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GENERALIZED MULTIPLICITY FORMULAE FOR
MODULES OVER CONVOLUTION ALGEBRAS
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o o
ABSTRACT. Let G denote a complex reductive group acting on G-quasi-projective varieties U, U and f : U — U
o
a G-equivariant proper map. We will further assume that U is smooth. Under these assumptions we had provided,
o o
in our earlier work, functorial constructions of modules over the convolution algebra HG(UxU; Q) starting with
U

the equivariant derived category of U. In the present paper we will provide a general multiplicity formula for the
simple modules forming the composition series of these modules in terms of equivariant intersection cohomology. This
generalizes (and is in fact inspired by Ginzburg’s proof of) the multiplicity formulae for the simple modules in the
composition series of the standard and co-standard modules over the affine Hecke-algebra associated to G. Moreover
our constructions using equivariant perverse sheaves on the nilpotent variety provides a unification of the work of
Kazhdan and Lusztig using equivariant homology and that of Ginzburg using non-equivariant homology.
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0. Introduction

This paper is a continuation of our earlier work where we provided general functorial constructions of modules
over convolution algebras from suitable equivariant derived categories. In the present paper we will provide a
general multiplicity formula for the simple modules forming the the composition series of these modules. We
will show that these generalize the multiplicity formulae for the simple modules in the composition series of the
standard and co-standard modules over affine Hecke-algebras. The Brylinski-Kashiwara proof of the Kazhdan-
Lusztig conjecture (see [Bryl-K]) provides a multiplicity formula valid for a large class of modules, not just the
Verma modules. In a sense this motivates our constructions.

We will assume the following basic conventions throughout the paper. A variety will mean a reduced scheme
of finite type over Spec C. Let G denote a linear algebraic group. A G-variety X is G-quasi-projective if it
admits a G-equivariant locally closed immersion into a large projective space on which G acts linearly. (A
basic theorem of Sumihiro (see [Sum]) shows that if G is connected, any normal quasi-projective variety with a
G-action is G-equivariantly quasi-projective.) Now Dg’G(X ; C) will denote the G-equivariant derived category
of complexes of C-vector spaces with bounded constructible cohomology sheaves.

(0.1) We will assume the following basic situation throughout the paper. Let G denote a complex linear
[ [
algebraic group acting on G-quasi-projective varieties U, U and f : U — U a G-equivariant proper map. We
o

will further assume that U is smooth.

o o0 [ [
Let V denote an open G-stable sub-variety of U, V = f~}(V) and V = VéV. Under these assumptions

we had provided, in [J-1] and [J-2], functorial constructions of modules over the convolution algebra HE (V; C)
starting with the equivariant derived category of V. (The results of the present paper are independent of those
of [J-2] and depend only on those of [J-1].) The above convolution algebra is the G-equivariant (Borel-Moore)

00 00
homology of V provided with an associative operation called convolution. The above convolution algebra HE (V;

C) will be denoted Hy,..

The following are typical examples of this set-up. The first two examples lead to Hecke algebras; the third
seems to be an un-explored new situation and the fourth is closely related to affine quantum universal enveloping
algebras of type A,. (One may show readily that all varieties are in fact G-quasi-projective.) In the examples
(0.2.1) through (0.2.2) we will let B denote the variety of all Borel-subgroups of a complex reductive (connected)
group G. Let U denote the variety of all unipotent elements in G. Making use of the exponential mapping
from the Lie algebra g of G, one may observe that U is isomorphic to the variety N of nilpotent elements in g.
Let T*B denote the cotangent bundle to B; using the above isomorphism of I/ with A, one may identify T*B
with the desingularization of U (see [Stein-2]) given by A = {(u, B)|u € Y, B € B and u € B}. (One may also
identify the obvious map u: A — U given by (u, B) = u with the moment-map T*B — N.) Now G x C* acts
on the right on A by

(0.2.0) (B,u) °(9,9) = (9" Bg, g~ 'u’g).)
One may define a right-action of G x C* on the unipotent variety U by u.(g,q) = g t.ul.g, u € U.

(0.2.1). [0] = B = the variety of all Borel subgroups (or the variety of all parabolic subgroups conjugate to a
fixed parabolic subgroup P) of a complex reductive group G, U = Spec C, G = G and f = the obvious map.

(0.2.2). With G, U and B as before, let U = a G-stable open sub-variety of i and I(} =Av ={(u,B)luelUnN
B,BeB}. Let G = G x C* and f = p: Ay — U the map sending (u, B) — u. The action of G on U and on

[0] is described above.

(0.2.3) With G, U and B as before, let P denote a fixed parabolic subgroup of G, UP = the partial desin-
gularization of & ={(z, P')|z e U N P', P'= a parabolic subgroup conjugate to P}. Now the variety A (= the
Springer desingularization of &) maps naturally onto ¥. Let this map be denoted . Let U = a G-stable open
sub-variety of UF, U = n~1(U), f = the obvious map induced by n and G= G x C* with the actions as defined

above.
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(0.2.4). (See [G-V].) Let d denote an integer > 1 and let § = the set of all n-step flags in C? of the form
F=0=F,CF C..CF,=C%. Let M = {(F,2) € § x gla(C?)|x(F;) C Fy_y,i=1,2,...n} and N=
the variety of all C-linear maps z : C¢ — C? so that 2" = 0. The group G = GL(C?) x C* acts on N and M
as in (0.2.0). We let f denote the obvious projection to the second factor, U = any GL(C?) x C*-stable open

sub-variety of N and IOJ = f~1(U). (Observe that M is smooth and f is proper.)
One may generalize the set- -up in (0.1) as follows. Let s € G denote a ﬁxed semi-simple element so that the

fixed-point schemes U? and (U) are non-empty. Now one may replace f : U — U by the map f° : (O) — U?
and G by Zg(s). Now (0.2.1), ((0.2.2),, (0.2.3), and (0.2. 4) ) will denote (0.2.1), ((0.2.2), (0.2.3) and (0.2.4)

respectively ) with G (f : ((} — U) replaced by Zg(s) (f*: U — U?, respectively ).
(0.3.1)Let V denote a G-stable open sub-variety of U, let s € G denote a fixed semi-simple element and let W
o 00 0 0
denote a Zg(s)-stable locally-closed sub-variety of V°. Let W = (f*)~Y(W) and W = WV>[</W For each v e W,

we will let M (v, s) denote the stabilizer of v in Zg(s) and let M°(v,s) = its connected component containing
the identity.

Let u € W denote a fixed element so that u belongs to a locally closed orbit O of Zg(s) on W. Let ko : O - W
and Kk : W — V denote the obvious maps. Let i}, : u — O denote the inclusion of u in O and let C,) denote
the residue fields of H*(BZg(s); C) and H*(BG; C) corresponding to the maximal ideal associated to s. Now
we obtain the following result.

(0.3.2) Theorem. (See (2.3) and (2.6.2).) Assume that in the above situation, the hypotheses (1.2.1) and
(1.2.5) hold. (i) Now there exist two functors:

: Dy £6(8) (77, C) —(finitely generated left and right modules over Ces ® HZo® (T%}, 0)
H*(BZa(s);0)

m* 2)5?'“

u,s?

00
(i) If in addition to the above hypotheses, W = V¢ and that H,, = HZ(V;C) is a projective H*(BG; C)-
00
module one obtains an isomorphism of convolution algebras: Hy,, ~ C, ( ®( O H? a(s) (W;C). Moreover,
H*(BZg(5);C
under the additional hypotheses (1.2.2) and (1.2.4), the composite functors 90t} o k* and 9}, , o Rk' are exact
functors on restriction to C%(V) = the abelian category of G-equivariant perverse sheaves on V. O

The main result of this paper is the following theorem which provides a multiplicity formula for the simple
00
Cs) HZe®) (W; C)-modules forming the composition series of the modules obtained in (0.3.2). We
H(Boa(s)10

need to first assume that W C V* is a Zg(s)-stable open subvariety of V* and that the given orbit O of Zg(s)
in W is closed. Now observe that if O is a Zg(s)-orbit on W whose closure contains the given Zg(s)-orbit
O, the Zg(s)-equivariant irreducible locally constant sheaves on O correspond one-to-one with the irreducible
representations of the finite group M (v,s) = M(v,s)/M°(v,s) for any fixed point v € O. Assume we have
chosen a point v € O for each such Zg(s)-orbit whose closure contains O.

(0.4) Theorem (See (3.11).). Assume in addition to the hypotheses in (0.1) and (0.3.1) the hypotheses
(1.2.1), (1.2.5) and (1.2.6) below. (i) Now the simple modules forming the composition series of the modules in
(0.3.2) are parameterized by pairs (O, o) where O is a Zg(s)-orbit on W so that its closure contains the given
Zg(s)-orbit O and o is an irreducible representation of the finite group M (v,s). (These simple modules are
denoted Lo ,;.)

