
LEFSCHETZ DECOMPOSITIONS FOR QUOTIENT VARIETIES

REZA AKHTAR AND ROY JOSHUA

Abstract. In an earlier paper, the authors constructed an explicit Chow-Künneth decomposition for the quo-

tient of an abelian varieties by the action of a finite group. In the present paper, the authors extend the
techniques used there to obtain an explicit Lefschetz decomposition for such quotient varieties.

1. Introduction

The notion of a motive, conceived initially by Grothendieck, and later developed further by Manin [15],

Kleiman [12] and others, involves replacing the category of smooth projective varieties over a field k with another

category with the same objects, but whose morphisms are (Q-vector spaces of) algebraic correspondences modulo

some adequate equivalence relation; that is, some equivalence relation preserved by pullbacks, push-forwards,

and intersection with arbitrary cycles. If one chooses rational equivalence – the finest adequate equivalence

relation – one obtains the category of Chow motives, and it is natural to ask to what extent one can prove in

this category the properties which Grothendieck predicted that motives should enjoy.

In particular, one may ask if a smooth projective variety X (of dimension d) has a Chow-Künneth decompo-

sition; that is, if the diagonal class [∆X ] ∈ CHd(X×k X; Q) has a decomposition [∆X ] =
⊕2d

i=0 πi into mutually

orthogonal idempotents πi whose images under the cycle map CHi(X ×k X; Q) → H2i(X ×k X; Q) are the

ordinary Künneth components with respect to the Weil cohomology theory H∗. At present, Chow-Künneth

decompositions are known to exist for curves and projective spaces [15], surfaces [17], abelian varieties ([6],

[20]), varieties with “finite-dimensional” motives whose Kunneth components of the diagonal are algebraic [11],

and several other special classes.

Murre [18] has conjectured that every smooth projective variety X over a field k has a Chow-Künneth

decomposition with two further properties: (a) the projectors π0, . . . , πj−1 and πj+d+1, . . . , π2d should act as

zero on the group CHj(X; Q), and (b) when 2j + 1 ≤ i ≤ j + d, πi should act as zero on CHj(X). In [6],

Deninger and Murre [6] construct a Chow-Künneth decomposition for abelian varieties; Murre [18] then showed

that (a) is satisfied in this case. Moreover, (b) is equivalent to Beauville’s conjecture that the eigenspaces

CHi
s(A; Q) vanish for s < 0; see section 2 for explanation of the notation. Since Beauville’s conjecture is known

to hold for abelian varieties of dimension at most four (cf. [4]), it follows that Murre’s conjecture holds for such

abelian varieties.

In an earlier paper [1], the authors of this article showed that if G is a finite group acting on an abelian variety

A, then the Deninger-Murre Chow-Künneth decomposition for A can be used to construct a Chow-Künneth

decomposition for the quotient variety A/G, and that if (a) and (b) hold for A, then they also hold for A/G.

Thus, Murre’s conjecture also holds for such quotients of abelian varieties of dimension at most four. We note

that A/G is not in general smooth; however, finiteness of G ensures that the machinery of intersection theory

and Chow motives can be extended to varieties of this sort, which we henceforth refer to as pseudo-smooth.

The second author thanks the IHES, the MPI (Bonn) and the NSA for support.
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In [14], Künnemann constructs a Lefschetz decomposition for Chow motives of abelian schemes with respect

to the Deninger-Murre Chow-Künneth decomposition. The aim of the present article is to construct an explicit

Lefschetz decomposition for the Chow motive of the quotient of an abelian variety by a finite group action with

respect to the Chow-Künneth decomposition constructed in our earlier work [1].

