ×MN . We let RZ(MN×MN) denote
the Grothendieck group of PZ(MN×MN), which is a ring via the tensor product of
comodules.

Let pi , i = 1, 2 denote the representation of MN ×MN corresponding to the
projection to the i-th factor. It is shown in [Gillet and Soulé 1987, Theorem 4.2]
(see also [Kratzer 1980b, Proposition 4.3]) that the following are true:

Proposition 6.0.1. The ring RZ(MN ×MN ) is isomorphic to the polynomial ring

Z[λ1(p1), . . . , λ
N (p1); λ

1(p2), . . . , λ
N (p2)].

Exterior powers make it a λ-ring.

It is shown in [Gillet and Soulé 1987, 4.3] that the center of the monoid MN×MN

is M1 × M1 imbedded diagonally, and that the category of representations of
M1×M1 is equivalent to the category of positively bigraded Z-modules. For any
representation E of MN×MN, the decomposition E =

⊕
p,qEp,q over the center

of MN ×MN is stable under the action of MN ×MN. E has degree at most d if
Ep,q
= 0 unless p+ q ≤ d . Let RZ(MN×MN)

d denote the Grothendieck group of
the category of representations of MN×MN of degree at most d . The following is
also known (see [Gillet and Soulé 1987, Lemma 4.3]):

Proposition 6.0.2. The group RZ(MN ×MN)
d maps injectively into RZ(MN ×MN )

and the image of this map consists of the elements

R(λ1(p1), . . . , λ
N (p1); λ

1(p2), . . . , λ
N (p2)),

where R runs over all polynomials of weight at most d.

6.1. The functor TE (see [Gillet and Soulé 1987, 4.4, 4.5 and Lemma 4.5])7. Next,
for any representation E of MN ×MN , a scheme X and two locally free coherent

7It needs to be pointed out that this functor does not extend to one on pairs of all perfect complexes,
but only on to pairs of strictly perfect complexes. This is the reason the results of this section hold
only under the strong assumption that every coherent sheaf is a quotient of a vector bundle.
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sheaves P, Q of rank at most N on X, a vector bundle TE(P,Q) on X is defined.
It is shown that for fixed P and Q, the functor E 7→ TE(P,Q) has the following
properties:

(i) If the representation E has degree at most d, the functor E 7→ TE(P,Q) has
degree at most d (that is, the cross-effect functor E 7→TE(P,Q)s = 0 for s> d).

(ii) The above functor is exact in E and it commutes with direct sum, tensor product
and exterior powers in E for a fixed P and Q.

(iii) Tp1(P,Q)= P, Tp2(P,Q)= Q, and TE(0, 0)= 0.

(iv) Commutes with base-change of the scheme X, that is, the following holds: if
p : Y→ X is a map of schemes, TE(p∗(P), p∗(Q)) is canonically isomorphic
to p∗(TE(P,Q)).

(v) TE(P,Q) is functorial in P and Q for a fixed E.

Proposition 6.1.3. The functor TE extends to algebraic stacks with the same proper-
ties. Given two bounded complexes of vector bundles P, Q on an algebraic stack S
the functor E 7→ TE(P,Q) defines a bounded complex of vector bundles on the stack
S. The functor TE preserves quasiisomorphisms in either argument. If P and Q
have cartesian cohomology sheaves, then TE(P,Q) also has cartesian cohomology
sheaves.

Proof. One may first consider bounded complexes of vector bundles on a scheme.
Then one may show that the functor TE( , ) preserves degree-wise split short-exact
sequences of bounded complexes of vector bundles in both arguments and that if P
or Q is acyclic, then TE(P,Q) is also acyclic. The latter follows by working locally
on a given scheme X, where we may assume that there is a null chain-homotopy for
both P or Q and by using the observation that the functor preserves chain homotopies.
Since the functor TE( , ) preserves degree-wise split short exact sequences in each
argument, it follows that it preserves quasiisomorphisms in either argument.

Next we show this functor extends to algebraic stacks. Let x : X→ S denote an
atlas for the stack S with X a scheme and let P, Q denote two bounded complexes
of vector bundles on the stack S. Then P0 = x∗(P) and Q0 = x∗(Q) define two
bounded complexes of vector bundles on the scheme X. The property that the
functor E 7→ TE(P,Q) commutes with respect to base-change on schemes, shows
that

pr∗1 TE(P0,Q0)∼= TE(pr∗1 x∗(P), pr∗1 x∗(Q))

= TE(pr∗2 x∗(P), pr∗2 x∗(Q))
∼= pr∗2 TE(P,Q),

where pri : X×S X→ X, i = 1, 2 are the two projections. (We skip the verification
that the above isomorphism satisfies a cocycle condition on further pull-back to
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X ×S X ×S X.) Therefore, it follows readily that TE(P,Q) defines a bounded
complex of vector bundles on the stack S. The properties (i) through (v) may be
checked by pulling back to

X×S X
pr1

pr2
⇒ X,

where x : X→ S is an atlas for the stack.
Next we consider the last statement in the Proposition. Assume P and Q have

cartesian cohomology sheaves. As in the proof of Proposition 5.5.2, it suffices
to show that for a smooth map f : U→ V in Slis−et, one obtains isomorphisms
f ∗Hi (TE(P,Q))∼=Hi (TE(f ∗(P), f ∗(Q)), for all i . The base-change property shows
f ∗TE(P,Q) ∼= TE(f ∗(P), f ∗(Q)). Since f is a smooth map, f ∗ commutes with
taking cohomology sheaves, as it is an exact functor. This completes the proof. □

Throughout the following discussion we will fix a smooth algebraic stack S
with S ′ a closed substack. We will assume throughout the rest of the discussion
that every coherent sheaf on S is the quotient of a vector bundle. Let Vect(S)
(VectN (S)) denote the category of vector bundles on the stack S (vector bundles
on the stack S with rank ≤ N , respectively). Let tk denote the naive truncation
functor that sends a simplicial object to the corresponding truncated simplicial
object, truncated in degree ≤ k. If E is an exact category and C denotes a chain
complex with differentials of degree −1 in E and trivial in negative degrees, we
will also use tk(C) to denote the corresponding truncated chain complex, truncated
to degrees ≤ k. We let Simp(E) (Simpk(E)) denote the category of all simplicial
objects in E (simplicial objects truncated to degrees ≤ k, respectively). Similarly,
C(E) (Ck(E)) will denote the category of complexes in E that are trivial in negative
degrees and with differentials of degree −1 (the category of complexes in E that
are trivial in negative degrees and in degrees > k and with differentials of degree
−1, respectively). We let ek : Ck(E)→ C(E) denote the obvious inclusion functor.

Next let N(1) denote the normalized chain complex of the standard 1-simplex:
N(1)n = 0 if n > 1, N(1)1 = Z[e], N(1)0 = Z[e0] ⊕ Z[e1] with δ(e) = e0 − e1.
Let K(1) = DNh(N(1)), where DNh denotes the de-normalizing functor as in
Appendix B; this is a simplicial abelian group. Given an object S• ∈ Simp(Vect(S)),
K(1)⊗ S• will denote the obvious simplicial object: (K(1)⊗ S•)n = K(1)n ⊗ Sn =⊕

kn∈K(1)n Sn and with the obvious structure maps. Observe that K(1) ⊗ S• ∈
Simp(Vect(S)).