(i) Let O denote a Zg(s)-orbit on V and for each irreducible representation o of the finite group M (v, s),

let £, denote the corresponding Z(s)-equivariant locally constant sheaf on O. Let K € Dg’ZG(S) (W; C). Now
the multiplicity of the simple module Lo, in mtihs (K") is given by

dim(C, ® Hy o (u,) (05 R (RkG(IC7 () (Lo,))) @ Rif Rk (K)))
H*(BM®°(u,s);C) ’

Similarly the multiplicity of the simple module Lo , in EI_TI; s(K*) is given by
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dim(C, ® H i (k5 (IC%eG) (L ® sk (K-
M, i (8 (RUC7 O (Lo,) @12k (K))
Here IC%¢()(Lp,) denotes the equivariant intersection cohomology complex with the middle perversity (see
(1.2.2) below) and obtained by starting with the local system Lo, on O.)

(iii) Assume in addition to the above hypotheses, the hypotheses (1.2.2) as well as (1.2.4). Let P € C%(V)
= the category of equivariant perverse sheaves on V. Now the multiplicity of the simple module Lo, in
M., . (Rk'P-) is given by

YdimH!(Ris (Rk,(IC(Lo,))) ® Ris' Rk, (RK P))
Similarly the multiplicity of the simple module Lo, in 9, ,(k*P") is given by
SdimH'* (i3 (k& (IC(Lo,))) ® i3k (s*P)) O

Remarks i). The last result of Theorem (0.3.2) is particularly useful in relating the constructions of
Kazdhan and Lustig with those of Ginzburg. Observe that the constructions of Kazhdan and Lusztig (see [K-L]
and [Lusz-2]) are done almost exclusively at the level of equivariant homology while those of Ginzburg (see [C-G]
and [G-V]) are done exclusively at the level of non-equivariant homology. These two different approaches give
the same candidates for the standard and co-standard modules only because the modules that are constructed
by Kazhdan and Lusztig in terms of equivariant homology are in fact projective modules over the cohomology
ring of an appropriate group. The second statement of theorem (0.3.2) is a generalization of this fact to modules
over convolution algebras constructed from equivariant perverse sheaves.

ii) The proof of the general multiplicity formula is formally similar to and in fact inspired by Ginzburg’s proof
of the multiplicty formula for standard and co-standard modules for Hecke algebras. It is shown in ([C-G](7.6.8))
that {Lo,+|0, 0} forms a complete collection of all the simple modules, some of them possibly zero. (Note: as
remarked in [C-G] (7.6) whether or not a particular Lo , is non-zero is rather a delicate question depending on
the particular situation.) Given this identification of the simple modules, we show that a careful analysis of the
group action on the transverse slices as in (3.4.%) along with decomposition theorems in equivariant intersection
cohomology and various projection formulae, enables one to compute the multiplicity formulae by an argument
formally similar to that of [C-G].

The above theorem specializes to provide the same multiplicity formulae for the simple terms of the compo-
sition series for the standard and co-standard modules over affine (and graded) Hecke-algebras as in [C-G]. It
also applies to a wide variety of other situations as shown. In fact, we axiomatize the basic frame-work so that
our results hold in as much generality as possible.

In the first section we axiomatize the correct framework for the rest of the paper; we also recall the basic

results in our earlier work. In the second section we define the fibered functors E)_JIZ’S and SfRL,S considered

above. The main result in this section is theorem (2.3). We also show that under the hypothesis that W = V'*
00
and HY(V;C) is a projective module over H*(BG;C), we obtain an isomorphism of convolution algebras:

Co ©® HIOW,Q ~C gwﬂf(??;o.

H*(BZg(5);0) (

In the third section, we obtain the general multiplicity formula. We briefly consider some examples in the
fourth section. The fifth section considers some supplementary results on equivariant derived categories.

1. The axiomatic framework.

o
In addition to the hypotheses in (0.1), we often impose various conditions on the varieties U and U. These
are axiomatized so as to apply to as wide a context as possible.

(1.2.1) G acts with finitely many orbits on U.



(1.2.2) Each G-orbit on U is of even dimension (i.e. over C). If C is such an orbit, £ is a G-equivariant local
system on C and IC(L) is the intersection cohomology complex with the middle perversity so that IC(L) ¢ =
L[dim C], then HI(IC(L)) = 0 for all odd i. (Observe as an immediate consequence that if IC%(L) is the
corresponding equivariant intersection cohomology complex (see [Bryl] or [J-0]), HI(ICY(L)) = 0 for all odd i.
We will identify IC(L£) (ICY%(L)) with its extension by zero from the closure of C to all of U (from the closure
of EGéC to all of EGéU, respectively .) (Now IC%(L) is a complex on EGéU whose restriction to EGéC is

isomorphic to L[dim C] viewed as a sheaf on the latter.)

(1.2.3) U is rationally smooth i.e. if D¢ is the dualizing complex on U, H!(D¢) = C if i = —2.dim U and
trivial otherwise.

(1.2.4) Let s € G denote a fixed semi-simple element and let u € U denote a fixed element. Now
H;(f~Y(u)®; C) = H{(f~1(u)®; C) = 0 for all odd i.

(Here H;(f~'(u)*; C) denotes the Borel-Moore homology of the fixed point scheme of s on f~!(u); since the
latter is projective, the above Borel-Moore homology may be identified with singular homology.)

(1.2.5) Let s € G denote a fixed semi-simple element and let u ¢ U denote a point fixed by s. Let C,, denote
the G-orbit of u in U. Now the fixed point scheme C; is the disjoint union of closed subvarieties C3;, i = 1,...,n,
each of which is an orbit of Zg(s) on C;.

(1.2.6) Ezistence of transverse slices. Assume in addition to (0.1) that s € G and W is an open Zg(s)-stable
subvariety of V*. For each u ¢ W a fixed element, there exists a locally closed subvariety S, of W so that the
following hold:

Sy is stable by a maximal reductive subgroup M°(u, s)req of the group M°(u, s)

The obvious map Zg(s) x Sy, — W, (g,v) — g¢.v, is smooth and the dimension of S, is the codimension of
the Zg(s)-orbit of u (i.e. Sy is a transverse slice to the Zg(s)-orbit at u - see [S]] pp. 60 -62.)

One can find a transverse slice satisfying the last condition alone for any algebraic group G acting on a
G-quasi-projective variety in characteristic 0. The first condition is also satisfied at least in the case where
the variety W admits a Zg(s)-equivariant locally closed immersion into a smooth affine variety onto which the
Za(s)-action extends. (For example one can find a transverse slice satisfying both conditions for the variety U
in any one of the situations (0.2.2) or (0.2.4) as well as for the variety U® in the situations (0.2.2), or (0.2.4),.)

Notation. Let S C U denote a G-stable locally closed subvariety. Now the obvious map f~1(S) — S induced
by f will be denoted fs. If s € G is a fixed semi-simple element and T' C U® is a Zg(s)-stable locally-closed
sub-variety, f3 : f~1(T')* — T will denote the map induced by f°.

We conclude this section by recalling the following theorem from ([J-1](4.7) and (4.9)).

00 (o]
(1.3)Theorem. (i) Let K € DZ’G(V; C). Then HY, (V; K) has the structure of a left as well as right module
over the convolution algebra H,,. Moreover if K’ — K is a map of complexes in Dg’G(%}); C), one obtains an
induced map HY, (€/q, K'Y — Hg(?, K) of modules over Hy,.

(ii) Let 7 : EGXV — BG denote the obvious map and let f* : H5(V5C) — HE(V;C) — HE(V;C) denote

the obvious map. Under the above hypotheses, the induced map A, o f*or* : H*(BG; C) — HZ(V; C) = H,
[ 00
sends the cup-product on H*(BG; C) to the center of the convolution algebra Hy,. (Here A : V — V is the
obvious diagonal map.) O
Remark. Observe that, since the convolution algebra is not commutative, the left and right module structures

00
on HY, (V; K) do not make it a bi-module. Moreover, the map A, o f* ow* in (1.3)(ii) need not be an injective
homomorphism. (For it to be injective certain additional conditions also need to be satisfied.)
5



00 00
(1.4) Assume the situation of (0.1). Now one may readily observe that the restriction HE (U;C) — HEZ(V;C)
00
is a homomorphism of convolution algebras. It follows that all left (right) modules over HE(V;C) inherit the
structure of left (right, respectively ) modules over HE (U; C).

2. The fibered functors
We begin with the following proposition.

(2.1)Proposition. Let G denote a linear algebraic group and let X denote a G-quasi-projective variety. Let
K- ={K;|n} e DY%(X; C) so that H (X; K;) = 0 for all odd 4.

(i) Now H%, (X; K) = 0 for all odd n and for all closed subgroups G' of G.

(i)If G' is connected, Hf, (X; K) is the finitely generated projective module over H*(BG'; C) given by
H*(BG'; C) @ H*(X; Kp).