Pedrini and Guletskii [7] have shown that if the motive of X is finite-dimensional in the sense of Kimura

[13], then X has a Chow-Künneth decomposition. Moreover, in characteristic 0, Kahn, Murre and Pedrini

[11, Theorem 14.7.3] show that X also has a Lefschetz decomposition. Since the class of varieties having

finite-dimensional motives includes abelian varieties and is closed under quotients, the above constructions of

Chow-Künneth and Lefschetz decompositions proceed by lifting them from a Weil cohomology theory to Chow

groups in an inductive manner. However, these methods, although wider in scope, do not yield explicit simple

formulae for the decompositions as in [1] and the present paper, which may be important in applications, as in

[1, Theorem 1] and [11, Remark 14.6.13]. Moreover, our work does not place any restriction on the characteristic

of the ground field.

It is easy to see that the projectors appearing in a Chow-Künneth or Lefschetz decomposition are not

in general uniquely determined. However, for varieties whose motives are finite-dimensional, as in the case

considered in this paper, the results of [11, Theorem 14.6.9, Theorem 14.7.3] imply that the motives defined by

the projectors are uniquely determined up to isomorphism.

Acknowledgments. We thank the referee for his/her helpful comments that have improved the exposition.

2. Terminology and Statements of Results

First we recall the main result of [1], which we will need in our proof. As in [1], we work throughout in the

category of rational Chow motives of pseudo-smooth projective varieties.

Theorem 2.1. [1, Theorem 1.1] Let A be an abelian variety of dimension d over a field k and G a finite group

acting on A. Let f : A −→ A/G be the quotient map. Suppose [∆A] =
∑2d

i=0 πi is the Beauville-Deninger-Murre

Chow-Künneth decomposition for A and let ηi =
1
|G|3

(f × f)∗
∑

g,hεG

(g, h)∗πi.

The

[∆A/G] =
2d∑

i=0

ηi

is a Chow-Künneth decomposition for A/G. This decomposition satisfies Poincaré duality: that is, for any i,

η2d−i = tηi.

In addition, ηi acts as zero on CHj
Q(A/G) for i < j and also for i > j + d in general. In case d ≤ 4, we may

also conclude that ηi acts trivially on CHj
Q(A/G) for i < j and also for i > 2j.

Next let k be a field and A an abelian variety of dimension d over k. Let G be a finite group acting on A,

and let f : A → A/G denote the quotient map. We write ∆ = ∆A : A → A×k A for the diagonal map on A.

Following Beauville [4], we set CHi
s(A, Q) = {x ∈ CHi(A, Q) : n∗x = n2i−sx for all n 6= 0,±1} and recall

that
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CHi(A, Q) =
i⊕

s=i−d

CHi
s(A, Q)

Let L be an ample line bundle on A, and set b = c1(L). As in [14], Assumption 2.1, we may assume without

loss of generality that

(2.0.1) bεCH1
0 (A, Q)

To see this, one may argue as follows: if σ : A → A is the involution a 7→ −a, then L′ = L ⊗ σ∗L is another

ample line bundle on A, and c1(L′) = b + σ∗b. Writing b = b0 + b1 where b0εCH1
0 (A, Q) and b1εCH1

1 (A, Q),

we have, for any n 6= 0,±1, n∗(b1 + σ∗b1) = n∗(b1) + (−n)∗b1 = nb1 − nb1 = 0, so that b1 + σ∗b1 = 0. On the

other hand, n∗(σ∗b0) = (−n)∗b0 = (−n)2b0 = n2b0, so that σ∗b0 = b0 and so b + σ∗b = 2b0 ∈ CH1
0 (A, Q).

Define

LG =
⊗
gεG

g∗(L),(2.0.2)

bG = c1(LG) =
∑
gεG

c1(g∗L) =
∑
gεG

g∗c1(L) =
∑
gεG

g∗b,

L = ∆∗(b),

LG = ∆∗(bG) =
∑
gεG

(g × g)∗L,

LGG =
∑

g,hεG

(g × h)∗L

L̃ =
1
|G|3

(f × f)∗LGG

Next let FA (FÂ) denote the Fourier transform on A (respectively, Â). We then define

cG = bd−1
G /(d− 1)!,(2.0.3)

ΛG = (−1)d[tΓσ] ◦ FÂ ◦∆∗(FA ◦ (cG)) ◦ FA,

ΛGG =
∑

g,hεG

(g × h)∗(ΛG)(2.0.4)

Λ̃ =
1
|G|3

(f × f)∗ΛGG

In the next section we prove the following theorem, although our primary interest is in the corollary that

follows it.