Let A, B denote two strictly perfect complexes on S ×1[n] and let C, D denote
two strictly perfect complexes on S×1[n] acyclic on (S−S ′)×1[n]. Choose m so
that An

=Bn
=0=Cn

=Dn if n>m. We will first apply the shift [m] so that A[m]n=
B[m]n = C[m]n = D[m]n = 0 for all n > 0. Therefore we may view A[m], B[m],
C[m] and D[m] as complexes in nonnegative degrees with differentials of degree−1.
We denote these by A′, B′, C′ and D′ respectively. Choose the integer k so that
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k > md . Choose the integer N so that all the components of tk(K(1)⊗ (DN(A′))),
tk(K(1)⊗DN(B′)) lie in Simpk(VectN (S)) and all the components of tk(K(1)⊗
(DN(C′))), tk(K(1)⊗ (DN(D′))) lie in Simpk(VectN (S ×1[n], (S −S ′)×1[n]):
the latter denotes the full subcategory of Simpk(VectN (S ×1[n])) with supports
contained in S ′×1[n]. For any representation E of MN ×MN of degree at most d ,
we define

SE(k;A′,B′)= ekNkTEtk1(DN(A′),DN(B′)), and (6.2)

SE(k;C′,D′)= ekNkTEtk1((DN(C′),DN(D′)), (6.3)

where 1 denotes the diagonal of the bisimplicial object appearing there, and Nk

denotes the normalization functor for truncated simplicial objects in an abelian
category: this is defined as the normalization functor for simplicial objects in
Appendix B.

Throughout the following discussion we will let i : S × δ1[n] → S ×1[n]
denote the obvious closed immersion. Let S ′ denote a closed algebraic substack
of S. Then we let

i∗ : wG• StPerf f l,S ′×1[n](S ×1[n])→ wG• StPerf f l,S ′×1[n](S × δ1[n])

denote the corresponding pull-back functor, and let wG(i∗) denote its homotopy
fiber defined as in (5.11) or (3.2).

Proposition 6.3.1 (see also [Gillet and Soulé 1987, Lemma 4.8]). Let C, D denote
two strictly perfect complexes on S×1[n] acyclic on (S−S ′)×1[n], and provided
with an explicit zig-zag path p as in (3.6) running from the restriction of the pair
(C,D) to S× δ1[n], to the base point (0, 0) in wG(i∗). Let d ≥ 1 be an integer. Let
A, B denote two strictly perfect complexes on S. Then there exists an integer N ≥ 1
and homomorphisms

α:RZ(MN ×MN )
d
→ π0(K(S)),

β:RZ(MN ×MN )
d
→ π0(KS ′×1[n](S ×1[n],S × δ1[n])),

which preserve the additive, multiplicative and pre-λ-ring structures. Moreover, the
following holds:

(i) [A] = α(p1), [B] = α(p2), [C] = β(p1), [D] = β(p2)

(ii) α(xy)=α(x)α(y) and β(xy)=β(x)β(y) if x, y and xy are in RZ(MN×MN )
d

(where the product on π0(K(S)) (π0(KS ′×1[n](S ×1[n],S × δ1[n])) is given by
the tensor products of perfect complexes.

(iii) α(λk(x)) = λk(α(x)) and β(λk(x)) = λk(β(x)) if x and λk(x) are both in
RZ(MN ×MN )

d .



560 ROY JOSHUA AND PABLO PELAEZ

Proof. In [Gillet and Soulé 1987, Lemma 4.8] they consider a similar result for
complexes C and D that are acyclic off of a closed subscheme of the given scheme:
therefore the above result does not follow by simply extending their result to stacks.
Instead one needs to argue as follows. Choose m so that Cn

= Dn
= An

= Bn
= 0

if n > m, and the integer k so that k > md . We will first apply the shift [m] so that
C[m]n =D[m]n =A[m]n =B[m]n = 0 for all n > 0. Therefore we may view C[m],
D[m], A[m] and B[m] as complexes in nonnegative degrees with differentials of
degree −1. We denote these by C′, D′, A′ and B′ respectively. Choose the integer
N, and for any representation E of MN ×MN of degree at most d, we define the
functors E 7→ SE(k,A′,B′) and E 7→ SE(k,C′,D′) as in (6.2) and (6.3).

That E 7→ TE(k;A′,B′) defines a map RZ(MN ×MN )
d
→ Simpk(VectN (S)) is

clear from the definition. The property that the functor TE commutes with base-
change shows there is a natural isomorphism i∗◦SE(k;C′,D′)∼=SE(k; i∗(C′), i∗(D′)).
Next assume that C′ and D′ are acyclic on S ′×1[n]. Since they are both complexes
of locally free coherent sheaves, locally on the stack S ′ ×1[n], one may find a
contracting homotopy for the restriction of C′ and D′ to S ′ ×1[n]. Therefore,
again the same argument applied to a presentation of the stack S (by an affine
scheme) proves that SE(k;C′,D′) is acyclic on restriction S ′ ×1[n]. (In more
detail: let x : X → S be a presentation of the stack S with X affine, y : Y → S ′

be a presentation of S ′. Now apply [Gillet and Soulé 1987, Lemma 3.5(iii)] to
X− Y .) It follows that SE(k;C′,D′) is a strictly perfect complex on S ×1[n] so
that it is acyclic on S ′ ×1[n]. It follows that E 7→ SE(k;C′,D′) defines a map
RZ(MN ×MN )

d
→ Simpk(VectN (S ×1[n], (S −S ′)×1[n])).

Recall that π0(KS ′×1[n](S×1[n],S×δ1[n])) has been proven to be a prelambda
ring without unit and that π0(K(S)) has been proven to be a prelambda ring by the
first two statements in Theorem 1.1.1. At this point we recall from Proposition 6.0.1
that the ring RZ(MN ×MN ) is isomorphic to the polynomial ring

Z[λ1(p1), . . . , λ
N (p1); λ

1(p2), . . . , λ
N (p2)].

One may also recall from Proposition 6.0.2 that the group RZ(MN×MN)
d maps

injectively into RZ(MN ×MN ) and the image of this map consists of the elements

R(λ1(p1), . . . , λ
N (p1); λ

1(p2), . . . , λ
N (p2)),

where R runs over all polynomials of weight at most d. Therefore, it should be
clear now that the maps α and β are completely determined by their values on
the representations p1 and p2, that is, assuming both α and β commute with
λ-operations.

Therefore, for a representation E of MN×MN of degree at most d , we define

α(E) ∈ π0(K(S)) (6.4)
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to be the class of SE(k;A′,B′)[−m] and

β(E) ∈ π0(KS ′×1[n](S ×1[n],S × δ1[n]))

to be the class of SE(k;C′,D′)[−m], respectively. The property that Tp1(A
′,B′)=A′

and Tp2(A
′,B′)=B′ shows that α(p1)=[A] and α(p2)=[B]. Similarly, β(p1)=[C]

and β(p2)= [D]. This proves (i).
By Proposition 6.0.2, any element in RZ(MN ×MN )

d is a polynomial of weight
at most d in the exterior powers of p1 and p2. Since the functor E 7→ TE(P,Q) (for
a fixed P and Q) is exact in E and preserves sums, products and exterior powers in E
as already observed (see Section 6.1 and Proposition 6.1.3), and both π0(K(S)) and
π0(KS ′×1[n](S×1[n],S× δ1[n])) are pre-λ-rings, we see that we obtain additive
homomorphisms

α : RZ(MN ×MN )
d
→ π0(K(S)),

β : RZ(MN ×MN )
d
→ π0(KS ′×1[n](S ×1[n],S × δ1[n])),

which are also multiplicative, and preserve the λ-operations. Moreover, each element
in the image of α (β) can be written as TE(k;A,B) (SE(k;C,D), respectively) for
some E ∈ RZ(MN ×MN )

d .
By the properties of the functor TE discussed before, it follows that if

R(X1, . . . , X N ; Y1, . . . , YN ) is a polynomial with integral coefficients and of
weight at most d , we obtain

α(R(λ1(p1), . . . , λ
N (p1); λ

1(p2), . . . , λ
N(p2)))

= R(λ1(x), . . . , λN(x); λ1(y), . . . , λN(y)) (6.5)

where x = α([A]) and y = α([B]). Similarly,

β(R(λ1(p1), . . . , λ
N(p1); λ

1(p2), . . . , λ
N(p2)))

= R(λ1(x), . . . , λN(x); λ1(y), . . . , λN(y)) (6.6)

where x = β([C]) and y = β([D]). Since the functors E 7→ TE(k;A,B) and
E 7→ SE(k;C,D) are compatible with tensor products and exterior powers, (ii) and
(iii) of the proposition follow readily. □

First we draw the following consequences of the last proposition

Corollary 6.6.1. π0(K(S)) is a λ-ring and, for each n ≥ 0, πn(KS ′(S)) ∼=
π0(KS ′×1[n](S ×1[n],S × δ1[n])) is a λ-ring without a unit element.