Proof. Let G' denote a closed subgroup of G. We consider the spectral sequence:
E}Y = HY(BG'; R'm(K)) = H4 (X; K)
where 7 : EG’ ><X — BG’ is the obvious map. Let i : X — EG' ><X denote the obvious closed immersion.

Now observe that the stalks (RVm.(K)); = H'(X; i*(K)) = HY (X K,) for each point Z € BG'. Moreover,
for each fixed v, R'm«(K) is a locally constant sheaf on BG' and the cohomology of BG' with respect to any
locally constant sheaf is trivial in odd degrees. Therefore, the hypothesis implies that E5"* = 0 for all u odd or v
odd. Moreover the boundedness on K implies that Ey"” = 0 for all v sufficiently large. It follows that the above
spectral sequence degenerates and Ey"" = E%V for all v and v. Since the abutment Hf, (X; K) has a finite
filtration whose associated graded terms are isomorphic to E%, with u + v = n, it follows that Hg, (X;K) =0
is trivial if n is odd. This proves (i).

Assume G’ is connected. Now BG' is simply-connected and therefore the G'-equivariant locally constant
sheaf RVm,(K) on BG' is constant. Therefore

(2.1.1) EXY = H*(BG'; R'm,(K)) = H*(BG";C) ® H' (X; Kp).

For each integer n, let o<, denote the functor that kills the cohomology in degrees greater than n. Now we
obtain a distinguished triangle : o<, _1(Rm«(K)) — o<n(Rm(K)) = H"(Rm(K))[—n]. Using the identifica-
tion of the stalks of RV, (K) as above, the hypothesis that K is bounded and an ascending induction on n,
one may observe that the cohomology groups of BG' with respect to any of the above complexes vanish in odd
degrees. Now the distinguished triangle above provides a finite increasing filtration:

{Fo = H*(BG'; 0<n(Rr-(K)))n} of H*(BG'; Rr.(K)) = H, (X; K)
The associated graded term F,/F,_» & H*(BG'; R"m.(K)) & ®E;"" for any n even. Let n > 0 denote a

fixed even integer. We will assume, using ascending induction on n, that F} is a finitely generated projective
module over H*(BG';C) for all k. Now observe the following: (i) if d is a sufficiently large positive integer,
Fyq = H*(BG'; Rm.(K)) = HE, (X; K) and (ii) each F,/F,_» is clearly a finitely generated projective module
over H*(BG';C). It follows that each F,, is also a finitely generated projective module over H*(BG';C) and
that the short-exact sequences 0 — F,_o — F, — F,/F,_5 — 0 are split. It follows that H, (X; K) =
H*(BG";C) @ H*(X; Ky). O

(2.2) Let s € G denote a fixed semi-simple element, fixed throughout the rest of this section. We will assume
the hypotheses (1.2.1) and (1.2.5) throughout this section. Let W C V* denote a Zg(s)-stable locally closed
sub-variety; let kK : W — V denote the corresponding immersion. Let ko : O — W denote the immersion of
a locally-closed Zg(s)-orbit into W and let f& : f71(0)* — O denote the induced map. Let u € O denote a
fixed point, let M (u,s) C Zg(s) denote the stabilizer of u and let M°(u,s) denote its connected component
containing the identity element. Let i : f~!(u)®* — f~1(0)® denote the obvious closed immersion. Now the
element s corresponds to a maximal ideal in H*(BM?°(u, s); C); let C(,) denote the corresponding residue field.

6



(2.3) Theorem. Assume the above situation. Now the following hold. (i) There exist two functors:
Tk = c,Za(s
M, L, M, DY W ©)
— (finitely generated left and right modules over H*(BM°(u, s); C) ® HZe®) (T(/JI?, )]
H*(BZg(s);C)
defined by
93‘2,3,+(K) =M. (u,5) (fil(u)s; Ei*fé*kB(K)) and E)Z_TIL s +(K) =M. (u,5) (f ( )% RZS‘Rf Rks'( )

(ii) Let C%(V) denote the category of G- equivariant perverse sheaves on V. Under the additional hypotheses
(1.2.2) and (1.2.4), the composite functors M, , , ox* and M), _ , o R' are ezact on restriction to C% (V') and
take values in the category of finitely genemted projective modules over H *(BM°(u,s); C).

Proof. Let m: O = M°(u,s)\Zaq(s) — O = M(u,s)\Zq(s) denote the universal covering. Let fi_l\(_a) be
defined by the cartesian square:

F10) — f10)°
7|
0]

lfé
)

where f& : f71(0)® — O denotes the map induced by f : [j' — U. Let u € O. Consider

——

(2.32) By, (f1(0) ; fm*ks(K)

Leti® : f~1(u)®* — f~1(O ) denote the obvious closed immersion. Observe that f—l(O)S = M (u, s)\(Za(s)x
F(u)® ) where M°(u, s) acts on (Zg(s) x f~'(u)*) by mo (g,y) = (9.m ™', m.y) . Therefore [J-1] (2.P.3)’ with
X = f~Y(uw)*, H= M°(u,s) and H = Zg(s) provides the isomorphism of H *(BZg( ); C)-modules:

(2.3.1)

™

—_—

(2:3.3) Hy, () (/10 5 5'm* k5 () = Hipo ) (F 7 (w)%; T fE T K5 (K)), K- e Dy?o (W;0).
Observe that the composition 7 o f& 075 = f& 07%. Therefore the term in (2.3.3) identifies with E)_Jt;‘;’s, +(K).
Similarly one obtains the isomorphism of H*(BZg(s); C)-modules:

/'\_/S

(2:3.4) Hy () (/ 1(0) 5 RfS R R (K)) = Hypo ) (F 7 (w)" 357 RIG R Rk (K)), K e Dy (W; ©).

Next observe that Ris'o Rfg o Rr'o Rk, (K) ~ i2*o R g oRm'o Rk (K) (modulo an even dimensional shift). The
last identification follows from (5.3.4) with H = M°(u, s), H = Zg(s) and X = f ~1(u)®. Now the observation
that o f§ 013 = f§ o5 shows the right hand side of (2.3.4) identifies with 9, , | (K).

Let ko : f~1(0)* — f (W)*, W = f=Y(W)5, W = Iff/%ﬁ/ and A: fTIW) =W — W = v(f/;;v‘f/ denote
the diagonal immersion. If L e Dy’ ZG(S)(f/\(a) ;C), AvRkou7.(L) € D;’ZG(S) (I%}, C). Moreover

s

HEG (s) (f—l(O) 7L) = ]HI*ZG (s) (W, A*R]_fo*ﬁ'*(L))

Therefore, (1.3) with V replaced by W (G replaced by Zg(s) and v replaced by I/OI(;) shows that the latter has the

00 ~ 4
structure of a left as well as right module over the convolution algebra H? a(s) (W;C). Taking L = f§ n*kH K
or Rf% Rn' Rk, K, the identifications in (2.3.3) and (2.3.4) above show the action of H*(BZg(s); C) is through
the action of H*(BM?°(u, s);C); therefore, it follows that the above functors take values in the category of left
00

and right modules over the algebra H*(BM?°(u,s);C) ( ®( )C)H*Z G(s)(W;(C). Moreover these are finitely

H*(BZg(s);
generated since they are finitely generated over H*(BM?°(u, s); C) which maps into the center of the convolution

00
algebra H*(BM°(u, s) : C) ® HZ¢® (W, C) - see (1.3)(ii). This proves (i).
H*(BZg(s);0)
7



Next we consider (ii) for the functor 9, , , assuming that the conditions in (1.2.2) and (1.2.4) also hold.
Let P ¢ C%(V). Now observe that R(k o ko) (P) = D(k o ko)*D(P) = (ko ko)*D(P)V[2n — 2¢] if n = the
dimension of V and ¢ = the codimension of O in V. (Here (ko ko)*D(P)Y = Homc((k o ko)*D(P),C). Next
observe that the category C% (V) is Artinian and Noetherian with every object having a finite filtration whose
simple quotients are the equivariant intersection cohomology complexes on the orbit closures in V. Moreover if
a diagram

o7

0P S P—SP'S0

of objects in C%(V) is exact, P" ~ Cone(a) = the mapping cone of a. Now the hypothesis in (1.2.2) implies
that H:(P) = Hi(D(P)) = 0 for all odd i. Therefore, it follows from the hypothesis (1.2.2) that the cohomology

!

sheaves of the complexes (ko ko)*(P) and R(k o ko) (P) vanish in all odd degrees.
Now consider the distinguished triangle:
o<m-2R(k0 ko) (P) = 0<m-1R(k 0 ko) (P) = 0<mR(k 0 ko)'(P) — H™(R(k o ko) (P))[~m]

(Here m is assumed to be even.) Observe that the composite map 7 o f§ 04% : f~'(u)® — O factors also
as i% o p?, where pg : f~'(u)® — wu is the obvious projection and ¢ : v — O is the obvious map. Apply
the functor Rpf'Ri%' = Ri%' o Rfg o Rn' ~ i%* o Rf¢ o Rr' (modulo an even dimensional shift) to the above
distinguished triangle. (The last identification once again follows from (5.3.4).) Now the hypothesis (1.2.4)
shows H" (f~'(u)®; Rps'Ri®'H™(R(k o ko)'(P))[=m]) = 0 for all odd n and all m even. By ascending induction
on m we may assume that H* (f~(u)®; RpS'Ri5'0<m_1(R(ko ko) (P))) = 0 for all odd n and all m even. Now
the long-exact sequence in hyper-cohomology: -

e = HM(f 7 () Rp} R o<m1(R(k 0 ko) (P))) = H"(f~' (u)*; RpS,' Ri5'0<m(R(r 0 ko) (P)))

— H'(f~(uw)*; Rp, ' Rig H™ (R(k 0 ko) (P))[-m]) — ...
shows that

(2.3.6) H* (=" (u)®; RpS'Ris'0<m(R(k 0 ko)'(P))) = 0 for all odd n.
Therefore the hypotheses of (2.1) are satisfied with X = f~1(u)?, G' = M°(u,s) and the complex K =
Rp3'Ri% o< m(R(k o ko)'(P)). Taking m large enough, this proves that 90, , | (Rs'P) is trivial in odd degrees
and is a projective module over H*(BM?°(u, s); C).

