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Abstract. In this paper we explore the relationships between the motivic

and simplicial cohomology operations defined on mod-l motivic cohomology.

We also explore similar relationships in étale cohomology and conclude by
considering certain operations that commute with proper push-forwards.

1. Introduction

Throughout the paper k will denote a fixed perfect field of characteristic p ≥ 0.
We will restrict to the category, Sm/k, of smooth separated schemes of finite type
over k. If X denotes such a scheme, Hn

M(X,Z(r)) denotes the motivic cohomology
with degree n and weight r and Hn

M(X,Z/l(r)) denotes the corresponding mod-
l-variant. In [Voev1], Voevodsky defined a sequence of operations on motivic
cohomology analogous to the operations defined by Steenrod on the singular coho-
mology of topological spaces. We call Voevodsky’s operations motivic operations.
They have the form

P rM : Hi
M(X,Z/l(j))→ H

i+2r(l−1)
M (X,Z/l(j + r(l − 1))) and(1.0.1)

βP rM : Hi
M(X,Z/l(j))→ H

i+2r(l−1)+1
M (X,Z/l(j + r(l − 1))),

where l is a prime not equal to p.
When i = 2j, the above motivic cohomology groups identify with the usual

mod-l Chow groups. In [Bros], there is a construction of Steenrod operations on
mod-l Chow groups, which is independent of Voevodsky’s (and somewhat simpler).

Voevodsky’s operations are defined by making use of a geometric model for the
classifying spaces of finite groups. By using a simplicial model for these classifying
spaces, one obtains another sequence of operations in mod-l motivic cohomology,
which we call simplicial and which are defined even if l = p. These operations,
which were originally introduced by I. Kriz and J.P. May in [Kr-May], have the
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form:

P rs : Hi
M(X,Z/l(j))→ H

i+2r(l−1)
M (X,Z/l(jl)) and(1.0.2)

βP rs : Hi
M(X,Z/l(j))→ H

i+2r(l−1)+1
M (X,Z/l(jl)).

The main goal of this paper is to explore the relationship between these two
types of operations in mod-l motivic cohomology. In doing so, we elaborate on the
results in an earlier preprint by the authors studying these relations after inverting
the Bott-element.

The comparison of the total power operations, yields a straightforward compar-
ison between the motivic and simplicial operations for classes with degree equal to
twice the weight. By observing that both the simplical and motivic operations are
stable with respect to suspension in the degree, we can then deduce the compari-
son between classes with degree ≤ twice the weight. The case when the degree is
strictly greater than twice the weight is more involved and makes use of the Cartan
formula. The main comparison results may be summarized as follows.

Theorem 1.1. (See section 6 for more details.) Assume the base field has a
primitive l-th root of unity and let B ∈ H0

M(Spec k,Z/l(1)) denote the motivic Bott
element. Let F denote a pointed simplicial sheaf on Sm/kNis .

(i) Let α ∈ H̃i
M(F,Z/(q) for any i ≤ 2q. Then P rs (α) = B(q−r)(l−1)P rM(α),

βP rs (α) = B(q−r)(l−1)βP rM(α).
(ii) Let α ∈ H̃2q+t

M (F,Z/l(q)), with t > 0.

If t = 2t′ for some integer t′, then

Bt
′lP rs (x) = B(q+t′−r)(l−1).Bt

′
P rM(x) and

Bt
′lβP rs (x) = B(q+t′−r)(l−1).Bt

′
βP rM(x), 0 ≤ r ≤ q + t′.

If t = 2t′ + 1 for some integer t′, then

B(t′+1)lP rs (x) = B(q+t′+1−r)(l−1).Bt
′+1P rM(x) and

B(t′+1)lβP rs (x) = B(q+t′+1−r)(l−1).Bt
′+1βP rM(x), 0 ≤ r ≤ q + t′ + 1.

(iii) Both the motivic and simplicial operations extend to operations on étale co-
homology with respect to the sheaf µl. If F denotes a pointed simplicial sheaf
on Sm/két and α ∈ H̃i

ét(F, µl(q)), for any i ≥ 0, then

P rs (α) = B(q−r)(l−1)P rM(α), βP rs (α) = B(q−r)(l−1)βP rM(α).

B. Guillou and C. Weibel have obtained a similar comparison of motivic and
simplicial operations in section 5 of [GW] using results of Voevodsky on the motivic
cohomology of Eilenberg-MacLane spaces: the results in [GW, sections 5, 6 and 7]
seem to complement some of the results in this paper. Loosely speaking, our proof
of Theorem 1.1 works by comparing the motivic classifying spaces of symmetric
and cyclic groups with the simplicial ones. On the other hand, Guillou and Weibel
use theorems of Voevodsky to show that, in appropriate bi-degrees, the group of
operations on motivic cohomology injects into the group of operations on étale
cohomology. (See [GW, Proposition 5.8].)

One may consult Examples 6.5 for various examples of the relations in Theo-
rem 1.1.
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Outline. We begin section 2 by reviewing quickly the cohomology of the clas-
sifying spaces of finite groups, using both the geometric and simplicial models for
the classifying spaces. We discuss the total power operations in detail in the next
two sections. First we recall the total power operations defined by Voevodsky for
defining the motivic operations. We show that this may be modified to define total
power operations for the simplicial operations, at least for classes whose degree is
less than or equal to twice their weight. Both of these are first defined for algebraic
cycles whose degree is twice their weight. Since the motivic operations are stable
with respect to suspension in both the degree and the weight this suffices to define
the motivic operations for all classes. However, since the simplicial operations are
stable with respect to suspension in only the degree, the above total power opera-
tions do not define simplicial operations except for classes with degree less than or
equal to twice their weight. Therefore we define total power operations in a differ-
ent manner to be able to define simplicial operations without the above restriction
and then show that these new total power operations agree with the ones defined
above for classes with degree equal to twice their weight. This is carried out in
detail in section 4.

At this point, the usual relations among the simplicial operations, like the
Cartan formulae and Adem relations are not obvious. The quickest approach to
establishing these for the simplicial operations is to show that the simplicial op-
erations defined here identify with the operations defined operadically as in [J1,
section 5] (making use of [May]), where such relations are known to hold. We
prove this in section 5. The next section contains the comparison theorem relating
the motivic operations with the simplicial ones.

We explore some applications of the above results in the last section. Motivic
operations that commute with proper push-forward have played a major role in
various degree formulae. Therefore, with a view towards such applications, we con-
struct simplicial cohomology operations that commute with proper push-forwards
and work out several examples of such push-forward formulae. The existence of
mod−p cohomology operations in characteristic p is not known, however, the sim-
plicial operations exist and have expected properties even in this case. Therefore, as
an application, we consider simplicial operations in mod−p motivic cohomology in
characteristic p, which identify with the cohomology with respect to the logarithmic
de-Rham Witt complex.

Another role of the simplicial operations is the following phenomenon, which
the first author first learned about in conversations with C. Weibel. Though the
simplicial operations may be obtained from the motivic ones when considering
the motivic cohomology of smooth schemes, this is no longer true for the motivic
cohomology of general simplicial schemes. (See Examples 6.5.) Therefore, it is
likely that the simplicial operations will play a non-trivial role in understanding
the motivic cohomology of simplicial schemes and simplicial presheaves.

