MOTIVIC E_∞-ALGEBRAS AND THE MOTIVIC DGA

ROY JOSHUA

Abstract. In this paper we define an E_∞-structure, i.e. a coherently homotopy associative and commutative product on chain complexes defining (integral and mod-l) motivic cohomology as well as mod-l étale cohomology. We also discuss several applications.

Table of contents
1. Introduction
2. The basic framework
3. Endomorphism operads and Eilenberg-Zilber operads
4. Barratt-Eccles operads
5. Action of the Barratt-Eccles operads on the motivic complex
6. Model structures on the category of operads and actions by other operads on the motivic complex
7. Mixed Tate motives for a class of smooth schemes over the field
8. Classical cohomology operations

1. Introduction

The main result of this paper is the existence of explicit E_∞-structures on mod-l étale cohomology (with l different from the residue characteristic), on the motives (in the sense of [VV]) of all smooth schemes and on the motivic complexes of all smooth schemes. Such results have often been implicitly assumed in the past: we make them explicit by constructing explicit operad actions on these complexes.

The following are some of the applications. First of all, the E_∞-structure on motives enables us to readily obtain an E_∞-structure on a complex defining étale cohomology, thereby establishing cohomology operations in étale cohomology and a dga structure on continuous l-adic étale cohomology. This structure is shown to be independent of a different E_∞-structure we put on the motivic complex. Moreover, the two separate constructions shed light on the fact that the source of cohomology operations in topology (along-with a similar one on étale cohomology) and on motivic cohomology are somewhat distinct. In the first case the existence of cohomology operations is a consequence of the fact that the passage from simplicial abelian groups to associated chain complexes is only homotopy commutative. In this case, this pairing involves the Alexander-Whitney map (from the chain complex associated to the tensor product of two simplicial abelian groups to the tensor product of the corresponding chain complexes) which is only homotopy commutative. In the motivic case, the intersection pairing on the motivic complexes is obtained from an external pairing of chain complexes followed by a pairing that involves only the shuffle maps which are strictly commutative. Therefore the source of the lack of strict commutativity for the product on the motivic complex is the lack of strict commutativity of the corresponding external pairing. In other words, our results show that the E_∞-structure on the singular co-chain complex and on complexes defining étale cohomology are strictly chain-theoretic phenomena whereas the E_∞-structure on the motivic complex is not. The E_∞-structure on the motivic complex also allows the construction of an E_∞-dga structure on the integral motivic complex and on the motivic complex with finite coefficients as well as a dga-structure on the rational motivic complex associated to any smooth scheme over a field. The latter has applications to the construction of categories of mixed Tate motives associated to a large class of schemes.

The following is an outline of the paper. The second section is devoted to setting up the basic framework for the rest of the paper while the third section is devoted to a detailed study of what we call Eilenberg-Zilber operads.

The author was supported by the IHES, the IAS, the MPI and a grant from the NSA.
We begin by considering the endomorphism operad in a general setting. As a motivating example for what follows, we next consider, as a special case of this operad, the Eilenberg-Zilber operad well-known in algebraic topology. We then consider the analogous operad in the motivic case which we call the motivic Eilenberg-Zilber operad. The main results in this section may be summarized as follows. (See sections 2 and 3 for details and terminology.)

Theorem 1.1. There exists an operad, \(\text{End}_{M,(\Delta)} \), that is acyclic in the derived category \(D((\text{smt.schms})_{Nis}) = \) the derived category of complexes of abelian sheaves on the big Nisnevich site of smooth schemes over \(k \).

(i) The motive of any smooth scheme \(X \) is a co-algebra over this operad.

(ii) Let \(l \) denote a fixed prime different from \(\text{char}(k) = p \) and let \(\nu > 0 \) be an integer. There exists an operad \(\text{End}_{M,(\Delta)}/\nu \) that is acyclic in \(D((\text{smt.schms})_{k}) \) which is the derived category of complexes of abelian sheaves on the big \(\text{etale} \) site of smooth schemes over \(k \). The complex \(R^{\mu}(X, \mu^{\nu}) = \text{Tot}(\mathcal{N}((\mu^{n}\mu^{\nu}))) \) (where \(\{ \mu^{n}\mu^{\nu} \} \) denotes the Godement resolution computed on the \(\text{etale} \) site \(X_{et} \); see 9.2) is an algebra over \(\text{End}_{M,(\Delta)} \oplus \text{End}_{C,(\Delta)} \) where \(\text{End}_{C,(\Delta)} \) is the classical Eilenberg-Zilber operad as discussed below : see 3.2.

As a consequence we obtain cohomology operations in \(\text{etale} \) cohomology and an \(E_{\infty} \)-structure on \(\text{etale} \) cohomology. These results show that the \(E_{\infty} \)-structure on \(\text{etale} \) cohomology is obtained in the same manner as in the case of singular cohomology.

In the fourth section, we consider two other operads which are variants of the well-known Barratt-Eccles operad. Then, in the fifth section we show that these operads act on the motivic complexes, i.e. the motivic complexes of smooth schemes are algebras over both these operads. In fact a key result in this paper is the explicit construction of singular cohomology.

With this key result at our disposal, one may make use of abstract arguments, like the existence of a model structure on the category of operads (provided first by Hinich and then extended to more general situations by Spitzweck) to provide actions by other operads. This is considered in section 6.
The rest of the paper is devoted to applications. In the seventh section, making use of the existence of the motivic dga, we construct a category of Tate motives for a large class of varieties that includes all projective smooth linear varieties over a perfect field. In the eighth section, we show that the operad actions defined earlier lead to classical cohomology operations on both mod−1 and mod-p motivic cohomology. The co-algebra structure for the motives of smooth schemes considered in section 3, does not seem to directly lead to the motivic operations of Voevodsky on motivic cohomology: this is because of the rather complicated relation between motivic homology and cohomology. The following short paper [BroJ], joint with Patrick Brosnan, explores the relation between the classical cohomology operations as constructed in this paper and the motivic cohomology operations of Voevodsky, at least after inverting the Bott-element.

Acknowledgments. This has been a rather long project for us, partly because the area of operads had been new to us when we embarked on this project. We first began work on this ourselves, then enlisted the help of Peter May with whom we had correspondence for about a year on the subject matter of the paper. The expectation at that point was that the E_∞-structures on the motivic complex and the singular chain complex would be entirely similar so that a suitable form of the Eilenberg-Zilber operad would provide the required E_∞-structure. That this is not so became clear during this correspondence and we thank May for this correspondence. However, it also became clear during the same correspondence that our styles and expertise are so disjoint that collaborating on this project would not be practical. We thank May for letting me finish this project as a single-authored paper. I would be happy to acknowledge that some of the insights and results, notably in sections 3.1, 3.2 came from our correspondence of over a year on the subject matter of the paper.

In addition, we would like to thank Spencer Bloch, Patrick Brosnan, Zig Fiedorowicz, Herbert Gangl, Eric Friedlander, Markus Rost, Bertrand Toen and Vladimir Voevodsky for several helpful discussions/correspondence.

2. The basic framework

Throughout the paper k will denote a field of arbitrary characteristic $p \geq 0$. (smt.schms) will denote the category of smooth schemes of finite type over k. $(\text{smt.schms})_{\text{Zar}}$, $(\text{smt.schms})_{\text{Nis}}$ and $(\text{smt.schms})_{\text{et}}$ will denote this category provided with the big Zariski, Nisnevich or étale topologies. Observe that these sites have enough points. We will let S denote any one of these sites. $C(S)$ will denote the category of unbounded co–chain complexes of abelian sheaves on S with differentials of degree +1; complexes of abelian sheaves with differentials of degree −1 will be referred to as chain complexes. By default, a complex will mean a co-chain complex.

For the most part $C_-(S)$ ($C_0(S)$) will denote the full sub-category of bounded above complexes (that are also trivial in positive degrees, respectively). For a fixed commutative ring R with unit, $C(S,R)$ ($C_-(S,R)$, $C_0(S,R)$) will denote the corresponding categories of complexes of sheaves of R-modules. Observe that $C(S)$ and $C(S,R)$ are symmetric monoidal with product \otimes and an internal Hom functor we denote by Hom. A map $f : K \to L$ in $C(S,R)$ is a quasi-isomorphism if the induced map by f at each stalk is a quasi-isomorphism. $D(S,R)$ ($D_-(S,R)$, $D_0(S,R)$) will denote the corresponding derived categories obtained by inverting quasi-isomorphisms. When $R = \mathbb{Z}$, $D(S)$ will be denoted simply $D(S)$. Observe that $C_-(S,R)$ and $C_0(S,R)$ are not closed under the formation of the internal hom: this is the main reason for considering the category $C(S,R)$ of unbounded complexes in this paper.

It follows from Proposition 9.1 in the appendix that $C_0(S,R)$ is a cofibrantly generated closed model category, where a map $f : K \to L$ is a weak-equivalence (cofibration) if it induces an isomorphism on cohomology sheaves (is an injection stalk-wise in each degree, respectively). (Observe that the sites considered above consist of objects of finite type over k and therefore are essentially small.) We will consider the following model structure on $C(S,R)$:

- cofibrations are injections, weak-equivalences are stalk-wise quasi-isomorphisms and fibrations are defined by the right lifting property with respect to trivial cofibrations. The cofibrations (trivial cofibrations) $i : K \to L$ are generated by those cofibrations (trivial cofibrations, respectively) for which there exists a large enough cardinal α so that the cardinality of $\Gamma(U,l)$ is less than α for all smooth schemes U. We will skip the proof that this defines a cofibrantly generated model category structure: the proof will be entirely similar to the proof of Theorem 2.3.13 in [Hov-1] where the site is assumed to be trivial (or that of Proposition 9.1 in the appendix). One may define a simplicial model structure on $C(S,R)$ by defining the functor $\text{Map} : C(S,R)^{op} \times C(S,R) \to (\text{simp.sets})$ by letting $\text{Map}(K,L)_n = \text{Hom}_{C(S,R)}(K \otimes N(\mathbb{Z} \otimes \Delta[n]),L)$; here $\mathbb{Z} \otimes \Delta[n]$ is the obvious simplicial abelian group associated to the simplicial set $\Delta[n]$ and $N(\mathbb{Z} \otimes \Delta[n])$ denotes the associated chain complex.
Let D be any small category. Then [Hir, Chapter 14] shows that one has an obvious cofibrantly generated model category structure on $C(S, R)^D$ and the functor Map extends to define a functor $(C(S, R)^D)^{op} \times C(S, R)^D \to \text{simp.sets}$. The weak-equivalences (fibrations) in $C(S, R)^D$ will be morphisms $\{f_d : K_d \to L_d | d\}$ so that each f_d is a weak-equivalence (fibration, respectively). Moreover one has a bi-functor $\otimes : C(S, R)^D \times C(S, R)^D \to C(S, R)^D$ that preserves weak-equivalences when one of the arguments is cofibrant. If Hom_D denotes the internal hom in $C(S, R)^D$ and then one has the following explicit description of Hom_D: $\text{Hom}_D(F, G)$ is the equalizer in $C(S, R)$ displayed in the diagram

$$
\begin{array}{c}
\text{Hom}_D(F, G) \\
\Pi_{d \in D} \text{Hom}(F_d, G_d) \\
\Pi_{a, d \to e} \text{Hom}(F_d, G_e)
\end{array}
$$

where the second product runs over all morphisms α of D. We are writing F_d for the object $F(d)$ and writing $F_\alpha : F_d \to F_e$ for the morphism $F(\alpha)$. The parallel arrows send $(f_d | d)$ to $(f_e \circ F_\alpha | \alpha, e)$ and to $(G_\alpha \circ f_d | \alpha, d)$. Thus the α-th components of the parallel arrows are the composites of the projections to the α-th or the d-th component followed by $\text{Hom}(F_\alpha, id) : \text{Hom}(F_e, G_e) \to \text{Hom}(F_d, G_e)$ or $\text{Hom}(id, G_\alpha) : \text{Hom}(F_d, G_d) \to \text{Hom}(F_d, G_e)$.

Moreover, if $\text{Const} : C(S, R) \to C(S, R)^D$ is the functor sending an object $K \in C(S, R)$ to a functorial cofibrant replacement of the associated constant diagram in $C(S, R)^D$, one has the adjunction:

$$
\text{Map(\text{Const}(K), \text{Hom}_D(F, G))) = Map(\text{Const}(K) \otimes F, G)}
$$

Therefore, one may show readily that $\text{Hom}_D(F, G)$ preserves weak-equivalences in either argument when they are cofibrant and fibrant.

Let $SPrsh(S)$ denote the category of all additive simplicial presheaves on the site S, i.e. presheaves of simplicial sets. The free R-module functor sends simplicial presheaves on S to simplicial abelian presheaves and applying the normalization functor one obtains a complex of abelian presheaves. This defines a functor, we denote by $N : SPrsh(S) \to C_0(S, R)$. An \mathbb{A}^1-homotopy $H : P \times \mathbb{A}^1 \to Q$ between two simplicial presheaves P and Q induces a homotopy $NZ(H) : NZ(P) \otimes NZ(\mathbb{A}^1) \to NZ(Q)$. We say two maps $f, g : K \to L$ in $D(S, R)$ are \mathbb{A}^1-homotopic if there is map $H : K \otimes NZ(\mathbb{A}^1) \to L$ so that $H \circ i_0 = f$ and $H \circ i_1 = g$; here $i_0, i_1 : K \otimes NZ(Spec \ k) \to K \otimes NZ(\mathbb{A}^1)$ are the obvious maps corresponding to 0 and $1 \in \mathbb{A}^1$. One may define a map $f : K \to L$ to be an \mathbb{A}^1-equivalence as in (9.7): $D(S, R)_{\mathbb{A}^1}$ will denote the localization of the derived category $D(S, R)$ with respect to morphisms that are \mathbb{A}^1-equivalences.

2.1. Convention. Given a product of n complexes $K(1), \ldots, K(n)$ in $C(S, R)$, any permutation $\sigma \in \Sigma_n$ induces a map $K(1) \otimes \cdots \otimes K(n) \to K(1) \otimes \cdots \otimes K(n)$: this will be simply denoted σ though in each degree, it involves also multiplication by an appropriate sign.

Remark 2.1. The motivic complexes are complexes of abelian sheaves which are only bounded above in general, and since the paper is centered around these, it seems preferable not to work with general simplicial presheaves.

3. Endomorphism operads

Let $K \in C(S, R)$. We define endomorphism operads End^K and End_K as follows. $\text{End}^K(n) = \text{Hom}(K^{\otimes n}, K)$ and $\text{End}_K(n) = \text{Hom}(K^{\otimes n}, K)$. The structure morphism $\theta^K_n : \text{End}^K(n) \otimes \text{End}^K(k_1) \otimes \cdots \otimes \text{End}^K(k_n) \to \text{End}^K(\Sigma_k k_i)$ is defined as the composition of $\text{Hom}(K^{\otimes n}, K) \otimes \text{Hom}(K^{\otimes k_1}, K) \otimes \cdots \otimes \text{Hom}(K^{\otimes k_n}, K) \to \text{Hom}(K^{\otimes \Sigma_k k_i}, K)$ where both maps are the obvious ones. Similarly the structure morphism $\theta_K : \text{End}_K(n) \otimes \text{End}_K(k_1) \otimes \cdots \otimes \text{End}_K(k_n) \to \text{End}_K(\Sigma_k k_i)$ are defined in the obvious manner.

Fix a functor $\Lambda : D \to C(S, R)$. We have the diagonal power functor $\Lambda^{\otimes n}$. Its sends d to the n-fold \otimes-power $(\Lambda_d)^{\otimes n}$. By convention, the 0-fold power of Λ is the constant functor at R. We define the endomorphism operad End_Λ of the functor Λ by letting

$$
\text{End}_\Lambda(n) = \text{Hom}_D(\Lambda, \Lambda^{\otimes n})
$$

with $\text{End}_\Lambda(0) = R$. The structure morphisms are defined as before. Similarly one defines an operad End^Λ by letting $\text{End}^\Lambda(n) = \text{Hom}_D(\Lambda^{\otimes n}, \Lambda)$.

Remark 3.1. In order to show the endomorphism operads above are acyclic, we will assume an explicit null-homotopy (for example, a chain null-homotopy, or an \mathbb{A}^1-null homotopy) of each $K \in C(S, R)$ or $\Lambda \in C(S, R)^D$ is given. It should be clear that such a null-homotopy will induce a null-homotopy of $\text{End}_K(n)$, $\text{End}^K(n)$, $\text{End}_\Lambda(n)$ and $\text{End}^\Lambda(n)$.
3.1. Co-algebras and algebras over operads. Let \(\{O(n)|n\} \) denote an operad in \(C(S,R) \). If \(K \in C(S,R) \), a co-algebra structure (algebra structure) for \(K \) over \(\{O(n)|n\} \) is given by a morphism of operads \(\{O(n)|n\} \to \{\text{End}_K(n)|n\} \) (\(\{O(n)|n\} \to \{\text{End}_K(n)|n\}, \) respectively). Similarly, a co-algebra structure for a functor \(X: D \to C(S,R) \) over the given endomorphism operad \(\{\text{End}_X(n)|n\} \) is given by a map of operads \(\{\text{End}_X(n)|n\} \to \{\text{End}_K(n)|n\} \). If \(K \in C(S,R) \) is a co-algebra (algebra) over the operad \(\{O(n)|n\} \), then (the functorial) cofibrant-fibrant replacement of \(K \) will be also a co-algebra (algebra, respectively) over the same operad \(\{O(n)|n\} \). Therefore, we may assume that \(K \) is always cofibrant and fibrant in the given model structure on \(C(S,R) \).

Let \(Y : D \to C(S,R) \) be a functor. An algebra structure for functor \(Y \) over the operad \(\{\text{End}_K(n)|n\} \) is given by a map of operads \(\{\text{End}_K(n)|n\} \to \{\text{End}_Y(n)|n\} \).

3.2. The (classical) Eilenberg-Zilber operad. As motivation for our constructions on the motives of schemes, we show here how the abstract theory of the last section specializes to give the standard Eilenberg-Zilber operad \(Z \) that acts on the chain complex giving simplicial homology in algebraic topology (see [Sm]) making the latter a co-algebra over the Eilenberg-Zilber operad.