To see the functor M, . | o Rk' is exact on restriction to C%(V') one may argue as follows. Let

0—-P —-P—=P'—=0

denote a short-exact sequence in the abelian category C%(V). As observed earlier, P" is quasi-isomorphic to
the mapping cone of the map P’ — P. Therefore one obtains a long-exact sequence:

= i (F71 (W) BpS Riz (R(k 0 ko)'(P')) = Hipu ) (71 (w)*; Rps' Rz (R(k o ko) (P))
= a0 (F ()75 Rp3 Rit (R(k o ko) (P"))) — HiFL o (F 1 (u)*s Ry Rit) (R(k 0 ko) (P))) = ...

The results of the last paragraph show that this breaks up into short-exact sequences. This proves the exactness
of the functor M), , . o Rk' restricted to C(V). The proof of the corresponding assertions for the functor
S)Z_TIZ’SQL o k* are similar. O

The goal of the remainder of this section is to establish the assertion in (2.5.1) below. In preparation for this,
we will first prove the following results of a general nature.

(2.4.0) If D is a diagonalizable algebraic group acting on a variety X, we will let K% (X) denote the Grothen-
dieck group of D-equivariant locally free coherent sheaves on X. We will assume that X is D-quasi-projective.
In this case, one can readily find a closed D-equivariant immersion of X into an ambient smooth D-variety X.
We define K%’ X(X' ) = the Grothendieck group of D-equivariant coherent sheaves on X with supports in X and

Hp, «(X) = the D-equivariant cohomology of X with supports in X. We will let the isomorphisms
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K x(X) = K§(X) and Hj, x(X) = HP(X)

provided by Poincare-Lefschetz duality be denoted PL. (Here HP(X) = the D-equivariant Borel-Moore ho-
mology of X.)

(2.4.1) If s is a semi-simple element in the group D, it corresponds to a maximal ideal in the cohomology
ring H*(BD;C). We will let HP(X;C)(,) denote the localization of HP(X;C) at this maximal ideal. The
corresponding residue field will be denoted C(,). Assume that X is an ambient smooth D-variety containing
X (as in (2.4.0)) and that i : ¥ = X® — X is the obvious closed immersion. Let N (NV) denote the normal
(co-normal, respectively ) bundle associated to the closed immersion 7 and let A_1(NV) = Y(=1)! A* NV: this
is a class in the Grothendieck group K% (Y). Assume henceforth that s is a regular semi-simple element in D
(i.e. X*=XP). Now A_1(NV) is a unit in the localized ring K%(Y),). Therefore ch(A_1(NV)) € Hp(Y;C)(5)
is a unit where ch denotes the equivariant Chern-character ch : K%(Y) — Hp(Y;C). Observe that i, :
K@ (Y)(s) 2 KDy (Y)(s) = Kp,x(X)(s) 2 K3’ (X)(5) is now an isomorphism with the inverse provided by the
map a@ = A_1(NY)~1 Ui*(a). Now we will define

(2.4.2) res* : H*D(X;(C)(s) — H*D(Y;(C)(s) by

res*(a) = [ch(A_1(NV)~Y) UTd(N)~1n PL(#*(PL71(a)))

= PL([ch(A_1(NV)"Y )Y UTd(N) Jui*(PL (a)))
where Td(N) denotes the equivariant Todd class of the normal bundle N. (The last equality follows from

the usual relations between cup and cap products since the isomorphism denoted PL is given by taking the
cap-product with respect to a fundamental class.)

(2.4.3) Lemma. Assume the above situation. Now the map res* is an isomorphism with inverse given by i,.

Proof. Now one obtains a commutative diagram:

PL! 5 i"QUA_L(NY) !
KP (X)) —— KD x(X)(s) —

lTx ch()UTXm Jvch()Ude-, lnf

=, PL
Ky (Y)s) —— K (Y)(s)

i*OUch(A—1(NV)~HuTd(N)~?

pL™? " S " > PL
HP (X)) —— Hp x(X)(s) » Hpy, y(Y)(s) —— HP(Y)(s)

where the maps 7x and 7y are defined so as to make the first and last squares commute and T'd ; (T'dy) denotes
the equivariant Todd class of X (Y, respectively ). (ch denotes the equivariant local chern character.) Observe
that the top row is inverse to i, and that the first and last vertical maps become isomorphisms on tensoring the
first row with C. Now the middle square commutes since T'dy = i*(T'dg) U Td(N)~!. Since the top row and
the vertical maps become isomorphisms on tensoring the top row with C, it follows that the bottom row is also
an isomorphism. Now the definition of the map res* shows that it is the same as the bottom row. O

(2.4.4) Corollary. Let f: X — Y denote a D-equivariant proper map of smooth D-varieties, where D is a
given diagonalizable group. Let s denote a regular semi-simple element of D and let f*: X® — Y® denote the
map induced by f. Now one obtains the commutative diagram:

HP(X;Q)y —L— HP(Y;0)

res*l lres*

f2
H2(X%C)sy —— HP2(Y*;Q))

Proof. Consider the diagram when the vertical maps are replaced by ix, and iy, where ix : X* — X and

iy : Y® — Y are the obvious closed immersions. These are inverses to the vertical maps above by (2.4.3). The

functoriality of push-forward shows that this new diagram commutes and therefore so does the original one. O

(2.5.1) Once again assume that we are in the situation of (0.1). Let s € G denote a fixed semi-simple element
and let D(s) denote the diagonalizable sub-group scheme generated by s. (Observe that s is a regular semi-

simple element of D(s).) Let V' denote a locally closed G-stable sub-variety of U and W = V¢. Let W= (I(})s
9



00 0 o o0
and W = WxW = (V)*. If G' denotes a closed algebraic subgroup of G and s ¢ G' denotes a semi-simple
w

element, we will let (s) denote the corresponding maximal ideal in H*(BG';C) as well as in H*(BG; C) while
C(s) will denote the corresponding residue fields. In the remainder of this section, we will prove that, if in

addition HZ (V'; C) is a projective module over H*(BG;C), one obtains an isomorphism of convolution algebras:

Coy ®  HFOMQ=c, ©  HYV;Q
H*(BZg(s);0) H*(BZg(s);C)

Let 4 : WO — V denote the obvious closed immersion and let NV denote the co-normal bundle associated
o
to i. Let A_1(NV) = B(—1)! A' NV denote the class in KD(S)(W) as above. Now 1 X NV (NV X 1) denotes

the co-normal bundle associated to the closed immersion V X W — V X V ( W X V — V X V respectively ).

o o
If NV denotes the co-normal bundle associated to the closed immersion W xW =V x V one observes that

A1(NY) =21 (NV)RA_1(NY) = (A_1(NV)K1)o(1KA_;(NV)). (Here o denotes the product in KD(S)(WXW).
Since A_1(NV) is a unit in K% (VV X I/(V)(s), it follows that both A_; (NV)X 1 and 1XA_;(INV) are also units
in K%(s)(W X W)(S).

(2.5.2) It follows that 1 x ch(A_1(NV)) = ch(1 ® (A_1(NVY))) and ch(A_1(NV)) x 1 = ch(A_1(N) X 1) in
Hp (VV X VV;(C)(S) are units where ch : K%(S) (VV X VV)(S) — Hp (I/(V x W;C)(5) denotes the equivariant
chern-character and the x denotes the external product. Let Td(N) denote the D(s)-equivariant Todd-class of
N and let 1 x Td(N) € Hp,(,,(W x W;C) denote the external product of the class 1 and Td(N).

(s)

(2.5.3) Proposition. (See [C-G] (4.10.12).) Assume the above situation. Now the map res : zP® ((V), Oy —

HPO(i7;0) ) defined by /@5(a) = [1 x ch(A_1 (N¥) ™) U(1 x Td(N)~)] N PL(i* PL~(a)) is an isomorphism
of convolution algebras.