Conventions. We restrict to smooth separated schemes of finite type over a
field k and l will be a fixed prime. Usually this will be assumed to be different
from the characteristic of k, and k will be assumed to be provided with a primitive
l-th root of unity, though such hypotheses are not required to define the simplicial
operations. We will also consider simplicial schemes X• over such a base field,
where each Xn will be assumed to be a smooth scheme of finite type over k. The
symbol Sm/kNis (resp. Sm/két) will denote the category Sm/k provided with the
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big Nisnevich (resp. étale) topology. If C denotes any one of these sites, SSh(C) will
denote the category of all pointed simplicial sheaves on C. The symbol HC will
denote the corresponding homotopy category obtained by inverting all A1-weak-
equivalences. Any pointed simplicial scheme X•, with each Xn ∈ (Sm/k), as well
as any pointed simplicial set will be viewed as an object in each of the categories
SSh(Sm/kNis) and SSh(Sm/két) in the obvious manner.

The mod-l motivic complex of weight i will be denoted Z/l(i). This should
be distinguished from the integers mod-l, which will be denoted Fl. The symbol
H∗M will denote cohomology with respect to the motivic or mod-l motivic complex
computed on the Nisnevich site; H∗ét will denote cohomology computed on the étale
site. Often, when certain computations hold in any of these cases, we will simply
use H∗ to denote cohomology computed on any of these sites.

2. Cohomology of the classifying space for a finite group

2.1. Geometric classifying spaces. We begin by recalling briefly the con-
struction of the geometric classifying space of a linear algebraic group, which is
originally due to Totaro [Tot]. Let G be a linear algebraic group over S = Spec k,
i.e., a closed subgroup-scheme in GLn over S for some n. For a faithful represen-
tation i : G → GLn, the geometric classifying space Bgm(G; i) of G with respect
to i is defined as follows. For m ≥ 1 let Um be the open sub-scheme of Anm
where the diagonal action of G determined by i is free. Let Vm = Um/G be the
quotient S-algebraic space of the action of G on Um induced by the (diagonal)
action of G on Anm. Since the action of G on Um is free, the quotient Vm is
smooth. We have closed embeddings Um → Um+1 and Vm → Vm+1 corresponding
to the embeddings (Id × {0})n : Amn → (Am+1)n and we set EGgm = lim

m→∞
Um

and BGgm = lim
m→∞

Vm where the colimit is taken in the category of sheaves on

(Sm/k)Nis or on (Sm/k)ét. Observe that if G = Σn (or a subgroup of it) acting
on An by permuting the n-coordinates and acting on Anm diagonally, we may take
Um = {(u1, · · · , un)|ui ∈ Am, ui 6= uj , i 6= j}.

2.2. Affine replacement via the the Jouanolou trick. In general, Um is
only quasi-projective, but by the Jouanolou trick, one may replace Um by an affine
scheme with a free action by G, which maps G-equivariantly onto Um and which
is an affine-space bundle over Um. (See, for example, [Voev1, p. 15].) Therefore,
we will henceforth denote the above affine replacement of Um by Um itself. Then
[Nag, Theorem 2, p.7] shows that Vm (which is the geometric quotient of Um by
G) is also affine. (These observations will be rather important for the construction
of the total power operations constructed below.)

2.3. The equivariant motivic (étale cohomology) of a scheme X with an ac-
tion by Σn will be defined to be H∗M(EΣgmn ×

Σn

X,Z/l(?)) (H∗ét(EΣgmn ×
Σn

X,Z/l(?)),

respectively). The results in [MV, section 4] show that one may also define equi-
variant étale cohomology using the simplicial construction for EΣn.

2.4. Motivic cohomology of the geometric classifying space. We recall
the computation of the reduced equivariant motivic cohomology of F , where F is
any pointed simplicial sheaf on Sm/k)Nis and l is a prime different from char(k) = p.
(For example, F = X+ where X is a given scheme with trivial action by Σl). (See
[Voev1, Section 6].) The following result is Voevodsky’s [Voev1, Proposition 6.16].
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Theorem 2.5 (Voevodsky). Let F be a pointed simplicial sheaf. Then H̃∗M(F ∧
(BΣgml )+; Z/l(?)) is a free module over H̃∗M(F ; Z/l(?))with a basis {cd̄i, di|i ≥ 0}
where

d̄ is a class in H̃2l−2
M ((BΣgml )+; Z/l(l − 1))

which is the mod-l reduction of a class d ∈ H̃2l−2
M ((BΣgml )+; Z(l − 1)) and

c is a class in H̃2l−3
M ((BΣgml )+; Z/l(l − 1)) so that δ(c) = d̄.

Let cycl denote the cycle map from motivic cohomology to étale cohomology.
(By identifying the motivic cohomology with the higher Chow groups, these cycle
maps identify with those defined in [Bl].) Now one may observe that the same
computation as above holds in étale cohomology with the classes c and d replaced
by their images under the above cycle map.

2.6. Motivic cohomology of the simplicial classifying space. For any
discrete group G, we let EG and BG denote the standard simplicial sets (with
EGn = Gn+1 and BGn = Gn). These (and other) simplicial sets give rise to
simplicial sheaves in the obvious way, and we use the same notation for the simplicial
set as for the corresponding simplicial sheaf.

Theorem 2.7. Suppose F is a pointed simplicial sheaf on (Sm/k)Nis. Then
H̃∗M(F∧BΣl,+; Z/l(?)) is a free module over H̃∗M(F ; Z/l(?)) with a basis {xȳi, ȳi|i ≥
0} where ȳ is a class in H̃2l−2

M (BΣl,+; Z/l(0)) which is the mod-l reduction of a class
y ∈ H̃2l−2

M (BΣl+; Z(0)) and x is a class in H̃2l−3
M (BΣl+; Z/l(0)) so that δ(x) = ȳ.

Proof. This follows from the Künneth formula of Dugger and Isaksen [DI,
Theorem 8.6 and Remark 8.7] and the (easy) fact that

H∗M(BΣl; Z/l(?)) = H∗(Σl,Z/l)⊗H∗M(k,Z/l(?)),

where H∗(Σl,Z/l) denotes the group cohomology of Σl. �

Remark 2.8. One may observe that the main difference between the compu-
tations in 2.5 and in 2.7 is that the classes x, y and ȳ have weight 0. Also it is
important to observe the computations in 2.7 hold even if l = char(k) = p.

One may replace F above with a pointed simplicial sheaf on (Sm/k)ét and the
above cohomology with H∗ét to obtain:

2.9. Étale cohomology. H̃∗ét(F ∧BΣl,+; Z/l(?)) is a free module over
H̃∗ét(F ; Z/l(?)) with a basis {xȳi, ȳi|i ≥ 0} where ȳ is a class in H̃2l−2

ét (BΣl+; Z/l(0))
and x is a class in H̃2l−3

ét (BΣl+; Z/l(0)) so that δ(x) = ȳ.

Remarks 2.10. We add some remarks here concerning the computation of
motivic cohomology in Voevodsky’s Theorem 2.5. First we consider the question of
stability, i.e. the effect on the above computations when BΣgml (BΣl) is replaced
by UN/Σl (EΣl×

Σl

UN ) for N large. Key results here are [Voev1, Lemma 3.5 and

Proposition 6.1]. These first of all show the following: for any smooth scheme X of
finite type over k, the maps

HNis(X+ ∧ (UN+1/Σl)+,Z/l(q))→ HNis(X+ ∧ (UN/Σl)+,Z/l(q)) and(2.10.1)

HNis(X+ ∧ (EΣl×
Σl

UN+1)+,n,Z/l(q))→ HNis(X+ ∧ (EΣl×
Σl

UN )+,n,Z/l(q))
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are quasi-isomorphisms for all n, provided N > q. HNis denotes a hypercohomology
complex, i.e. RHom(X+ ∧ (UN+1/Σl)+,Z/l(q)) in the first case and RHom(X+ ∧
(EΣl×

Σl

UN+1)n,Z/l(q)) in the second case both computed on the Nisnevich site.