Proof. We already know from Theorem 1.1.1(i) that π0(K(S)) is a pre-λ-ring with
unit and that πn(KS ′(S)) ∼= π0(KS ′×1[n](S ×1[n],S × δ1[n])) is a pre-λ-ring
(without a unit): the λ-operations in both cases are defined by the exterior powers
of perfect complexes. Therefore, what remains to be shown is that they satisfy the
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relations in (1.1). This is a formal consequence of the last proposition. Let C, D
denote two strictly perfect complexes on S ×1[n] acyclic on (S −S ′)×1[n] and
provided with an explicit zig-zag path p as in (3.6) running from their restriction to
S × δ1[n], to the base point (0, 0) in wG(i∗). Let A, B denote two strictly perfect
complexes on S and let x = [A], y = [B].

To check the identity λk(λl(x))= Pk,l(λ
1(x), . . . , λkl(x)) for a certain universal

polynomial Pk,l, let d = kl and choose N as in the last proposition. Then

λk(λl(x))= α(λk(λl(p1)))

and
Pk,l(λ

1(x), . . . , λkl(x))= α(Pk,l(λ
1(p1), . . . , λ

kl(p1))).

Since RZ(MN ×MN )
d is contained in the λ-ring RZ(MN ×MN ), we obtain the

equality
λk(λl(p1))= Pk,l(λ

1(p1), . . . , λ
kl(p1)).

In view of properties of the functor E 7→ TE as discussed above, it follows that α
is an additive homomorphism that commutes with products and exterior powers.
Therefore, we obtain the formula

λk(λl(x))= Pk,l(λ
1(x), . . . , λkl(x)).

Similarly, one checks the identity λk(xy)= Pk(λ
1(x), . . . , λk(x); λ1(y), . . . , λk(y))

for a certain universal polynomial Pk. These prove that π0(K(S)) is a λ-ring.
Next one lets x = [C] and y = [D], and repeats the above argument with β in

the place of α to prove π0(KS ′×1[n](S ×1[n],S × δ1[n])) is a λ-ring without a
unit element. □

Let Z denote the ring of integers with its canonical λ-ring structure; see [Atiyah
and Tall 1969, Section 1].

Lemma 6.6.2. Assume the above framework. Then Z⊕π0(KS ′×1[n](S×1[n],S×
δ1[n])) is a λ-ring where the operations are defined as follows. If n,m ∈ Z and
s, t ∈ π0(K(S ×1[n],S × δ1[n])),

(n, s)+ (m, t)= (n+m, s+ t),

(n, s) ◦ (m, t)= (n.m, n.t +m.s+ s.t),

λn(k, s)=
(
λn(k),

n−1∑
i=0

λi (k).λn−i (s)
)
, n > 0.

Here ◦ denotes the multiplication in the graded ring

Z⊕π0(KS ′×1[n](S ×1[n],S × δ1[n])).
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Proof. It is straightforward to verify that these define a pre-λ-ring structure, where
(1, 0) is the unit element: see Lemma 5.20.1. We proceed to verify the relations
in (1.1) are satisfied. For these the following observations will be helpful.

For any ring R with unit, let Ĝ(R) = 1+R[[t]]+ = the power series in t with
coefficients in R and with the starting term 1. This is a λ ring with the addition
(which will be denoted by ⊞) being the product of power series, and multiplication
(denoted •) and exterior power operations defined as in [Atiyah and Tall 1969,
page 258]. If R is also a pre-λ ring, then the map r 7→ λt(r) =

∑
i λ

i (r)t i is an
additive homomorphism of abelian groups from R to Ĝ(R). The same map is a ring
homomorphism (a map of pre-λ-rings) if and only if the first relation in (1.1) is
satisfied (both the relations in (1.1), respectively are satisfied).

Therefore, to prove the first relation in (1.1), it suffices to show that

λt((n, x) ◦ (m, y))= λt(n, x) • λt(m, y), (6.7)

for n,m ∈ Z, and x, y ∈ π0(KS ′×1[n](S×1[n],S×δ1[n])). Using the product on
the ring Z⊕π0(KS ′×1[n](S ×1[n],S × δ1[n])), the left-hand side identifies with

λt((n, 0) ◦ (m, 0)+ (n, 0) ◦ (0, y)+ (0, x) ◦ (m, 0)+ (0, x) ◦ (0, y)).

Since λt is an additive homomorphism, this identifies with

λt((n, 0) ◦ (m, 0))⊞ λt((n, 0) ◦ (0, y))⊞ λt((0, x) ◦ (m, 0))⊞ λt((0, x) ◦ (0, y)).

The term on the right-hand side of (6.7) identifies with

(λt(n, 0))⊞ (λt(0, x))] • [(λt(m, 0))⊞ (λt(0, y))]

= (λt(n, 0) • λt(m, 0))⊞ (λt(n, 0) • (λt(0, y))⊞ ((λt(0, x) • (λt(m, 0))

⊞ (λt(0, x)) • (λt(0, y)).

Since Z and π0(KS ′×1[n](S×1[n],S×δ1[n])) are λ-rings, λt((n, 0)◦(m, 0))=
λt(n, 0) • λt(m, 0) and λt((0, x) ◦ (0, y))= λt(0, x) • λt(0, y). Moreover, observe
that (0, x) ◦ (m, 0) = (0,mx) = (m, 0) ◦ (0, x). Therefore, it suffices to show
that λt((m, 0) ◦ (0, x))= λt(m, 0) • λt(0, x) for any positive integer m. However,
(m, 0) ◦ (0, x)= (0,mx). Since λt(1, 0)= 1+ (1, 0)t is the multiplicative unit in
Ĝ(Z⊕π0(KS ′×1[n](S ×1[n],S × δ1[n]))), it follows that λt(0, 1.x)= λt(1, 0) •
λt(0, x).
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Assuming that λt(0, nx)= λt(n, 0) • λt(0, x) for all n < m, we observe that

λt(0,mx)= λt(0, x + (m− 1)x)

= λt(0, x)⊞ λt(0, (m− 1)x)

= λt(0, x)⊞ λt((m− 1, 0) ◦ (0, x))

= λt(1, 0) • λt(0, x)⊞ λt((m− 1), 0) • λt(0, x)

= (λt(1, 0)⊞ λt((m− 1), 0)) • λt(0, x)

= λt(m, 0) • λt(0, x).