Theorem 2.2. The data (CH∗(A/G×A/G; Q), ◦, L̃, Λ̃, (ηi)2d
i=0) (where ◦ denotes the composition of correspon-

dences) defines a Lefschetz algebra in the sense of [14, section 4]. In particular, this implies that there exist

projectors {qi,k|i, k} refining the projectors {ηi|i} on A/G such the following relations hold on the sub-algebra

of (CH∗(A/G×A/G; Q), ◦) generated by these correspondences:

(a) L̃ ◦ ηi = ηi+2 ◦ L̃.

(b) Λ̃ ◦ ηi = ηi−2 ◦ Λ̃.

(c) [Λ̃, L̃] = Λ̃ ◦ L̃− L̃ ◦ Λ̃ =
∑2d

i=0(d− i)ηi.
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These imply:

(i)
∑

k qi,k = ηi for each i.

(ii) qi,k ◦ ηj = ηj ◦ qi,k = qi,k if i = j and 0 otherwise.

(iii) qi,k = 0 for (i, k) not in I = {(i, k)εZ× Z|max(0, i− d) ≤ k ≤ [i/2]}.
(iv) qi,k ◦ qj,l = qi,k if i = j and k = l and 0 otherwise.

(v) qi,k ◦ L̃ = L̃ ◦ qi−2,k−1.

(vi) Λ̃ ◦ qi,k = qi−2,k−1 ◦ Λ̃.

(vii) L̃ ◦ Λ̃ ◦ qi,k = k(g − i + k + 1)qi,k.

(viii) Λ̃ ◦ L̃ ◦ qi,k = (k + 1)(g − i + k)qi,k.

Corollary 2.3. Let A be an abelian variety of dimension d over a field k and G a finite group acting on A.

Let A/G be the quotient variety and let hi(A/G) = ηi denote the Chow-Künneth components constructed as in

the theorem above. Define LkP i(A/G) = (A/G, qi+2k,k). Then the following hold:

(i) For 0 ≤ i ≤ 2d, the Chow motive hi(A/G) = (A/G, ηi) has a Lefschetz decomposition

hi(A/G) ∼=
[i/2]⊕

k=max{0,g−i}

LkP i(A/G)

(ii) (Hard Lefschetz) The iterated composition of correspondences L̃i : hd−i(A/G) → hd+i(A/G) is an iso-

morphism of Chow motives for all 0 ≤ i ≤ d.

(iii) If k is a finite field and 0 ≤ j ≤ d, the map g : CHj(A/G, Q) → CHd−j(A/G, Q) defined by

g(α) = L̃d−2j ◦ α is an isomorphism.

We remark that assertions (i) and (ii) above follow immediately from Theorem 2.2 by Sections 4 and 5 of

[14]; thus, we focus our attention on proving Theorem 2.2 and statement (iii) of Corollary 2.3.

Remark. In the literature, there are two distinct ways the Hard Lefschetz Theorem (for a Weil cohomology

H∗) is stated: Let X denote a smooth projective scheme of dimension d.

(i) The iterated cup product [L]i : Hd−i(X) → Hd+i(X) with the first Chern class of an ample line bundle

L is an isomorphism for all 0 ≤ i ≤ d : see [14] and also [5].

(ii) The iterated cup product [L′]d−i : Hi(X) → H2d−i(X) with the class of a smooth generic hyperplane

section L′ is an isomorphism for all 0 ≤ i ≤ d: see [11, Theorem 14.7.3].