Proof. The proof is essentially in [C-G] (4.10.12) and (4.10.13). Throughout the proof we will abbreviate

Td(N) to Td. Let p1,3 denote the projections to the first and third factor V' = UxVxV — V as well as
v v

W =WxWxW — W. Let a, 8 ¢ HP®)(V;0),,). Now

(7es(8)) = P13« (Pl x(es(a)) U p3 5(res(6)))
Ixch(A_1(NV) " HUAXTd(N) H)INPLE*PL*(e)))Ups 5 ([(1xch(A_1 (NV) 1) U(LxTd(N) 1)

= Pr,3«([1 X (ch(A 1 (NY) Y UTd ") x (ch(A_1(NY)"")UTd ") N PL(p} »(i* PL™ " (a)) Ups 3(i* PL'(B))))
(ch(A_1 (NV)UTd) x )U[(ch(A_1 (NY) " DYUTd 1) x (ch(A_1 (NY) " )UTd 1) x (ch(A_1 (NY) 1)U

NPL(pi »(i*PL™}(a)) Ups 3 (i*PL™1(B))))

= (ch(A_1(NV)UTd) x 1) NP1 34 ([(ch(A_1 (NV) ") UTd™) x (ch(A_1 (NV)"H)yUuTd™) x (ch(A_1 (NV)~HU
Td=1)]

NPL(p; 5" PL (@) U3 i PL(8))))
The last equality follows from the projection formula - see for example [J-1](2.P.10). Now observe that the last
term may be identified with

((h(A=1(N)) UTd) x 1) N pu s« (res*(PL(p ,(PL*(a)) Ups s PL™1(B))))

o o o
where res* denote the homomorphism defined in (2.4.2) associated to the closed immersion W x W x W —

o o o
V x V x V. One may now use (2.4.4) to identify the last term with
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((ch(A-1(NY)) UTd) x 1) Nres* (P34 (PL(pi o (PL™" (@) Up3 s PL™(B))))

_ 0 0 ) )
where the last res* denotes the homomorphism in (2.4.2) associated to the closed immersion s : WxW — VxV.

Now the definition of res* in (2.4.2) shows that the last term may be identified with:
= [((ch(A_1(NV))UTd) x 1) U ((ch(A_1 (NV)"H ) UTd™ ') x (ch(A_1(NV)~HyuTd™1))]
APLi* L™ (py 5. (PL(p; o(PL~(a)) U3 sPL~1(8))))
=[(1 xech(A 1(NV)")U @A xTd )N PLi*PL ! (a* B) = res(a * B).

These prove that the map 7e3 is a homomorphism of convolution algebras. In order to see it is an isomorphism,
observe that the map a — 7es(a) N[(ch(A_1(NV))"t x 1)U (Td x1)] = res ( ) where res* is the homomor-

phism defined in (2.4.2) associated to the closed immersion i : W x W — V x V. Since res* is an isomorphism

by (2.4.3) and since [(ch(A—1(NV)) x 1)U (T'd~! x 1)] is a unit in HD(W X W; C)(s), it follows that res is also
an isomorphism. 0O

00
(2.5.4) Assume the situation of (2.5.1). We will further assume that HZ(V';C) is a projective module over
H*(BG;C). It will now follow from the Kunneth spectral sequence in (5.1.1) that

(2.5.4.1) HZ®) (V. C) = H*(BZa(5);C) ® HE(V;0).
H*(BG;0)

Moreover, it follows by the same arguments that, if D(s) denotes the diagonalizable sub-group of G generated
by s,

2.5.4.2) H?®(V;C) = H*(BD(s);C) ® HI(V;C).
H*(BG;0)

(2.5.5) Proposition. Assume the hypotheses of (2.5.4). Now one obtains an isomorphism
00
Co © HF (V 0 —>(C(s) HZ¢E (W C)
H*(BG;0) (BZG (8);0)
of convolution algebras.

Proof. Under the hypotheses of (2.5.4) we obtain the isomorphisms of convolution algebras:

2.5.5.%) C,, HO(V;C) ~C, ® HPOW.C
( ) & )H* (BG;0) ( ) ( )H*(BD(s);C) ( )
Co ®  HZO0 =c, 72O (7. 0).
( )H*(BZG(S);C) ( ) =G ) (BD(s) ©) ( )

00

The first follows readily by tensoring both sides of (2.5.4.2) with C(;) over H*(BD(s);C). Since W = (V)e,
it follows from (2.5.4.1) that HZe® (I%';(C)(s) ~ fZe(® (i)/'o;(C)(s) is a projective module over H*(BZg(s); C)(s)-
Now (5.1.3) provides the isomorphism:
HP®) (W;0) ) = H*(BD(s);C HZO) (I, C
( ) )(s) ( (3)7 )(s) H*(Bzgs);m(s) ( ) )(s)

One may readily observe that these are isomorphisms of convolution algebras. Finally tensor both sides with
C(s) over H*(BD(s);C)(s) to obtain the second isomorphism in (2.5.5.*). Now (2.5.3) applies to show that the

induced map id ® res : Cy) ® D(s)(V 0O — C) HP® (I(jf}, C) is also an isomorphism. [
H+*(BD(s);C) H* (BD( );C)

Let u € V*, let (s) denote also the corresponding maximal ideal in H*(BM?°(u, s);C) and let C;) denote the
corresponding residue fields. Now we define functors:

: D;aZc(s) (W; C) —(finitely generated left and right modules over C(,) - (BéX) “ C)H*Zc(s) (I%}, 0)
G\S);

., ,

(2.6.1) 9,

u,8’
by
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e (K) = Cy ® 9, . (K)and
ws(K) ) e (BMo (u,5):0) o (K) an

m (K) =C, ® 0 K
u,s( ) ()H*(BM"(u,s);(C) u,s,+( )

(2.6.2) Proposition. Under the hypothesis that HE(V; C) is a projective module over H*(BG;C), the above

functors take values in the category of finitely generated left and right modules over C,y ® HE(V;Q).
H*(BG;0)

Moreover, under the hypotheses (1.2.2) and (1.2.4), the compositions 9}, ,ok* and M, , o Rk' are exact functors

when restricted to the abelian category C% (V).

Proof. This follows readily from (2.5.5) and (2.3). O

Remark. The hypothesis that Hf(oVo, Q) is a projective module over H*(BG;C) is satisfied in the cases
(0.2.1) and (0.2.2) with V = U = U. This follows from [K-L] or from [J-4] Theorem (5.5).

3. The general multiplicity formula

(3.0) Assume the following in addition to the hypotheses in (0.1): s € G is a fized semi-simple element, V
denotes a G-stable open subvariety of U and W denotes an open and Zg(s)-stable subvariety of V*. (One may

00 [e]]
now observe from (1.4) that the obvious restriction: HZ' a(s) (V#;C) —» HY a(s) (W;C) is a map of convolution
algebras.) We will assume throughout this section that the hypotheses (1.2.1), (1.2.5) as well as the hypothesis
(1.2.6) on the existence of suitable transverse slices hold.

The main result of this section is a general multiplicity formula for the simple modules that turn up in
the composition series associated 9}, ((K) and M., (K), K € D;’ZG(S)(W;C) that will hold under the above
hypotheses. Throughout the proof we will adopt the terminology of (5.3.0).

(3.1) Let O denote an orbit of Zg(s) in W and let v € O denote a fixed element. We may now recall the
basic terminology on equivariant sheaves from [J-1] (1.2) or [Fr] p.14. A sheaf L = {L,|n} of C-vector spaces
on a simplicial space X. is locally constant if Fy is locally constant on Xy and each of the structure maps
¢(a) : a*(L,) — Ly, is an isomorphism for any structure map « : X,, — X, of the simplicial space X..
Observe that if X. = BG.= the classifying simplicial space for a topological group G, a locally constant sheaf
L on BG. is automatically G-equivariant and corresponds to a representation of m (BG). These observations
provide the equivalences:

(3.1.%) (Zg(s)-equivariant local systems on EZG(S)ZX( )(’))
a(s

~ (M(v, s)-equivariant local systems on BM (v, s)) ~(local-systems on BM (v, s))
~ (representations of the finite group M (v, s))

(The first equivalence is provided by the functor that sends a Zg(s)-equivariant local system L to its stalk at
v.) For each irreducible representation o of the finite group M (v, s), let £, denote the corresponding irreducible

Z¢(s)-equivariant local system on EZg(s) x © and let IC%¢($)(L,) denote the Zg(s)-equivariant intersection
Zg(s)

cohomology complex with the middle perversity.

(3.2) Let O denote a closed orbit of Zg(s) on W fized throughout the rest of this section. Let u € O denote a
fixed point and let S, denote the transverse slice to O in W at u as in (1.2.6).

(3.3) Proposition. Assume the above situation. Let O = M°(u, s),eq\Zc(s) and W = M°(u, 5)req\(Za(s) x
Su). Now there exists a Zg(s)-equivariant retraction 74 : W — O.