Fix a commutative ring \(R \) and let \(M_R \) be the category of \(R \)-modules and let \(F : (\text{sets}) \to M_R \) be the free \(R \)-module functor. Let \(CM_R \) be the category of chain complexes of \(R \)-modules or \(R \)-chain complexes, with differentials of degree \(-1\). The category \(CM_R \) will play the role of the category \(C(S,R) \) as in the above discussion. Let \(X \) denote a simplicial set and let \(C_t(X,R) \) denote the chain complex obtained by normalization from the simplicial \(R \)-module \(R(X) \) obtained by applying the free \(R \)-module functor degree-wise to the simplicial set \(X \). (This may be viewed as a co-chain complex trivial in positive degrees in the obvious manner.)

Now we take \(D = \Delta \). The functor \(\Lambda \) will be the functor \(n \mapsto C_*(\Delta[n], R) \). This will be denoted \(C_*(\Delta, R) \).

For each \(n \)-simplex \(x \in C_n(X,R) \), we obtain a map \(x_n : C_*(\Delta[n], R) \to C_*(X,R) \) by sending \(u_n \varepsilon C_n(\Delta[n], R) \) (which is the canonical generator) to \(x_n \). Now we define a map

\[
\mu : \text{End}_{C_*(\Delta,R)} \to \text{End}_{C_*(X,R)}
\]

by \(\mu(f)(x_n) = x_n \otimes f \otimes u_n \), where \(f \in \text{End}_{C_*(\Delta,R)}(j) \) and \(\mu(f \otimes u_n) \) utilizes the obvious co-algebra structure of \(C_*(\Delta, R) \) over \(\text{End}_{C_*(\Delta,R)} \). On taking \(C^*(X) = \text{Hom}_R(C_*(X,R)) \) where \(\text{Hom}_R \) denotes the internal Hom in the category \(CM_R \), we obtain the structure of an algebra for \(C^*(X,R) \) over the endomorphism operad \(\text{End}_{C_*(\Delta,R)} \).

Since each \(C_*(\Delta[n], R) \) is chain null-homotopic, one may easily show that each \(\text{End}_{C_*(\Delta,R)}(n) \) is chain null-homotopic as well, for each \(n \geq 0 \). This is the (classical) Eilenberg-Zilber operad. One may utilize the general discussion in section 6 to define a map of operads from an \(E_{\infty} \)-operad to the Eilenberg-Zilber operad: this will put a \(E_{\infty} \) structure on the singular chain complex \(C_*(X,R) \) and the singular co-chain complex \(C^*(X,R) \).

Remark 3.2. It may be worth pointing out that, the operad action we construct in this paper, when applied to smooth complex algebraic varieties, provides an \(E_{\infty} \)-operad that acts on a chain complex also defining singular cohomology with finite coefficients. This uses the correspondence between singular cohomology and étale cohomology with finite coefficients and the correspondence between motivic and étale cohomology. More details on this may be found in the last section, including a construction of the usual cohomology operations in the singular cohomology of smooth complex algebraic varieties from our operad action.

3.3. The motivic Eilenberg-Zilber operad. Given an Abelian sheaf \(P \) on \((\text{smt.schms}/k)\), we extend \(P \) to a simplicial sheaf (i.e. a sheaf of simplicial Abelian groups) as is done for the simplicial case in [F-S]: i.e. we let \(C_*(P) \) denote the simplicial sheaf defined by \(\Gamma(U, C_*(P)) = \Gamma(U \times \Delta[n], P) \). This simplicial Abelian sheaf may be replaced by the corresponding chain complex (i.e. with a differential of degree \(-1\)): this complex will be denoted \(N(C_*(P)) \). (Now we may re-index \(N(C_*(P)) \) to obtain a co-chain complex of sheaves that is trivial in positive degrees.)

3.3.1. Finite correspondences. Given \(X, Y \in (\text{smt.schms}/k) \), we define \(\text{Cor}_{q,f}(Y,X) \) (\(\text{Cor}_f(Y,X) \)) be the free Abelian group generated by closed integral sub-schemes \(Z \subseteq Y \times X \) that are quasi-finite (finite, respectively) and dominated over some component of \(Y \). Clearly \(\text{Cor}^{q,f}(\ ,X) \) and \(\text{Cor}_f(\ ,X) \) are presheaves on \((\text{smt.schms}/k)\).

We define the motive of a given smooth scheme space \(X = \text{Cor}_f(\ ,X) \) which is a chain complex of abelian sheaves on the big Nisnevich site. If \(R \) is a commutative ring with unit, \(M(X,R) \) will denote \(C_*(\text{Cor}_f(\ ,X)) \otimes R \). Observe that \(n \mapsto M(\Delta[n], R) \) defines a functor \(M: \Delta \to C(S,R) \). We will denote this by \(M_*(\Delta) \) and define the motivic Eilenberg-Zilber operad to be the endomorphism operad of this functor in the sense
of (3.0.1). Since each $\Delta[n]$ is A^1-acyclic, this defines an acyclic operad in the category $C(S, R)_{A^1}$. Since $Z_{tr}(A^n)$ is A^1-null-homotopic, it follows from [MVW, Corollary 2.2] that $M_*(\Delta[n])$ is in fact chain-null-homotopic. This proves the acyclicity of the above operad. The following is one of the main results of this section.

Theorem 3.3. For each smooth scheme X, the motive $M(X)$ is a co-algebra over the motive Eilenberg-Zilber operad. If $f : X \to Y$ is a map of smooth schemes, then the pushforward $f_* : M(X) \to M(Y)$ is compatible with above co-algebra structure.

Proof. Step 1. We begin with the basic observation that there is a natural pairing (see [MVW, Lemma 1.7]):

\[
\circ : Cor_f(X, Y) \times Cor_f(Y, Z) \to Cor_f(X, Z)
\]

defined as follows. Given correspondences $\Gamma_1 \in Cor_f(X, Y)$, $\Gamma_2 \in Cor_f(Y, Z)$, one defines $\Gamma_1 \circ \Gamma_2$ to be the direct image under the projection $X \times Y \times Z \to X \times Z$ of the correspondence $(\Gamma_1 \times Z) \cap (X \times \Gamma_2)$. This pairing has the property that if $g : Y \to Y'$ is any map of smooth schemes,

\[
(id \times g)_n \circ \Gamma_1 = \Gamma_1 \circ (g \times id)^*(\Gamma_2').
\]

Finally one needs to verify that the above pairing is, in fact, compatible with the differentials on either side.

Step 2. Let $x_n \in \Gamma(U, M_*(X)) = Cor_f(X \times \Delta[n], X)$. Then there is an obvious correspondence $[\Delta] \in Cor_f(U \times \Delta[n], X)$ so that $x_n = [\Delta]_n \ast x_n$. In fact one may take $[\Delta]_n$ to be the class of $U \times \Delta[n]$.

Step 3. Let $\alpha \in \Gamma(U, End_{M_*(\Delta)}(k))_n$, i.e. $\alpha = \{([\alpha]_n : \Gamma(U, M_*(\Delta[n])) \to \Gamma(U, (M_*(\Delta[n]))^{\otimes k}))_{l+m}|l, n\}$ is a compatible collections of maps, compatible as n. Let

\[
x_n \in \Gamma(U, M_*(X)) = Cor_f(U \times \Delta[n], X).
\]

Then $\alpha \in (\Gamma(U, M_*(\Delta[n]))^{\otimes k})_{l+m}$ is a class in $(\Gamma(U, M_*(\Delta[n]))^{\otimes k})_{m+n} = Cor_f(U \times \Delta[l_1], \Delta[n]) \otimes \cdots \otimes Cor_f(U \times \Delta[l_k], \Delta[n])$ so that $\Sigma_i l_i = m+n$. Now $x_n^{\otimes k} \in Cor_f(U \times \Delta[n], X) \otimes \cdots \otimes Cor_f(U \times \Delta[l_k], X)$. Therefore one may compose each factor of x_n above with a factor of $\alpha([\Delta]_n)$ in $Cor_f(U \times \Delta[l_i], \Delta[n])$ to obtain a class in $Cor_f(U \times \Delta[l_i], X)$. The product of these classes obviously defines an element in $Cor_f(U \times \Delta[l_1], X) \otimes \cdots \otimes Cor_f(U \times \Delta[l_k], X)$ with $\Sigma_i l_i = m+n$. Therefore, this defines a pairing,

\[
\ast : \Gamma(U, End_{M_*(\Delta)}(k)) \otimes \Gamma(U, M_*(X)) \to \Gamma(U, M_*(X))^{\otimes k}
\]

It is clear from the above pairing that this pairing is compatible with push-forwards as in the last statement of the theorem.

Finally one needs to verify that the above pairing is, in fact, compatible with the differentials on either side. For this we will use the following conventions. Given two chain complexes A and B the differential on the tensor product $A \otimes B$ is defined by $\delta(a \otimes b) = \delta(a) \otimes b + (-1)^{n_a} a \otimes \delta(b)$ when $a \otimes b \in (A \otimes B)_n = \oplus_{i+j=n} A_i \otimes B_j$. The internal hom, $Hom(A, B)$, is the chain complex given in degree n by $\Pi Hom(A_i, B_{n+i})$ and with differential $\delta(f) = (\delta \circ f_1 + (-1)^{n+1} f_1 \circ \delta)$, where $f = (f_1)$.

Next observe the following: given an $\alpha \in \Gamma(U, End_{M_*(\Delta)}(k))$, $\delta(\alpha) = \delta \circ \alpha + (-1)^{l+m} \alpha_1 \otimes \delta$ where δ denotes the obvious composition of maps and $\alpha = (\alpha_1)$, with $\alpha_1 : M_*(\Delta[n]) \to (M_*(\Delta[n]))^{\otimes k}$ being the corresponding component of α. Now consider the differential on the tensor product on the left in (3.3.5). Observe that

\[
\delta(\alpha \otimes x_n) = \delta(\alpha) \otimes x_n + (-1)^{n+m} \alpha \otimes \delta(x_n)
\]

\[
= (\delta \circ \alpha_n, n) \otimes x_n + (-1)^{n+1} x_n \otimes (-1)^{n+m} \alpha_{n-1, n-1} \otimes \delta(x_n)
\]

Next observe that $(\alpha_{n-1, n, n} \otimes \delta) \ast x_n$ is defined by pairing a factor of $\alpha_{n-1, n}([\Sigma_1] \dot \otimes (\Delta) \ast Cor_f(U \times \Delta[l]^\prime, \Delta[n])$ (where $l_1 = m+1$ with a copy of $x_n \ast Cor_f(U \times \Delta[l], X)$. Since $\delta \circ \alpha_{n-1, n-1} = \alpha_{n, n-1} \otimes \delta$, and $\delta(\cref{Delta}) \ast Cor_f(U \times \Delta[n-1], \Delta[n])$ identifies with $\delta_n([\Delta]_{n-1})$ where $[\Delta]_{n-1} \ast Cor_f(U \times \Delta[n-1], \Delta[n-1])$ is the class $U \times \Delta[n-1]$ one may identify $(\alpha_{n-1, n} \otimes \delta) \ast x_n$ with $\alpha_{n-1, n-1, n} \bullet \delta(x_n)$ (See the property (3.3.3) of the pairing \ast considered in Step 1.) Therefore, the last terms in the formula (3.3.6) above cancel out. Moreover, one sees readily by inspection of
the pairing • above that the class $(\delta \circ \alpha_{n,n}) \cdot x_n$ identifies with $\delta(\alpha_{n,n} \cdot x_n)$. Therefore the class $\delta(\alpha_{n,n} \otimes x_n)$ maps to $\delta(\alpha_{n,n} \cdot x_n)$. This proves the pairing • defined above is in fact a pairing of complexes and completes the proof of the theorem. □

Corollary 3.4. The motivic complexes $\mathbb{Z} = \oplus \mathbb{Z}(r)$ are co-algebras over the motivic Eilenberg-Zilber operad.

Proof. This follows readily from the last theorem once we recall that $\mathbb{Z}(r) = \mathbb{Z}(\mathbb{G}_m^r)[-r]$ and $\mathbb{Z}(\mathbb{G}_m^r) = \operatorname{coker}((\oplus_i \mathbb{M}(\mathbb{G}_m \times \cdots \mathbb{G}_m \times \cdots \mathbb{G}_m)) \rightarrow M(\mathbb{G}_m \times \cdots \mathbb{G}_m \times \cdots \mathbb{G}_m))$: see [MVW, Definition 2.8]. □

3.4. The étale Eilenberg-Zilber operad. Let l denote a fixed prime different from the characteristic of the base field k and let $\nu > 0$ be a fixed integer. Recall (smt.schemes/k)et denote the category of smooth schemes over k provided with the big étale topology. One considers the motivic operad $\mathcal{E}_{\text{nd}}(\mathcal{M}(\Delta)/l^\nu)$ sheafified on this big site: this operad will be called the $\text{mod-}l^\nu$ étale Eilenberg-Zilber operad and will be denoted $\mathcal{E}_{\text{nd}(\mathcal{M}^*(\Delta)/l^\nu)}$. Similarly, if X denotes a smooth scheme over k, one lets $\mathcal{M}_*(X)/l^\nu$ denote the sheafification of $M_*(X)/l^\nu$ on the site (smt.schemes/k)et. Let $\mathbb{Z}_{\text{et}}(\nu)(n)$ denote the mod-l^ν motivic complex sheafified on the big étale site of smooth schemes. We define a presheaf $U \mapsto \Gamma(U, \mathcal{R}\text{Hom}(\mathcal{M}_*(X)/l^\nu, \mathbb{Z}_{\text{et}}(\nu)(n))) = \mathcal{R}\text{Hom}(\mathcal{M}_*(U)/l^\nu, \mathbb{Z}_{\text{et}}(\nu)(n))$ on X_{et}

Proposition 3.5. There is a natural quasi-isomorphism

$$\mathcal{R}\text{Hom}(\mathcal{M}_*(X)/l^\nu, \mathbb{Z}_{\text{et}}(\nu)(n)) \simeq R\Gamma(X, \mu_{\nu}(n))$$

for all $n \geq 1$.

Proof. Assume that X is of pure dimension d. Then we can show that there is a quasi-isomorphism of the presheaf $U \mapsto \Gamma(U, \mathcal{R}\text{Hom}(\mathcal{M}(\Delta)/l^\nu, \mathbb{Z}_{\text{et}}(\nu)(n)))$ with the presheaf $\mu_{\nu}(n)$. First observe that the stalk at a given geometric point x of X is given by $\mathcal{R}\text{Hom}(\mathcal{M}(\text{Spec } \mathbb{O}^d_k)/l^\nu, \mathbb{Z}_{\text{et}}(\nu)(n))$. Since the presheaf $U \mapsto \Gamma(U, \mathcal{R}\text{Hom}(\mathcal{M}(\Delta)/l^\nu, \mathbb{Z}_{\text{et}}(\nu)(n)))$ is a presheaf with transfers, it follows by the rigidity Theorems of [Sus] and [F-S-V] that one may identify the last stalk with $\mathcal{R}\text{Hom}(\mathcal{M}_{\text{et}}(\Delta)/l^\nu, \mathbb{Z}_{\text{et}}(\nu)(n))$ $\simeq \mathcal{R}\text{Hom}(\mu_{\nu}(0), \mu_{\nu}(n)) \simeq \mu_{\nu}(n)$.

Theorem 3.6. $\mathcal{R}\text{Hom}(\mathcal{M}_*(X)/l^\nu, \mu_{\nu})$ is an algebra over the operad $\mathcal{E}_{\text{nd}(\mathcal{M}(\Delta)/l^\nu)}[k] \otimes \mathcal{E}_{\text{nd}(\Delta)}$. Each $\mathcal{E}_{\text{nd}(\mathcal{M}(\Delta)/l^\nu)}[k] \otimes \mathcal{E}_{\text{nd}(\Delta)}$ is acyclic, in fact, chain null-homotopic.

Proof. From the results of the last section, it follows that $\mathcal{M}_*(X)/l^\nu$ is a co-algebra over the operad $\mathcal{E}_{\text{nd}(\mathcal{M}(\Delta)/l^\nu)}$. Since the obvious pairing $\mu_{\nu} \otimes \mu_{\nu} \rightarrow \mu_{\nu}$ is obviously strictly associative and commutative, it follows readily that $\mathcal{H}\text{om}(\mathcal{M}_*(X)/l^\nu, \mu_{\nu})$ is an algebra over the same operad. One may define the derived functor $\mathcal{H}\text{om}(\mathcal{M}_*(X)/l^\nu, \mu_{\nu})$ by first considering the cosimplicial chain complex $\mathcal{H}\text{om}(\mathcal{M}_*(X)/l^\nu, \mathcal{G}^{\bullet}_{\mu_{\nu}})$. Here $\mathcal{G}^{\bullet}_{\mu_{\nu}}$ denotes the cosimplicial object provided the canonical Godement resolution applied to the sheaf μ_{ν}. Now $\mathcal{H}\text{om}(\mathcal{M}_*(X)/l^\nu, \mu_{\nu}) = \mathcal{N}\text{Hom}(\mathcal{M}_*(X)/l^\nu, \mathcal{G}^{\bullet}_{\mu_{\nu}})$ where \mathcal{N} denotes normalizing in the cosimplicial direction. Therefore the latter is an algebra over the operad $\mathcal{E}_{\text{nd}(\mathcal{M}(\Delta)/l^\nu)}[k] \otimes \mathcal{E}_{\text{nd}(\Delta)}$: see Proposition 9.14.

Since $Z_{\text{et}}(\Delta)(n)$ is A^1-null-homotopic, it follows from [MVW, Corollary 2.2.] that $M_*(\Delta[n])$ is chain-null-homotopic. This proves the acyclicity of the above operad. (Observe that the above proof is entirely similar to the proof of the acyclicity of the topological Eilenberg-Zilber operad.) □

Remark 3.7. In the motivic situation, $\Gamma(X, \mathbb{Z}) = \mathcal{R}\text{Hom}(M_*(X), \mathbb{Z})$ where \mathbb{Z} denotes the motivic complex. In this case, though $M_*(X)$ is a co-algebra over the motivic Eilenberg-Zilber operad, $\Gamma(X, \mathbb{Z})$ fails to be an algebra over the same operad, the key difficulty here being that the obvious pairing $\mathbb{Z} \otimes \mathbb{Z} \rightarrow \mathbb{Z}$ is not strictly commutative, since \mathbb{Z} is no longer a commutative ring, but instead a complex of sheaves. This makes it necessary to construct explicitly another operad that acts on the motivic complexes: this is the content of the next two sections.

We conclude this subsection by recalling the definition of the motivic complexes.