A generic smooth hyperplane section H defines an effective divisor and the associated line bundle L will be

ample. Moreover, its first Chern class c1(L) will be a class that identifies with the class of the hyperplane

section H. Therefore (i) implies (ii).

In Corollary 2.3, the Hard Lefschetz isomorphism is given by the correspondence L̃i, where

L̃ =
1
|G|3

(f × f)∗LGG =
1
|G|3

(f × f)∗
∑

g,hεG

(g × h)∗∆A∗L

and L = ∆∗b, where b = c1(LG) is also assumed to be symmetric, i.e. σ∗(b) = b, where σ : A → A is the

involution a 7→ −a.
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On the other hand, the version in [11] essentially states that the isomorphism is given by (a power of) the

correspondence M̃ = ∆A/G∗i∗i
∗[A/G], where i : W ↪→ A/G is a generic smooth hyperplane section with respect

to some fixed embedding of A/G in projective space. Viewing W as a subvariety of A/G, M̃ = ∆A/G∗[W ], and

thus:

M̃ = ∆A/G∗[W ] =
1
|G|2

(f × f)∗(f × f)∗∆A/G∗[W ] =
1
|G|2

(f × f)∗∆A∗f
∗[W ]

Although the projectors appearing in the decompositions provided by Corollary 2.3 and by [11, Theorem

14.7.3] might be different, the corresponding motives they define are unique up to isomorphism, as discussed in

the last paragraph in the Introduction.

Corollary 2.3 applies to the following classes of examples considered in [1]:

Examples 2.4.

Symmetric products of abelian varieties. Let X denote an abelian variety and Xn/Σn the

n-fold symmetric power of X. Observe that the action of Σn is not in general free so that the quotient

Xn/Σn may not be smooth.

(1)(2) Example of Igusa. (See [10]) Let X be an abelian variety over k, with char(k) 6= 2. Let t denote a

point of order 2 on X. Define an action of Z/2Z on X ×X by : (x, y) 7→ (x + t,−y), and let Y denote

the quotient variety for this action. Now one sees easily that the action is free so that Y is smooth;

nevertheless, in positive characteristic, Y need not be an abelian variety, as shown in [10]. If X is an

elliptic curve, the resulting surface Y is a so-called bielliptic surface; see [4] VI, 19-20. In this case, the

results of [17] also provide an explicit Chow-Künneth decomposition for Y .

(3) Kummer varieties. These are quotients of abelian varieties by the action of the group Z/2Z where

the group acts by identifying a and −a.

Remark. In the case of desingularizations of the Kummer surfaces (as in (3) above), the results of [17] and

[11, 14.6.12] provide explicit projectors, with those in [11] refining the projectors in [17].

The techniques involved in our proof are extensions of those of [1]; the main advantage of this approach is

that it yields explicit closed formulae for all the operators involved. In contrast, the construction of the refined

projectors {qi,k|i, k} in [11] is an inductive one.

3. Proofs

3.1. Preliminaries. One of the key steps in proving the main theorem of [1] was to show that given any action

α : G × A → A of a finite group G on A, there exists an action β : G × A → A of G on A with the following

properties. First, the quotient of A by the the first action of G is isomorphic to the quotient of A by the second

action; second, for every g in G, β(g, 0) is a torsion point of A. This reduction will also be useful to us in the

present article, so we assume henceforth that for every gεG, g(0) is a torsion point of A.

Now let mg be the order of ag = g(0). Next, let m =
∏

gεG mg, and

E = {nεZ : n ≡ 1(mod m), n 6= ±1}

Note that if nεE, mg divides n− 1 (for any g), so nag = ag.
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For each gεG, the map g : A → A defined by a 7→ g · a factors uniquely as g = τag
◦ g0, where g0 : A → A

is a homomorphism, and τag
: A −→ A is the translation a 7→ a + ag. Thus, if nεE and a ∈ A, (n ◦ g)(a) =

n(g(a)) = n(g0(a) + ag) = g0(na) + ag = (g ◦ n)a; that is,

n ◦ g = g ◦ n.