Proof. Letr : S, = Spec C— u denote the composition of the obvious projection of S, to Spec C followed by the

obvious map sending Spec C to the point u. Since M°(u, 8)eq acts trivially on w, this map is clearly equivariant

for the action of M°(u, s)req. Now r defines a Zg(s)-equivariant map W = M°(u, 8)rea\(Za(s) X Sy) — O =
12



M°(u, 8)rea\Zg(s) which we denote by rs. If kp : O — W is the obvious map induced by the inclusion u — S,,,
it follows readily that r4 o k5 = the identity of 0. O

Let M°(u,s)req denote a maximal reductive subgroup of M°(u,s) = the connected component containing
the identity element in M (u,s) (which is the stabilizer of u in Zg(s)) that leaves S, stable under its action.

[
Let f*:(V)® — V* denote the obvious map induced by f. Now we obtain the commutative diagram where the
outer and central squares are cartesian:

o o

*\ fs 2s
(3.4.%) 15 fél fo® I
k

~8

Here O = (MO(U,S)Ted)\ZG(S) = (Mo(uys)red)\(ZG(S) X u): W = (Mo(u7S)T€d)\(ZG(S) X Su)7 &O = OAS{}(S) =

MO (u, 8)rea\(Za(s) x £ (W)?), Vi = MO(u, 8)rea\(Za(s) x (*)~"(S4)) and ‘(}So =10y’

The maps pw : W — W and po : O — O = M(u,s)\(Zg(s)) are the obvious maps. The remaining maps
are also the obvious ones: for example, the map fév sends the class of (g, ) € M°(u, 8)rea\(Za(s) X (£%)71(S.))
to the class of (g, f(z)) in M°(u, $)red\(Za(s) x Sy). Observe that the only Zg(s)-orbits O in W are the ones
whose closures contain the given orbit O. Since pw is smooth, W is stratified by the inverse images of these
orbits which we will denote by 0.

Remark. The above constructions are made necessary due to the fact that the transverse slice S, will not
in general be stable under the action of the group M°(u,s), but stable only under the action of a maximal
reductive subgroup M°(u, 8)req-

One may apply the functor EZ5(s) X to the above diagram to obtain a commutative diagram over BZg(s),
Zg(s)

where the induced maps will be denoted by the same symbols. Let K € D;’ZG(S)(W; C). Now we may first of
all observe the isomorphism:

~8

Pl ~ " T . pEs Dl DL
(3.5) M, (K) = Cq H*(BMQ‘?(U,S);C)HZG sy (Voi Rf§RpoRkp (K)).

To see this, first one observes:

AS

(3.5.1) Hy (Vs RFZRp,REG(K)) & Hyp,,  (f71(w)"; 35 (RFL R RE (K))),

where % : f~'(u)® — ‘(}o is the obvious closed immersion. .
(Thls follows from [J-1] (2.P.3)’ by taking X = f~1(u)’, H = Zg(s) and H = M°(u,8)req-) Let 78

) — VO denote the obvious map as before. Now (5.3.4) shows that the last term on the right in (3.5.1)
is isomorphic to:

(3.5.2) Wy, (. (F 71 (u)*; Rig (RfE Rpl, Rk (K)))
13



Since H*(BM°(u,s); C)) = H*(BM°(u,s)req; C) and since po o fs 048 = f& oif, the Kunneth spec-
tral sequence in (5.1.1) with G = M°(u,s) and H = M°(u, $)req shows that the last term is isomorphic to
Higo (5 (f 1 (@)% RiS'RfS RES(K)) = M., . . (K). Now the definition of 90T, ,(K) as in (2.6.1) provides the
identification in (3.5).

Let 7 : W — O be the Zg( )-equivariant retraction in (3.3). Now rs o ks = the identity. Therefore,
koopo Of =koopoorsok, Of =koopoory Of Ok . From now onwards, we will denote the composition
koopoors by ¢o. The above arguments show that one obtains the identification:

T _ * o - P! £s! !
(3.6) M, (K) = CSH*(BM@")(u,s);C)HZG (5) (Vs RkORféVRcﬁO(K))
Next we apply the decomposition theorem in equivariant intersection cohomology (see [J-3] (5.3.12) for
example) to the proper map f§, : W — W. Recall that W is stratified in such a manner that the Zg(s)-orbits
o 0 o
form the strata. Let C denote the obvious constant sheaf on W. Now C[dim W] is a perverse sheaf on W. Since

f*| (the inverse image of each stratum in W) is a locally trivial fibration, one observes that Rfy,, (C[dim W])
have locally constant cohomology sheaves on each stratum and therefore:

(3.7.1) Rfgy,(Cldim  W]) = £ £ Vo, (co,)-107®) (Lo, )co, ]

Ooco,

where the outer most sum varies over all strata O in W.

For each O = an orbit appearing in the sum on the right hand side, let v € O denote a fixed point. Now the
second sum varies over all irreducible representations o of M (v, s) (i.e. over all Zg(s)-equivariant local systems
Lo, of C-vector spaces on the simplicial space EZg(s) x .) Here IC%¢()(Lp,) denotes the equivariant

ZG (S)

intersection cohomology complex with the middle perversity (see [Bryl] or [J-0]) and obtained by starting with
the local system Lo, on .) The inner-most sum varies over all shifts co, with which the complex IC%¢(%) (L)
appears on the right-hand-side while each Vi, (co,) is a finite dimensional C-vector space.

Fix an orbit O and an irreducible local system Lo, on it; let v € O be a fixed element. As in [C-G] (7.6) one
may now show that the sum ©Vo, (co,), where the sum varies over all co,, with v € O fixed and for a fixed
irreducible representation o of the finite group M (v, s) may be identified with the simple module Lo , over the
algebra C(, ( ®( : )IHI*ZG (s) (I%}, C). (To see this merely observe that the derived functor

H*(BM®°(u,s);C

Rfg,, : D7) (W C) — DZ(W; C) is a collection of derived functors

{Rfiyn, : Di(EZa(s) X Vi)n; C©) = Di((EZg(s) x W)n; C)ln > 0}
* Za(s) Za(s)

and that Rfjyo = Rfiy, : Di(Vyy; ©) — D§(W; C). The analysis in [C-G](7.6) applies to Rffy .)

(3.7.2) It is shown in ([C-G](7.6.8)) that {Lo,,|O,c} forms a complete collection of all the simple modules,
some of them possibly zero. (Note: as remarked in [C-G] (7.6) whether or not a particular Lo , is non-zero is
rather a delicate question depending on the particular situation.)

For our purposes it is more convenient to consider Rf§,,(C). This is obtained from (3.7.1) by applying the

o
shift [-dim W] to each term on the right hand side (as well as on the left-hand side). We will continue to
denote the resulting decomposition as:

(3.73) Bf$(Q) = S I Vo, (co,)-IC% ) (Lo, o, — dim W1

Ooco,
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Recall that the map py : (M (u, 8)rea)\(Zc () xSy) — W is smooth; therefore one may identify pjy, (IC%¢ ) (Lo,))
with I CZG(S)(ﬁ ), where L4 is the pull-back of £, to O. Now proper-base-change shows that on applying
Py to (3.7.3) one " obtains:

(3.8) R}, (C) = 5T 5 Vo, (co,) 107) (L, )[co, — dim W1

Ucoa,

where the outer sum varies over all strata @ in W and the second sum varies over all Zg(s)-equivariant local
systems Lo, on the simplicial space EZg(s) x O.
ZG (S)

/\S

Recall that VW is smooth therefore the dualizing complex (for the category of complexes of sheaves of

C-vector spaces) on VW may be identified with C[2n] where n = the dimension of VW Therefore we apply the
projection formula and (5.2.4) to (3.8) to conclude:

(3.9) Rf%, (Rf%Rel,(K)) ~ RA'RSE, (C[2n]) B R, (K)]

=TT TV, (co,)-RA'(ICZ ) (L g Vco, — dim W) ) Rob (K)[2n]]

IR

S5 5V, (co,)-(RA(IC74 ) (L ) B Rgly(K)])[co, — dim W+ 2n]

To compute the multiplicities of the simple-modules in 90T,  (K) one now considers:

3.10) M, (K) = C, V ,Rk Rf$R
B1O)M,(K)=C, o 0 (Vo R, RFg Rl ()

IR

C, ® S O; Rfs Rk.-Rf% Ré. (K
H*(BM®(u,s);C) ZG(S)( fO* O fW ¢O( ))

C, ® ORkRS Rf% RO (K
. H , 5)( F5 B Réo(K))

IR

IR

Y S Vo, (co, ).(Cs

Za(s) . ! X 7
oy 005 RERAICHE00 L, ) 8 R K o, =i 1+ 21)

Let O denote a fixed Za(s)-orbit on W, let v € O and let o denote an irreducible representation of the finite
group M (v, s). As remarked in (3.7.1), the simple modules forming the composition series of 91, ,(K) are given
by {Lo,, = = Vo, (co,)}. Now the multiplicity of the simple module Lo, in M, (K) is clearly given by

CO, ’

S 15 Za(s . !
(3.10) dzm(CsH*(BM@(u’s);c) Hy, . (5 (0; RELRANICZS) (L, ) B Rl (K))))

(3.11) Theorem (The general multiplicity formula). Assume the above situation. (i) Let K € D;’ZG(S) (W;
C).