Definition 3.8. Given a fixed $X \in \text{(smt.schemes/k)}$, one defines presheaves with transfers, $\mathbb{Z}_{\text{eq}}(X)$, $\mathbb{Z}_{\text{tr}}(X)$ by $\Gamma(U, \mathbb{Z}_{\text{eq}}(X)) = \text{Cor}_{\text{tr}}(U, X)$ and $\Gamma(U, \mathbb{Z}_{\text{tr}}(X)) = \text{Cor}_{\text{tr}}(U, X)$. It is observed in [F-S-V], that this defines a sheaf with transfer on (smt.schemes/k)$_{\text{Nis}}$ and (smt.schemes/k)$_{\text{Zar}}$.

3.5. The motivic complexes $\mathbb{Z}(n)$.

Definition 3.9. We let $\mathbb{Z}(n)$ be the presheaf $C^*(\mathbb{Z}_{\text{eq}}(\Delta))(\mathbb{Z}_{\text{eq}}(\Delta))(2n)$ of either of the sites (smt.schemes/k)$_{\text{Nis}}$ or (smt.schemes/k)$_{\text{Zar}}$. Alternatively we may also use the presheaf $C^*(\mathbb{Z}_{\text{tr}}((\mathbb{G}_m, 1)^{\wedge}))[-2n]$: it is shown in [MVW] that both definitions are equivalent upto natural quasi-isomorphism. Therefore, we will use whichever definition is more convenient. If X is a smooth scheme over k, we also let $\mathbb{Z}(n)$ denote the restriction of $\mathbb{Z}(n)$ to the Zariski
or Nisnevich site of X. $\mathbb{Z}_X(n) = R\Gamma(X, \mathbb{Z}_X(n))$. We define $\mathbb{Z} = \bigoplus_{n=1}^{n} \mathbb{Z}(n)$ and $\mathbb{Z}_X = R\Gamma(X, \mathbb{Z}_X) \otimes \mathbb{Z}/l(n)$ will denote $\mathbb{Z}(n) \otimes \mathbb{Z}/l$.

4. The Barratt-Eccles operads

One of the standard examples of E_∞-operads are the ones commonly called the Barratt-Eccles operads. We will consider two variants of these in this section.

Given a discrete group G, one forms the simplicial group EG given in degree n by $EG_n = G^{n+1}$. One may verify readily that if G and H are two groups, $E(G \times H)$ is naturally isomorphic to $E(G) \times E(H)$. One may also observe the isomorphism $EG \cong \text{cosk}_0(G)$. Therefore, taking cosk_0, we see that the map $\gamma_k : \Sigma_k \times \Sigma_{n_1} \times \cdots \times \Sigma_{n_k} \to \Sigma_{\Sigma_m}$, defined by $(\sigma_k, \sigma_{n_1}, \cdots, \sigma_{n_k}) \mapsto (\sigma_{n_k(1)}, \cdots, \sigma_{n_k(k)})$ induces the structure map $\gamma_k : E(\Sigma_k) \times E(\Sigma_{n_1}) \times \cdots \times E(\Sigma_{n_k}) \to E(\Sigma_{\Sigma_m})$. Henceforth we will denote the base scheme $\text{Spec } k$ by S. Given a simplicial set X, one lets $X \otimes S$ denote the simplicial scheme defined by $(X \otimes S)_m = \bigcup_n X_n$ and with the structure maps induced by the structure maps of the simplicial set S. Thus $E_{\Sigma_m} \otimes S$ is a simplicial scheme over S for each m. Observe that there is a principal fibration $E_{\Sigma_m} \to B_{\Sigma_m}$ and B_{Σ_m} denotes the classifying simplicial sheaf associated to the group Σ_m.

Definition 4.1. (The simplicial Barratt-Eccles operad) Henceforth we will let E_{Σ_m} denote the sheaf on the site $(\text{smt.schms}/S)_{Nis}$ represented by this simplicial scheme. We will apply the free abelian group functor Z followed by the normalization functor \mathcal{N} to produce an operad in $C((\text{smt.schms}/S)_{et})$ from this. This defines the simplicial Barratt-Eccles operad on the above site: this will be denoted $NZS = \{N(Z(E_{\Sigma_m}))\}$.

Remark 4.2. Assume the base scheme S is the spectrum of a field. Then $M(\text{Spec } k) = \mathbb{Z}[0]$ so that $M(E_{\Sigma_m}) \cong N(Z(E_{\Sigma_m})).$

While the above operad seems sufficient for producing a motivic dga, there is a second variant, which we proceed to discuss next. We begin by recalling briefly the construction of the geometric classifying space of a linear algebraic group: originally this is due to Totaro - see [Tot]. Let G be a linear algebraic group over S i.e. a closed subgroup in GL_n over S for some n. For a (closed) embedding $i : G \to GL_n$ the geometric classifying space $B_{gm}(G)$ of G with respect to i is defined as follows. For $m \geq 1$ let U_m be the open sub-scheme of \mathbb{A}^m_S where the diagonal action of G determined by i is free. Let \mathbb{A}^m / G be the quotient S-scheme of the (diagonal) action of G on \mathbb{A}^m_S, V_m be the image of U_m in \mathbb{A}^m / G, an open sub-scheme; the projection $U_m \to V_m$ defines V_m as the quotient scheme of U_m by the free action of G and V_m is thus a smooth S-scheme. We have closed embeddings $U_m \to U_{m+1}$ and $V_m \to V_{m+1}$ corresponding to the embeddings $Id \times \{0\} : \mathbb{A}^m \to \mathbb{A}^{m+1}$ and we set $EG_{gm} = \lim_{m \to \infty} U_{m}$ and $B_{gm} = \lim_{m \to \infty} V_m$ where the colimit is taken in the category of sheaves on $(\text{smt.schms}/S)_{et}$ or on $(\text{smt.schms}/S)_{Nis}$.

The motivic homology of these geometric classifying spaces enter into the definition of motivic cohomology operations. We proceed to make an operad out of the $\{E_{\Sigma_m}^{gm}|n\}$. We first define a map

\[(4.0.1) \quad \gamma_k' : (\mathbb{A}^m)^k \times (\mathbb{A}^m)^{j_1} \times \cdots \times (\mathbb{A}^m)^{j_k} \to (\mathbb{A}^{m+1})_{\Sigma_{j_1}} \]

as follows.

\[(4.0.2) \quad \gamma_k((y_1, \cdots, y_k), (x(1), \cdots, x(1), j_1), \cdots, (x(k), \cdots, x(k), j_k))
= ((x(1), y_1), \cdots, (x(1), y_1), \cdots, (x(k), y_k), \cdots, (x(k), y_k))\]

For each $(\mathbb{A}^p)^q$ let $U((\mathbb{A}^p)(p)) = \{ (u_1, \cdots, u_p) \in (\mathbb{A}^p)^q | u_i \neq u_j, i \neq j \}$. The symmetric group Σ_p acts on (the right on) $U((\mathbb{A}^p)(q)$ by permuting the p-factors. One may then see that γ_k' induces a map

\[(4.0.3) \quad \gamma_k : U((\mathbb{A}^m)^k) \times U((\mathbb{A}^m)(j_1) \times \cdots \times U((\mathbb{A}^m)(j_k)) \to U((\mathbb{A}^{m+p})_{\Sigma_{j_1}})\]

One may verify that the above map γ_k has the following behavior with respect to the action of the symmetric groups:
The motivic DGA 9

(4.0.4) \[\gamma_k((u_1, \ldots, u_k) \sigma, (x(1)_1, \ldots, x(1)_j), \ldots, (x(k)_1, \ldots, x(k)_j)) = \gamma_k((u_1, \ldots, u_k), (x(\sigma^{-1}(1))_1, \ldots, x(\sigma^{-1}(1))_{j-1(i_1)}), \ldots, (x(\sigma^{-1}(1))_1, \ldots, x(\sigma^{-1}(1))_{j-1(i_k)})) \circ \sigma(j_1, \ldots, j_k) \]

where \(\sigma \in \Sigma_k \) and \(\sigma(j_1, \ldots, j_k) \) denotes the permutation of \(j = \Sigma_j j \)-letters that permutes the \(k \)-blocks of letters determined by the given partition of \(j \) as \(\sigma \) permutes \(k \)-letters. Similarly one may verify that

(4.0.5) \[\gamma_k((u_1, \ldots, u_k), (x(1)_1, \ldots, x(1)_j), \tau_1, \ldots, (x(k)_1, \ldots, x(k)_j)) = \gamma_k((u_1, \ldots, u_k), (x(1)_1, \ldots, x(1)_j), \ldots, (x(k)_1, \ldots, x(k)_j)) \circ (\tau_1 \otimes \cdots \otimes \tau_k) \]

where \(\tau_i \in \Sigma_j \) and \(\tau_1 \otimes \cdots \otimes \tau_k \) denotes the image of \(\tau_1 \times \cdots \times \tau_k \) under the obvious inclusion of \(\Sigma_j \times \cdots \times \Sigma_j \to \Sigma_j \), \(j = \Sigma_j j \). Moreover the pairings \(\{ \gamma_k | k \} \) are associative in the sense that the diagram below commutes (where \(j_\alpha = \Sigma_{i=1}^{k} j_i^\alpha \), \(\alpha = 1, \ldots, l \)):

\[\begin{array}{ccc}
U(A^m')(l) \times (\Pi_{\alpha=1}^{k} U(A^{m'})(k_\alpha)) & \xrightarrow{id \times \Pi_{\alpha=1}^{k} \gamma_{k_\alpha}} & U(A^{m''})(l) \times (\Pi_{\alpha=1}^{k} U(A^{m''+m})(j_\alpha)) \\
\gamma \times id & \quad & \gamma \\
U(A^{m''+m})(\Sigma_{\alpha} k_\alpha) \times (\Pi_{\alpha=1}^{k} U(A^{m'})(j_\alpha)) & \xrightarrow{\gamma_{\Sigma_{\alpha} k_\alpha}} & U(A^{m''+m+1})(\Sigma_{\alpha} j_\alpha) \\
\end{array} \]

Now one may take the direct limit \(\lim_{m \to \infty} U(A^m)(q) \) to define \(U(q) \): this is a simplicial sheaf on \((smt.schms)^{Nis} \) and on \((smt.schms)_{et} \) and will be also denoted \(E \Sigma_\eta^{gm} \). The commutative diagrams in (4.0.4) through (4.0.6) and the arguments above show \(\{ E \Sigma_\eta^{gm} | q \} \) defines an operad in the category of (simplicial) sheaves on \((smt.schms)^{Nis} \) and on \((smt.schms)_{et} \).

We define the motive \(M(E \Sigma_\eta^{gm}) = \lim_{m \to \infty} M(U(A^m)(q)) \). The commutative diagrams in (4.0.4) through (4.0.6) and the arguments above show that the resulting object is an operad in \(C((smt.schms)^{Nis}) \) and in \(C((smt.schms)_{et}) \).

Definition 4.3. The above operad is called the **geometric Barratt-Eccles operad** and will be denoted \(M(E \Sigma_\eta^{gm}) = \{ M(E \Sigma_\eta^{gm}) | q \} \).

Proposition 4.4. The simplicial Barratt-Eccles operad is an acyclic operad in the category \(C((smt.schms)^{Nis}) \) and \(C((smt.schms)_{et}) \). The geometric Barratt-Eccles operad is an acyclic operad in the categories \(C((smt.schms)^{Nis})_{A^1} \) and \(C((smt.schms)_{et})_{A^1} \) which are localizations of \(C((smt.schms)^{Nis}) \) and \(C((smt.schms)_{et}) \) by inverting \(A^1 \)-equivalences.

5. Action of the Barratt-Eccles operads on the motivic complex

In this section, we will define explicitly an action by the simplicial Barratt-Eccles operad \(\{ E \Sigma_\eta[n] \} \) on the motivic complexes. To motivate our construction, we will consider first explicitly how one proves (first order) homotopy commutativity of the product on the motivic complexes. Throughout this section, \(k \) will denote a perfect field of characteristic \(p \) and \(l \) will denote a fixed prime different from \(p \).

Recall \(\mathbb{Z}(n) = C^* \text{Cor}_{q,f}(\Delta[n], A^m)[-2n] \). Therefore, the product is defined by the pairing:

(5.0.7) \[\text{Cor}_{q,f}(\Delta[1], A^l) \otimes \text{Cor}_{q,f}(\Delta[1], A^m) \to \text{Cor}_{q,f}(\Delta[1], A^{l+m}) \]

of simplicial abelian sheaves.

Here \(\Delta[1] \) denotes the cosimplicial space \(\{ \Delta[n] \} \) with the obvious structure maps, i.e. we start with correspondences \(\Gamma_1 \) on \(U \times \Delta[n] \times A^l \) and \(\Gamma_2 \) on \(U \times \Delta[n] \times A^m \) and take their external product to define a correspondence \(\Gamma_1 \times \Gamma_2 \) on \(U \times U \times \Delta[n] \times \Delta[n] \times A^{l+m} \). Next we pull-back by the diagonal \(\Delta : U \times \Delta[n] \to U \times \Delta[n] \times U \times \Delta[n] \). Finally we apply the normalization functor to pass from a simplicial abelian group to a chain complex.
Key observation: since the shuffle maps from the product of the resulting chain complexes to the chain complex associated to the product of the simplicial abelian groups strictly commute with the action of the symmetric group Σ_2 permuting the two factors, the need for homotopy commutativity arises only from the switching of the two weight-factors A^l and A^m.

Remark 5.1. One may contrast the above pairing with the pairing on singular cohomology: there one starts with a pairing of cosimplicial abelian groups and on passage to the associated co-chain complexes, the resulting pairing involves the Alexander-Whitney maps which do not commute strictly with the action of the symmetric group. The failure of this strict commutativity leads to the cohomology operations in singular cohomology.

5.1. First case: assume k is algebraically closed so that we may invoke the Nullstellensatz and identify maximal ideals with points. Assume that we are given 2 cycles $Z_1, Z_2 \in \Cor_{q,f}(U \times \Delta[n], A^l)$ and $Z_1, Z_2 \in \Cor_{q,f}(U \times \Delta[n], A^m)$. After pull-back by the diagonal $\Delta: U \times \Delta[n] \to U \times \Delta[n]$, $Z_1 \times Z_2 (Z_2 \times Z_1)$ defines the cycle $\Delta^*(Z_1 \times Z_2) \in \Cor_{q,f}(U \times \Delta[n], A^l \times A^m)$ and the cycle $\Delta^*(Z_2 \times Z_1) \in \Cor_{q,f}(U \times \Delta[n], A^m \times A^l)$. At this point we may assume that the cycles Z_i are in fact closed subschemes of $U \times \Delta[n] \times A^l$ and $U \times \Delta[n] \times A^m$ and further that the scheme U is affine. For each point a of the variety $\Delta^*(Z_1 \times Z_2)$, let J_a denote the maximal ideal in $U \times \Delta[n] \times A^{l+m}$. Let $a = (a(1), a(2))$ with $a(1) \in (U \times \Delta[n])$ and $a(2) \in A^{l+m}$. Since the base field is assumed to be algebraically closed, one may see that the residue-field at the point $a(2)$, $k(a(2))$ is in fact k. Observe that if $J_a(Z_1 \times Z_2)$ is the ideal defining the variety $Z_1 \times Z_2$, then $J_a(Z_1 \times Z_2) = \cap_{a \in A^l \times A^m} J_a$. Since U is affine, we may observe that J_a is defined by polynomials p_a in the $l+m$ variables x_1, \ldots, x_{l+m}.

5.2. There is an obvious action by the group Σ_2 on $A^{l+m} = A^l \times A^m$ switching the two factors A^l and A^m. This action is algebraic. Therefore, if $\sigma \Sigma_2$ is the non-identity element, its action on A^{l+m} is given by polynomials: we will denote the corresponding polynomial also by σ. Moreover let $s_1 = (id, \sigma)$ denote the obvious 1-simplex of Σ_2. Observe that $t.id + (1-t).\sigma$ is a polynomial in the $l+m$ variables corresponding to A^{l+m} and the variable t. Replacing $a(2)$ by $t.id(a(2)) + (1-t).\sigma(a(2))$ in the polynomials p_a vanishing at a defines polynomials p_a that vanish at the 1-simplex over a defined by s_1: that this simplex is imbedded in $U \times \Delta[n] \times \Delta[1] \times A^{l+m}$. This defines the ideal we denote by $J_{s_1(a)}$. Varying the point a, we obtain the ideal

$$J_{s_1([Z_1 \times Z_2])} = \cap_{a \in A^l \times A^m} J_{s_1(a)}$$

This defines a closed sub-scheme $s_1([Z_1 \times Z_2]) \subset U \times \Delta[n] \times \Delta[1] \times A^{l+m}$; moreover one may observe that for each point $x \in U \times \Delta[n]$, this defines a line in the affine space A^{l+m+1} which forms the fiber at x, the line joining a point in the fiber of $\Delta^*(Z_1 \times Z_2)$ with the corresponding point in the fiber of $\Delta^*(Z_2 \times Z_1)$. Therefore, one may see readily that the projection $\{s_1|[Z_1 \times Z_2]\}$ to $U \times \Delta[n] \times \Delta[1]$ is quasi-finite. One may also see that this projection is dominant. Next we proceed to show that the scheme $s_1([Z_1 \times Z_2])$ defines a class in $\Cor_{q,f}(U \times \Delta[n] \times \Delta[1], A^{l+m})$. For this we may assume without loss of generality that $\Delta^*(Z_1 \times Z_2)$ itself is irreducible; if this is not the case, one may replace this scheme by one of its irreducible components. By our assumption this is also affine. Therefore, the field $p \to p + (t.id + (1-t).\sigma)$, $p \in A^{l+m}$ defines a projection $\{s_1|[Z_1 \times Z_2]\}$ to $\Delta^*(Z_1 \times Z_2)$. The obvious closed immersion of the latter in the former is a section to this projection. Therefore the required result follows from the lemma 5.2 below.

At this point we invoke the isomorphism of schemes $\Delta[p+q] \to \Delta[p] \times \Delta[q]$ as provided by each shuffle map. Therefore, the shuffle map induces an isomorphism of complexes $\nabla: T \to \{\Cor_{q,f}(U \times \Delta[p] \times \Delta[q], A^{l+m})[p, q]\} \to \{\Cor_{q,f}(U \times \Delta[p+q], A^{l+m})[p, q]\}$. It follows that the shuffle map provides a map $\nabla: \Cor_{q,f}(U \times \Delta[n] \times \Delta[1], A^{l+m}) \to \Cor_{q,f}(U \times \Delta[n+1], A^{l+m})$. Therefore, $\nabla([s_1|[Z_1 \times Z_2]])$ defines the homotopy between the two products $\Delta^*(Z_1 \times Z_2)$ and $\Delta^*(Z_2 \times Z_1)$. This completes the proof of first order homotopy commutativity of the product on the motivic complexes when the base field is algebraically closed.