Recall our choice of ample line bundle L from Section 1. It follows from [8], Exercise II.7.5 that LG =

⊗gεGg∗(L) is also an ample line bundle. Moreover, because b = c1(L)εCH1
0 (A, Q), n∗b = n2b for all n 6=

0,±1. Now if nεE and gεG, n∗(g∗b) = g∗(n∗b) = n2g∗b. By the following result, this suffices to show that

g∗bεCH1
0 (A, Q) and hence that bG =

∑
gεG g∗bεCH1

0 (A, Q) is a class associated to an ample line bundle and

satisfies the hypothesis in 2.0.1.

Proposition 3.1. Let E be as before, and let αεCH1(A, Q) be such that n∗(α) = n2(α) for all nεE. Then

α ◦ π2 = α and α ◦ πj = 0 for all j 6= 2 and hence αεCH1
0 (A, Q).

Proof. This is a standard computation:

n∗(α) = n∗(α ◦ [∆A])(3.1.1)

=
2d∑

j=0

n∗(α ◦ πj)

=
2d∑

j=0

n∗(p2∗(p∗1(α) • πj)

=
2d∑

j=0

p2∗(p∗1(α) • (1× n)∗(πj))

=
2d∑

j=0

p2∗(p∗1(α) • njπj)

=
2d∑

j=0

nj(α ◦ πj)

Therefore, we obtain:

n2(α− α ◦ π2) +
∑

j 6=2 nj(α ◦ πj) = 0

for all nεE. Since E is an infinite subset of the integers, the required conclusion follows.

3.2. Technical Lemmas. We now make some general computations which will be helpful in proving the main

theorem. We will use the following lemma repeatedly in the sequel, often without explicit mention.

Lemma 3.2. Let g, hεG and α, βεCH∗(A×k A, Q). Then for any kεG,

(i) (g × h)∗α ◦ β = (k × h)∗(α ◦ (k−1 × g−1)∗β)

(ii) α ◦ (g × h)∗β = (g × k)∗((h−1 × k−1)∗α ◦ β)

(iii) (g × g)∗(α ◦ β) = (g × g)∗α ◦ (g × g)∗β.
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Proof.

The third statement follows from the first by taking h = k = g and replacing β by (g× g)∗β. We prove only

the first statement, as the second is similar.

(g × h)∗α ◦ β = p13∗(p12
∗β • p23

∗(g × h)∗α) = p13∗(p12
∗β • (k × g × h)∗p∗23α)

= p13∗(k × g × h)∗((k−1 × g−1 × h−1)∗p12
∗β • p∗23α) = p13∗(k−1 × g−1 × h−1)∗(p12

∗(k−1 × g−1)∗β • p23
∗α)

= (k−1 × h−1)∗p13∗(p12
∗(k−1 × g−1)∗β • p23

∗α) = (k × h)∗p13∗(p12
∗(k−1 × g−1)∗β • p23

∗α)

= (k × h)∗(α ◦ (k−1 × g−1)∗β)

Following the notation of (2.0.2), we define, for α ∈ CH∗(A×A, Q), αG =
∑

gεG(g × g)∗α and

αGG =
∑

g,hεG(g × h)∗α. Observe that αGG =
∑

g,hεG

(g × h)∗α =
∑
gεG

(g × 1)∗(
∑
hεG

(h× h)∗α) =
∑
gεG

(g × 1)∗αG

and similarly αGG =
∑
hεG

(1× h)∗αG.

Lemma 3.3. If α, βεCH∗(A×A, Q), then αGG ◦ βGG = (αG ◦ βG)GG.