If F is a pointed simplicial sheaf, and X•,+ → F is a resolution, then the same
quasi-isomorphisms hold on taking the homotopy inverse limit over the Xm,+ in
the first line and on taking the homotopy inverse limit over the Xm,+ and the n
in the second line. (If one prefers, one may replace the motivic complex Z/l(q)
by a corresponding sheaf of abelian group spectra so that one may work in the
category of spectra, where homotopy inverse limits are more familiar.) Therefore,
one obtains the isomorphisms (observe the lim1-terms vanish):

H̃∗M(F ∧BΣgml,+,Z/l(?)) ∼= lim
∞←N

H̃∗M(F ∧ (UN/Σl)+,Z/l(?)) and(2.10.2)

H̃∗M(F ∧BΣl,+,Z/l(?)) ∼= lim
∞←N

H̃∗M(F ∧ (EΣl×
Σl

UN/Σl)+,Z/l(?)).

Now the computation in 2.5 follows by first doing a similar computation for Σl
replaced by µl and adopting a transfer argument as shown in [Voev1, Theorems
6.10 and 6.16].

3. The total power operations: I

A key step in the comparison between the motivic and simplicial cohomology
operations is a thorough understanding of the total power operation. We proceed
to discuss this in detail. We will assume throughout this section that l is a prime
different from char(k) = p.

If one only considers the case i = 2j, then H̃2j(X+,Z/l(j)), for a smooth
scheme X, identifies with the usual Chow groups of X reduced mod-l. Then, as a
first approximation, one could define the total power operation by simply sending
a class

α ∈ H̃2j(X+,Z/l(j)) 7→ αl

which defines a class in H̃2jl(BΣgml,+ ∧X+,Z/l(jl)).
In order to be able to extend this total power operation as a natural transfor-

mation
P̃ : H̃2j( ; Z/l(j))→ H̃2jl( ∧BΣgml+ ,Z/l(jl))

defined on all pointed simplicial sheaves on the big Zariski, Nisnevich or étale site
over k, one needs to adopt the construction in [Voev1, section 5]. We will adopt
this suitably modified to also define a version of total power operations when BΣgml
is replaced by the simplicial model BΣl.

Next recall the following. An augmented simplicial object X• in a category C
consists of a simplicial object Y• in C with Yi = Xi, i ≥ 0 together with an object
X−1 ∈ C and an augmentation ε : Y0 → X−1 so that d0 ◦ ε = d1 ◦ ε, i = 0, 1.

Let X• denote an augmented simplicial scheme with each Xi, i ≥ −1, an
scheme. Let k[X•] = {k[Xn]|n} denote the corresponding co-ordinate ring. A
finitely generated k[X•]-module is given by a collection {Mn|n} where each Mn is a
finitely generated k[Xn]-module and provided with a compatible collection of maps
{φα : α∗(Mn) → Mm} for each structure map α : Xm → Xn of X•. M• will be
called a finitely generated projective module (or a vector bundle on X•) (a finitely
generated free module (or a trivial vector bundle)) if each Mm is a finitely generated



Cohomology Operations 7

projective (free, respectively) k[Xm]-module and each of the structure maps φα is
an isomorphism of k[Xm]-modules.

Proposition 3.1. Let X• denote an augmented simplicial scheme so that each
Xi, i ≥ −1, is affine. If M• = {Mm|m} is a finitely generated module on X• which
is the pull-back of a finitely generated k[X−1]-module, then there exists a finitely
generated free module F• on X• and a map φ : F• →M• which is an epimorphism
in each degree. In case M• is the pull-back of a finitely generated projective k[X−1]-
module, one may also find a finitely generated projective k[X•]-module N• so that
Mm ⊕ Nn ∼= Fn for all n and where the last isomorphism is compatible with the
structure maps of the augmented simplicial scheme.

Proof. Since M• is the pull-back of a finitely generated k[X−1]-module, it
suffices to prove the first statement when the augmented simplicial scheme X• has
been replaced by the affine scheme X−1. This is then clear since X−1 is affine. If
N−1 is the kernel of the surjection, then M−1 ⊕ N−1

∼= F−1. This isomorphism
pulls-back to a similar isomorphism Mn⊕Nn ∼= Fn for each n and compatible with
the structure maps of the augmented simplicial scheme X•. �

The following results relate the geometric classifying space BΣgml with the
simplicial classifying space BΣl.

Proposition 3.2. Let UN denote the open subscheme

{(u1, · · · , ul)|ui ∈ AN , uj 6= uk, j 6= k} of ANl.

For any fixed integer N > 0, let gsN : EΣl×
Σl

UN → EΣl×
Σl

Spec k = BΣl

denote the obvious map of simplicial schemes. This map induces a weak-equivalence
in HSm/kNis (and also in HSm/két) on taking the colimit as N → ∞. (The
above homotopy categories are the homotopy categories of simplicial sheaves on the
appropriate sites with A1-inverted.)

Proof. By Proposition 2.3 on page 134 of [MV], the colimit U∞ := colimN UN
in the category of Nisnevich (or étale) sheaves is A1-homotopy equivalent to Spec k.
Therefore colimN EΣl×

Σl

UN is A1-homotopy equivalent to EΣl×
Σl

Spec k = BΣl. �

In view of the above proposition, we may approximate BΣl by EΣl×
Σl

UN by

taking N high enough. We will let U denote UN and V denote VN for a large N .
Observe that one has an obvious augmentation

(3.2.1) EΣl×
Σl

UN → UN/Σl

One may view this diagram as an augmented simplicial scheme. Observe that the
schemes UN and VN = UN/Σl may be replaced equivariantly by affine schemes as
shown in 2.2, so that Proposition 3.1 applies.

3.2.2. A key construction used in the (motivic) total power construction. Recall
from [Voev1, Theorem 2.1] that the functor X → H2n(X,Z/l(n)) is represented
by the sheaf (in the A1-localized homotopy category of complexes of sheaves on
the Nisnevich topology): U 7→ Fltr(An)(U)/Fltr(An−{0})(U), U ∈ (Sm/k)Nis. We
will denote the presheaf U 7→ Fltr(An)(U)/Fltr(An − {0})(U), U ∈ (Sm/k)Nis by
K(n)pre and the corresponding sheaf by K(n).
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Let X denote a scheme in (Sm/k) and E,L vector bundles on X provided with
an isomorphism φ : E×X L→ ANX which is the N -dimensional trivial bundle on X.
Given a cycle Z on E with coefficients in Fl and finite over X, we consider the cycle
on L×X E ×X L whose fiber over a point (x, l) of L is (l, Zx, l), where Zx denotes
the fiber of Z over x ∈ X. It is observed in [Voev1, Construction 5.1] that this is a
cycle finite over L and that by identifying E ×X L with ANX using the isomorphism
φ, one obtains a map of pointed sheaves Th(L)→ Fltr(AN )/Fltr(AN −{0}) (where
Th(L) denotes the Thom-space of L), i.e. a class in H̃2N (Th(L),Z/l(N)).