General case: k is perfect. We will presently extend this to the case where the base field k is only perfect. Let \bar{k} denote its algebraic closure. If V denotes an affine scheme defined over k, we let $V = \Spec \bar{k} \times \Spec k$. Since k is perfect, it follows that a polynomial $p(x) \in k[x_0, \ldots, x_n]$ belongs to $k[x_0, \ldots, x_n]$ if and only if $q(p(x)) = p(x)$ for all $q \in \Gal(\bar{k}/k) = \Gal(k/k)$ over k. Therefore, we obtain the following identification of maximal ideals in $k[x_0, \ldots, x_n]:$ each maximal ideal m corresponds to an orbit of the Galois group $\Gal(k/k)$ on k^n where the correspondence is as follows. Each maximal ideal m of $k[x_0, \ldots, x_n]$ is contained in a maximal ideal of $k[x_0, \ldots, x_n]:$
the latter corresponds to a point \(p = (p_1, \cdots, p_n) \in \mathbb{A}^n_k \). The orbit of \(\text{Gal}(k/k) \) of \(p \) will be a finite number of points \(\{gp | g \in \text{Gal}(k/k)\} \) in \(\mathbb{A}^n_k \). Let \(m_{gp} \) denote the maximal ideal of \(k[x_0, \cdots, x_n] \) corresponding to the point \(gp \). Now the maximal ideal \(m = (\cap_{g \in \text{Gal}(k/k)} m_{gp}) \text{Gal}(k/k) \).

Now the description of the ideal \(J_a \) given in 5.1 extends to this situation by requiring the polynomials defining the ideal \(J_a \) be invariant under the action of the Galois group \(\text{Gal}(k/k) \). (Observe also that the residue field at the point \(a(2) \) will be some finite extension of \(k \), so that the co-ordinates \(a(2) \), will belong to this bigger field. This will make the polynomials in \(J_a \) be defined in the variables \(x_i - ga(2)_i, i = 1, \cdots, l + m \) and \(g \text{Gal}(k/k) \).

Next observe that schemes \(U, \Delta[n], \mathbb{A}^1 \) and \(\mathbb{A}^m \) are all defined over \(k \). Therefore, the action of \(\text{Gal}(k/k) \) on \(U \times \Delta[n] \times \mathbb{A}^1 \times \mathbb{A}^m \) commutes with the action of the symmetric group \(\Sigma_k \). Therefore, we may replace the term \(x_i - ga(2)_i \), in the above polynomials with \(x_i - t.id(ga(2)_i) - (1 - t)\sigma a(2)_i \), \(x_i - g(t.id(ga(2)_i)) + (1 - t)\sigma a(2)_i) \). As \(t \) varies in \(k \), (observe we are restricting \(t \) to \(k \) so that it will be invariant under the action of \(\text{Gal}(k/k) \)). This will define the one simplex over \(a \) defined by \(s_1 \) and the discussion in 5.2. Therefore, we obtain the ideal

\[
J_{s_1}(Z_1 \times Z_2) = \bigcap_{a \in \Delta^* (Z_1 \times Z_2)} J_{s_1(a)}.
\]

The semi-continuity theorem of Chevalley (see [EGA, 1966, t.28, Theorem 13.1.3]) shows that it suffices to check \(\text{Cor}_{E \Delta^*}(U \times \Delta[n]) \times \Delta[1] \times \mathbb{A}^{1+m} \) carries over. This concludes the proof of first order homotopy commutativity of the product on the motivic complexes for schemes defined over perfect fields.

We will presently extend this to provide higher order homotopies for the product structure on the motivic complexes. We will again assume that \(U \) is affine and that the base field \(k \) is perfect. Observe that for \(q \geq 1 \), a \(q \)-simplex, \(s_q \), of \(E \Sigma_k \) is given by a sequence \((\sigma_0, \cdots, \sigma_q) \) with each \(\sigma \in \Sigma_k \).

5.2.2. Assume that we are given a closed irreducible sub-variety \(V \) of \(U \times \Delta[n] \times \Delta[p_1] \times \cdots \times \Delta[p_k] \times \mathbb{A}^1 \times \cdots \times \mathbb{A}^k \). For example, we are given cycles \(V \in \text{Cor}_{E \Delta^*}(U \times \Delta[n]) \times \Delta[p_1] \times \mathbb{A}^1 \times \cdots \times \mathbb{A}^k \) and \(s_q \in \Sigma_{d+1} \). Then these are in fact closed subschemes of \(U \times \Delta[n] \times \Delta[p_1] \times \mathbb{A}^1 \). Let \(V = \Delta_1^* (\Pi_{i=1}^n V_i) \) and for each \(\sigma \in \Sigma_k \), \(V(\sigma) = \Delta_1^* (\Pi_{i=1}^n V_{i(\sigma)}) \). Assume that we are given \(\sigma \) a cycle \(J_{V(\sigma)} \) in the ideal defining the variety \(V(\sigma) \), then \(J_{V(\sigma)} = \bigcap_{a \in V(\sigma)} J_a \). Since \(U \) is affine, we may observe that \(J_a \) is defined by polynomials \(p_a \) the in \(\sigma_{i_1} \) variables \((x_1 - ga(2)_1, \cdots, x_i - ga(2)_i, x_{i+1} - ga(2)_{i+1}, \cdots, x_{n+l} - ga(2)_{n+l}, \cdots, x_{n+l} - ga(2)_{n+l}) \) with coefficients in the ring \(R = \Gamma(U \times \Delta[n], \mathcal{O}_U \times \Delta[n]) \times \Delta[1] \). (Here \(\text{Gal}(k/k) \).)

We let \(J_{s_q(a)}(V) = \) the ideal of functions obtained by substituting \((t_0 \sigma_0 ga(2)_0) + t_1 \sigma_1 ga(2)_1 + \cdots t_{q-1} \sigma_{q-1} ga(2)_{q-1} + (1 - t_1 - \cdots - t_{q-1}) \sigma_q ga(2)_q) \) in the place of \(p \). Let \(a \in \Sigma_k \).

\[
J_{s_q(a)}(V) = \bigcap_{a \in V(\sigma)} J_{s_q(a)}(V).
\]

This defines a closed sub-scheme \(V(s_q) \subseteq U \times \Delta[n] \times \Delta[p_1] \times \cdots \times \Delta[p_k] \times \Delta[1] \times \mathbb{A}^1 \). We will denote this by \(s_q \) similarly. Observe that this is a closed sub-scheme of \(U \times \Delta[n] \times \Delta[p_1] \times \cdots \times \Delta[p_k] \times \Delta[1] \times \mathbb{A}^1 \times \cdots \times \mathbb{A}^k \).

More generally if \(s = (\sigma_0, \cdots, \sigma_q) \), \(s_p = (\tau_0, \cdots, \tau_p) \) are \(p \) and \(q \) simplices of \(E \Sigma_k \), we may define

\[
|s_q \times s_p|(V)
\]

similarly as a closed sub-scheme of \(U \times \Delta[n] \times \Delta[p_1] \times \cdots \times \Delta[p_k] \times \Delta[1] \times \mathbb{A}^1 \times \cdots \times \mathbb{A}^k \) by replacing \(J_a \) by the ideal of functions obtained by substituting \((t_0 \sigma_0 + t_1 \sigma_1 + \cdots + t_{q-1} \sigma_{q-1} + (1 - t_0 - \cdots - t_{q-1}) \sigma_q) \circ (s_0 \tau_0 + s_1 \tau_1 + \cdots + s_{p-1} \tau_{p-1} + (1 - s_0 - \cdots - s_{p-1}) \tau_p)(ga(2)) = \sum_{i=0, j=0}^{q-1} s_{i+1} \sigma_i \tau_j (ga(2)) + (1 - t_0 - \cdots - t_{q-1}) \Sigma_{j=0}^{p-1} s_j \sigma_q \circ \)
\(\tau_j(ga(2)) + (1 - t_0 - \cdots - t_{q-1}).(1 - s_0 - \cdots - s_{p-1})\sigma_q \circ \tau_p(ga(2))\) in the place of \(ga(2), p \in J_a, t_s, s_j \in k\). One may now also consider \(|s_q|/|s_p|(+V)|). From the above definitions, it follows readily that
\[
|s_q \times s_p(V) = |s_q|/|s_p|(+V)|. \tag{5.2.6}
\]
Moreover for each increasing map \((\phi, \psi): [p+q] \to [p] \times [q]\), one may see readily from the above definition that
\[
|((\phi, \psi)^*(s_q \times s_p))(V) = (\phi, \psi)^*(|s_q \times s_p|)(V) \tag{5.2.7}
\]
Here \((\phi, \psi)^*(s_q \times s_p)\epsilon E\Sigma_k\) denotes the \(q+p\)-simplex defined as in \((9.3.4)\). One may extend the above identification to products of several simplices: i.e. if \(s_{p_1}, \ldots, s_{p_t}\) are simplices of \(E\Sigma_k\) of dimensions \(p_1, \ldots, p_t\), and \(V\) as above, then
\[
|s_{p_1}, \ldots, s_{p_t}|(V) = |s_q|/|s_{p_1} \times \cdots \times s_{p_t}|(V) \tag{5.2.8}
\]
Next assume that \(V = V(\sigma_0)\) as above. Then one shows as before that the projection \(V(s_q) \to U \times \Delta[n] \times \Delta[q]\) is quasi-finite and dominant. Now an argument as in the case of the 1-simplex above (using the lemma 5.2 below) will show the scheme \(V(s_q)\) defines a class in \(Cor_{q,f}(U \times \Delta[n] \times \Delta[q], A^{\Sigma_{1,i}})\). This defines a pairing
\[
\mu': Z(s_q) \otimes Cor_{q,f}(U \times \Delta[n] \times \Delta[p_1], A^{\Sigma_{1,i}}) \otimes \cdots \otimes Cor_{q,f}(U \times \Delta[n] \times \Delta[p_k], A^{\Sigma_{1,i}}) \to Cor_{q,f}(U \times \Delta[n] \times \Delta[p_1] \times \cdots \times \Delta[p_k] \times \Delta[q], A^{\Sigma_{1,i}}) \tag{5.2.9}
\]
where \(Z(s_q)\) denotes the sub-complex of \(ZNE\Sigma_k\) generated by the \(q\)-simplex \(s_q\). Clearly the action of the symmetric group \(\Sigma_k\) on the simplex \(s_q, (\sigma', \sigma_1, \cdots, \sigma_q) \mapsto (\sigma' \circ \sigma_1, \cdots, \sigma' \circ \sigma_q)\) corresponds to the action of \(\Sigma_k\) on \(Cor_{q,f}(U \times \Delta[n], A^{\Sigma_{1,i}})\) permuting the weight-factors \(A^{\Sigma_{1,i}}, \ldots, A^{\Sigma_{1,i}}\).

5.2.10. One may observe readily that the above pairing is compatible with pull-backs in the argument \(U\). This, in turn, implies that the above pairing commutes with shuffle maps in the following sense so that the composition
\[
Z(s_q) \otimes Cor_{q,f}(U \times \Delta[n] \times \Delta[p_1], A^{\Sigma_{1,i}}) \otimes \cdots \otimes Cor_{q,f}(U \times \Delta[n] \times \Delta[p_k], A^{\Sigma_{1,i}}) \to Cor_{q,f}(U \times \Delta[n] \times \Delta[p_1] \times \cdots \times \Delta[p_k] \times \Delta[q], A^{\Sigma_{1,i}}) \tag{5.2.9}
\]
factors as
\[
Z(s_q) \otimes Cor_{q,f}(U \times \Delta[n] \times \Delta[p_1], A^{\Sigma_{1,i}}) \otimes \cdots \otimes Cor_{q,f}(U \times \Delta[n] \times \Delta[p_k], A^{\Sigma_{1,i}}) \to Cor_{q,f}(U \times \Delta[n + \Sigma_i p_i] \times \Delta[q], A^{\Sigma_{1,i}}) \tag{5.2.9}
\]
Composing the pairing \(\mu'\) in \((5.2.9)\) with shuffle maps, one maps this to a cycle in \(Cor_{q,f}(U \times \Delta[n + \Sigma_i p_i + q], A^{\Sigma_{1,i}})\).

We may also start with cycles \(V_i \sigma Cor_{q,f}(U \times \Delta[n], A^{\Sigma_{1,i}}), i = 1, \cdots, k\); using shuffle maps one first produces corresponding cycles in \(Cor_{q,f}(U \times \Delta[n], A^{\Sigma_{1,i}})\) for \(n = \Sigma_i n_i\) and then one applies the above construction. Moreover, the above description shows the action is compatible with restriction to the faces of the simplex \(s_q\). Therefore, the above construction defines a pairing of complexes:
\[
NZ(s_q) \otimes \mathbb{Z}(l_1) \oplus \cdots \otimes \mathbb{Z}(l_k) \to \mathbb{Z}(\Sigma_{1,i}) \tag{5.2.11}
\]
where \(NZ(m)\) denotes the motivic complex of weight \(m\) restricted to smooth affine schemes. \(NZ(s_q)\) denotes the 1-sub-complex of \(NZ(E\Sigma_k)\) generated by the \(q\)-simplex \(s_q\). Let \(\Delta[n]\) denote the usual simplicial set given by \(\Delta[n]_k = Hom_\Delta([k], [n])\). By composing with the obvious map \(\Delta[s_q] \to E\Sigma_k\) sending the generator \(\epsilon_{s_q}\) to the simplex \(s_q\), we also obtain a pairing
\[
NZ(\Delta[q]) \otimes \mathbb{Z}(l_1) \oplus \cdots \otimes \mathbb{Z}(l_k) \to \mathbb{Z}(\Sigma_{1,i}) \tag{5.2.12}
\]
where \(NZ(\Delta[q])\) is the obvious chain complex obtained from the simplicial abelian group \(Z(\Delta[q])\).

By ascending induction on \(p \geq 1\), we may now assume that we have already established a pairing \(NZ(s_{q-1}(E\Sigma_k)) \otimes \mathbb{Z} \oplus \cdots \otimes \mathbb{Z} \to \mathbb{Z}\), where \(NZ(s_{q-1}(E\Sigma_k))\) denotes the chain complex obtained by normalizing the simplicial abelian group obtained by applying the free abelian group functor \(Z\) dimension-wise to \(s_{q-1}E\Sigma_k\). Observe the \(q\)-skeleton of \(E(\Sigma_k)\) is the filtered colimit of all its \(m\)-cells, \(m \leq q\). Now observe the co-cartesian square:
Clearly one may start the induction when \(q = 1 \); then one uses the above co-cartesian square above and the pairing (5.2.12) to define the pairing

\[
NZ(E(s_kΣ_k)) \otimes \mathbb{Z}(l_1) \otimes \cdots \otimes \mathbb{Z}(l_k) \to \mathbb{Z}(Σ_i l_i)
\]

where there are \(k \)-factors of \(\mathbb{Z} \) on the left. Finally take the colimit over \(q \to \infty \) to get the pairing

\[
\mu_k : NZ(E(Σ_k)) \otimes \mathbb{Z}(l_1) \otimes \cdots \otimes \mathbb{Z}(l_k) \to \mathbb{Z}(Σ_i l_i)
\]

The construction of the above pairing shows that the action of the symmetric group \(Σ_k \) by an element \(σ Σ_k \) on \(NZ(EΣ_k) \) cancels out with the action on the element \(σ^{-1} \) on the \(k \)-factors \(\mathbb{Z}(l_1), \ldots, \mathbb{Z}(l_k) \). Abbreviating \(\bigoplus\mathbb{Z}(l) \) to \(\mathbb{Z} \), the above pairing may be shortened to \(\mu_k : NZ(E(Σ_k)) \otimes \mathbb{Z}^\otimes k \to \mathbb{Z} \).

Observe that in the above pairings, \(\mathbb{Z} \) denotes the motivic complex

"restricted to smooth affine schemes."

In order to extend the above pairing to all smooth schemes of finite type over \(k \), one observes that the pairing is contravariantly functorial in the argument \(U \). Therefore, one may use any Zariski open affine cover of a given scheme \(X \) and observe that the motivic complexes are in fact sheaves on the Zariski site, are free modules over the integers \(\mathbb{Z} \) and that \(NZ EΣ_k \) are free modules over the integers to extend the above pairing to all schemes of finite type over \(k \).

Next one starts with cycles \(Z(j_1), \ldots, Z(j_k) \) in \(Σ_n(l(j_1)), \ldots, Σ_n(l(j_k)) \), \(i = 1, \ldots, k \). Let \(j = Σ_{i=1}^k j_i \) and \(s_{j_1}, \ldots, s_{j_k} \) denote simplices of dimension \(p_1, \ldots, p_k \) in \(EΣ_{j_1}, \ldots, EΣ_{j_k} \), respectively. Now one may observe readily that

\[
|s_{j_1} \times \cdots \times s_{j_k}|(Π_{i=1}^{p_j} Z(j_1) \times \cdots \times Π_{i=1}^{p_k} Z(j_k)) = |s_{j_1}|(Π_{i=1}^{p_j} Z(j_1)) \cdots \cdots |s_{j_k}|(Π_{i=1}^{p_k} Z(j_k))
\]

The left-hand-side is defined by using the obvious diagonal imbedding of \(Σ_{j_1} \) in \(Σ_j \) so that all the simplices \(s_j \), are viewed as simplices in \(EΣ_j \). The right-hand-side defines the image of the product \(|s_{j_1}|(Π_{i=1}^{p_j} Z(j_1)) \times \cdots \times |s_{j_k}|(Π_{i=1}^{p_k} Z(j_k)) \) in \(Σ_n(l(j_1) + \cdots + l(j_k)) \).

Lemma 5.2. Let \(n \) denote a fixed positive integer and \(p : E \to B \) denote a surjective map of schemes with fibers all \(\mathbb{A}^n \). Assume \(s : B \to E \) is a section to \(p \) and defines \(B \) as a closed sub-scheme of \(E \). If \(B \) is an irreducible scheme of finite type over \(k \), then so is \(E \). \(\square \)

Proof. One may use generic flatness of the map \(p \) (see [EGA, 1964, t.24, Theorem 6.9.1]) to obtain a quick proof, since the fibers are all known to be \(\mathbb{A}^n \) and hence also irreducible.