Proof. From the equations above,

αGG ◦ βGG =
∑
hεG

(1× h)∗αG ◦
∑
gεG

(g × 1)∗βG

=
∑

g,hεG

p13∗(p12
∗(g × 1)∗βG • p23

∗(1× h)∗αG)

=
∑

g,hεG

p13∗(g × 1× h)∗(p12
∗βG • p23

∗αG)

=
∑

g,hεG

(g × h)∗p13∗(p12
∗βG • p23

∗αG) =
∑

g,hεG

(g × h)∗(αG ◦ βG) = (αG ◦ βG)GG

3.3. Proof of Theorem 2.2. By [1, Lemma 2.4], the elements ρi =
∑

g,hεG(g, h)∗πi = (πi)GGεCHd(A ×
A, Q))G×G, 0 ≤ i ≤ 2d satisfy ρi ◦ ρi = |G|2ρi and ρi ◦ ρj = 0 if i 6= j.

Since LG is a symmetric ample line bundle (i.e. its first Chern class satisfies the condition in (2.0.1)), the

main result of [14] implies directly that

(CH∗(A×A, Q), ◦, LG,ΛG, (πi)2d
i=0) is a Lefschetz algebra.(3.3.1)

In particular, the following hold (for any j):

LG ◦ πj = πj+2 ◦ LG(3.3.2)

ΛG ◦ πj = πj−2 ◦ ΛG(3.3.3)

[ΛG, LG] =
2d∑

i=0

(d− i)πi(3.3.4)

In this setting, the following result may be viewed as an equivariant analogue of the statement (3.3.1).

Lemma 3.4. The following properties hold:
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(i) CH∗(A×A, Q)G×G is a graded Q-algebra with unit element
1
|G|2

[∆A]GG.

(ii)
∑2d

i=0 ρi = [∆A]GG

(iii) ρi ◦ ρj =
{

|G|2ρi if i = j
0 otherwise

(iv) LGG ◦ ρi = ρi+2 ◦ LGG

(v) ΛGG ◦ ρi = ρi−2 ◦ ΛGG

(vi) [ΛGG, LGG] = |G|2
∑2d

i=0(d− i)ρi.

Proof.

Lemma 3.2 shows that CH∗(A×A, Q)G×G is a ring under cycle addition and composition of correspondences,

with unit element
1
|G|2

[∆A]GG. The second and third statements follow from the construction of the ρi. It

remains to prove that last three statements.

By construction, ρi = (πi)GG. By Lemmas 3.2 and 3.3, we have

LGG ◦ ρi = LGG ◦ (πi)GG = (LG ◦ (πi)G)GG = (LG ◦
∑
gεG

(g × g)∗πi)GG =
∑
gεG

((g × g)∗(LG ◦ πi))GG

On the other hand,

ρi+2 ◦ LGG = (πi+2)GG ◦ LGG = ((πi+2)G ◦ LG)GG =
∑
gεG

[(g × g)∗πi+2 ◦ LG]GG =
∑
gεG

[(g × g)∗(πi+2 ◦ LG)]GG

By (3.3.2), the two right-hand-sides are equal, thereby proving the fourth statement. The proof of the fifth

statement is virtually identical.

It remains to prove the commutator relation. Again, using Lemmas 3.2 and 3.3 together with (3.3.4),

[ΛGG, LGG] = ΛGG◦LGG−LGG◦ΛGG = (ΛG◦LG)GG−(LG◦ΛG)GG = [ΛG, LG]GG =
2d∑

i=0

(d−i)(πi)GG =
2d∑

i=0

(d−i)ρi

This concludes the proof of Lemma 3.4.

We now continue with the proof of Theorem 2.2. As in [1, Proposition 3.4] the projections A×A×A → A×A

and A × A → A will be denoted p with the appropriate superscripts and subscripts to indicate which factors

are the source and the target. (For example, p123
23 will denote the projection A×A×A → A×A projecting to

the second and third factors.) The corresponding projections for A/G will be denoted q with the corresponding

indices. For convenience of notation set r = (f × f × f) : A×k A×k A −→ A/G×k A/G×k A/G.