Remark 3.3. The main point of this construction is that the vector bundle
E is usually a non-trivial vector bundle, and X will be an affine scheme so that
one can find a complementary vector bundle L so that E ⊕ L is a trivial vector
bundle. See 3.3.4 below where Ē plays the role of E above with the scheme X
being V = U/Σl. In case the vector bundle E was trivial, one could take L to be
zero-dimensional, i.e. Th(L) = X+.

3.3.1. We will denote the cycle constructed above in 3.2.2 ∆∗(q∗(Z)), where
q : E×

X
L→ E is the obvious projection and ∆ : E×

X
L→ L×

X
E×
X
L is the diagonal.

Moreover, making use of the Thom-isomorphism,

H̃2rk(E)(X+,Z/l(rk(E))) ∼= H̃2N (Th(L),Z/l(N)),

one observes that this defines a class in H̃2rk(E)(X+,Z/l(dim(E))) which is denoted
a(Z) and shown to be independent of the choice of the isomorphism φ and the vector
bundle L: see [Voev1, Construction 5.1]. (Here rk(E) denotes the rank of E as a
vector bundle.)

3.3.2. An avatar of the motivic Thom-class for trivial bundles. For later use,
we make the following observation. The Thom class of the trivial bundle Ac
on Spec k corresponds to the class of the identity in Hom(Fltr(Ac)/Fltr(Ac −
0),Fltr(Ac)/Fltr(Ac − 0)). In fact, this corresponds to the class of the diagonal
∆ ⊆ Ac × Ac, which is a correspondence that is finite for the projection to the
first factor. We will denote this class by ∆∗(1). Next let E denote a trivial vector
bundle of rank c on the smooth scheme X. Then X×∆Ac defines a correspondence
on X×Ac×Ac = E×Ac whose projection to E = X×Ac is finite. This defines the
Thom-class, tE , for E in H2c(Th(E),Fltr(Ac)/Fltr(Ac − 0)) and will be denoted
∆∗(q∗(1)) where q : E = X × Ac → X is the obvious projection.

Next let L denote a vector bundle on the smooth scheme X. Then corre-
spondences C on L × An whose projection to L is finite and so that C restricted
to (L − X) × An in fact is contained in (L − X) × (An − 0) define classes in
Hom(Th(L),Fltr(An)/Fltr(An − 0)) and hence in H2n(Th(L),Z/l(n)). Then cup-
product with the Thom-class tE∪ [C] may be identified with the class ∆∗(q∗E(C)) =
{(e, C, e)|e ∈ Ac} where qE : (L⊕E)×An → L×An is the obvious projection and ∆
is the diagonal L×Ac×An = (L⊕E)×An → (L⊕E⊕E)×An = L×Ac×Ac×An.

Observe from 3.2.2, that one obtains the isomorphism:

H̃2i(X+,Z/l(i)) ∼= H̃0(X+, C∗(K(i)))

3.3.3. Construction of the total power operation. We will start with a section
of the presheaf Kpre(i), i.e. a cycle Z on X × Ai finite over X. Let Zl denote the
l-th external power of Z: this is now a cycle on (X×Ai)l. We will let p∗(Zl) denote
its pull-back to (X ×Ai)l ×U , where U = UN for some suitably large N . Since Σl
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acts freely on U , one may observe that the cycle p∗(Zl) descends to a unique cycle
Z ′ on ((X×Ai)l×U)/Σl equi-dimensional and finite over (X l×U)/Σl. On pulling
back by the diagonal, ∆ : X → X l, one obtains the cycle Z ′′ on X × (Ail ×U)/Σl.

3.3.4. Now Ē = (Al × U)/Σl is a vector bundle on V = U/Σl (where Σl acts
diagonally) and V is affine: see 2.2. Moreover, recall that we have the augmented
simplicial schemes: EΣl×

Σl

(Al × U)→ (Al × U)/Σl and EΣl×
Σl

U → U/Σl .

The pull-back of the vector bundle Ē to the simplicial scheme EΣl×
Σl

U defines a

vector bundle we will denote by Ê. Since the pull-back of Ē to U is a trivial vector
bundle, it follows that Ê is also a trivial bundle, i.e. trivial on restriction to each
(EΣl×

Σl

U)n. (We define a vector bundle on a simplicial scheme X• to be trivial, if

its restriction to each Xn is a trivial vector bundle.) By invoking Proposition 3.1,
one may find a vector bundle L̄ on V = U/Σl so that Ē ×V L̄ ∼= ANV for some N .
Therefore, the pull-back L̂ of L̄ to EΣl×

Σl

U also has the property that Ê×EΣl×
Σl

U L̂

is a trivial bundle of rank N .
Next we let Ẽ = X× Ē, L̃ = X× L̄ denote the pull-backs of Ē and L̄ to X×V .

We also let E = X× Ê, L = X× L̂ denote the corresponding vector bundles on the
simplicial scheme X× (EΣl×

Σl

U). Then E×X×(EΣl×
Σl

U)L is a trivial bundle of rank

N on the simplicial scheme X× (EΣl×
Σl

U) and Ẽ×X L̃ is a trivial bundle of rank N

on X×V . Moreover, E⊕i (L⊕i) will denote the corresponding i-fold sums. Observe
that there is a natural map Th(L⊕i) = X+∧Th(L̂⊕i)→ Th(L̃⊕i) = X+∧Th(L̄⊕i).

In this context, the same arguments as above show that a cycle Z on X × Ai
finite over X defines (pointed) maps

PM(Z) : X+ ∧ Th(L̄⊕i) = Th(L̃⊕i)→ Fltr(AiN )/Ztr(AiN − 0) = K(iN) and

(3.3.5)

Ps(Z) : X+ ∧ Th(L̂⊕i) = Th(L⊕i)→ Fltr(AiN )/Ztr(AiN − {0}) = K(iN)

with the latter being obtained by pre-composing the first map with the obvious
map Th(L̂⊕i)→ Th(L̄⊕i).

The contravariant functoriality of the above constructions in X shows first
of all that the above arguments suffice to define PM(Z) and Ps(Z) associated
to section of the sheaf K(i)). (To see this, one recalls the sheafification pro-
cess starts with a presheaf P and first takes P+ whose sections over a U are

lim
→
ker(Γ(Ui, P )

pr∗1−pr
∗
2→ Γ(Ui×

U
Uj , P )), where {Ui} is an open cover of U and the

colimit is over a cofinal system of open covers of U . To obtain the associated sheaf
from P , one takes (P+)+.) Next consider the simplicial resolution of the sheaf K(i)
by pointed smooth simplicial schemes defined as follows. (See [Voev1, p. 9] for
details.) In degree n, it is given by the pointed smooth scheme

GnK(i) = (tX0→X→···Xn,Z∈Γ(Xn,K(i)0X0)+

Making use of the above resolution, the same contravariant functoriality of the
above constructions shows that one may replace X in (3.3.5) by the sheaf K(i))
to obtain maps of (pointed) sheaves in (Sm/k)Nis (and also in SShSm/kZar and
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SShSm/két):

PM : K(i) ∧ Th(L̄⊕i)→ K(iN) and(3.3.6)

Ps : K(i) ∧ Th(L̂⊕i)→ K(iN))

with the latter being obtained by composing the first map with the map induced
by the map Th(L̂⊕i)→ Th(L̄⊕i).