This completes the proof of the first relation in (1.1).
To prove the second, we observe the square in [SGA 6 1971, Exposé V, (3.7.1)]

S
λu

//

λt

��

Ĝu(S)

Ĝu(λt )
��

Ĝ t(S)
λu
// Ĝu(Ĝ t(S)),

where S = Z⊕π0(KS ′×1[n](S ×1[n],S × δ1[n])). Given a pre-λ-ring R, Ĝu(R)
(Ĝ t(R)) denotes the power series ring considered above in the variable u (t , re-
spectively). The second relation in (1.1) holds if and only if the above square
commutes; see [SGA 6 1971, Exposé V, 3.7]. Since all the maps in the above
diagram are group homomorphisms, it suffices to show the square above com-
mutes separately for elements of the form (n, 0) and (0, x) with n ∈ Z and x ∈
π0(KS ′×1[n](S×1[n],S× δ1[n])). But this is equivalent to showing the required
relations hold separately for elements of the form (n, 0) and (0, x) with n ∈ Z and
x ∈ π0(KS ′×1[n](S×1[n],S× δ1[n])). This is clear since we already know from
Corollary 6.6.1 that the elements in π0(KS ′×1[n](S×1[n],S× δ1[n])) satisfy the
second relation in (1.1). (Clearly the elements in Z also satisfy this relation since Z

is a λ-ring with its canonical structure.) This completes the proof of the lemma. □

Proposition 6.7.1. Assume the above framework. Then

π0(K(S))⊕π0(KS ′×1[n](S ×1[n],S × δ1[n]))

is a λ-ring where the operations are defined as follows. If u, v ∈ π0(K(S)) and
s, t ∈ π0(K(S ×1[n],S × δ1[n])),

(u, s)+ (v, t)= (u+ v, s+ t),

(u, s) ◦ (v, t)= (u.v, u.t + v.s+ s.t)

λn(u, s)=
(
λn(u),

n−1∑
i=0

λi (u).λn−i (s)
)
, n > 0.
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Here ◦ denotes the multiplication in the graded ring

π0(K(S))⊕π0(KS ′×1[n](S ×1[n],S × δ1[n])).

Proof. The proof of this proposition will be very similar to the proof of Lemma 6.6.2.
Observe first that the proof of the second relation in (1.1) given in the proof of
Lemma 6.6.2 carries over verbatim with the ring Z replaced by π0(K(S)). Therefore,
it suffices to consider the proof of the first relation in (1.1), that is, it suffices to
prove

λt((u, x) ◦ (v, y))= λt(u, x) • λt(v, y), (6.8)

for u, v ∈ π0(K(S)) and x, y ∈ π0(KS ′×1[n](S ×1[n],S × δ1[n])). Using the
product on the ring π0(K(S))⊕π0(KS ′×1[n](S ×1[n],S × δ1[n])), the left-hand
side identifies with

λt((u, 0) ◦ (v, 0)+ (u, 0) ◦ (0, y)+ (v, 0) ◦ (0, x)+ (0, x) ◦ (0, y)).

Since λt is an additive homomorphism, this identifies with

λt((u, 0) ◦ (v, 0))⊞ λt((u, 0) ◦ (0, y))⊞ λt((v, 0) ◦ (0, x))⊞ λt((0, x) ◦ (0, y)).

The term on the right-hand side of (6.8) identifies with

[(λt(u, 0))⊞ (λt(0, x))] • [(λt(v, 0))⊞ (λt(0, y))]

= (λt(u, 0) • λt(v, 0))⊞ (λt(u, 0) • (λt(0, y))⊞ ((λt(v, 0) • (λt(0, x))

⊞ (λt(0, x)) • (λt(0, y)).

Since π0(K(S)) and π0(KS ′×1[n](S ×1[n],S × δ1[n])) are λ-rings, λt((u, 0) ◦
(v, 0))= λt(u, 0) • λt(v, 0) and λt((0, x) ◦ (0, y))= λt(0, x) • λt(0, y). Moreover,
observe that (0, x)◦ (v, 0)= (0, vx)= (v, 0)◦ (0, x). Therefore, it suffices to show
that λt((v, 0) ◦ (0, x))= λt(v, 0) • λt(0, x) for any class v ∈ π0(K(S)).

At this point, one may apply the splitting principle to elements of π0(K(S)) (by
taking the projective space bundle associated to a given vector bundle on S), so
that we may assume the class v breaks up into a finite sum of the classes of line
bundles: v =

∑m
i=1[Li ], where each Li is a line bundle on S.
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Assuming that λt
(
0,

(∑n
i=1[Li ]

)
x
)
= λt

(∑n
i=1[Li ], 0

)
• λt(0, x) for all n < m,

we observe that

λt

(
0,

( m∑
i=1

[Li ]

)
x
)
= λt

(
0, [Lm]x +

(m−1∑
i=1

[Li ]

)
x
)

= λt(0, [Lm]x)⊞ λt

(
0,

(m−1∑
i=1

[Li ]

)
x
)

= λt(0, [Lm]x)⊞ λt

((m−1∑
i=1

[Li ]

)
, 0

)
◦ (0, x))

= λt([Lm], 0) • λt(0, x)⊞ λt

((m−1∑
i=1

[Li ]

)
, 0

)
• λt(0, x)

=

(
λt([Lm], 0)⊞ λt

((m−1∑
i=1

[Li ]

)
, 0

))
• λt(0, x)

= λt

(( m∑
i=1

[Li ]

)
, 0

)
• λt(0, x).

Therefore, it suffices to prove that if v = [L] is the class of a line bundle on S, and
x denotes a class in π0(KS ′×1[n](S ×1[n],S × δ1[n])), then one obtains

λt(0, [L]x)= λt([L], 0) • λt(0, x).

We may assume the class x is represented by the class of a perfect complex P on
S ×1[n] acyclic on (S −S ′)×1[n], provided with a zig-zag path (as in (3.6)) p
joining the restriction (i∗(P), 0) to the base point, namely the pair (0, 0) in wG(i∗).
Now verifying the above relation amounts to verifying the first relation in (1.1):
as is well known, since L is a line bundle on S, this amounts to observing the
(functorial) isomorphism[∧n

(L⊗P)
]
=

[
L⊗n
⊗

∧n
(P)

]
, n ≥ 0.

as classes in π0(KS ′×1[n](S ×1[n],S × δ1[n])). This is clear since there is a
functorial isomorphism

∧n
(L⊗ P) ∼= L⊗n

⊗
∧n
(P). This completes the proof of

the first relation in (1.1) and hence the proof of the proposition. □

This concludes the proof of Theorem 1.1.1. □

Remark 6.8.1. Observe also that the restriction to smooth stacks becomes necessary
so that one has the homotopy property for K-theory. (This fails, in general, even
for nonregular schemes.)
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7. γ -operations and absolute cohomology

7.1. Standing hypothesis. For the rest of the paper we will assume that all algebraic
stacks S we consider are smooth, and every coherent sheaf on S is the quotient of
a vector bundle. If S ′ is a closed substack of S, Theorem 1.1.1(iii) shows that there
is the structure of a λ-algebra (in the sense of Definition 1.0.1) on each πn(KS ′(S))
over π0(K(S)).

Definition 7.1.1. (a) Recall that each π0(K(S))⊕ πn(KS ′(S)) is a λ-ring with
the operations defined above. Therefore, one may define the operations γ n on
π0(K(S))⊕πn(KS ′(S)) as follows:

γ n(α, β)= λn((α+ (n− 1).OS), β), α ∈ π0K(S), β ∈ πn(KS ′(S)). (7.2)

One may observe that if α= 0, then γ n(0, β)=
(
0,

∑n−1
i=0 λ

i ((n−1).OS).λ
n−i (β)

)
(see (5.21)), so that each γ n induces a map on πn(KS ′(S)) which we will also
denote by γ n .

(b) One defines the γ -filtration on each πn(KS ′(S)) as follows. Let ϵ :π0(K(S))→Z

denote the augmentation given by the rank-map: the function ϵ is the rank of a
strictly perfect complex defined as an obvious Euler characteristic involving the
ranks of the constituent terms of the complex. Then we define Fm(πn(KS ′(S))) to be
generated by γ i1a1 · · · γ

ik aikγ
j1 x1 · · · γ

jp x p, where ai ∈ π0(K(S)) with ϵ(ai )= 0,
for all i = 1, . . . , k, and x ji ∈ πn(KS ′(S)), so that i1+· · ·+ ik+ j1+· · ·+ jp ≥m;
see [Kratzer 1980a, Section 6] or [Weibel 2013, page 105].

(c) One may define the Adams operations ψk using ascending induction on k and
the formula: ψk

= ψk−1λ1
−· · ·+ (−1)kψ1λk−1

+ (−1)k+1kλk; see [Weibel 2013,
page 102].