The multiplicity of the simple module Lo, in 90, ,(K) is given by

dim(C, ® ., : Ris'(RkL,(IC%c) (L Ri'REL (K
im( R - o (u,5) (W5 By (REo( (Lo,))) ® Riy Rkp(K)))

where ¢, : u — O is the obvious immersion of u in O.
(ii) Similarly the multiplicity of the simple module Lo , in 95?1*”([( ) is given by
dim(C  ®  Hy, ik (I0%0 (Lo,)) @ stk (K)))

H* (BM®(u,5);C)
15



Let V C U be a G-stable open subvariety so that W C V* as a Zg(s)-stable open subvariety. Let k : W — V
denote the obvious locally closed immersion. Let P € C%(V). Assume also that the hypotheses (1.2.2) and

1.2.4) also hold. If K = Rk'(P) € DY alo) W; C), the multiplicity of the simple module Lo , in ot (K) is
b s u,8
given by

(iii) Ei]dimHi(RiZ’ (Rkp(IC(Lo,))) ® Ris! Rk, (K))

If K=k*(P) e Dz’ZG(S) (W; C), the multiplicity of the simple module Lo, in Efﬁj;,s(K) is given by

(iv) DdimH (i (k& (IC(Lo, ))) ® i3k (K)
Proof. Since the proofs of (i) and (ii) are quite similar we will only prove (i). We identify the term in (3.11)(i)
with the term in (3.10)’ as follows:

Rk RA'(IC#39) (L, ) ® R (K)) ~ R RAN(IC?S ) (L 5 ) R Rr', Rpy, Rk (K))

~ RA'(RE,(IC?3¥) (L, )) R Rk}, Rrls Rpi Rk (K))

~ RAYRKL (IC%5(9) (L, )) B Rph Rk (K)
The last quasi-isomorphism follows from the observation that 75 o ks = the identity. It follows that

(3.11.1) H (O; Rk RA'(IC?¢) (L ) R Rep(K)))

Z (s)
~ Hiyo (59,0 (05 BOZRAN(REL (1079 (L4 ) B Rpp Rkp(K)))

as H*(BZg(s); C)-modules where ¢ : u — O denotes the obvious closed immersion. Now one obtains the
identifications:

Ryps' RA'(REL, (IC76(9) (L ) K Rpp Rk (K))

~ RA'[RYy (Rk, (IC79 ) (L ) W Ry§ Rpp Rk (K)]

Since the last A is the map u — u X u, it is an isomorphism. Therefore one may identify the last term with
Ry (Rk, (IC7<1) (L, ) © Ry Rpp R (K)

Observe that po o ¢f = if, where i, : u — O denotes the obvious closed immersion. (See the diagram (3.4.%).)
Therefore one may identify the above term with:

RS (REL (IC79) (L)) @ Rif) Rk (K)
Recall 1C%c (%) (Lo,) =~ Py (IC%G)(Lo,)) ~ Rply (IC%¢3) (Lo,)) (modulo an even dimensional shift). There-
fore one may 1dent1fy the last term with Ris'(Rkh(IC%¢(*)(Lo,))) ® Ris' Rk, (K)

One may now identify the last term in (3.11.1) with

(3.11.2) Hy o ..., (s Rl (REG(IC7()(Lo,))) ® Rif) Rk (K))

Hy o (.0 (W5 Rig (REG(IC79) (Lo,))) ® Ris/ Rk (K))

This completes the proof of (3.11)(i).

Next we will prove (iii). Let K = Rk'(P), for some P ¢ CY(V). First consider the term I, (s)(O
RE'. Rf% Rfs} R¢\5(K)) in (3.10). Clearly this is isomorphic to

Hy, () (0; RfS Rk, Rff Rep(K)) = Hy  ((O; Rf3 RfE Rk, R¢(K))

~

=y, (Vs RELRp,REL(K)).

The arguments right after (3.5) show that this is isomorphic to
16



Hiyfo (u,5),0 (f 1 (@)°5 Ri3 (RFG RppREG(K))) = Hypa (. (F ' (w)°; B3 (RfE Rk (K)))

By (2.3)(ii) this is a finitely generated projective module over H*(BM?°(u, s); C). By (3.9) each of the terms
Hy, (»)(O; RE,RANICZ() (L ) B Ry (K)))
> o (5 (45 Righ (REG(IC#5) (Lo,))) ® Ris Rk (K))

that appear in (3.11.2) is a split summand of the above H*(BM?°(u, s); C)-module and hence also projective.
In fact, in the spectral sequence

ES' = H*(BM°(u, s); HY(Ri¢ (RkL(IC%¢) (Lo, ))) ® Ris REL(K)))
= H} (u; Rif (RS (IC%5(9) (Lo,))) ® Ris Rk, (K))

°(u,s)

E3' = 0if s or t is odd so that the spectral sequence degenerates and one obtains the isomorphism as in (2.1)(ii).
Therefore one may now tensor with Cs; to obtain the isomorphism:

(Cs H O, Rk!ARA! ICZG(S) ‘CA X R ! K
H*(BM(%(u,s);([j) 76 () oRA (Lo,) do(K)))

= H* (u; Rigl (Rko(107¢¢) (Lo, ))) ® Rif Rkp(K)) = H*(Rig (Rkp(IC(Lo,))) ® Rifl Rkp(K))
It follows that, under the hypotheses of (3.11)(iii) the multiplicity formula in (3.11)(i) reduces to the one in

(3.11)(iii); this completes the proof of (3.11)(iii). The proof of (3.11)(iv) is quite similar to that of (3.11)(iii)
and is therefore skipped. O

(3.12) To see that the multiplicity formulae in [C-G] (7.6.12) are special cases of the above formula one may
argue as follows. Assume that W is chosen so that ko : O — W is a closed immersion and u € O. Assume in
addition the following:

(i) C is a G-orbit in V" so that O C C*
(ii) V C U is a G-stable open subvariety so that W C V.
(iii) One also assumes that k¢ : C — V' is a closed immersion so that one has the cartesian square:

0O —¢C

(One may let V be obtained from U by removing all G-orbits different from C and which are contained in C. Now
C will be closed in V. Now C® breaks up into the union of finitely many Zg (s)-orbits each of which is closed. Let
W be obtained from V? by removing all these orbits in C*® except O.) Now P = Rkc.(Cl[dim C]) = kei(Cldim
C]) belongs to C%(V) and if K = Rk'(P) or if K = k*(P), one may readily identify K with Rko.(C) = koi(C)
(modulo an even-dimensional shift). Therefore Rk}, (K) = k% (K) ~ C modulo an even-dimensional shift. (It
follows that Ri;‘j! RkY(K) ~ i3 k% (K) ~ C (modulo an even dimensional shift). Now one may readily observe

m: (K) = C, H3o s fHu)®; C) = H*(f'(u)®; C) and
A)EC @ Hip ()5 O 2 H W) O)

m,, ,(K) = C

s HY ) (-1 (w)*; ©) = Ho(f 1 (u)?; O).
H*(BM¢°(u,s);C)

Let O denote a Zg(s)-orbit on W whose closure contains O, v € O and ¢ an irreducible representation of M(v,s).
Now (3.11)(iii) and (iv) show that the multiplicty formula for the multiplicity of Lo, , in 9, ,(K) (9, ,(K) )
is given by the sum

SdimH (is*k5(IC(Lo,)))

(SdimH(Ris' Rk, (IC(Lo,))), respectively).
17



This shows that the multiplicity formula in [C-G] (7.6.12) is in fact a special case of the general multiplicity
formula in (3.10).

4. Examples.
(4.1) Modules over affine and graded Hecke alegbras

To obtain this we assume the situation in (0.2.2) with U = Y. Now H,, = H*G(ﬁ; C) where G = G x C* and
H,, is the graded Hecke-algebra associated to G. The simple modules over the affine Hecke-algebra coincide
with the simple modules over the graded Hecke algebra - see ([C-G]). Moreover the natural map from the affine
Hecke-algebra to the graded Hecke algebra preserves the convolution operation. (See [C-G] or [J-4] for example.)
A semi-simple element in the group G corresponds to a pair (s, ¢) with s a semi-simple element in G and g € C*.
Therefore the functors 95?«*;,(3, p and 95{2,(3, ;) Produce modules over the affine Hecke algebra. The hypotheses
(1.2.1) - (1.2.6) are easily seen to be satisfied in this case. The multiplicity formula in Theorem (3.11) provides
the multiplicity of the simple modules in the composition series of these modules.