Lemma 3.5. Let α, βεCH∗(A × A, Q)G×G. Then (f × f)∗(α) ◦ (f × f)∗(β) = |G|(f × f)∗(α ◦ β). In par-

ticular, ((f × f)∗(α))i = |G|i−1(f × f)∗(αi), where the exponent i denotes the i-fold iterated composition of

correspondences.

Proof. Now,

(f × f)∗(α) ◦ (f × f)∗(β) = q123
13 ∗(q

123
12

∗
(f × f)∗(α) • q123

23
∗
(f × f)∗(β))(3.3.5)

Since the degree of r is |G|3, r∗r
∗ corresponds to multiplication by |G|3, and therefore, the last expression

equals:
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(3.3.6)
1
|G|3

q123
13 ∗(r∗r

∗q123
12

∗
(f × f)∗(α) • q123

23
∗
(f × f)∗(β))

Because q123
12 ◦ r = (f × f) ◦ p123

12 , the above simplifies to:

1
|G|3

q123
13 ∗(r∗p

123
12

∗
(f × f)∗(f × f)∗(α) • q123

23
∗
(f × f)∗(β))

Since α is G×G-invariant, (f × f)∗(f × f)∗ is multiplication by |G|2, so the expression equals:

1
|G|3

q123
13 ∗(r∗p

123
12

∗|G|2α • q123
23

∗
(f × f)∗(β))

Finally, applying the projection formula, the formula q123
ij ◦ r = (f × f) ◦ p123

ij and (G×G)-invariance of both

α and β, one may identify the last expression with:

1
|G|

q123
13 ∗r∗(p

123
12

∗
(α) • r∗q123

23
∗
(f × f)∗(β)) =

1
|G|

(f × f)∗p123
13 ∗(p

123
12

∗
(α) • p123

23
∗
(f × f)∗(f × f)∗(β))

= |G|(f × f)∗p123
13 ∗(p

123
12

∗
(α) · p123

23
∗
(β))

= |G|(f × f)∗(α ◦ β)

This proves the first statement of the lemma and the second follows readily.

Now define L̃ =
1
|G|3

(f × f)∗(LGG), Λ̃ =
1
|G|3

(f × f)∗(ΛGG), and ηi =
1
|G|3

(f × f)∗(ρi). Lemmas 3.5 and

3.4 together imply that (CH∗(A/G), L̃, ◦, Λ̃, (ηi)2d
i=0) forms a Lefschetz algebra, thus concluding the proof of

Theorem 2.2.

The first two assertions of Corollary 2.3 follow immediately from the formalism of Sections 4 and 5 of [14].

Finally, we suppose that k is a finite field and prove statement (iii) of Corollary 2.3. Since LGG is G × G-

invariant, Lemma 3.2 shows that the map φ : CHp(A; Q) → CHd−p(A, Q) defined by α 7→ Ld−2p
GG ◦α leaves the

G-invariant part-stable: i.e. φ restricts to a map

φG : CHp(A, Q)G → CHd−p(A, Q)G

Observe that the projection π : CH∗(A, Q) → CH∗(A, Q)G sends α 7→
∑

gεG g∗(α). Thus one may readily

verify the commutativity of the two squares:

CHp(A, Q)G

��

φG

//
CHd−p(A, Q)G

��
CHp(A, Q)

φ //

π

��

CHd−p(A, Q)

π

��
CHp(A, Q)G

φG

//
CHd−p(A, Q)G

The middle row is an isomorphism by the Hard Lefschetz Theorem for the Chow groups of abelian varieties as

proved in [14, Theorem 5.2]. Hence the top row is injective and the bottom row is surjective, thereby proving

statement (iii) in Corollary 2.3.



10 REZA AKHTAR AND ROY JOSHUA

References

[1] R. Akhtar and R. Joshua, Kunneth decomposition for quotient varieties, Indag. Math. 17 (2006), no. 3, 319-344.
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