Then one may readily verify the following properties of the γ -filtration for
each n:

(i) Fm+1(πn(KS ′(S)))⊆ Fm(πn(KS ′(S))), for each m ≥ 0.

(ii) F1(πn(KS ′(S)))⊆ F0(πn(KS ′(S)))= πn(KS ′(S)).

Since the product on each πn(KS ′(S)) is trivial for all n > 0, one may observe that
the γ -filtration Fm(πn(KS ′(S))), for n > 0, is generated by γ i1a1 · · · γ

ik aikγ
j1 x j1 ,

where ai ∈ π0(KS ′(S)) with ϵ(ai )= 0, for all i = 1, . . . , k, and x j1 ∈ πn(KS ′(S)),
so that i1+· · ·+ik+ j1+≥m. Now one may readily verify the following additional
properties for each m,m′ ≥ 0:

(1) One has a pairing Fm(π0(KS ′(S)))⊗Fm′(π0(KS ′(S)))→ Fm+m′(π0(KS ′(S))).

(2) Fm(π0(KS ′(S))) is a λ-ideal in π0(KS ′(S)).
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Proof of Theorem 1.1.3. The properties of the γ -operations follow from the obser-
vation that π0(K(S))⊕πn(KS ′(S)) is a λ-ring. Again one observes that each ψk

induces a self-map of πn(KS ′(S)) for each closed substack S ′ of S. The last but
one statement in (i) follows from the functoriality of the λ and γ -operations with
respect to pull-back. The last statement in (i) is a pure consequence of the λ-ring
structure on π0(K(S))⊕πn(KS ′(S)).

These prove the statements in (i); the proof of statements in (ii) are clear since
the λ-operations are compatible with respect to pull-backs. □

Remarks 7.2.1. (1) It is important to point out that the action of ψk above is not
locally nilpotent, which is necessary to conclude that π∗K(S)⊗Q is isomorphic to
the sum of the associated graded terms of the γ -filtration. This is false in general as
may be seen from the following simple counterexample: consider S = [(Spec k)/G]
where G is a finite group and k is a field. In this case, it is shown in [Atiyah 1961,
Proposition (6.13)] that the γ -filtration has just two terms modulo torsion.

(2) Observe also that the γ -operations on π0(K(S)) are compatible with the γ -
operations on πn(KS ′(S)) in the following sense. Let α ∈ π0(K(S)) and β ∈
πn(KS ′(S)). Then (α, 0).(0, β)= (0, α.β) using the module structure of πn(KS ′(S))
over π0(K(S)). Now

γ i (α, 0).γ j (0, β)= (γ i (α), 0).(0, γ j (β))= (0, γ i (α).γ j (β)).

Moreover, since (0, α.β)= (α, 0).(0, β), it follows that

(0, γ k(α.β))= γ k(0, α.β)

= γ k((α, 0).(0, β))

= Qk((γ
1(α), 0), . . . , (γ k(α), 0); (0, γ 1(β)), . . . , (0, γ k(β)))

= (0,Qk(γ
1(α), . . . , γ k(α); γ 1(β), . . . , γ k(β))). (7.3)

Definition 7.3.1. Let grn(π j KS ′(S)⊗Q) denote the n-th graded piece of the γ -
filtration. We let Hi

S ′,abs(S,Q( j)) = gr j (π2 j−i (KS ′(S))⊗Q). We define the i-th
Chern class

ci ( j) : π0(K(S))⊕πi (K(S))→ H2 j
abs(S;Q( j))⊕H2 j−i

abs,S ′(S;Q( j))

by ci ( j)(α, β) = γ j (α − rk(α).OS, β) where γ j is the j-th γ -operation on
π0(K(S))⊗ Q⊕ πi (KS ′(S))⊗ Q. If i = 0 and β = 0, we let the Chern class
ci ( j) be denoted C( j). If α = 0, we obtain Chern classes ci ( j) : πi (KS ′(S))→
H2 j−i

abs,S ′(S;Q( j)). We define the Chern-character into
∏

i H
2 j−i
abs (S;Q( j)) by the

usual formula; see [SGA 6 1971, Exposé 0: Appendix]. (Observe we are taking
the product in the last expression and not the sum, only because the γ -filtration is
not locally nilpotent.) For a vector bundle E , one may define its Todd class by the
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usual Todd polynomial in the Chern classes; see [Fulton and Lang 1985, Chapter 1,
Section 4].

Proof of Theorem 1.1.4. Recall that the statement we want to prove is the existence
of the long exact sequence of absolute cohomology groups

· · · → Hn
S ′0,abs(S,Q(i))→ Hn

S ′1,abs(S,Q(i))→ Hn
S ′1−S

′

0,abs(S −S ′0,Q(i))

→ Hn+1
S ′0,abs(S,Q(i))→ · · · ,

where S is a smooth algebraic stack with the property that every coherent sheaf is
the quotient of a vector bundle and that S ′0 ⊆ S ′1 are two closed algebraic substacks.

We begin with the fibration sequence (localized at Q)

�(KS ′1−S
′

0
(S −S ′0)Q)→ KS ′0(S)Q→ KS ′1(S)Q→ KS ′1−S

′

0
(S −S ′0)Q.

On taking the associated homotopy groups one obtains a long exact sequence

· · ·→ πk(KS ′0(S))⊗Q
α
−→ πk(KS ′1(S))⊗Q

β
−→ πk(KS ′1−S

′

0
(S−S ′0))⊗Q

γ
−→ · · ·

(7.4)
Since the γ -filtration is compatible with respect to pull-backs, one obtains the
commutative diagram:

· · · // Ai+1
n+2

αi+1
//

f i+1
n+2
��

Bi+1
n+2

β i+1
//

gi+1
n+2
��

C i+1
n+2

γ i+1
//

hi+1
n+2
��

Ai+1
n+3

//

f i+1
n+3
��

· · ·

· · · // Ai
n

αi
// Bi

n
β i

// C i
n

γ i
// Ai

n+1
// · · ·

(7.5)

where Ai
n = Fi (π2i−n(KS ′0(S)) ⊗ Q), Bi

n = Fi (π2i−n(KS ′1(S)) ⊗ Q) and C i
n =

Fi (π2i−n(KS ′1−S
′

0
(S −S ′0))⊗Q). The maps αi (β i , γ i ) are the maps induced by α

(β, γ , respectively). Observe that all the vertical maps are given by the inclusion of
Fi+1 into Fi , and are therefore injective and that

Hn
S ′0,abs(S,Q(i))= coker( f i+1

n+2), Hn
S ′1,abs(S,Q(i))= coker(gi+1

n+2) and

Hn
S ′1−S

′

0,abs(S −S ′0,Q(i))= coker(hi+1
n+2).

We proceed to show that both rows in the diagram (7.5) are exact. For example,
we will show that ker(β i ) = Im(αi ). Let b ∈ Bi

n so that β i (b) = 0. Then the
exactness of the long exact sequence of homotopy groups in (7.4) shows that there
is a class a ∈ π2i−n(KS ′0(S))⊗Q so that α(a) = b. Now Ai

n is a direct factor of
π2i−n(KS ′0(S))⊗Q. We let a′ denote the projection of a to the factor Ai

n . Now, both
b= α(a) and α(a′) belong to Bi

n . It suffices to show α(a)−α(a′)= α(a−a′)= 0.
Observe that the associated graded terms in the γ -filtration of a− a′ are of weight
strictly lower than i . In particular, when one breaks a−a′ into the sum of terms a j
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belonging to eigenspaces for the Adams operations ψk, the eigenvalues will all be
of the form k j , 0 ≤ j < i . (Observe that this also means a− a′ breaks up into a
finite sum