Theorem 5.3. (Associativity of \(μ \)) Let \(γ_k : NZ(EΣ_k) \otimes NZ(EΣ_{m_1}) \otimes \cdots \otimes NZ(EΣ_{m_n}) \to NZ(EΣ_{m_{1n}}) \) denote the pairing defined by the operad-structure on \(\{NZ(EΣ_k)|k\} \). Then the following diagram commutes strictly:

\[
NZ(EΣ_k) \otimes \cdots \otimes NZ(EΣ_{j_1}) \otimes Z^\otimes \gamma \otimes id \\
\downarrow \text{regroup} \\
NZ(EΣ_k) \otimes \cdots \otimes NZ(EΣ_{j_1}) \otimes Z^\otimes \\
\downarrow μ \\
NZ(EΣ_k) \otimes Z^\otimes
\]

\[
NZ(EΣ_k) \otimes \cdots \otimes NZ(EΣ_{j_1}) \otimes Z^\otimes \otimes \cdots \otimes NZ(EΣ_{j_k}) \otimes \cdots \otimes Z^\otimes \otimes id \otimes μ^k \\
\downarrow μ^k \\
NZ(EΣ_k) \otimes Z^\otimes
\]

Proof. The key observation here is that the pairing \(μ^k \) as in (5.2.9) defined above commutes with shuffle maps. The commutativity of the above diagram follows essentially from this observation. However we provide some details below, mainly for the sake of completeness.

Let \(s_{j_1}, \ldots, s_{j_k} \) denote simplices in \(NZ(EΣ_{j_1}), \ldots, NZ(EΣ_{j_k}) \) of dimensions \(p_1, \ldots, p_k \) respectively. Let \(t_k \) denote a \(q \)-simplex of \(NZ EΣ_k \).
We will first consider the $q + p_1 + \cdots + p_k$-simplex of $NZE(\Sigma_{j_1} \cdots \Sigma_{j_k})$ defined by $\gamma(t_k, s_{j_1}, \cdots, s_{j_k})$. The associativity of the shuffle maps entering into its definition shows that this may be obtained as follows. One first applies a (p_1, \cdots, p_k)-shuffle $(\sigma_{j_1}, \cdots, \sigma_{j_k})$ to the simplex $(s_{j_1}, \cdots, s_{j_k})$ to obtain the $p_1 + \cdots + p_k$-simplex $(\sigma_{j_1}(s_{j_1}), \cdots, \sigma_{j_k}(s_{j_k}))$ of $EZE(\Sigma_{j_1} \cdots \Sigma_{j_k})$. Next one applies a $(q + \Sigma_{p_1})$-shuffle $(\sigma_{j_1}, \sigma_{j_2})$ to $(t_k, (\sigma_{j_1}(s_{j_1}), \cdots, \sigma_{j_k}(s_{j_k})))$ to obtain a $q + \Sigma_{p_1}$-simplex of $EZ(\Sigma_k) \otimes EZE(\Sigma_{j_1})$. Here $\sigma_k : [q + \Sigma_{p_1}] \to q$, $\sigma_j : [q + \Sigma_{p_1}] \to [\Sigma_{p_1}]$ and $\sigma_{j_i} : [\Sigma_{p_1}] \to [p_1]$ are degeneracies.

Now the simplex $\gamma(t_k, s_{j_1}, \cdots, s_{j_k})$ is obtained as follows:

$$\sigma_k(t_k) = q + \Sigma_{p_1} \text{ simplex of } E\Sigma_k \text{ while }$$

$$\sigma_j(\sigma_{j_1}(s_{j_1}), \cdots, \sigma_{j_k}(s_{j_k})) = (\sigma_{j_1}(\sigma_{j_1}(s_{j_1})), \cdots, \sigma_{j_k}(\sigma_{j_k}(s_{j_k})))$$

is a $q + \Sigma_{p_1}$-simplex of $Z\Sigma_{j_1} \cong E\Sigma_k \otimes E\Sigma_{j_1}$

i.e. $\sigma_k(t_k)$ is a sequence of length $q + \Sigma_{p_1}$ of permutations in Σ_k and $\sigma_j(\sigma_{j_1}(s_{j_1}))$ is a permutation in Σ_{j_i} of the same length. Therefore, one lets the i-th element of $\sigma(t_k)$ act by permuting the i-th elements of $\sigma_j(\sigma_{j_1}(s_{j_1})), \cdots, \sigma_j(\sigma_{j_k}(s_{j_k})))$. This defines $\gamma(t_k, s_{j_1}, \cdots, s_{j_k})$.

For comparison with the other product, it is necessary to obtain a slightly different definition of the same product $\gamma(t_k, s_{j_1}, \cdots, s_{j_k})$. Each (q, Σ_{p_1})-shuffle of $q + \Sigma_{p_1}$ corresponds to a pair of non-decreasing maps $\bar{\sigma}_k : [q + \Sigma_{p_1}] \to [q]$ and $\bar{\sigma}_j : [q + \Sigma_{p_1}] \to [\Sigma_{p_1}]$ so that the pair $(\sigma_k, \sigma_j) : [q + \Sigma_{p_1}] \to [q \times \Sigma_{p_1}]$ is strictly increasing. Therefore, one may define a $q + p$-simplex $tk := (\bar{\sigma}_j, \bar{\sigma}_j)(\sigma_{j_1}(s_{j_1}) \otimes \cdots \otimes \sigma_{j_k}(s_{j_k}))$ as follows. First one considers the $q + p$-simplex of $E\Sigma_k \otimes E\Sigma_{j_1}$ defined by the product (9.3.4) in the appendix. Observe that this consists of a sequence, $(g_{\sigma_1(0)} \otimes g_{\sigma_1(0)}, \cdots, g_{\sigma_1(p_1+q)} \otimes g_{\sigma_1(p_1+q)})$ with $g_{\sigma_1(l)} \in E\Sigma_k$ (viewed as embedded in Σ_k by permuting the blocks j_1, \cdots, j_k) and $g_{\sigma_1(l)} \in E\Sigma_{j_1}$. In our case, for each $l = 0, \cdots, p + q$, $g_{\sigma_1(l)} = (\tau_{j_1}(l), \cdots, \tau_{j_k}(l))$ with each $\tau_{j_1}(l) \in E\Sigma_{j_1}$. Thus each $\sigma_k(t_k)$ acts by permuting the k-factors. One may readily see that this product is the same as the one in the last paragraph.

Next one starts with cycles $Z(j_1), \cdots, Z(j_k)$ in $Z_n(l(j_1), \cdots, Z_n(l(j_k)), i = 1, \cdots, k$. The cycle

$$\mu(\gamma(t_k, s_{j_1}, \cdots, s_{j_k})) = (Z(j_1), \cdots, Z(j_k))$$

is obtained by applying the pairing of (5.2.13). Since the shuffle maps commute with the pairing μ' (see 5.2.10 and (5.2.7)), it follows that the last pairing may be obtained as

$$\text{shuffle} \circ \mu'(t_k \times s_{j_1} \times \cdots \times s_{j_k}, Z(j_1), \cdots, Z(j_k))$$

Here shuffle denotes the composition of all the shuffle maps for passage from $\Delta[n] \times \Delta[p_1] \times \cdots \Delta[p_k] \times \Delta[q] \to \Delta[n + p_1 + q]$.

Next consider the pairing defined by the composition of maps in the left-most column, the bottom row and the bottom part of the right column applied to the same cycles as above. One may see that the resulting cycle may be obtained from the cycles $Z(j_i) = \mu'(s_{j_i}, Z(j_1), \cdots, Z(j_{i-1}), ECor_{s_{j_i}}(U \times \Delta[n] \times s_{j_i}, \mathbb{H}^{l_n}))$ as follows. (Here $l_{j_i} = l(j_i) + \cdots + l(j_k)$ where $Z(j_m) \in ECor_{s_{j_m}}(U \times \Delta[n], Z^{(l_{j_m})})$.)

One composes this with a suitable shuffle map to obtain the class

$$\mu(s_{j_i}, Z(j_1), \cdots, Z(j_k)) \in ECor_{s_{j_i}}(U \times \Delta[n + p], \mathbb{H}^{l_{j_i}}).$$

Next one applies shuffle maps corresponding to $(\sigma_{j_i}, \cdots, \sigma_{j_k})$ to obtain classes

$$(\sigma_{j_i})^*(\gamma(j_i)) \in ECor_{s_{j_i}}(U \times \Delta[n + p], \mathbb{H}^{l_{j_i}}).$$

(Recall $p = \Sigma_{p_1}$.)

Next one applies the pairing in (5.2.13) to these $k + 1$ simplices as σ varies among the vertices of the simplex t_k to obtain the class

$$\mu(t_k, \mu(s_{j_i}, Z(j_1), \cdots, Z(j_{i-1}), \mu(s_{j_i}, Z(j_1), \cdots, Z(j_k)))$$

$$= \text{shuffle} \circ \mu'(t_k, \text{shuffle} \circ \text{shuffle} \circ \mu'(s_{j_i}, Z(j_1), \cdots, Z(j_k)))$$

$$\cdots \mu'(s_{j_i}, Z(j_k), \cdots, Z(j_k)),$$

$$= \text{shuffle} \circ \text{shuffle} \circ \mu'(s_{j_i}, Z(j_k), \cdots, (j_k))$$
Here the shuffle map marked \(\text{shuffle}_1 \) (\(\text{shuffle}_2 \), \(\text{shuffle}_3 \)) corresponds to the passage from \(\Delta[n] \times \Delta[p_i] \) to \(\Delta[n + p_i] \) (the passage from \(\Pi, \Delta[n + p_i] \) to \(\Delta[n + p] \), the passage from \(\Delta[q] \times \Delta[n + p] \) to \(\Delta[n + p + q] \), respectively.)

In view of the observation in 5.2.10, one may postpone applying the shuffle maps so that one may identify the last product with

\[
\text{shuffle}_1(t_k, \text{shuffle}_2(\{s_{j_1}, Z(j_1), \ldots, Z(j_{j_1})\}), \ldots, \text{shuffle}_3(\{s_{j_k}, Z(j_k), \ldots, Z(j_{j_k})\}))
\]

Here \(\text{shuffle}_1 \) denotes the passage from \(\Pi, \Delta[p_i] \) to \(\Delta[p] \), the last shuffle maps are the obvious remaining shuffle maps and

\[
\mu'(t_k, \text{shuffle}_2(\{s_{j_1}, Z(j_1), \ldots, Z(j_{j_1})\}), \ldots, \text{shuffle}_3(\{s_{j_k}, Z(j_k), \ldots, Z(j_{j_k})\}))
\]

(Of course, the shuffle \(\text{shuffle}_1 \) is quasi-isomorphic to \(\text{shuffle}_2 \) of the motivic complex viewed as an algebra over the operad \(\{NZE \Sigma k\} \).

A key observation now is that the action of \(\sigma \in \Sigma_k \) on the \(k \)-cycles \(Z(j_i), i = 1, \ldots, k \), corresponds to an action on the \(p \)-simplex \(\sigma \circ \tau \) of \(\bar{\Sigma} \)-permuting the \(k \)-factors.

5.2.18. In view of the above observations the shuffle maps all commute with \(\mu' \). Therefore, in view of the identification in (5.2.8) and the observation in (5.2.15), the cycle in (5.2.17) may be identified with

\[
\mu'(t_k \times (s_{j_1} \times \ldots \times s_{j_k}), \Pi_{i=1}^{j_1} Z(j_1) \times \ldots \times \Pi_{i=1}^{j_k} Z(j_k))
\]

followed by appropriate shuffle maps. This clearly identifies with the term in (5.2.16) thereby proving the theorem.

Clearly this also proves the following theorem

Theorem 5.4. \(\mathbb{Z} \) is an \(E^\infty \)-algebra over the \(E^\infty \)-operad \(\{NZE \Sigma k\} \) in the category \(C^{-}(\mathcal{S}) \).

Definition 5.5. (i) \(\mathbb{Z}^{\text{mot}} \) will denote the motivic complex viewed as an algebra over the operad \(\{NZE \Sigma k\} \).

(ii) Recall from [K-M, Theorem 1.4, Chapter II], that there exists a functor \(W \) that converts any \(E^\infty \)-algebra tensored with \(\mathbb{Q} \) to a quasi-isomorphic strictly commutative differential graded algebra. We will let \(\mathbb{Q}^{\text{mot}} \) denote \(W(\mathbb{Z}^{\text{mot}} \otimes \mathbb{Q}) \). We also let \(\mathbb{Q}^{\text{mot}}(n) \) the corresponding piece of weight \(n \). If \(X \) is a smooth quasi-projective scheme over \(k \), \(\mathbb{Q}^{\text{mot}}(X) \) will be called the **motivic DGA** associated to \(X \).

Next we obtain the following corollary.

Corollary 5.6. \(\mathbb{Q}^{\text{mot}}(X) \) is quasi-isomorphic to \(\mathbb{Z}^{\text{mot}} \otimes \mathbb{Q} \) as a presheaf of \(E^\infty \)-differential graded algebras. Moreover, \(\mathbb{Q}^{\text{mot}}(n) \) is quasi-isomorphic to \(\mathbb{Z}^{\text{mot}}(n) \otimes \mathbb{Q} \) and if \(X \) is a smooth quasi-projective variety, \(\mathbb{Q}^{\text{mot}} \) is quasi-isomorphic to \(\mathbb{Z}^{\text{mot}} \otimes \mathbb{Q} \).

Proof. It follows from the proof [K-M, Corollary 1.5, Part II] that there is a natural map \(\mathbb{Z}^{\text{mot}}(n) \otimes \mathbb{Q} \to \mathbb{Q}^{\text{mot}}(n) \) which is a quasi-isomorphism compatible with the pairings. The quasi-isomorphism in the last statement now follows from the observation that the integral motivic complex, being quasi-isomorphic to the higher cycle complex, satisfies the localization property and hence has cohomological descent on the Zariski site of smooth quasi-projective schemes.

Corollary 5.7. \(\mathbb{Z}^{\text{mot}}(X) \) and \(\mathbb{Z}^{\text{mot}}(X) = \Gamma(X, \mathbb{Z}^{\text{mot}}(\mathcal{L})) \) are algebras over \(NZE \Sigma \otimes \text{End}_{\mathcal{C}^{-}(\Delta)} \).

Proof. This follows immediately from Proposition 9.14.

Remark 5.8. It will be convenient and often necessary to obtain actions by other operads, (for example, the geometric Barratt-Eccles operad) on the motivic complex. These actions will be induced by the above action of the (simplicial) Barratt-Eccles operad and will be produced by defining a map from the new operad to the above Barratt-Eccles operad. It is convenient to invoke model structures on the category of operads (provided for example by Hinich and improved upon by Spitzweck: see [H] and [Sp]) to define such maps. We devote the next section to consider this technique.
6. Model structure on the category of operads and actions by other operads on the motivic complex

Now we proceed to define a model structure on the category of operads in \(C(S, R) \). Recall an operad \(O \) in \(C(S, R) \) is given by a sequence \(\{ O(n) \}_{n \geq 0} \) of objects in \(C(S, R) \) satisfying the hypotheses in (9.4.1) through (9.4.3).

Next let \(Op(S, R) \) denote the category of operads in the category \(C(S, R) \). We will presently recall results from [H] and [Sp] that show the existence of a cofibrantly generated model category structure on \(Op(S, R) \). First one shows that if \(C(S, R) \Sigma \) denotes the category of symmetric sequences in \(C(S, R) \), i.e. sequences \(\{ K(i) \}_{i \in \mathbb{Z}} \) together with an action of \(\Sigma_n \) on \(K(n) \), then there is a cofibrantly generated model structure on \(C(S, R) \Sigma \), where the generating cofibrations (generating acyclic fibrations) are \(I(\Sigma) \) (\(J(\Sigma) \), respectively): here \(I(J) \) denotes the generating set of cofibrations (acyclic cofibrations, respectively) in the cofibrantly generated model structure on \(C(S, R) \) considered above. \(I(\Sigma) \) denotes morphisms \(f : K \to L \) of symmetric sequences given by sequences of maps \(f(n) : K(n) \to L(n) \) that belong to \(I \). \(J(\Sigma) \) is defined similarly. Next one needs a free functor, \(F : C(S, R) \Sigma \to Op(S, R) \) left-adjoint to the obvious forgetful functor \(U \) sending an operad \(\{ O(n) \} \) to the same sequence of complexes with the given action by the symmetric groups. In case \(R \) is a field, for example, \(\mathbb{Z}/p \) for \(p \) a prime or \(\mathbb{Q} \), every module over \(R \) is flat and therefore, one may readily see from the definition of the free functor \(F \) that it preserves weak-equivalences.

Therefore, the following general result implies the existence of the required cofibrantly generated model structure on \(Op(S, R) \):

Proposition 6.1. (See [Hov-2] and [Sp]) Let \(T \) be a monad in a cofibrantly generated model category \(C \) with generating cofibrations \(I \) and generating acyclic cofibrations \(J \). Assume that \(C[T] = \) the subcategory of \(C \) over \(T \) has co-equalizers and suppose that every map in \(TJ \)-cell, where the cell complex is built in \(C[T] \), is a weak equivalence in \(C \). Then there is a cofibrantly generated model structure on \(C[T] \), where a map is a weak equivalence or fibration if and only if it is a weak equivalence or fibration in \(C \).

In the general case, for example, when \(R = \mathbb{Z} \), the hypothesis that every map in \(FJ \)-cell be a weak-equivalence is often not satisfied. In this case, one has a slightly weaker structure, namely that of a cofibrantly generated semi-model category structure on \(Op(S, R) \) provided by the following result of Spitzweck.

Definition 6.2. Let \(C \) denote a cofibrantly generated model category with \(I(J) \) the set of generating cofibrations (acyclic cofibrations, res). (i) A \(J \)-semi model category over \(C \) is a left adjunction \(F : C \to D \) and subcategories of weak equivalences, fibrations and cofibrations in \(D \) such that the following axioms are fulfilled: (a) The adjoint of \(F \) preserves fibrations and trivial fibrations. (b) \(D \) is bi-complete and the two out of three and retract axioms hold in \(D \). (c) Cofibrations in \(D \) have the left lifting property with respect to trivial fibrations, and trivial cofibrations whose domain are cofibrant in \(C \) have the left lifting property with respect to fibrations. (d) Every map in \(D \) can be functorially factored into a cofibration followed by a trivial fibration, and every map in \(D \) whose domain is cofibrant in \(C \) can be functorially factored into a trivial cofibration followed by a fibration. (e) Cofibrations in \(D \) whose domain is cofibrant in \(C \) become cofibrations in \(C \), and the initial object in \(D \) is mapped to a cofibrant object in \(C \). (f). Fibrations and trivial fibrations are closed under pullback.