(4.2) Modules over affine quantum universal enveloping algebras of type A,

To obtain this we assume the situation of (0.2.4). Now the variety N is a union of conjugacy classes of
unipotent elements and therefore one may readily verify the hypotheses in (1.2.1), (1.2.5) and (1.2.2). Moreover
(1.2.4) and (1.2.6) are satisfied as well: the transverse slice at any point of N may be obtained by intersecting
the transverse slice on A" with N.)

18



5. Additional results on equivariant derived categories

Kunneth-spectral sequences.
(5.1.1) Assume that G is a connected linear algebraic groups acting on the variety X and that H is a closed
subgroup of G. Let L € DZ’G(X ; C); now one obtains a Kunneth-spectral sequence:
y H*(BG; * * - %
B2, = Tory "“O(H*(BH; Q), Hy (X; L)) = Hy (X; i*(L)
where i : EHxX — EGxX is the obvious closed immersion. (This is an Eilenberg-Moore-type spectral

H G
sequence obtained from the pull-back square
EHxX —— BH
H

! !

EGxX —— BG
G

of simplicial spaces. See [K-M] Theorem (7.3), Part V where similar spectral sequences are established in a
general setting.) It follows that, if H, (X; L) is a projective module over H*(BG; C), we obtain the isomorphism:

H (X34°(1) ~ H'(BHSO) | & By (X:L)

(5.1.2) In case G is not connected, for the purposes of this paper, it suffices to observe that there is a similar
spectral sequence when L is in fact the constant sheaf C. (See for example [Hs] p. 38.) Given this, we obtain
the following extension:

(5.1.3) Proposition. Let X denote a G-quasi-projective variety so that HZ(X;C) is a projective module
over H*(BG;C). If H is any closed subgroup of GG, one obtains the isomorphism:

HE(X;C0) =2H*(BH;C) ® HFE(X;Q).
H* (BG;0C)

Similarly if (s) denotes any maximal ideal in H*(BG;C) and HE (X;C) () is a projective module over H*(BG :

C)(s), then one obtains the isomorphism HE(X; C)(s) = H*(BH; (C)(S)H (B% o H*(BG;C)yy-
* HOI®)

Proof. Given an algebraic group K, a K-variety Z and L € DZ’K(Z ;C), we define the K -equivariant hyperco-
homology spectrum of X to be the complex RT'(EK 1>§X ;L). We will denote this by H(EK I>§ X;L). This is a
differential graded module over the differential graded algebra RT'(BK;C); the latter will be denoted H(BK).
The cohomology groups of H(BK) (H(EK;éX; L)) will be denoted H*(BK) (H* (EKI>§X; L), respectively ).
Since X is G-quasi-projective, one obtains a G-equivariant closed immersion of X into a smooth G-quasi-
projective variety X. We will denote the maps EH;;X — EHxX and EGxX — EGéX byi. Let U =X -X.

H G
Now one obtains the commutative diagram whose rows are distinguished triangles:

H(BH) & H(EGx X; Ri'C) —— H(BH) & H(EGxX) —— H(BH) ® H(EGxU)

H(BG) H(BG) G H(BG) G
H(EH x X; Ri'C) e H(EH x X; C) s H(EH xU;C)
H H H

The last two vertical maps are quasi-isomorphisms; therefore so is the first. Now the spectral sequence in
[K-M] Theorem (7.3) provides a spectral sequence with E> = Tor" (BGO (H*(BH;C), H* (EG();X;RZ'!Q))

L
converging to the cohomology of the complex H(BH) (® )]HI(EG é X; Ri'C). This degenerates since HE(X; C)
H(BG

is a projective module over H*(BG;C). (Observe that X is smooth and that therefore one may identify
19



H* (EGéX;Ri!Q) (T (EH;;X;RZ”Q)) with HE(X;C) (HF (X;C), respectively ).) The proof of the second

statement follows by localizing the above spectral sequence at the ideal (s). O

(5.2) Relations in the equivariant derived category of complexes of finite tor dimension and in the equivariant
derived category of perfect complezxes

Let G denote a complex linear algebraic group acting on a scheme of finite type X over C. Let R denote
a regular Noetherian ring or a regular graded Noetherian ring. (For example R = Z, R = Q, or R = C.)
All modules we consider will be left modules over R. Now Dgf(X ; R) will denote the full subcategory of

the equivariant derived category D,f’G(X ; R) consisting of complexes of finite tor-dimension. In case R = Q,
or R = C one may observe that Dgf(X ; R) = D,f’G(X ; R). We will also let DS .(X; R) denote the full

perf
subcategory of DZ’G(X ; R) of complexes with locally constant cohomology sheaves.

We summarise the various relations valid in D% #(X5 R). (See [SGA] 5, Exposé IIT and [SGA] 6, Exposé I for
more details.) Assume 7: X — S is a map of schemes of finite type over Spec C. Now consider the cartesian
square:

XxX
S

N
X\ /X
S
Let K, M € Dgf(X; R). Now we let K ® M = p;(K) ®p5(M) and RHoms(K, M) = RHom(p;(K), Rph(M))

and we let RHom(K, M) denote the internal hom (between K and M) in the derived category D%(X; R).
Now

L
(5.2.1) RHomg(K, M) ~ D(K)%M

(5.2.2) RHom(K, M) ~ D(K(}%)D(M)) ~ RAYRHoms(K, M)) ~ RA’(D(K)I%M)

(5.2.3) Assume in addition that 7 : X — S is smooth and S is smooth so that the diagonal immersion
L
A:X > XEX is a regular immersion. If K and M belong to DY .(X; R), one also obtains D(K)%M ~

perf

I
RHom (K, M) modulo an even dimensional shift. (This follows readily from (5.2.2) since RA'(D(K )%M ) =~
L
A*[—2.dimX](D(K)|§M').)

(5.2.4) Let f : Z — X denote a proper map of schemes of finite type over C provided with a G-action so that
it is G-equivariant. Assume that f induces functors:

Rf.: Dgf(Z; R) — Dgf(X; R) and Rf' :Dgf(X; R) — Dgf(Z; R).
L
Now Rf.(Rf'K) ~ RA’(Rf*]I])Z%K) where Dz is the dualizing complex for the category Dcth(Z; R). This

I
may be obtained as follows. RA!(Rf*]D)Z%K) ~ RHom(Rf«(R), K) by (5.2.2). The latter ~ Rf,(RHom(R,
Rf'K)) ~ Rf.(Rf'K). O

(5.3.0) Let H denote a complex linear algebraic group and let H denote a closed subgroup. Assume that we
are provided with an action of H on a variety X which we assume is also H-quasi-projective. (We may assume
that H and H are not necessarily connected). Let H act on H x X by h.(h, z) = (h.h™', hz), he H, h ¢ H and

20



z € X. Then a geometric quotient H\(H x X) exists for this action and the map s : H x X — H\(H x X) is
smooth with fibers isomorphic to H. Now H acts on H x X by translation on the first factor; this induces an
H-action on H\(H x X) as well. One verifies that the map s is equivariant for these actions of H.

Let r : H x X — X denote the projection to the second factor. Next let H x H act on H x X by (h1, h1).(h,
z) = (hy.h.hi', hix), hy, h e H, hy € H and z ¢ X. We observe that the maps 7 and s are such that we obtain
the commutative squares:

(HxH)x(HxX) —— HxX (AHxH)x(HxX) —— HxX
(5.3.1) prml l prwl l
B x (H\(T x X)) —— H\(H x X) HxX X
It follows that r and s induce maps 7: E(H x H) x (H x X) = EHxX
and 5: E(H x H) x (FIxX)—)EFIg(H\(FIxXS.XH :
AxH A

Let A : H — H x H denote the diagonal and let j : X — H x X denote the map = — (e, ) where e is the
identity element of G. We now observe that the square

HxX — X

(532)  axi| i
(HxH)x (HxX) —— HxX

commutes. It follows that j and A induce amap j: EHxX — E(H x H) x (H x X); one checks readily that
H HxH

7 o j = the identity. We denote 5o j by i.

Under the above assumptions we had proved in [J-1] (A.1) a thereom that shows the functors
(5.3.3) Dot (x; ©) ——— DT H(F x X; €) and DA (H\(H x X); Q) ——— DO (1 x X; C)
are equivalences of categories. Hence so are the functors j* and i*.
(5.3.4) Proposition. Assume the above situation. Let ¢ denote the codimension of X in H\(H x X) by the

closed immersion i. Now there exists a natural isomorphism of functors: Ri' and i*[—2c].

Proof. Let d denote the dimension of H. Recall i = 50 j. Since s is a smooth map with fibers isomorphic
to H, it follows that R3' is naturally isomorphic to 3*[2d]. Now j is a closed immersion with the codimension
of X in H x X given by ¢ + d. Therefore it suffices to show that there is a natural isomorphism of functors:
Rj' ~ j*[~2c — 2d). This follows readily since we already know that 7* is an equivalence. O
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