∑
a j , with a j belonging to the eigenspace for ψk with eigenvalue k j ,

0≤ j < i .)
Since α preserves the γ -filtrations, the Adams operations act on α(a j ) with

eigenvalue k j , j < i . The eigenvalues of ψk on Bi
n = F i (π2i−n(KS ′1(S))⊗Q) are

all of the form k j , j ≥ i . Therefore, the projection of α(a)− α(a′) to Bi
n is zero

and b = α(a) = α(a′) = αi (a′) as classes in Bi
n . A similar argument shows the

exactness of both rows. Now a diagram-chase shows that the sequence

· · · → Hn
S ′0,abs(S,Q(m))→ Hn

S ′1,abs(S,Q(m))→ Hn
S ′1−S

′

0,abs(S −S ′0,Q(m))

→ Hn+1
S ′0,abs(S,Q(m))→ · · ·

is exact at the second term. See, for example, [Iversen 1986, Proposition 1.4]:
observe that the sequence of absolute cohomology groups above is obtained by
taking the cokernels of each column in the diagram (7.5). The exactness at the
remaining terms may be proved similarly. □

Remark 7.5.1. Assume that the stack S has a coarse moduli space M. In this
case, the observation that the γ -filtration on π∗K(S)⊗Q is compatible with the
γ -filtration on π∗K(M)⊗Q shows that the absolute cohomology of the stack we
have defined is an algebra over the (usual) absolute cohomology of the moduli
space when the latter is defined.

8. Examples

We begin with the following theorem of Thomason as a source of several examples.

Theorem 8.0.1 [Thomason 1987b, Lemmas 2.4, 2.6, 2.10 and 2.14]. Let k denote
a field, X a normal Noetherian scheme over k with an ample family of line bundles
(for example, a smooth separated Noetherian scheme). Let G denote an affine flat
group scheme of finite type over k which is an extension of a finite flat group scheme
by a smooth connected group-scheme; let G act on X. Then the quotient stack [X/G]
has the resolution property.

To keep things simple, we will restrict to Noetherian schemes defined over a
field k.

Examples 8.0.2. (i) Let D denote a diagonalizable group scheme acting trivially
on a smooth scheme X. Then any D-equivariant vector bundle on X corresponds to
giving a grading by the characters of D on the vector bundle obtained by forgetting
the action. It follows readily that π∗K([X/D]) ∼= R(D) ⊗ π∗K(X). This is an
isomorphism of λ-rings. Moreover on computing the absolute cohomology, we
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obtain

H∗abs([X/D],Q(•))∼= grd(R(D)⊗Q)⊗H∗abs(X,Q(•))

= grd(π0(K([Spec k/D])⊗Q))⊗H∗abs(X,Q(•)),

where grd(R(D) ⊗ Q) denotes the associated graded terms with respect to the
γ -filtration.

Clearly the graded ring grd(R(D)⊗Q) = grd(π0(K([Spec k/D]))⊗Q) has a
natural decreasing filtration, and completing it with respect to this filtration we
obtain

∞∏
n=0

grdn(π0(K([Spec k/D]))⊗Q).

It is shown in [Köck 1998, (5.1) Proposition and (5.3) Proposition] that the latter
is isomorphic to the completion (π0(K([Spec k/D]))⊗Q)̂ ID , where ̂ID denotes
completion at the augmentation ideal. Moreover, by [Edidin and Graham 2000], the
latter is isomorphic to

∏
∞

i=0 CHi (BD,Q), where BD denotes the classifying space
for D defined as in [Totaro 1999] or [Morel and Voevodsky 1999]. Thus we see
that on completing the graded ring H∗abs([X/D],Q(•))∼= grd(π0(K([Spec k/D]))⊗
Q)⊗H∗abs(X,Q(•)) with respect to the natural decreasing filtration induced from
the one on grd(π0(K([Spec k/D])⊗Q), we obtain the isomorphism:

H∗abs([X/D],Q(•))̂ ∼=

( ∞∏
i=0

CHi (B D,Q)

)
⊗H∗abs(X,Q(•)).

(ii) Let T denote a split torus acting on a smooth scheme X. Assume further that
there is a T-stable stratification of X by strata which are all affine spaces. In this
case one obtains the isomorphism of λ-rings: π∗(K [X/T])∼=R(T)⊗π∗(K(X)). One
may obtain this isomorphism as follows; see [Joshua 2001] for related results. One
shows the obvious map of spectra K([Spec k/T])

⊗L
K (Spec k) K(X)→ K([X/T]) is

a weak equivalence. Here one needs to use the framework of [Joshua 2001] of
ring and module-spectra to be able to define the derived tensor product. Since
X is smooth, its K-theory identifies with G-theory and one uses the localization
sequence associated to the stratification of X to show the above map is a weak
equivalence. Now one obtains an associated spectral sequence with E2-terms given
by

Torπ∗(K(Spec k))(π∗(K([Spec k/T])), π∗K(X))⇒ π∗(K([X/T])).

This spectral sequence degenerates at the E2-terms in view of the isomorphism

π∗(K([Spec k/T]))∼= R(T)⊗π∗(K(Spec k))



572 ROY JOSHUA AND PABLO PELAEZ

and provides the isomorphism π∗K([X/T])∼= R(T )⊗π∗K(X). This result applies
to the case when X is a flag variety or a smooth projective variety on which T
acts with finitely many fixed points. One also obtains the isomorphism of absolute
cohomology

H∗abs([X/T],Q(•))∼= (grd(π0(K([Spec k/T])⊗Q)⊗H∗abs(X,Q(•))

and therefore,

H∗abs([X/T],Q(•))̂ ∼=

( ∞∏
n=0

grdn(π0(K([Spec k/T])⊗Q))

)
⊗H∗abs(X,Q(•))

=

( ∞∏
n=0

CHn(BT,Q)

)
⊗H∗abs(X,Q(•)).

where ̂ denotes completion with respect to the decreasing filtration on the graded
ring (grd(π0(K([Spec k/T])⊗Q)⊗H∗abs(X,Q(•)) and BT again denotes the clas-
sifying space of T in the sense of [Totaro 1999] or [Morel and Voevodsky 1999].
These isomorphisms follow along the same lines as in (i).

(iii) Next, let G denote any split reductive group over k with π1(G) torsion free.
Let T denote a fixed maximal torus in G. Let X denote a smooth G-scheme. Then
[Merkurjev 1997, Proposition 4.1] shows the isomorphism (of λ-rings):

π∗K([X/T])∼= R(T)
⊗
R(G)

π∗K([X/G]), and therefore,

H∗abs([X/T],Q(•))∼= grd(R(T)⊗Q)
⊗

grd(R(G)⊗Q)

H∗abs([X/G],Q(•)).

Observe that there is a natural conjugation action by N(T ) on T, which induces a
W=N(T )/T -action on π∗K([X/T]) and on H∗abs([X/T],Q(•)). Moreover R(T)W∼=
R(G). Therefore, taking the W-invariants of both sides, one obtains the isomorphism
π∗K([X/T])W ∼= π∗(K([X/G])). At the level of absolute cohomology one obtains

H∗abs([X/T],Q(•))W ∼= H∗abs([X/G],Q(•)).

Example 8.0.3 (Hironaka’s example). Here is a well-known example due to Hiron-
aka; see [Knutson 1971, page 15]. Assume the base field is algebraically closed.
(We may also assume the characteristic is 0 as in the original example of Hironaka.)
Let V0 be the projective 3-space and γ1 and γ2 two conics intersecting normally
in exactly two points P1 and P2. For i = 1, 2, we construct V i by blowing up first
γi and then γ3−i in the result. Let Vi be the open set in V i of points lying over
(V0− P3−i ). Let U be obtained by patching V1 and V2 together along the common
open subset. Now U is a nonsingular variety and over P1 and P2 the curves γ1 and
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γ2 have been blown up in opposite order. Let σ0 : V0→ V0 denote the projective
transformation of order 2 that permutes P1 and P2 and γ1 and γ2. σ0 induces an
automorphism σ : U → U of order 2. Therefore we may take the finite group
G= Z/2 and let it act on U by the action of σ . In this case the geometric quotient
U/G fails to exist in the category of schemes, but exists only in the category of
algebraic spaces. Nevertheless Theorem 8.0.1 shows that the quotient stack [U/G]
has the resolution property so that for each n ≥ 0, πn(K([U/G])) is a λ-ring.