We say that \(D \) is cofibrantly generated if there are sets of morphisms \(I \) and \(J \) in \(D \) such that \(I \)-inj is the class of trivial fibrations and \(J \)-inj the class of fibrations in \(D \) and if the domains of \(I \) are small relative to \(I \)-cell and the domains of \(J \) are small relative to maps from \(J \)-cell whose domain becomes cofibrant in \(C \).

Proposition 6.3. (Spitzweck) Let \(T \) be a monad in a cofibrantly generated model category \(C \) with generating cofibrations \(I \) and generating acyclic cofibrations \(J \). Assume that \(C[T] \) has co-equalizers. Suppose that every map in \(TJ \)-cell whose domain is cofibrant in \(C \) is a weak equivalence in \(C \) and every map in \(TJ \)-cell whose domain is cofibrant in \(C \) is a cofibration in \(C \) (here in both cases the cell complexes are built in \(C[T] \)). Assume furthermore that the initial object in \(C[T] \) is cofibrant in \(C \). Then there is a cofibrantly generated \(J \)-semi model structure on \(C[T] \) over \(C \), where a map is a weak equivalence or fibration if and only if it is a weak equivalence or fibration in \(C \).

Corollary 6.4. (i) The category \(Op(S, R) \) is a cofibrantly generated \(J \)-semi model-category over \(C(S, R) \) where \(J \) denotes the generating the generating acyclic cofibrations of \(C(S, R) \). A map of operads \(\{ O(n) \} \to \{ O(n) \} \) is a fibration if (weak-equivalence) if and only if each \(O(n) \to O(n) \) is a fibration (quasi-isomorphism, respectively) in \(C(S, R) \).

(ii) For any operad \(\{ O(n) \} \) in \(Op(S, R) \), there exists an operad \(C(\{ O(n) \}) \) cofibrant in the \(J \)-semi model structure on \(Op(S, R) \) along with a natural map \(C(\{ O(n) \}) \to \{ O(n) \} \) in \(Op(S, R) \) which is a weak-equivalence, i.e. the induced map \(C(\{ O(n) \})(n) \to O(n) \) is a quasi-isomorphism. Moreover the action of \(\Sigma_n \) on \(C(\{ O(n) \})(n) \) is free.
(iii) Given any acyclic operad, \(\mathcal{O}(n)|n\) (i.e. one for which the augmentation \(e\) to the trivial operad \(\mathbb{Z}\) is a quasi-isomorphism), and any operad \(\mathcal{O}'(n)|n\) cofibrant in the above \(J\)-semi-model structure on \(\text{Op}(S,R)\), there exists a map \(\mathcal{O}'(n)|n \rightarrow \mathcal{O}(n)|n\) of operads.

Proof. It follows readily from the definition of the free functor \(F\) that the action of \(\Sigma_n\) on \(F(\mathcal{O}(n)|n))(n)\) is free. Since \(F\) along with the underlying functor \(U\) provides a monad in the above sense, one readily obtains (i). One may also use this monad to define a resolution of the given operad \(\mathcal{O}(n)|n\) by free operads. This proves (ii). Finally (iii) follows immediately in view of the properties of the semi-model structure considered above. \(\square\)

Corollary 6.5. Over a perfect field, the geometric Barratt-Eccles operad \(M(E\Sigma_n^{gm}) = M(E\Sigma_n^{gm})|n\) acts on the motivic complex \(\mathbb{Z}^{mot}\).

Proof. We first replace the geometric Barratt-Eccles operads by cofibrant operads up to quasi-isomorphism. By the above corollary, these cofibrant operads then map to the simplicial Barratt-Eccles operads. Therefore, the required action is provided by this induced action through the action of the simplicial Barratt-Eccles operad on the motivic complexes considered in the last section. \(\square\)

7. Mixed Tate motives for smooth schemes over a field \(k\)

The results of this section generalize the constructions of \([?], [Bl-K] \) and \([K-M]\) for the category of mixed Tate motives over a perfect field. We fix a smooth quasi-projective scheme \(X\) over \(k\). Let \(A = \mathbb{Q}^\otimes_X\). We may assume therefore that \(A\) is bi-graded via \(k\)-modules \(A(r)\), where \(q\in\mathbb{Z}\) and \(r \geq 0\). Let \(\mathcal{D}_A\) denote the derived category of cohomologically bounded below \(A\)-modules, i.e. differential bi-graded \(A\)-modules \(M = \oplus M^q(r)\) where \(M^q(r)\) may be non-zero for any pair of integers so that \(H^q(M)(r) = 0\) for all sufficiently small \(q\). One may define a functor \(Q : \mathcal{D}_A \rightarrow D(Q - \text{vector spaces})\) by \(Q(M) = \mathbb{Q} \otimes^L_A M\). Here \(D(Q - \text{vector spaces})\) denotes the derived category of bounded below complexes of \(Q\)-vector spaces. Observe that this category has a natural \(t\)-structure, the heart of which is given by the complexes that have cohomology trivial in all degrees except 0. We let \(\mathcal{H}_A\) denote the full sub-category of \(\mathcal{D}_A\) consisting of complexes \(K\) so that \(H^q(Q(K)) = 0\) for all \(q \neq 0\). Let \(\mathcal{F}H_A\) denote the full sub-category of \(\mathcal{H}_A\) consisting of complexes \(K\) so that \(H^q(Q(K))\) is a finite dimensional \(Q\)-vector space. We will make the following assumption throughout:

7.0.20. the DGA \(A\) is connected in the following sense: \(H^i(A)(r) = 0\) for \(i < 0\), \(H^0(A)(r) = 0\) if \(r \neq 0\) and \(H^0(A)(0) = \mathbb{Q}\).

Now we obtain the following theorem as in \([K-M]\).

Theorem 7.1. The triangulated category \(\mathcal{D}_A\) admits a \(t\)-structure whose heart is \(\mathcal{H}_A\). Moreover \(\mathcal{F}H_A\) is a graded neutral Tannakian category over \(Q\) with fiber functor \(w = H^0 \circ Q\).

Proof. The proof is essentially in \([K-M, Theorem (1.1), Part IV]\). (The key idea here is to use the theory of minimal models.) \(\square\)

One may apply the bar construction (see \([K-M, p. 76]\)) to the algebra \(A\): we will denote this by \(\bar{B}A\). Let \(I_A\) denote the augmentation ideal of \(A\). We let \(\chi_A = H^0(\bar{B}A)\). This is a commutative Hopf-algebra and, as in \([K-M, p. 76]\), is a polynomial algebra with its \(k\)-module of indecomposable elements a co-Lie algebra which is denoted \(\gamma_A\). Now we obtain the following result.

Theorem 7.2. (See \([K-M, p. 77]\)) Assume the hypothesis (7.0.20). Then the following categories are equivalent:

(i) The heart \(\mathcal{H}_A\) of \(\mathcal{D}_A\)

(ii) The category of generalized nilpotent representations of the co-Lie algebra \(\gamma_A\)

(iii) The category of co-modules over the Hopf-algebra \(\chi_A\)

(iv) The category \(\mathcal{T}_A\) of generalized nilpotent twisting matrices in \(A\)

The full sub-categories of finite dimensional objects in the categories (i), (ii) and (iii) and of finite matrices in the category (iv) are also equivalent.

Definition 7.3. (Linear schemes over \(k\)) (i) A scheme over \(\text{Spec } k\) is 0-linear if it is either empty or isomorphic to any affine space \(A^n_{\text{Spec } k}\).
(ii) Let $n > 0$ be an integer. A scheme Z, over $\text{Spec } k$, is n-linear, if there exists a triple (U, X, Y) of schemes over $\text{Spec } k$ so that $Y \subseteq X$ is an S-closed immersion with U its complement, Y and one of the schemes U or X is $(n - 1)$-linear and Z is the other member in $\{U, X\}$. We say Z is linear if it is n-linear for some $n \geq 0$.

(iii) Any reduced scheme X of finite type over $\text{Spec } k$ will be called a variety. Linear varieties over $\text{Spec } k$ are varieties over $\text{Spec } k$ that are linear schemes.

Example 7.4. The following are common examples of linear varieties. In these examples we fix a separably closed base field k and consider only varieties over k.

- All toric varieties
- All spherical varieties (A variety X is spherical if there exists a reductive group G acting on X so that there exists a Borel subgroup having a dense orbit.)
- Any variety on which a connected solvable group acts with finitely many orbits. (For example projective spaces and flag varieties.)
- Any variety that has a stratification into strata each of which is the product of a torus with an affine space.

Remark 7.5. If the field is not separably closed, not all tori are split; therefore the varieties appearing above need not be linear in the sense of the definition 7.3. Over non-separably closed fields, any of the examples will be linear if and only if the tori appearing in the strata are all split.

Corollary 7.6. Let X denote a smooth (connected) projective linear variety over a perfect field k (not necessarily separably closed), or any one of the schemes appearing in the examples above which are also connected, projective and smooth. Assume that the Beilinson-Soule conjecture holds for the rational motivic cohomology of $\text{Spec } k$, i.e. $H^n_S(\text{Spec } k; \mathbb{Q}(r)) = 0$ for $r \neq 0$ and $H^n_S(\text{Spec } k; \mathbb{Q}(0)) \cong \mathbb{Q}$ for $r = 0$.

Proof. It suffices to show that the DGA, A appearing in the theorem is connected. If the field k is not separably closed, one may find a finite separable extension $k \subset K$ where K is a number field. Then the conclusions of theorem (7.2) hold for X.

Theorem 7.7. (See [K-M, p. 77].) The derived category of bounded below chain complexes in \mathcal{H}_A is equivalent to the derived category $\mathcal{D}_{A<1}$.
Definition 7.8. (The category of mixed Tate motives over X.) Let χ^mot_X denote the Hopf algebra $H^0(BA)$. The category of (rational) relative mixed Tate motives over X, denoted $\mathcal{MTF}(X)$, will be defined to be the category of finite dimensional co-modules over χ^mot_X.

Theorem 7.9. If the DGA A is connected (in the sense of 7.0.20), $\mathcal{MTF}(X)$ is equivalent to the category \mathcal{FH}_A. In particular, this holds for all smooth (connected) projective linear varieties over k or for any of the varieties appearing in the list 7.4 which are also connected, projective and smooth assuming the Beilinson-Soulé conjecture (see above) holds for the motivic cohomology of $\text{Spec } k$, for example if k is a number field.

Let $Q(r)$ be the copy of Q concentrated in bi-degree $(0, r)$ and regarded as a representation of γ_A in the obvious manner.

Corollary 7.10. If A is a $K(\pi, 1)$, then $\text{Ext}^q_{\mathcal{MTF}(X)}(Q, Q(r)) = \text{Ext}^q_{\mathcal{FH}_A}(Q, Q(r)) \cong H^q(A(r)) = H^q_M(X, r) = CH^r(\mathbb{A}^r, 2r - q; Q)$.

7.1. l-adic realization: A second DGA structure for étale cohomology. We will once again assume the base field is perfect. We will first sketch an outline of the corresponding l-adic realization. First, following the approach in [BSV] and [3?], one defines a Hopf algebra χ^mot_X so that the category of co-modules over it is equivalent to the category of mixed Tate l-adic representations of the (algebraic) fundamental group $\pi_1(X)$. (Here l is different from the characteristic of the ground field k.) (The elements of the Hopf algebra χ^mot_X are framed mixed Tate l-adic representations.) Using the cycle map and a variant of the bar construction, one applies the constructions of [Bl-K] to produce the l-adic realization functor. The relevant arguments are entirely similar to those in [3?], [Bl-K] and are therefore omitted.

Let $\text{char}(k) = p > 0$ and let l denote a fixed prime different from $p, \nu > 0$ an integer. Let $\epsilon: (\text{smt.schms}/k)_{et} \rightarrow (\text{smt.schms}/k)_{zar}$ denote the obvious map of sites associated to the obvious functor sending a Zariski open $U \rightarrow X$ to the same map but now viewed as an étale map. Let $\mathbb{Z}/l^\nu_{et} = \epsilon^*\mathbb{Z}/l^\nu_{mot}$ be the mod-l^ν motivic complex sheafified on the big étale site of all smooth schemes of finite type over k. We already showed in section 3, that this is an algebra over the étale Eilenberg-Zilber operad which is an acyclic operad in $C_*(S, \mathbb{Z}/l^\nu)$. The acyclicity of this operad implies, as argued in section 6, that there exists a map of operads from the Barratt-Eccles operad to this. Using this map, \mathbb{Z}/l^ν_{et} gets the structure of an algebra over the Barratt-Eccles operad. Alternatively let $\{\mathbb{Z}E\Sigma^r_{n}\}_n = \epsilon^*\{\mathbb{Z}E\Sigma^r_{n}\}_n$ denote the Barratt-Eccles operad sheafified on the big étale site; this is a sheaf of E^∞-operads on the big étale site. Clearly \mathbb{Z}/l^ν_{et} is an algebra over this operad.

Moreover (see [MVW, Chapter 10]) by the rigidity theorem, one knows that \mathbb{Z}/l^ν_{et} identifies with the sheaf μ_{l^ν} and that the (étale) hyper-cohomology of a smooth scheme X over k with respect to the former complex identifies with the étale cohomology with respect to μ_{l^ν}. Therefore \mathbb{Z}/l^ν_{et} provides an E^∞-algebra structure for étale cohomology. Taking $\mathcal{R}(\mathbb{X}, -)$ over a given smooth scheme X, then the homotopy inverse limit over $\nu \rightarrow \infty$, tensoring with Q and applying a functor W as in 5.5, one obtains a strict DGA-structure for continuous l-adic étale cohomology of X.

Observe as a consequence that the cycle map from the motivic complex to mod-l^ν-étale cohomology may now be identified with the map induced by the obvious map $\mathbb{Z}^\text{mot}_{et} \rightarrow \text{Re}*\mathbb{Z}^\text{mot}_{et}$) where ϵ is the obvious map of sites from the big étale site to the big Nisnevich site of smooth schemes of finite type over k. (Observe that the obvious map $\mathbb{Z}E\Sigma^r_{n} \rightarrow \text{Re}*\mathbb{Z}E\Sigma^r_{n}$ makes the latter a sheaf of E^∞-algebras over the former.) It follows that the above cycle map is compatible with E^∞-DGA structures. (In fact this is needed in the l-adic realization as outlined in the first paragraph above.)

Remark 7.11. See the accompanying paper with Patrick Brosnan, [BroJ], where the same relationship is considered in the context of inverting the Bott element.

8. Classical cohomology operations

The results of this section follow readily by invoking standard results (see for example, [May] or [H-Sch]) which deduce the existence of cohomological operations from the existence of an E^∞-structure on cohomology. The operad $\{\mathbb{Z}E\Sigma^r_{n}\}_n$ is a classical operad in the sense that the homology of the complexes $\{\mathbb{Z}E\Sigma^r_{n}/\Sigma^r_{n}\}_n$ is classical, i.e. in particular there are not enough classes in fact all the classes have weight 0) to define the motivic operations of Voevodsky. While it seems possible to enrich the above operad to have enough such classes, there does not seem to be sufficient motivation to justify the work involved, particularly since the motivic cohomology operations have already been elegantly defined by Voevodsky. However, in [BroJ] we will pursue the relation between these operations and the motivic operations after inverting the motivic Bott element, i.e. in étale cohomology. We will
see there, that the operations in étale cohomology induced by the motivic operations of Voevodsky and the classical operations considered here differ by multiplication by suitable powers of the Bott element.

In this section, we will just define what we call classical cohomology operations. These operations, as one may observe from the discussion below, do not commute with weight suspension.

We will assume throughout this section that the base field k is perfect. Let X denote a smooth scheme of finite type over k. (We may assume this is quasi-projective for the sake of simplicity.) Let l denote a prime different from the characteristic of k and let \mathbb{Z}_X^{mot} denote the motivic complex associated to X.

8.1. Let $A^*_X = \mathbb{Z}_X^{mot} \otimes \mathbb{Z}/l[2]$ and let $A^*_X = \mathcal{R} \Gamma (X, A_X)$ where the derived functor is taken on the Zariski (or Nisnevich site). We let A_{Spec}^* and A_{Spec}^* be the corresponding objects when $X = Spec \ k$. Recall that A_X and A_{Spec}^* are sheaves of bi-graded E^{∞}-algebras over the E^{∞}-operad defined in the last section. Therefore, A_X and A_{Spec}^* are now bi-graded E^{∞}-differential graded algebras, so that $A_X = A_{Spec}^* \cup A^*_X(r)$. Moreover $H^*_A(X; \mathbb{Z}/l(r)) = H^r(A_X^*(r))$ which will be isomorphic to $\mathcal{C}H^r(X, 2r - i; \mathbb{Z}/l)$ when X is assumed to be quasi-projective as well.

8.2. Let $A^*_X,\mathcal{E}t = \mathbb{Z}_X^{mot} \otimes \mathbb{Z}/l[2]$ and let $A^*_X,\mathcal{E}t = \mathcal{R} \Gamma (X, A_X,\mathcal{E}t)$ where the derived functor is taken on the étale site. Moreover $H^*_A(X; \mathbb{Z}/l(r)) = H^r(A^*_X,\mathcal{E}t(r))$.

8.3. The motivic and étale derived categories associated to a scheme. For the purposes of this section we will define this as follows. Let $(\text{smt.schms})_{Nis}$ ((\text{smt.schms})$_{\mathcal{E}t}$) denote the big Nisnevich (étale, respectively) site of all smooth schemes of finite type over the given field k. For the most part, we will restrict to a fixed smooth scheme X. We consider for each smooth scheme X of finite type over k, the small Nisnevich site X_{Nis} and the corresponding small étale site $X_{\mathcal{E}t}$: we may denote either of these generically by X_{et}. Unless the distinction is important we will continue to denote both the complexes A_X and $A_X,\mathcal{E}t$ by A_X itself. We consider unbounded (co-chain) complexes of sheaves M of A_X-modules on the site X_{et}: this forms a category where the morphisms are module maps. We consider the corresponding homotopy category and the mod--1 motivic derived category will be the localization of this homotopy category by inverting maps that are quasi-isomorphisms. This category will be denoted $D(X)$. The external hom (internal hom) in this category will be denoted $Ext(\ ,\)$ (or $\mathcal{R}Hom(\ ,\)$, respectively). (Observe that $Ext(M, N) = \mathcal{R} \Gamma(X, \mathcal{R}Hom(M, N))$.) We define the mod--1 cohomology of an object $MeD(X)$ with weight r to be $Ext^\ast (M; A_X(r))$. This will be denoted $H^\ast (M; \mathbb{Z}/l(r)) = H^\ast r(M; \mathbb{Z}/l)$.