The above natural transformations of simplicial sheaves induce the natural
transformations (defined on the categories HSm/kNis and HSm/két):

P ′M : H̃2i( ,Z/l(i))→ H̃2iN ( ∧Th(L̄⊕i),Z/l(iN)) and

P ′s : H̃2i( ,Z/l(i))→ H̃2iN ( ∧Th(L̄⊕i),Z/l(iN))

Making use of Thom-isomorphisms and observing also that rk(E) = l, these then
correspond to

P ′M : H̃2i( ,Z/l(i))→ H̃2il( ∧(UN/Σl)+,Z/l(il)) and

P ′s : H̃2i( ,Z/l(i))→ H̃2il( ∧(EΣl×
Σl

UN )+,Z/l(il))

so that the latter is obtained from the former by composing with the map induced
by the augmentation EΣl×

Σl

UN → UN/Σl. Moreover, the isomorphisms in (2.10.2)

along with [Voev1, Lemma 5.7] show that these are compatible as N →∞ which
provides the following result.

Proposition 3.4. We obtain natural transformations:

PM : H̃2i( ,Z/l(i))→ lim
∞←N

H̃2il( ∧(UN/Σl)+,Z/l(il))

∼= H̃2il( ∧(BΣl)
gm
+ ,Z/l(il)) and

Ps : H̃2i( ,Z/l(i))→ lim
∞←N

H̃2il( ∧(EΣl×
Σl

UN+),Z/l(i))

∼= H̃2il( ∧BΣl+,Z/l(il))

on H(Sm/kNis)+ (and also on H(Sm/két)+) so that the latter is obtained from
the former by composing with the map induced by the augmentation EΣl×

Σl

UN →

UN/Σl.

Definition 3.5. The natural transformation PM (Ps) will be called the geo-
metric total power operation (the simplicial total power operation, respectively).

3.6. Motivic operations. Next we recall the definition of the cohomology
operations of Voevodsky. Let F denote a pointed simplicial sheaf on (Sm/k)Nis (or
on (Sm/k)Zar).

One starts with the total power operation :

(3.6.1) PM : H̃2i
M(F,Z/l(i))→ H̃2il

M (F ∧ (U/Σl)+,Z/l(il))
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By the results in 2.5, ⊕
i,j
H̃il
M(F ∧ (U/Σl)+,Z/l(jl)) is a free module over

H̃∗M(F,Z/(?)) with basis given by the elements d̄r and cd̄r, r ≥ 0. The operations
P rM and βP rM are defined by the formula:

(3.6.2) PM(w) = Σr≥0P
r
M(w)d̄i−r + βP rM(w)cd̄i−r−1, w ∈ H̃2i(F,Z/l(i))

Observe that, so defined P rM : H̃2i
M(F,Z/l(i))→ H̃

2i+2r(l−1)
M (F,Z/l(i+r(l−1)))

and
βP rM : H̃2i

M(F,Z/l(j))→ H̃
2i+2r(l−1)+1
M (X,Z/l(j + r(l − 1))).

Behavior under suspension: A key observation is that, since the motivic co-
homology operations are stable with respect to shifting degrees by 1, and also
both degrees and weights by 1, this defines the operations P rM and βP rM on all
H̃i
M(F,Z/l(j)).

The simplicial operations are not stable with respect to suspension of weights,
and therefore, one cannot define simplicial operations in general using the total
power operations considered above. For this, we define a new total power operation
when the simplicial model is used for the classifying spaces of finite groups. We
also show that, when applied to classes with degree = twice their weight, with
l 6= char(k) = p, these total power operations identify with the ones considered
above. All of these are discussed in detail in the next section.

4. The total power operations: II

We proceed to define total power operations in a somewhat different manner
so as to be able to define the simplicial operations on all classes. Let Σl denote the
symmetric group on l-letters and let π denote a subgroup of Σl. Let Bπ denote the
simplicial classifying space of π with Eπ → Bπ denoting the associated principal
π-fibration. We let Fl(Eπ) denote the chain complex obtained by taking the free
Fl-vector space in each simplicial degree and viewing that as a chain-complex in
the usual manner using the alternating sums of the face maps as the differential.
We let Fl(Eπ)∨ = Hom(Fl(Eπ),Fl) which now forms a co-chain complex (i.e. with
differentials of degree +1) trivial in negative degrees.

Let K denote a possibly unbounded co-chain complex. Now K⊗
l

is the l-fold
tensor product of K:the symmetric group Σl acts in the obvious manner on K⊗

l

.
Therefore, one may now form the co-chain complex:

Fl(Eπ)∨ ⊗
Fl[π]

K⊗
l

where the differentials of the tensor-product are induced by the differentials of
the two factors in the usual manner. (Since K is allowed to be an unbounded
complex, one needs to exercise care in taking the above complex: strictly speaking
one needs to take the homotopy inverse limit of the double co-chain complexes
obtained this way: see [J1]. However, one may identify this with a suitable total
chain-complex as is shown in [Brow, Appendix].) In particular, the differential,
((Fl(Eπ))∨)0 ⊗

Fl[π]
K⊗

l

)n → (Fl(Eπ)∨ ⊗
Fl(π)

(K⊗
l

)n+1 is such that if z ∈ Kn is a cycle,

then its l-th power z⊗
l

defines a cycle of degree nl in the above total complex we
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denote by

(4.0.3) Q̃(z) ∈ (Fl(EΣl)∨ ⊗
Fl(Σl)

K⊗
l

)nl

We will choose the complex K as follows. First we allow three distinct contexts:
(i) We work throughout on the site (Sm/k)Zar with H∗ denoting cohomology

on the Zariski site.
(ii) We work throughout on the site (Sm/k)Nis with H∗ denoting cohomology

on the Nisnevich site.
(iii) We work throughout on the site (Sm/k)ét with H∗ denoting cohomology

on the étale site.
Next observe that the category of (possibly unbounded) co-chain complexes of

abelian sheaves on any of the above two sites is a quasi-simplicial model category
in the sense of [Fausk] and therefore it is closed under homotopy inverse limits.
Let Hom denote the internal hom in this category. Then, given co-chain complexes
of abelian sheaves M , N , we let RHom(M,N) = Hom(M,GN) with G denoting
the homotopy inverse limit of the cosimplicial object defined by the Godement
resolution computed on the appropriate site. RHom will denote the corresponding
external hom, i.e. where Hom in the above definition of RHom has been replaced
by the external hom, Hom.

Let X ∈ (Sm/k). We let K = Γ(X,RHom(M, {Fl(i))) where M is any
chain complex of abelian sheaves trivial in negative degrees. Moreover, now K =
RHom(M ⊗ Z(X), {Fl(i)), where Z(X) denotes the co-chain complex associated
to the simplicial abelian presheaf defined by Γ(U,Z(X)) = Z(Γ(U,X)).