Example 8.0.4. For the next example let E denote an elliptic curve. Then there
are no nontrivial representations of E so that π∗K([Spec k/E])∼= π∗K(Spec k). It
follows that H∗abs([Spec k/E],Q(•))∼= H∗abs(Spec k,Q(•)).

8.1. Comparison with the higher equivariant Chow groups and further examples.
The comparison with the higher equivariant Chow groups (in the sense of [Edidin
and Graham 2000] or [Totaro 1999]) is much more involved in general than is
possible in the examples considered above. This is due to the fact that the absolute
cohomology for algebraic stacks obtained above is a Bredon-style cohomology
theory in the sense of [Joshua 2007]. In the case of quotient stacks this is related to
the more familiar equivariant higher Chow groups defined by making use of a Borel
construction (as in [Edidin and Graham 2000; Totaro 1999]) by a completion at the
augmentation ideal of the representation ring of the given linear algebraic group.
However, such a completion is not an exact functor in general, unless the modules
that one considers are finitely generated over the representation ring. In fact it is
shown in [Carlsson and Joshua 2023] that one needs to apply a derived completion
to pass from the Algebraic K-theory of smooth quotient stacks to the algebraic
K-theory of the corresponding Borel construction. One may apply results of [Levine
1997] to the latter to define γ -operations and a form of absolute cohomology theory,
which will then identify with the equivariant higher Chow groups with rational
coefficients, as in [Edidin and Graham 2000] or [Totaro 1999].

Appendix A. Key theorems of Waldhausen K-theory

Definition A.0.1 [Thomason and Trobaugh 1990, 1.2.1]. A category with cofibra-
tions A is a category with a zero object 0, together with a chosen subcategory
co(A) satisfying the following axioms: (i) any isomorphism in A is a morphism in
co(A), (ii) for every object A ∈ A, the unique map 0→ A belongs to co(A) and
(iii) morphisms in co(A) are closed under cobase change by arbitrary maps in A.
The morphisms of co(A) are cofibrations. A category with fibrations is a category
with a zero -object so that the dual category Ao is a category with cofibrations. A
category with cofibrations and weak equivalences (or a Waldhausen category) is
a category with cofibrations, co(A) together with a subcategory w(A) so that the
following conditions are satisfied: (i) any isomorphism in A belongs to w(A), (ii)
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if
B

��

A

��

oo // C

��

B ′ A′oo // C ′

is a commutative diagram with the vertical maps all weak equivalences and the
horizontal maps in the left square are cofibrations, then the induced map B

⊔
AC→

B ′
⊔

A′C
′ is also a weak equivalence. (iii) If f , g are two composable morphisms

in w(A) and two of the three f , g and f ◦ g are in w(A), then so is the third. A
functor F : A→ B between categories with cofibrations and weak equivalences is
exact if it preserves cofibrations and weak equivalences.

Given a Waldhausen category (A, co(A), w(A)), one associates to it the fol-
lowing simplicial category denoted wS•A; see [Thomason and Trobaugh 1990,
1.5.1 Definition]. The objects of the category wSn A are sequences of cofibra-
tions A1 ↣ A2 ↣ · · · ↣ An in co(A) together with the choice of a quotient
Ai, j = A j/Ai for each i < j above. (The understanding is that wS0 A is the category
consisting of just the zero object 0.) The morphisms between two such objects
A1 ↣ A2 ↣ · · ·↣ An and B1 ↣ B2 ↣ · · ·↣ Bn are compatible collections of
maps Ai, j → Bi, j in wA. Varying n, one obtains the simplicial category wS•A as
discussed in [loc. cit., 1.5.1 Definition].

Such a Waldhausen category is pseudoadditive (see [Gunnarsson et al. 1992,
Definition 2.3]) if for each cofibration A ↣ C , the induced maps C⊕AC →
C×C/A←C⊕C/A are weak equivalences. As pointed out earlier when A↣C is
a degree-wise split injective map of complexes of sheaves of O-modules, for a sheaf
of commutative Noetherian rings with 1 (on any site with enough points), it is easy to
see that the maps C⊕AC→C×C/A←C⊕C/A are isomorphisms in each degree.

The only categories with cofibrations and weak equivalences considered in this
paper are complicial Waldhausen categories in the sense of [Thomason and Trobaugh
1990, 1.2.11]: in this situation the category A will be a full additive subcategory of
the category of chain complexes with values in some abelian category. The cofibra-
tions will be assumed to be maps of chain complexes that split degree-wise and weak
equivalences will contain all quasiisomorphisms. All the complicial Waldhausen
categories we consider will be closed under the formation of the canonical homotopy
pushouts and homotopy pull-backs as in [loc. cit., 1.9.6, 1.2.11]. Therefore, all
such categories with cofibrations and weak equivalences are pseudoadditive.

Definition A.0.2. Given a category A with cofibrations and weak equivalences
that is pseudoadditive, we define its K-theory space to be given by the simplicial
set wG•(A), where G• denotes the G-construction discussed in [Gunnarsson et al.
1992, Definition 2.2]; see also [Gillet and Grayson 1987, Section 3].
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Then one of the main results of [Gunnarsson et al. 1992] is the following:

Theorem A.0.3 [Gunnarsson et al. 1992, Theorem 2.6]. If A is pseudoadditive,
there exists a natural map wG•(A)→ �wS•A that is a weak equivalence, where
wS•A is the simplicial set defined by the Waldhausen S•-construction as in [Wald-
hausen 1985, 1.3].

In view of the above weak equivalence, various key results proved in [Waldhausen
1985] extend readily to the K-theory spaces of complicial Waldhausen categories.
We state these below.

Theorem A.0.4 (the Waldhausen approximation theorem; see [Thomason and
Trobaugh 1990, 1.9.8]). Let F : A → B denote an exact functor between two
complicial Waldhausen categories. Suppose F induces an equivalence of the derived
categories w−1(A) and w−1(B). Then F induces a weak-homotopy equivalence of
the associated K-theory spaces, K(A) and K(B).

Theorem A.0.5 (localization theorem; see [Thomason and Trobaugh 1990, 1.8.2]
and [Waldhausen 1985, 1.6.4]). Let A be a small category with cofibrations and
provided with two subcategories of weak equivalences v(A)⊆ w(A) so that both
(A, co(A), v(A)) and (A, co(A), w(A)) are complicial Waldhausen categories (as
in [Thomason and Trobaugh 1990, Section 1].) Let Aw denote the full subcategory
of A of objects A for which 0→ A is in w(A), that is, are w-acyclic. This is a
Waldhausen category with co(Aw)= co(A)∩ Aw and v(Aw)= v(A)∩ Aw. Then
one obtains the fibration sequence of K-theory spaces: K(vAw)→ K(v(A))→
K(w(A)).

Theorem A.0.6 (additivity theorem; see [Waldhausen 1985, 1.3.2, 1.4.2] and [Gun-
narsson et al. 1992, Theorem 2.10]). Let A and B be small complicial Waldhausen
categories. Let F, F ′, F ′′ : A→ B be three exact functors so that there are natural
transformations F ′→ F and F→ F ′′ so that (i) for all A in A, F ′(A)→ F(A) is
a cofibration with its cofiber ∼= F ′′(A) and (ii) for any cofibration A′→ A in A, the
induced map F ′(A)

⊔
F ′(A′)F(A

′)→ F(A) is a cofibration. Then the induced maps
K F , K F ′ and K F ′′ on K-theory spaces have the property that K F ≃ K F ′+K F ′′.