Let $D^-(X)$ denote the full sub-category of $D(X)$ consisting of (co-chain) complexes K that are trivial in positive degrees. By identifying such co-chain complexes with chain complexes that are trivial in negative degrees, one may see that the derived category $D^-(X)$ is equivalent to the derived category of simplicial Abelian presheaves on X_{et}. Recall that for any simplicial Abelian sheaf F there is a diagonal map $\Delta : F \to F \otimes F$; this (together with the Alexander-Whitney map and the equivalence between simplicial Abelian sheaves and complexes of sheaves trivial in negative degrees) induces a diagonal map $\Delta : F \to F \otimes F$, $F \in D^-(X)$.

8.3.1. Observe (making use of the above diagonal map) that if $MeD^-(X)$, $\mathcal{R}Hom(M, A_X)$ has the obvious induced structure of a sheaf of E^{∞}-algebras over the operad $\{O(n)[n \geq 0]\}$ (the operad $\{O(n)[n \geq 0]\}$ in the étale case, respectively). (The required pairings are defined as the composition $O(n) \otimes \mathcal{R}Hom(M, A_X) \to O(n) \otimes \mathcal{R}Hom(M, A_X) \to \mathcal{R}Hom(M, A_X)$. The last map is defined by its adjoint: $O(n) \otimes \mathcal{R}Hom(M, A_X) \to \mathcal{R}Hom(M, A_X) \to O(n) \otimes \mathcal{R}Hom(M, A_X)$.) Hence one obtains a graded ring structure on $\otimes H^\ast (M; \mathbb{Z}/l(r))$. Moreover, if $\mathbb{Z}/l(0)$ denotes the mod--l motivic complex of weight 0, $\mathcal{R}Hom(\mathbb{Z}/l(0), A_X) \simeq A_X$ and there is a natural pairing $\mathcal{R}Hom(M, A_X) \otimes \mathcal{R}Hom(\mathbb{Z}/l(0), A_X) \to \mathcal{R}Hom(M, A_X)$ that is compatible with the above algebra structure on $\mathcal{R}Hom(M, A_X)$.

Recall the complex $\mathbb{Z}/l(0)$ is the complex with the constant sheaf \mathbb{Z}/l in degree 0 and trivial elsewhere in both the motivic and the étale cases. Therefore, $\mathbb{Z}/l(0)[i]$ is the complex concentrated in degree $-i$ where it is the constant sheaf \mathbb{Z}/l: tensoring with this complex defines the degree-suspension S^d_{deg}. One may also obtain the following characterization of the degree-suspension (or the simplicial suspension): $Ext^\ast (S^{d}_{deg}M, K) \cong Ext^\ast (M, K[1])$, for $M, K \in D(X)$. We define the Tate suspension (in the motivic case), $S^{1}_{deg}M$ by $\mathbb{Z}_{et}(A^1 - 1) \otimes M$. More precisely, we may make use of the pairing $\mathcal{R}Hom(\mathbb{Z}/l(A^1 - 1), \mathbb{Z}(1) \otimes \mathcal{R}Hom(M, A_X(r)) \to \mathcal{R}Hom(\mathbb{Z}_{et}(A^1 - 1) \otimes M, A_X(r + 1))$ to define the Tate suspension of the motivic cohomology of M. The composition of these two suspensions may be effected by tensoring with the canonical class $T \in H^2(\mathbb{P}^1; \mathbb{Z}/l(1))$. We denote the composite suspension of M by
$S^1_\ast M$. Now we obtain the natural isomorphisms for any $M \in \mathcal{D}^-(X)$:
\[
H^n(M; \mathbb{Z}/l(r)) \cong H^{n+1}(S^1_\ast M; \mathbb{Z}/l(r))
\]
(8.3.2)
\[
H^n(M; \mathbb{Z}/l(r)) \cong H^{n+1}(S^1_\ast M; \mathbb{Z}/l(r + 1)) \quad \text{and} \quad H^n(M; \mathbb{Z}/l(r)) \cong H^{n+2}(S^1_\ast M; \mathbb{Z}/l(r + 1))
\]

Remarks 8.1. 1. Observe that the second isomorphism in the motivic case shows $H^1(\mathcal{R}Hom(\mathbb{Z}_r(\mathbb{A}_r^1 - 0), \mathbb{Z}(1))) \cong \mathbb{Z}$. Let τ denote the canonical class corresponding to $1 \in \mathbb{Z}$: clearly the Tate suspension in the motivic case may be effected by tensoring with this class.

2. All of the above discussion in the motivic case applies equally well when the Nisnevich site is replaced by the Zariski site.

Throughout the following discussion H^\ast will denote either motivic or étale cohomology. We define bistable mod-l cohomology operations of bi-degree (i, j) to be sequences of natural transformations \{$H^n(\mathbb{Z}/l(r)) \to H^{n+i}(\mathbb{Z}/l(r + j))|n, r)$ on $D^-(X)$ and which are contravariantly functorial in $X \in (\mathcal{S})$. In view of the suspension-isomorphisms above, these are determined by their restrictions to \{$H^{2n}(\mathbb{Z}/l(n))|n\}$.

Recall there are Bockstein homomorphisms $\beta : H^n(M; \mathbb{Z}/l(r)) \to H^{n+1}(M; \mathbb{Z}/l(r))$ which are defined in the usual manner as the boundary homomorphism associated to the short-exact sequence: $0 \to \mathbb{Z}/l^2(r) \to \mathbb{Z}/l^2(r) \to \mathbb{Z}/l(r) \to 0$. These are clearly bi-stable cohomology operations.

One of the main results in this section is the following theorem, which shows the existence of classical motivic and étale cohomology operations for all primes l.

Theorem 8.2. There exist operations $Q^\ast : H^q(X, \mathbb{Z}/l(t)) \to H^{q+2s(l-1)}(X, \mathbb{Z}/l(l,t))$ and $\beta Q^\ast : H^q(X, \mathbb{Z}/l(t)) \to H^{q+2s(l-1)+1}(X, \mathbb{Z}/l(l,t))$.

These operations satisfy the following properties:

(i) Contravariant functoriality: if $f : X \to Y$ is a map between smooth schemes over k, $f^\ast \circ Q^\ast = Q^\ast \circ f^\ast$.

(ii) They commute with the simplicial suspension isomorphism in (8.3.2).

(iii) Let $x \in H^q(X, \mathbb{Z}/l(t))$. $Q^\ast(x) = 0$ if $2s > q$, $\beta Q^\ast(x) = 0$ if $2s > q$ and if $(q = 2s)$, then $Q^\ast(x) = x^!$.

(iv) If β is the Bockstein, $\beta \circ Q^\ast = \beta Q^\ast$.

(v) Cartan formulae: For all primes l, $Q^\ast(x \otimes y) = \sum_{i+j=s} Q^i(x) \otimes Q^j(y)$ and $\beta Q^\ast(x \otimes y) = \sum_{i+j=s} \beta Q^i(x) \otimes Q^j(y) + Q^i(x) \otimes \beta Q^j(y)$

(vi) Adem relations: (See [May, p. 183].) With the same terminology as before:

If $a < lb$, and $\epsilon = 0, 1$ one has

\[
\beta^\epsilon Q^a Q^b = \Sigma_i (-1)^{a+i}(a - pi, (l-1)b - a + i - 1)\beta^\epsilon Q^{a+b-i}Q^i
\]
where $\beta^0 Q^a = Q^a$ while $\beta^1 Q^a = \beta Q^a$. One also has

\[
\beta^\epsilon Q^a \beta Q^b = (1 - \epsilon) \Sigma_i (-1)^{a+i}(a - pi, (l-1)b - a + i - 1)\beta Q^{a+b-i}Q^i
\]
\[
- \Sigma_i (-1)^{a+i}(a - pi - 1, (l-1)b - a + i)\beta Q^{a+b-i}Q^i
\]
(8.3.3)

(vii) More generally, for any $M \in \mathcal{D}^-(X)$, there exist cohomology operations

$Q^\ast : H^q(M; \mathbb{Z}/l(t)) \to H^{q+2s(l-1)}(M; \mathbb{Z}/l(l,t))$ and
\[\beta Q^*: H^q(M; \mathbb{Z}/l(t)) \to H^{q+2s(t-1)+1}(M; \mathbb{Z}/l(t)) \]

satisfying the properties (ii) through (vi) as above. Moreover, if \(f: M' \to M \) is a map in \(D^-(X) \), the operations \(Q^* \) commute with pull-back by \(f \).

(viii) The operation \(Q^* \) commutes with change of base fields and also with the higher cycle map into \(\text{mod--} l \) étale cohomology.

Proof. We will let \(M \in D^-(X) \) and define cohomology operations on \(H^*(M; \mathbb{Z}/l(t)) \). For a smooth scheme \(X \), we obtain cohomology operations on \(H^q(X; \mathbb{Z}/l(t)) \) by taking \(M = \mathcal{A}_X \). Recall that \(\mathcal{A}_X \) is an \(E^\infty \)-dga over the endomorphism operad constructed in the last section, which was observed to be an \(E^\infty \)-operad. Since the cohomology operations are assumed to be stable under simplicial suspension as in (ii), it suffices to define these on classes \(x \in H^{2q}(M; \mathbb{Z}/l(t)) \). Therefore, one obtains the existence of cohomology operations \(Q^* \) which are defined as follows (see [May, p. 161]): if \(l = 2 \), we let

\[
(8.3.4) \quad Q^*(x) = \tilde{\theta}_*(c(2s-2q) \otimes x'), \\
\beta Q^*(x) = \tilde{\theta}_*(c(2s-2q)+1 \otimes x')
\]

and if \(l > 2 \), we let:

\[
(8.3.5) \quad Q^*(x) = (-1)^q \theta_*(c(2s-2q)(l-1) \otimes x'), \\
\beta Q^*(x) = (-1)^q \theta_*(c(2s-2q)(l-1)+1 \otimes x')
\]

In [May, p. 161], an extra sign is introduced. We have gotten rid of this by including this sign into the choice of the basis elements \(\{c_i|i\} \) which form a basis for \(H_*(B\pi; \mathbb{Z}/l) \). Observe that \(c_{2s-2q}(l-1) \) has degree \((2s-2q)(l-1) \), so that the total degree of \(c_{2s-2q}(l-1) \otimes x' \) is \(2q+2s(l-1) \). Since the weight of \(x' \) is \(tl \) and \(\theta_*(c_{2s-2q}(l-1) \otimes x') \) leaves the weight unchanged, \(Q^*(x) \) has weight \(tl \). The map \(\tilde{\theta}_* \) is the map

\[
(8.3.6) \quad \tilde{\theta}_*: H_*(B\pi; \mathbb{Z}/l) \otimes H^*(M; \mathbb{Z}/l(r)) \to H^*(M; \mathbb{Z}/l(r)); \quad \tilde{\theta}_*(\bar{c} \otimes \bar{x}^\otimes) = [\theta(c \otimes x^\otimes)]
\]

where \(\pi \) denotes the group \(\mathbb{Z}/l \), \(c(x) \) denotes a cycle representing the cohomology class \(\bar{c} \) (\(x \), respectively) and \([z] \) denotes the cohomology class represented by the cycle \(z \).

Now all assertions except for the last assertion are immediate consequences of standard results on cohomology operations on algebras over \(E_\infty \)-operads: see [May] or [H-Sch]. (Recall that \(c_i \) is defined only for \(i \geq 0 \); therefore we let \(c_i = 0 \) for \(i > 0 \) so that \(Q^*(x) = 0 \) if \(q < 2s \).) The action of the endomorphism operad \(\{\mathcal{O}(p)|p\} \) on the complex \(\mathcal{A}_X \) was shown to be functorial in the base field \(k \); therefore the operation \(Q^* \) commutes with respect to change of base fields. Moreover, as observed in Remark 8.1, the action of the operators \(\{\mathcal{O}(p)|p\} \) and \(\{\mathcal{O}(p)|et|p\} \) are compatible on the complexes \(\mathcal{A}_X \) and \(\mathcal{A}_{X,et} \); therefore, the operation \(Q^* \) is also compatible with respect to the higher cycle map as defined above.

Remark 8.3. The above operations cannot commute with the Tate suspension as one may see from elementary weight considerations. Therefore they are not bi-stable cohomology operations. Moreover, observe that \(Q^0 \) is not the identity and therefore \(\beta Q^0 \) is not \(\beta \). This difficulty will be removed once we define better operations \(\bar{P}^* \) taking into account the weights properly: we leave this and other related issues to a sequel. Observe also that some of the above cohomology operations may be trivial owing to the fact that the weight may be high enough. (Recall: \(H^j_\mathcal{M}(X; \mathbb{Z}/l(j)) \cong CH^j(X, \mathbb{Z}/l; 2j-i) = 0 \) if \(j > \dim(X) + 2j-i \).) This shows that the motivic cohomology operations of Voevodsky cannot be deduced from the classical operations considered above. However, the classical operations indeed can be deduced from the motivic cohomology operations: this is discussed in detail in the accompanying paper [BroJ].

We will denote the operations \(Q^* \) considered above on étale cohomology as \(Q^*_{et} \). When the base field is separably closed, one may identify \(\mu_t(r) \) with the constant sheaf \(\mathbb{Z}/l \); in this case, therefore, the weights are irrelevant, and we obtain cohomology operations in the usual sense, once it is shown that \(Q^*_{et} = id \). (This is proved below.) For example, if the base field is the field of complex numbers, the operations we obtain identify with the usual cohomology operations in mod-\(l \) singular cohomology (once the latter is identified with mod-\(l \) étale cohomology).

Proposition 8.4. The operation \(Q^*_{et} = id \).
Proof. Since the Tate suspension is irrelevant now, Q^0 commutes with the simplicial suspension and is contravariantly functorial we may reduce to checking this when $M = \text{the constant sheaf } \mathbb{Z}/l$. In this case, $Q^0_{\alpha^l}(\alpha) = \alpha^l = \alpha$, for any $\alpha \in \mathbb{Z}/l$. This proves the proposition. \hfill \Box

9. Appendix

9.1. Localization of simplicial presheaves (after Hirschorn and Morel-Voevodsky). We begin with the following two results, which are, by now, well-known in the literature. (See for example, [Jar].)

Proposition 9.1. Let S denote a small site with enough points. Then the following structure defines the structure of a simplicial model category on $\text{Simpl.Presh}(S)$ of simplicial presheaves (or on the category $\text{Simpl.Sh}(S)$ of simplicial sheaves on the site S):

- cofibrations are monomorphisms of presheaves
- a map $f : P' \to P$ is a weak-equivalence if it induces a weak-equivalence of the simplicial sets forming the stalks
- fibrations are defined by the right lifting property with respect to maps that are trivial cofibrations (i.e. cofibrations and weak-equivalences)

Moreover the following additional properties hold:

- this model category structure is cofibrantly generated where the generating cofibrations I (generating trivial cofibrations J) is the set of cofibrations (trivial cofibrations, respectively) $i : U \to V$ so that there exists a large enough cardinal number α with the cardinality of each $V_n(U)$ smaller than α, $X \in S$, $n \geq 0$.
- Let $GP = \varinjlim(G^n P[n])$ denote the Godement resolution (as in [J-2]). Then $GEx^\infty P$ is a fibrant object in $\text{Simpl.Presh}(S)$ so that the natural map $P \to GEx^\infty P$ is a weak-equivalence. (Here Ex^∞ is a functor that produces a functorial fibrant approximation to a simplicial set.)

Definition 9.2. (i) We say a simplicial presheaf P has cohomological descent on the site S, if for each U in S, the natural map $\Gamma(U, P) \to \varinjlim_{\Delta} \{\Gamma(U, G^n P)|n\}$ is a weak-equivalence.

(ii) Let S denote the Zariski site of a Noetherian scheme X. We say that a simplicial presheaf P has the Mayer-Vietoris property on X, if for any two Zariski open sub-schemes U, V of X, the diagram

$$\Gamma(U \cup V, P) \to \Gamma(U, P) \times \Gamma(V, P) \to \Gamma(U \cap V, P)$$

is a fibration sequence of simplicial sets.

Proposition 9.3. Suppose X is a Noetherian scheme and P is a simplicial presheaf on the Zariski site of X having the Mayer-Vietoris property. Then P has cohomological descent on the Zariski site of X.

In general, for $P \in \text{Simpl.Sh}(S)$ we let $R\Gamma(U, P) = \varinjlim_{\Delta} \{\Gamma(U, G^n P)|n\}$. Next let $C_0(S)$ denote the category of unbounded co-chain complexes of abelian sheaves on the site S as in section 2. For $P \in C_0(S)$, we we let $DN(P)$ denote the associated simplicial sheaf and let

$$R\Gamma(U, P) = \varinjlim_{\Delta} \{\Gamma(U, G^n(DN(P)))|n\}$$

9.2. Next assume that one of the following hypotheses holds:

(i) the site S has finite uniform cohomological dimension for all sheaves of the form $\mathcal{H}^i(P)$ for a fixed $P \in C_0(S)$, i.e. there exists an integer $N >> 0$, so that $H^n(U, \mathcal{H}^i(P)) = 0$ for all $n > N$ and all i.

or (ii) P is a bounded complex.

In this case one may also define $R\Gamma(U, P) = \text{Tot}(N(\{\Gamma(U, G^n P)|n\}))$, where N denotes normalizing in the cosimplicial direction and $\text{Tot}(K^{\bullet \bullet})^n = \bigoplus_{i+j=n} K^{i,j}$ for a double complex $K^{\bullet \bullet} : C(S)$. (Observe that so defined, there is a strongly convergent spectral sequence $E_\alpha = R^s \Gamma(U, \mathcal{H}^t(P)) \Rightarrow R^s+t \Gamma(U, P)$.)

For the rest of this section we will assume that S is either the big Nisnevich or Zariski site of all schemes of finite type over a given base scheme S. In order to consider the \mathbb{A}^1-homotopy theory on $\text{Simpl.Presh}(S)$, we will first recall a few basic facts on localization of model categories, from [Hir].

Definition 9.4. (See [Hir, Chapters 12 and 15].) (i) A model category is left proper if every pushout of a weak-equivalence along a cofibration is also a weak-equivalence.
(ii) A \textit{cellular} model category is a cofibrantly generated model category for which there exists a set I (J) of generating cofibrations (generating trivial cofibrations, respectively) so that both the domains and the co-domains of the elements of I are compact, the domains of the elements of J are small relative to I and the cofibrations are effective monomorphisms.

\textbf{Proposition 9.5.} (See [Hir, Chapters 12 and 14].) \textup{ (i)} Every pushout of a weak-equivalence between cofibrant objects is a weak-equivalence in any model category. \textup{ (ii)} If \mathcal{M} is a model category where every object is cofibrant, \mathcal{M} is a left proper model category. In particular, the categories, $\text{Simpl.Presh}(\mathcal{S})$ and $\text{Simpl.Sh}(\mathcal{S})$ on any small site \mathcal{S} are left-proper as well as cellular.