In fact we may start with a pointed simplicial sheaf F in (Sm/k)Nis and let M
denote the normalized co-chain complex obtained by taking the associated free
simplicial sheaf Fl(F ) of Fl-vector spaces (with the base point of F identified
with 0) and re-indexing so that we obtain a co-chain complex. Then we define
RHom(F, {Fl(i)) = RHom(M, {Fl(i)) = Hom(M,G{Fl(i)). The above definition
makes implicit use of the adjunction between the free Fl-vector space functor and
the underlying functor sending a Fl-vector space to the underlying set. A useful
observation in this context is that the natural map Fl(S)⊗

Fl

Fl(T )→ Fl(S
∧
T ) is a

weak-equivalence for any pointed simplicial presheaves S and T . (One may prove
this as follows. First this is clear if S is a presheaf of pointed sets, i.e. it is true
if S is replaced by its 0-th skeleton. One may prove using ascending induction on
n, that the above map is a weak-equivalence when S is replaced by its n-skeleton.
Finally take the colimit as n→∞ over the n-skeleta of S.) This will enable one to
obtain the weak-equivalence RHom(M ′ ⊗M ′′, {Fl(i)) ' RHom(F ′

∧
F ′′, {Fl(i)),

when M ′ = Fl(F ′) and M ′′ = Fl(F ′′).
Then K⊗

l

= Γ(X,RHom(M, {Fl(i)))⊗
l

= Γ(X l,RHom(M, {Fl(i))�l

) maps
to Γ(X,RHom(M, {Fl(il))) by pull-back by the diagonal ∆ : X → X l. (In fact
this makes use of the diagonal map Fl(F ) → Fl(F )⊗

l

and the pairing {Fl⊗
l

→
{Fl.) We proceed to show this pairing is compatible with the obvious action of
Σl. First observe that M being the normalized chain complex obtained from the
simplicial abelian sheaf Fl(F ) (re-indexed so as to become a co-chain complex), has
the structure of a co-algebra over the Barratt-Eccles operad as shown in [B-F, 2.1.1
Theorem]. {Fl has the structure of an algebra over the same operad as shown in
[J1, Theorem 1.1]. Therefore, one may readily show that these structures provide
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RHom(M, {Fl) the structure of an algebra over the tensor product of the Barratt-
Eccles operad and the Eilenberg-Zilber operad: see [J1, Proposition 6.4]. Therefore,
the above pairing is compatible with the obvious action of Σl and one obtains the
obvious map

Fl(EΣl)∨ ⊗
Fl(Σl)

Γ(X,RHom(Fl(F ), {Fl(i)))⊗l

→ Fl(EΣl)∨ ⊗
Fl(Σl)

Γ(X,RHom(Fl(F ), {Fl(il))).

(See for example (5.1.3), which explains such pairings in more detail.) One may
identify the last term with

Γ(X,RHom(Fl(F ) ⊗
Fl(Σl)

Fl(EΣl), {Fl(il)) = Γ(X,RHom(Fl(F )⊗ Fl(BΣl), {Fl(il)).

We denote the above composition

(4.0.4)
Fl(EΣl)∨ ⊗

Fl(Σl)
Γ(X,RHom(Fl(F ), {Fl(i)))⊗l

→ Γ(X,RHom(Fl(F )⊗ Fl(BΣl), {Fl(il)))

by Q̄s. As observed above any cycle z ∈ Γ(X,RHom(M, {Fl(i))) in degree n pro-
vides a cycle in degree nl in the source of the last map: this cycle was denoted Q̃(z).
Therefore, Q̄s(Q̃(z)) defines a cycle in the target of the last map in degree nl. More-
over, one may show readily that if two cycles z and z′ ∈ Γ(X,RHom(M, {Fl(i)))
are such that their difference is a co-boundary, then the same holds for the cy-
cles Q̃(z) and Q̃(z′) as well as Q̄s(Q̃(z) and Q̄s(Q̃(z′)): this may be proven as in
[St-Ep, Chapter VII, Lemma 2.2]. Therefore, the above discussion provides the
natural transformation

(4.0.5) Qs : H̃j( ,Z/l(i))→ H̃jl( ∧BΣl+,Z/l(il))

for all j and all i ≥ 0 on the category HSm/kNis and HSm/két. (We call this the
(second) simplicial total power operation.)

4.1. The simplicial operations. The book [Kr-May] first introduced op-
erations of the form (1.0.2). A detailed construction along the lines of loc. cit. is
given in [J1]. However, for the comparison with the motivic cohomology opera-
tions, it is more convenient for us to define simplicial operations using the total
operation Qs defined above in (4.0.5). We then compare the operations to those
of [Kr-May] and [J1] in Section 5.

Let F denote a pointed simplicial sheaf. The computation
of H̃∗M(F ∧BΣl+; Z/l) in 2.7 shows that it is a free module over H̃∗M(F ; Z/l) with
basis {xȳi, ȳi|i ≥ 0}. The operation P rs (βP rs ) is defined by the formula:
(4.1.1)
Qs(w) = Σr≥0P

r
s (w)ȳj/2−r + βP rs (w)xȳj/2−r−1, w ∈ H̃j(F,Z/l(i)), for all j.

Observe that, so defined,

P rs : H̃j(F,Z/l(i))→ H̃j+2r(l−1)(F,Z/l(il)) and
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βP rs : H̃j(F,Z/l(i))→ H̃j+2r(l−1)+1(X,Z/l(il)).

Behavior under suspension. In contrast to the motivic operations, these oper-
ations are compatible with shifting the degree alone by 1. This will follow from the
comparison theorem in the next section.

Next we proceed to show that, for l 6= char(k) = p and for classes with degree
= twice the weight, the total power operation Qs identifies with the total power
operation Ps defined above in Proposition 3.4.

Proposition 4.2. Let l 6= char(k) = p. Let α ∈ H̃2i
M(F,Z/l(i)) denote a class.

Then Qs(α) = Ps(α).

Proof. First we observe from [Voev1, Theorem 2.1] that since we are only
considering cycles whose degree equals twice their weight, one may replace the
motivic complex Z/l(m)[2m] by the complex of sheaves C∗(K(m)) defined earlier.

The next key step to is to invoke the following result proved in Proposition 3.2:
the map gsN : EΣl×

Σl

UN → EΣl×
Σl

Spec k = BΣl of simplicial schemes induces a

weak-equivalence in HSm/kNis (and also in HSm/kZar and HSm/két) on taking
the colimit as N →∞. Therefore, and in view of Proposition 3.4, one may replace
BΣl in the above definition of the simplicial operations by EΣl×

Σl

U , where U = UN ,

N >> 0. i.e. First the map in (4.0.4) may be replaced by the map

(4.2.1) Fl(EΣl)∨ ⊗
Fl(Σl)

Γ(X,RHom(Fl(F )⊗ Fl(U), C∗(K(i))))⊗l

→ Γ(X,RHom(Fl(F )⊗ Fl(EΣl) ⊗
Fl(Σl)

Fl(U), C∗(K(il))))

Therefore, the total power operation Qs may be defined as a map

(4.2.2) Qs : H̃j( , C∗(K(i)))→ H̃jl( ∧(EΣl×
Σl

U)+, C∗(K(il))).

Next will consider the case when F = X which is a smooth scheme and
with a class in H̃2i(F, {Fl(i)) coming from a section in Γ(X,C∗(K(i)pre)). Since
Γ(X,Cn(K(i)pre) ⊆ Γ(X × ∆[n],K(i)pre), we may assume without loss of gener-
ality that n = 0. Therefore, such a class is represented by a cycle Z on X × Ai
equi-dimensional and finite over X. One first pulls-back the cycle Z to p∗(Zl) on
X × Ail × U . This cycle is invariant under the obvious action of the symmetric
group Σl on Ail × U and therefore defines a cycle in

Fl(EΣl)∨ ⊗
Fl(Σl)

Γ(X,Hom(Fl(U),K(il))) = Γ(X,Hom(Fl(EΣl) ⊗
Fl(Σl)

Fl(U),K(il))).

Observe that this is the total complex of the double complex defined by the cosim-
plicial co-chain complex: {Γ(X,Hom(Fl(Σ×

n

l )⊗ Fl(U),K(il)))|n}.