Proof. As we make strong use of the above additivity theorem, we will explain how
to deduce the above form of the additivity theorem from the form of the additivity
theorem proven in [Gunnarsson et al. 1992, Theorem 2.10]. Recall that [loc. cit.,
Theorem 2.10] says the following: given a complicial Waldhausen category A, let
E(A) denote the Waldhausen category whose objects are short exact sequences

A ↣ B ↣ C

which are degree-wise split.
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A cofibration from A′↣ B ′↠C ′ to A↣ B ↠C will be a commutative diagram:

A′ // //
��

��

B ′ // //
��

��

C ′
��

��

A // // B // // C

so that the vertical maps are all cofibrations in A and the induced map A
⊔

A′ B ′→ B
is also a cofibration in A. Then, we have a functor

E(A)→ A× A, A ↣ B ↠ C 7→ A⊕C. (A.1)

Then [Gunnarsson et al. 1992, Theorem 21.0] shows that the map wG•(E(A))→
wG•(A)×wG•(A) is a weak equivalence. Now, one may deduce Theorem A.0.6
from the above form of the additivity theorem, by the same strategy adopted in
[Waldhausen 1985, Proposition 1.3.2]: giving three exact functors F ′, F and F ′′ as
in Theorem A.0.6 is equivalent to giving an exact functor F̃ : A→ E(B). Therefore,
Theorem A.0.6 above follows from the additivity theorem [Gunnarsson et al. 1992,
Theorem 2.10] by naturality. □

Appendix B. Simplicial objects, cosimplicial objects and chain complexes

In this section a chain complex (a cochain complex) will denote a complex trivial in
negative degrees and where the differentials are all of degree −1 (+1, respectively).
Let A=Mod(S,OS) denote the Abelian category of all modules over OS where S
is a given algebraic stack (which, as always in this paper, is assumed to be Noether-
ian). Let Mod f l(S,OS) denote the full subcategory of flat modules with finitely
generated stalks. Recall that one has normalization functors Nh: (Simplicial objects
in Mod(S,OS))→(Chain complexes in Mod(S,OS)) and its inverse DNh:((Chain
complexes in Mod(S,OS))→(Simplicial objects in Mod(S,OS)).8 Recall Nh is de-
fined by sending the simplicial object S• to the chain complex K•=N(S•) defined by
Kn =

⋂
0≤i≤n−1(ker(di : Sn→ Sn−1)). The differential δ :Kn→Kn−1 is defined by

δ= (−1)ndn . The functor DNh is defined by DNh(K•)n =
⊕

0≤m≤n
⊕

sα :[n]→[m] Km

where the sα range over all iterated degeneracies [n] → [m] in the category 1; see
[Curtis 1971] for more details. There are corresponding functors defined between
the categories of cosimplicial objects in Mod(S,OS) and cochain complexes in
Mod(S,OS). These will be denoted Nv and DNv. Given a double complex K•

•

trivial everywhere except the second quadrant (that is, we assume K j
i = 0 for i > 0 or

j < 0), we let Tot(K•
•
) denote the complex defined by Tot(K•

•
)n =

⊕
i+ j=n K j

i . We

8In the literature, the inverse functor DNh is often denoted K. However, as we have reserved K to
denote complexes, our choice of DNh seems preferable.
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will often use N (DN) to denote either one of Nh or Nv (DNh or DNv, respectively)
when there is no chance for confusion.

Proposition B.0.1. (i) The functors Nh and DNh are strict inverses of each other,
that is, Nh◦DNh= id and DNh◦Nh= id. Similarly, Nv

◦DNv
= id and DNv

◦Nv
= id.

(ii) The functors N and DN associated to both simplicial and cosimplicial objects
in Mod(S,OS) preserve degree-wise flatness and the property of having finitely
generated stalks. They also commute with filtered colimits.

(iii) The functors N and DN associated to both simplicial and cosimplicial objects in
Mod f l(S,OS) commute with the pull-back f ∗ :Mod f l(S,OS)→Mod f l(S ′,OS ′)

associated to a map f : S ′→ S of algebraic stacks.

Proof. (i) Is a standard result and is therefore skipped; see [Curtis 1971] for the
simplicial case. We prove (ii) first in the simplicial case. Let S• denote a simplicial
object in Mod(S,OS) where each Sn is a flat OS-module with finitely generated
stalks. We will now prove, using ascending induction on n that each Kn = N(S•)n
is a flat OS-module. Since K0 = N(S•)0 = S0 this is clear for n = 0. The general
case follows from Lemma B.0.2 below. The definition of the functor DN as a sum
in each degree shows that it preserves flatness. The situation for the cosimplicial
objects and cochain complexes is entirely similar and is therefore skipped.

Since the functors DN for simplicial and cosimplicial objects are defined as
iterated sums, it is clear f ∗ commutes with DN. The functor N for cosimplicial
objects is defined as an iterated cokernel and therefore it commutes with f ∗. The
corresponding assertion for simplicial objects follows from the lemma below. □

Lemma B.0.2. (i) Let S• denote a simplicial object in Mod(S,OS) that is flat
(with finitely generated stalks) in each degree. Then for each integer n ≥ 1, and
0 ≤ m ≤ n − 1,

⋂
0≤i≤m(ker di : Sn → Sn−1) is a flat OS-module (with finitely

generated stalks).

(ii) Let f : S ′→ S denote a map of algebraic stacks, let x ′ : X ′→ S ′ (x : X→ S)
denote an atlas with Bx ′S ′ (BxS, respectively) denoting the associated simplicial
classifying space. Assume the atlases are chosen so that there is an induced map of
simplicial algebraic spaces B f : Bx ′S ′→ BxS. Let S• denote a simplicial object
in Mod(BxS,OBxS) that is flat in each degree. Then for each integer n ≥ 1, and
0 ≤ m ≤ n − 1, f ∗

(⋂
0≤i≤m(ker di : Sn → Sn−1)

)
∼=

⋂
0≤i≤m(ker di : f ∗(Sn)→

f ∗(Sn−1)).

Proof. As observed by B. Koeck, this Lemma may be readily proven by observing
that N(S.)n is a direct summand of Sn and that N(S.)n arises by taking the quotient
of Sn by the image of the degeneracy maps. We may also prove (i) and (ii)
simultaneously using ascending induction on m making use of the above observation.
We skip the remaining details. □
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B.1. The Eilenberg–Zilber and Alexander–Whitney pairings. These are well-
known between Chain complexes in any abelian category and the corresponding
simplicial objects; see [May 1967, page 129 and page 133]. These readily extend
to similar pairings for cochain complexes and cosimplicial objects in any abelian
category: for example, one may interpret cosimplicial objects in an abelian category
as simplicial objects in the dual abelian category and make use of the well-known
pairings for simplicial objects and chain complexes. Therefore, such pairings extend
to similar pairings between cosimplicial-simplicial objects in an abelian category
A and the corresponding category of cochain complexes in A, in the setting of
Section 5. In more detail, we obtain the following.

Let A denote an abelian category and let Double(A) denote the category of
double cochain complexes in A concentrated in the second quadrant. Given such
a double cochain complex K, and applying the composite functor DNv

◦ DNh

produces a cosimplicial-simplicial object. The category of such objects will be
denoted Cos.mixt(A). The inverse functor,

N= Nv
◦Nh = Nh ◦Nv (B.2)

sends such a cosimplicial simplicial object to a double cochain complex concentrated
in the second quadrant. Then we obtain associative pairings

Tot(N(P))⊗Tot(N(Q))→ Tot(N(P ⊗ Q))

Tot(N(P ⊗ Q))→ Tot(N(P))⊗Tot(N(Q))
(B.3)

for any two objects P,Q ∈ Cos.mixt(A) which are both functorial in P and Q. Here
Tot denotes the total complex: for a double cochain complex K= {Ki

j | i ≥ 0, j ≤ 0}
concentrated in the second quadrant,

Tot(K)n =
⊕

i+ j=n

Ki
j . (B.4)
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