\textit{Proof.} All the assertions are clear, except the one claiming the categories $\text{Simpl.Presh}(\mathcal{S})$ and $\text{Simpl.Sh}(\mathcal{S})$ on any small site \mathcal{S} are cellular. To see this, recall that the generating cofibrations I (generating trivial cofibrations J) are those cofibrations $i: U \to V$ as in Proposition 9.1. Therefore, the cellularity of the above categories is also clear. (One may readily show that these cofibrations are in fact effective monomorphisms.) \hfill \square

9.3. \textbf{Left Bousfield localization of simplicial model categories.} Let \mathcal{M} denote a simplicial model category and let $\text{Map}: \mathcal{M}^{op} \times \mathcal{M} \to (\text{simplicial sets})$ denote the bi-functor defined by the simplicial structure. Assume that every object of \mathcal{M} is cofibrant.

\textbf{Definition 9.6.} Let \mathcal{S} denote a set of morphisms in \mathcal{M}. An object W of \mathcal{M} is \mathcal{S}-\textit{local} if W is fibrant and for every $s:S_1 \to S_2$ in \mathcal{S} and any Z in \mathcal{M}, the induced map

$$\text{Map}(Z \times S_2, W) \to \text{Map}(Z \times S_1, W)$$

is a weak-equivalence. A morphism $f:X \to Y$ in \mathcal{M} is an \mathcal{S}-\textit{weak-equivalence}, if for any \mathcal{S}-local object S_0 of \mathcal{M}, the map $\text{Hom}_{\mathcal{M}}(Y, S_0) \to \text{Hom}_{\mathcal{M}}(X, S_0)$ induced by f is an isomorphism, where $\text{Hom}_{\mathcal{M}}$ denotes the homotopy category associated to \mathcal{M}. The \mathcal{S}-cofibrations are defined to be the same as the cofibrations of \mathcal{M} and the \mathcal{S}-fibrations are defined by right-lifting property with respect to all maps that are cofibrations and \mathcal{S}-weak-equivalences.

\textbf{Definition 9.7.} (Δ^1-equivalences) Let $\mathcal{M} = \text{Presh}(\mathcal{S})$ or $\text{Sh}(\mathcal{S})$ with \mathcal{S} denoting the two maps $i_0: \{0\} \to \Delta^1$ and $i_1: \{1\} \to \Delta^1$. Then an Δ^1-equivalence corresponds to an \mathcal{S}-equivalence.

The \textbf{left Bousfield localization} of \mathcal{M} with respect to \mathcal{S} is a model category structure on the same category underlying \mathcal{M} where the cofibrations (fibrations, weak-equivalences) are the \mathcal{S}-cofibrations (\mathcal{S}-fibrations, \mathcal{S}-weak-equivalences, respectively).

\textbf{Remark 9.8.} One may verify readily that W is \mathcal{S}-local if and only if W is fibrant and for every map $s: S_1 \to S_2$, the induced map $s^*: \text{Map}(S_2, W) \to \text{Map}(S_1, W)$ is a weak-equivalence.

\textbf{Theorem 9.9.} (See [Hir] chapter 4.) Let \mathcal{M} denote a cellular left proper simplicial model category and \mathcal{S} a set of morphisms in \mathcal{M}. Then the left Bousfield localization of \mathcal{M} with respect to \mathcal{S} exists. If $L_{\mathcal{S}}(\mathcal{M})$ denotes this localization, then this is the left proper cellular simplicial model category.

\textbf{Theorem 10.10.} (\mathcal{S}-local Whitehead theorem) (See [Hir] (3.3.7).) Assume the situation of the above theorem. Let $f: P \to P'$ denote a map that is an \mathcal{S}-weak-equivalence with P and P' both \mathcal{S}-local. Then f is a weak-equivalence.

Let \mathcal{A} denote an Abelian category; a chain complex K in \mathcal{A} will denote a sequence $K_i \in \mathcal{A}$ provided with maps $d: K_i \to K_{i-1}$ so that $d^2 = 0$. Let $C_0(\mathcal{A})$ denote the category of chain complexes in \mathcal{A} that are trivial in negative degrees. One defines the de-normalizing functor $DN: C_0(\mathcal{A}) \to (\text{simplicial objects in } \mathcal{A})$ as in [III, pp.8-9]. DN will be inverse to the functor $N: (\text{simplicial objects in } \mathcal{A}) \to C_0(\mathcal{A})$ defined by $(NK)_n = \bigcap \ker(d_i: K_n \to K_{n-1})$ with $\delta: (NK)_n \to (NK)_{n-1}$ induced by d_0. We will also often consider the functor $C: (\text{simplicial objects in } \mathcal{A}) \to C_0(\mathcal{A})$ defined by $K \mapsto$ the chain complex which in degree n is K_n and where the differential $d: C(K)_n \to C(K)_{n-1}$ is given by $d = \Sigma_i (-1)^i d_i$. Given a chain complex K, trivial in negative degrees with differentials of degree -1, one may form the corresponding (co-)chain complex trivial in positive degrees with differentials of degree $+1$ by re-indexing K in the obvious manner. This functor composed with the functor C above will be denoted $C^*: (\text{simplicial objects in } \mathcal{A}) \to C(\mathcal{A})$ where the last is the category of (co-)chain complexes in the Abelian category \mathcal{A}.

Given two positive integers p and q, a (p,q)-shuffle π is a permutation of $(1, ..., p+q)$ so that $\pi(i) < \pi(j)$ for $1 \leq i < j \leq p$ and for $p+1 \leq i < j \leq p+q$. We let $\mu = \text{the restriction of } \pi \text{ to } (1, ..., p)$ and $\nu(j) = \pi(j+p)$, $1 \leq j \leq q$. Clearly π is determined by (μ, ν) and therefore, we will identify π with the pair (μ, ν). The set of all (p,q)-shuffles is
in one-one correspondence with the set of all strictly increasing maps \((\phi, \psi) : [p+q] \to [p] \times [q]\): the correspondence is given by sending a shuffle \((\mu, \nu)\) to \((\phi, \psi)\) where \(\phi(x) = \) the cardinality of the set \(\{1 \leq i \leq p | (\mu, \nu)(i) \leq x\}\) and \(\psi(x) = \) the cardinality of the set \(\{p+1 \leq i \leq p+q | (\mu, \nu)(i) \leq x\}\). Each such map \((\phi, \psi)\) (and hence each shuffle map) defines an isomorphism of schemes

\[\Delta[p + q] \to \Delta[p] \times \Delta[q]\]

by the formula: \((t_0, \cdots, t_{p+q}) \mapsto t_0(\psi(0), \psi(0)) + \cdots + t_{p+q}(\psi(p+q), \psi(p+q))\).

9.3.3. Let \(\Sigma_k\) denote the symmetric group on \(k\)-letters and let \(ES\Sigma_k\) denote the simplicial group defined by the bar construction. Observe that a \(p\)-simplex of \(ES\Sigma_k\) is given by a sequence \((\sigma_0, \cdots, \sigma_p)\), \(\sigma_i \in \Sigma_k\). Let \(s_p = (\sigma_0, \cdots, \sigma_p)\) and \(s_q = (\tau_0, \cdots, \tau_q)\) denote a \(p\)-simplex and a \(q\)-simplex of \(ES\Sigma_k\). Then one can see that each such map \((\phi, \psi)\) associates a \((p+q)\)-simplex \((\phi(0) \circ \psi(0), \cdots, \phi(p+q) \circ \psi(p+q))\) of \(ES\Sigma_k\) to the \((p, q)\)-simplex \((s_p, s_q)\). Here \(\circ\) denotes composition in \(\Sigma_k\). We denote this product by

\[s_p \bullet s_q\]

9.3.4. Given two simplicial objects \(K\) and \(K'\), one obtains a map called the shuffle map (where \(C\) denotes the functor \((9.3)\) considered above)

\[s = shuffle : \Delta[p] \otimes \Delta[q] = C(K)_p \otimes C(K')_q \to C(K \otimes K')_{p+q}\]

which is defined by

\[s_{shuffle}(k_p \otimes k'_q) = \Sigma(\mu, \nu)(-1)^{s(\mu)}(s_{\mu_q} \circ \cdots \circ s_{\mu_1}(k_p) \otimes s_{\mu_p} \circ \cdots \circ s_{\mu_1}(k'_q))\]

where the sum is over all \((p, q)\)-shuffles \((\mu, \nu)\) and where \(s(\mu)\) is the signature of the permutation \(\mu\).

Proposition 9.11. Assume the above situation. Then the functor \(C\) is compatible with pairings. Moreover, the shuffle map above is strictly associative and strictly commutative.

9.4. Operads. Basic definitions of operads and algebras over operads for topological spaces may be found in [May] or [H-Sch]. The same definitions apply with minor modifications to the unital symmetric monoidal category \(C(S)\) as in section 2. Recall the main result of sections 3 and 4 are the construction of \(E^\infty\)-operads in the category \(C(S)\) of co-chain complexes of abelian sheaves on the site \(S\) by first constructing an operad in the category \(Simpl.Presh(S)\).

An **associative operad** (or simply operad) \(\mathcal{O}\) in \(C(S)\) is given by a sequence \(\{\mathcal{O}(k) | k \geq 0\}\) of objects in \(C(S)\) along with the following data:

- for every integer \(k \geq 1\) and every sequence \((j_1, \ldots, j_k)\) of non-negative integers so that \(\Sigma_{i=1}^k j_i = j\) there is a given a map \(\gamma_k : \mathcal{O}(k) \otimes (\mathcal{O}(j_1) \otimes \cdots \otimes \mathcal{O}(j_k)) \to \mathcal{O}(j)\) so that the following associativity diagrams commute, where \(\Sigma_{i=1}^k j_i = j\) and \(\Sigma_{i=1}^k i = i;\) we set \(g_s = j_1 + \cdots + j_s\) and \(h_s = ig_{s-1} + \cdots + ig_s\) for \(1 \leq s \leq k;\)

\[\begin{array}{ccc}
\mathcal{O}(k) \otimes (\bigotimes_{s=1}^k \mathcal{O}(j_s)) \otimes (\bigotimes_{r=1}^j \mathcal{O}(i_r)) & \xrightarrow{\gamma \otimes id} & \mathcal{O}(j) \otimes (\bigotimes_{r=1}^j \mathcal{O}(i_r)) \\
shuffle & \downarrow \gamma & \\
\mathcal{O}(k) \otimes (\bigotimes_{s=1}^j \mathcal{O}(j_s)) \otimes (\bigotimes_{q=1}^{j_s} \mathcal{O}(i_{g_{s-1}+q})) & \xrightarrow{id \otimes (\otimes \gamma)} & \mathcal{O}(k) \otimes (\bigotimes_{s=1}^k \mathcal{O}(h_s))
\end{array}\]

In addition one is provided with a unit map \(\eta : \mathcal{O} \to \mathcal{O}(1)\) so that the diagrams
Definition 9.13. A commutative operad is an operad as above provided with an action by the symmetric group Σ_k on each $\mathcal{O}(k)$ so that the diagrams

\[
\begin{array}{ccc}
\mathcal{O}(k) \otimes \mathcal{O}(j_1) \otimes \cdots \mathcal{O}(j_k) & \xrightarrow{\sigma \otimes \sigma^{-1}} & \mathcal{O}(k) \otimes \mathcal{O}(j_{\sigma(1)}) \otimes \cdots \mathcal{O}(j_{\sigma(k)}) \\
\gamma & \downarrow & \gamma \\
\mathcal{O}(j) & \xrightarrow{\sigma(j_{\sigma(1)}, \ldots, j_{\sigma(k)})} & \mathcal{O}(j)
\end{array}
\]

(9.4.2)

and

\[
\begin{array}{ccc}
\mathcal{O}(k) \otimes \mathcal{O}(j_1) \otimes \cdots \mathcal{O}(j_k) & \xrightarrow{\gamma} & \mathcal{O}(k) \otimes \mathcal{O}(j_1) \otimes \cdots \mathcal{O}(j_k) \\
\tau_1 \otimes \cdots \otimes \tau_k & \downarrow & \tau_1 \otimes \cdots \otimes \tau_k \\
\mathcal{O}(j) & \xrightarrow{\gamma} & \mathcal{O}(j)
\end{array}
\]

(9.4.3)

commute. Here $\sigma \in \Sigma_k$, τ_1, \ldots, τ_k, the permutation $\sigma(j_{\sigma(1)}, \ldots, j_{\sigma(k)})$ permutes the k-blocks of letters of length $j_{\sigma(1)} \cdots j_{\sigma(k)}$ as σ permutes k letters and $\tau_1 \oplus \cdots \oplus \tau_k \in \Sigma_j$ is the block sum.

For the remaining statements, we will assume that the category $C(S)$ has a model structure, so that it makes sense to consider objects that are acyclic, i.e. weakly-equivalent to the unit object u. An operad is an A^∞-operad (or acyclic operad) if each $\mathcal{O}(k)$ is acyclic. It is an E^∞-operad, if in addition, it is commutative and the given action of Σ_k on $\mathcal{O}(k)$ is free.

Remark 9.12. The free Abelian group functor $\mathbb{Z} : (\text{Simpl.Presh}(S)) \rightarrow (\text{Simpl.Ab.Presh}(S))$ will provide a means of constructing operads in the category of simplicial Abelian presheaves by starting with an operad of simplicial presheaves. This has the following property: given two simplicial presheaves P and P', there exists a natural map $Z(P) \otimes Z(P') \rightarrow Z(P \times P')$. i.e. the functor $\mathbb{Z} : \text{Simpl.Presh}(S) \rightarrow \text{Simpl.Ab.Presh}(S)$ is compatible with the tensor structures.

Definition 9.13. An algebra A over an operad \mathcal{O} is an object in $C(S)$ provided with maps $\theta : \mathcal{O}(j) \otimes A^\otimes \rightarrow A$ for all $j \geq 0$ that are associative and unital in the sense that the following diagrams commute:

\[
\begin{array}{ccc}
\mathcal{O}(k) \otimes \mathcal{O}(j_1) \otimes \cdots \otimes \mathcal{O}(j_k) \otimes A^\otimes & \xrightarrow{\gamma \otimes \text{id}} & \mathcal{O}(j) \otimes A^\otimes \\
\mathcal{O}(j) \otimes A^\otimes & \xrightarrow{\theta} & A \\
\mathcal{O}(j) \otimes A^\otimes & \xrightarrow{\theta} & A
\end{array}
\]

(9.4.4)

and

\[
\begin{array}{ccc}
\mathcal{O}(k) \otimes \mathcal{O}(j_1) \otimes A^\otimes \otimes \cdots \otimes \mathcal{O}(j_k) \otimes A^\otimes & \xrightarrow{\gamma \otimes \text{id}} & \mathcal{O}(k) \otimes A^\otimes \\
\mathcal{O}(1) \otimes A & \xrightarrow{\text{id} \otimes \theta} & A
\end{array}
\]

(9.4.5)

\[
\begin{array}{ccc}
\mathcal{O}(1) \otimes A & \xrightarrow{\theta} & A
\end{array}
\]
If the operad is A_∞, we will refer to the algebra A as an A_∞-algebra. If A is an algebra over an operad O as above one defines a left A-module M to be an object in $C(S)$ provided with maps $\lambda : O(j) \otimes A^{j-1} \otimes M \to M$ satisfying similar associativity and unital conditions. Right-modules are defined similarly.

A commutative algebra over a commutative operad O is an A_∞ algebra over the operad O so that the following diagrams commute:

\[
\begin{array}{ccc}
O(j) \otimes A^{j-1} & \xrightarrow{\sigma \otimes \sigma^{-1}} & O(j) \otimes A^{j-1} \\
\downarrow_{\delta} & & \downarrow_{\delta} \\
A & & A
\end{array}
\]

(9.4.6)

If, in addition, the operad is E_∞, we will refer to the algebra A as an E_∞-algebra.

One may now observe the following. For each integer $n \geq 0$, let $u[\Sigma_n] = \bigcup_{\Sigma_n} u$ denote the sum of u indexed by the symmetric group Σ_n. One may define the structure of a monoid on $u[\Sigma_n]$ as follows:

let u_g denote the copy of u indexed by $g \in \Sigma_n$. Now we map $u_g \otimes u_h$ to $u_{g.h}$ by the given map $\mu : u \otimes u \to u$.

If O is a commutative operad in $C(S)$, one may now observe that each $O(k)$ is a right-module over the monoid $u[\Sigma_k]$. (Observe that $O(k) \otimes u[\Sigma_k] \cong \bigoplus_{g \in \Sigma_k} O(k) \otimes u_g$. We map $O(k) \otimes u_g$ to $O(k) \otimes u$ by the map $g \otimes id$. Now apply the given map $O(k) \otimes u \to O(k)$.)

A cosimplicial algebra A^\bullet over a commutative operad $\{O(n)|n\}$ is a functor $\Delta \to \text{algebras over the operad } \{O(n)|n\}$, i.e. a cosimplicial object in the category of algebras over the operad $\{O(n)|n\}$. Given a cosimplicial algebra A^\bullet, one may take its normalization $N(A^\bullet)$ to be total complex of the double complex obtained by first normalizing A^\bullet in the cosimplicial direction. (The total complex of a double complex $K = \{K^{n,m}|n,m\}$ will denote the complex $Tot(K)$ given by $tot(K)^n = \bigoplus_{n=m+j} K^{i,j}$.)

Proposition 9.14. If A^\bullet is a cosimplicial algebra over the commutative operad $\{O(n)|n\}$, its normalization $N(A^\bullet)$ is a an algebra over the operad $\{O(n)|n\} \otimes \mathcal{End}_{C_\ast}(\Delta)$.

Proof. This is a straightforward extension of [H-Sch, (2.3) Theorem]. One first shows that the double complex obtained by normalizing A^\bullet in the cosimplicial direction is an algebra over the operad in the category of double complexes $\{O(n) \otimes \mathcal{End}_{C_\ast}(\Delta)(i,j)|n\}$. Now one takes the associated double complexes. □
REFERENCES

[H] V. Hinich, Homological algebra of homotopical algebras, Math arxiv q-alg:9702015
[Hov-1] M. Hovey, Model categories, AMS Math surveys and monographs, 63, AMS, (1999)

Department of Mathematics, Ohio State University, Columbus, Ohio, 43210, USA.
E-mail address: joshua@math.ohio-state.edu