This cycle will be denoted Q̂s(Z). Since the cycle Zl is clearly stable under the
permutation action of the symmetric group Σl, Q̂s(Z) corresponds to a class in
Γ(X,Hom(Fl(U),K(il))) so that its pull-back to classes in Γ(X,Hom(Fl(Σl) ⊗
Fl(U),K(il))) by the group-action µ : Σl×U → U and the projection pr2 : Σl×U →
U are the same, i.e. it is an invariant cycle.
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4.2.3. A key observation is that the assignment Z 7→ Q̂s(Z) is contravariantly
functorial in X and that Q̂s(Z) represents the class Qs(Z).

Next let Ē and L̄ denote the vector bundles on V = U/Σl defined as in 3.3.4.
Recall rk(Ē) = l, l + rk(L) = N , Ê, L̂ (E, L) are the corresponding pull-backs to
EΣl×

Σl

U (X × EΣl×
Σl

U , respectively). Therefore, the same cycle as above defines

the cycle
∆∗(q∗(Q̂s(Z))) ∈ Γ(X,Hom(Fl(Th(L̂⊕i0 )),K(iN))

= Hom(Z(X)⊗ (Fl(Th(L̂⊕i)),K(iN)).

where q : Ê⊕i ⊕ L̂⊕i → Ê⊕i is the obvious projection and ∆ : Ê⊕i ⊕ L̂⊕i →
L̂⊕i⊕Ê⊕i⊕L̂⊕i is the diagonal. Observe that the vector bundle L̄ on V corresponds
to a Σl-equivariant vector bundle on U , which is none other than the degree-0-term
L̂0 of L̂. Now the diagonal of L̂0 is clearly stable by the Σl-action. Therefore, the
class denoted ∆∗(q∗(Q̂s(Z))) corresponds to a class in

Hom(Z(X)⊗ (Fl(Th(L̂⊕i0 )),K(iN))

so that its pull-back by d0 and d1 to classes in Γ(X,RHom(Fl(Th(L̂⊕i1 )),K(iN)))
identify, i.e. it again defines a Σl-invariant cycle in

Hom(Z(X)⊗ (Fl(Th(L̂⊕i)),K(iN)).

Moreover, the definition of the class Ps(Z) as in (3.3.5) shows that, Ps(Z) is
the class in

H̃2il( ∧(EΣl×
Σl

U)+, C∗(K(il)))

that maps to the class ∆∗(q∗(Q̂s(Z))), under the Thom-isomorphism:

H̃2il( ∧(EΣl×
Σl

U)+, C∗(K(il)))Thom−isom→ H̃2iN ( ∧Th(L̂⊕i), C∗(K(iN))).

4.2.4. Observe that it suffices to show that the class ∆∗(q∗(Q̂s(Z))) is also the
image under Thom-isomorphism of the class Q̂s(Z) in

H2il(X+ ∧ (EΣl×
Σl

U)+,Z/l(il)).

For this, we begin by observing that we have the following commutative diagram
(where Hom denotes Hom in the category of simplicial sheaves)

Hom(X+ ∧ Th(L̂⊕i), C∗(K(iN)))

∆∗q
∗
E( )// Hom(Σ2iN,iNX+ ∧ (EΣl×

Σl

U)+, C∗(K(i(N + l))))

Hom(X+ ∧ (EΣl×
Σl

U)+, C∗(K(il)))

∆∗q
∗
AiN ( )

33gggggggggggggggggggggg
∆∗(q

∗
L( ))

OO

where the top horizontal map denoted ∆∗q∗E (the left-vertical map denoted ∆∗q∗L)
is the map defined by the construction in 3.3.1 where qL : E⊕i ⊕ L⊕i → E⊕i

(qE : (L⊕i⊕E⊕i)×AiN → L⊕i×AiN ) is the obvious projection. One also obtains
a similar commutative diagram using the simplicial mapping space functor Map
instead of Hom.
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In fact one may begin with a similar diagram involving the corresponding sim-
plical presheaves K(s)pre and make use of the contravariant functoriality of the
construction in 3.3.1 to obtain the above diagram of simplicial sheaves. (To see
this, one may again recall the sheafification process starts with a presheaf P and

first takes P+ whose sections over a U are lim
→
ker(Γ(Ui, P )

pr∗1−pr
∗
2→ Γ(Ui×

U
Uj , P )),

where {Ui} is an open cover of U and the colimit is over a cofinal system of open
covers of U . To obtain the associated sheaf from P , one takes (P+)+.)

Observe that the vector bundles Ê and Ê⊕L̂ and hence Ê⊕i and Ê⊕i⊕L̂⊕i are
all trivial, i.e. Ê0 (Ê0 ⊕ L̂0) corresponds to U × Al ( U × AN , respectively) where
Σl acts in the obvious way by permutation of the coordinates on Al and the action
of Σl on AN is induced by its actions on Ê0 and L̂0 (which is some Σl-equivariant
vector bundle on U obtained by pull-back from the vector bundle L̄ on V .) Since
E (L) is the pull-back of Ê (L̂) to vector bundles over X ×EΣl×

Σl

U it follows that

E, E ⊕ L, E⊕i and E⊕i ⊕ L⊕i are all trivial vector bundles.
The map qAiN appearing in the slant map above is the projection map qAiN :

AiN × E⊕i = L⊕i ⊕ E⊕i ⊕ E⊕i → E⊕i and ∆ there is the diagonal ∆ : AiN ×
E⊕i → AiN × AiN × E⊕i. Therefore, as observed in 3.3.2, the top horizontal
map and the slant map are infact concrete realizations of taking cup-product with
the corresponding Thom-classes. Finally, the commutativity of the above triangle
follows from the naturality of the construction 3.2.2. It may also be seen more
explicitly as follows. Let Y denote a section of the sheaf C∗(K(il)) over X+ ∧
(EΣl×

Σl

U)+. Then we already observed that the class ∆∗(q∗L(Y)) is its image in

the top left corner. Therefore, on applying the map in the top horizontal row to
the class ∆∗(q∗L(Y)), one obtains ∆∗(q∗E(∆∗(q∗L(Y)))). Let the fiber over a point
(x, u) ∈ X × U of the cycle Y be denoted Yx,u. Then the corresponding fiber of
∆∗q∗L(Y), will be (lu,Yx,u, lu) where lu is a point in the fiber of L⊕i over u. Now
the corresponding fiber of ∆∗q∗E(∆∗(q∗L(Y))) over (x, u) will be (lu, eu,Yx,u, lu, eu)
where eu is a point of E⊕i in the fiber over u.

Since the construction in 3.2.2 is contravariantly functorial in X, one may now
letX be replaced by any smooth scheme so that we obtain the commutative diagram
of simplicial presheaves:

Map(( )+ ∧ Th(L̂⊕i), C∗(K(iN)))

∆∗q
∗
E( )// Map(Σ2iN,iN ( )+ ∧ (EΣl×

Σl

U)+, C∗(K(i(N + l))))

Map(( )+ ∧ (EΣl×
Σl

U)+, C∗(K(il)))

∆∗q
∗
AiN ( )

33ffffffffffffffffffffff
∆∗(q

∗
L( ))

OO

Since the above diagram of simplicial presheaves strictly commutes, one will ob-
tain a similar commutative triangle, when the simplicial presheaves above have
been replaced by fibrant simplicial presheaves. (Here one may assume an injec-
tive model structure for simplcial presheaves, where every simplcial presheaf is
cofibrant and the fibrations are global fibrations.) One may now observe that this
corresponds upto weak-equivalence to replacing the simplicial sheaves C∗(K(s)) ap-
pearing above, for varying s, with globally fibrant simplicial presheaves upto weak-
equivalence. These observations result in a similar commutative triangle when the
simplicial sheaves C∗(K(s)) all have been replaced by globally fibrant simplicial
sheaves upto weak-equivalence and the argument ( ) can be any simplicial scheme
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which is smooth in all degrees. Since any pointed simplicial sheaf has a simplicial
resolution by pointed smooth schemes, it follows one may put any pointed simplicial
sheaf in the argument ( ). (Observe that the vector bundles Ē and L̄ as in 3.2.2
on V as well as the associated vector bundles Ê and L̂ on EΣl×

Σl

U are defined

independently of X, so that one may pull back these bundles to (X• × EΣl)×
Σl

U .

The pull-back of Ê (L̂) will be denoted E (L, respectively): clearly L ⊕ E will be
trivial.) These result in the commutative triangle
(4.2.5)

H∗(( )+ ∧ Th(L̂⊕i), C∗(K(iN)))

∆∗q
∗
E( )// H∗(Σ2iN,iN ( )+ ∧ (EΣl×

Σl

U)+, C∗(K(i(N + l))))

H∗(( )+ ∧ (EΣl×
Σl

U)+, C∗(K(il)))

∆∗q
∗
AiN ( )

33gggggggggggggggggggggg
∆∗(q

∗
L( ))

OO

On the other hand, the naturality of Thom-isomorphisms now provides us with
the following commutative triangle:

H̃2iN (( )+ ∧ Th(L̂⊕i), Z/l(iN))
// H̃2i(N+l)(Σ2iN,iN ( )+ ∧ (EΣl×

Σl

U)+, Z/l(i(N + l)))

H̃2il(( )+ ∧ (EΣl×
Σl

U)+, Z/l(il))

Σ2i(N+l),N+l

33ggggggggggggggggggggg

OO

The left-vertical map is Thom-isomorphism for the vector bundle L⊕i, the top
horizontal map is Thom-isomorphism for the vector bundle E⊕i and the slant-
map corresponds to Thom-isomorphism with respect to the trivial bundle L⊕i ⊕
E⊕i. As observed above, making use of 3.3.2, the top horizontal map and the
slant map in the diagram (4.2.5) are in fact Thom-isomorphism. Comparing the
two commutative triangles above, it follows therefore, that the left-vertical map
in (4.2.5) also identifies with the corresponding Thom-isomorphism, i.e. taking
cup-product with the corresponding Thom-class. Therefore, we obtain:

Ps(Z) = Q̂s(Z)).

Since Q̂s(Z) represents the class Qs(Z), this completes the proof of the proposition
first when the simplicial sheaf F is a smooth scheme and α ∈ H̃2i

M(F,Z/l(i)) . In the
general case where F is any simplicial sheaf, the construction in 3.2.2 extended to
smooth simplicial schemes defines a class ∆∗(q∗(α)) ∈ H2iN (F∧Th(L̂⊕i),Z/l(iN)).
The class Ps(α) is the class in H2il(F ∧EΣl×

Σl

U+,Z/l(il)) that corresponds to the

class ∆∗(q∗(α)) under Thom-isomorphism. Comparison of the above two commu-
tative triangles will show again that the map α 7→ ∆∗q∗(α) identifies with the
Thom-isomorphism. This completes the proof of Proposition 4.2. �

.

5. Comparison with the operadic definition of simplicial cohomology
operations: properties of simplicial operations

An E∞-structure on the motivic complex A = ⊕iZ/l(i)) is shown to lead to
a somewhat different definition of the simplicial cohomology operations on mod−l



18 Patrick Brosnan and Roy Joshua

motivic cohomology as discussed in [J1, Section 5] and based on the earlier work
[May]. We will presently show that these operations are in fact identical to the
simplicial operations defined above. Since the simplicial operations defined operadi-
cally readily inherit several well-known properties, we are thereby able to carry over
such properties to the simplicial cohomological operations defined above. Some of
these properties of the simplicial cohomology operations, for example, the Cartan
formulae are used in an essential manner in the comparison results in the next
section.

The only other way to establish such properties for the simplicial cohomology
operations would be by a tedious step-by-step verification of these properties fol-
lowing the approach in [St-Ep]. Therefore we prefer the approach adopted here,
which is far simpler.

Proposition 5.1. The cohomology operations defined above coincide with the
simplicial cohomology operations defined on mod-l motivic cohomology in [J1, Sec-
tion 5].

Proof. Throughout the proof we will denote the pairing between a vector-
space over Fl and its dual by < , >. Recall the simplicial Barratt-Eccles operad
is the operad {NZ(EΣn)|n} where EΣn denotes the simplicial bar-resolution of the
finite group Σn and NZ(EΣn) denotes the normalized chain complex associated
to the simplicial abelian group Z(EΣn). The operad structure obtained this way
is discussed in [J1]. We will assume that it is an action by the simplicial Barratt-
Eccles operad on the motivic complex that provides its E∞-structure. The above
action of the operad {NZ(EΣn)|n} on the complex A = ⊕n≥0Z/l(n) provides us
maps

(5.1.1) θl : NZ(EΣl)⊗A⊗
l

→ A

Recall that K∨ denotes Hom(K,Fl), if K is any complex of Fl-vector spaces.
From the above pairing we obtain

θ∗l : NZ(EΣl)⊗A∨ → (A∨)⊗
l

where we define θ∗l (h, a∨)(a1 ⊗ · · · ⊗ al) =< θl(h ⊗ a1 ⊗ · · · ⊗ al), a∨ >, ai ∈ A,
a∨ ∈ A∨ and h ∈ NZ(EΣl). In fact these pairings provide the dual A∨ with the
structure of a co-algebra over the operad {NZ(EΣl|l}. It is a standard result in
this situation (i.e. for co-algebras over acyclic operads) that the map θ∗l is a chain
map and is an approximation to the diagonal map (i.e. homotopic to the diagonal
map) ∆ : A∨ → (A∨)⊗

l

. (Here, as well as elsewhere in this section, we use the
observation that for any vector space V over Fl, a vector v ∈ V ( a vector v∨ ∈ V ∨)
is determined by its pairing < v,w > with all vectors w ∈ V ∨ (its pairing < u, v∨ >
with all vectors u ∈ V , respectively.).)

We next take the dual of the pairing θ∗l to define a chain-map:

((A∨)∨)⊗
l

→ NZ(EΣl)∨ ⊗ (A∨)∨.

The formula defining the chain map θ∗l shows that this map sends A⊗l ⊆ ((A∨)∨)⊗
l

to NZ(EΣl)∨⊗A. Clearly there is a pairing NZ(EΣl)∨⊗NZ(EΣl)∨ → NZ(EΣl)∨

induced by the diagonal ∆ : EΣl → EΣl × EΣl. Tensoring the last map with
NZ(EΣl)∨ and making use of this pairing provides us with the map:
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(5.1.2) d : (NZ(EΣl))∨ ⊗A⊗
l

→ (NZ(EΣl))∨ ⊗A

One may recall that the action of σ ∈ Σl on NZ(EΣl) and of σ−1 on A⊗l

cancel
out. Tracing through these actions of Σl on the maps in the above steps, one
concludes that the map d induces a map on the quotients:

(5.1.3) d̄ : (NZ(EΣl))∨ ⊗
ZΣl

A⊗
l

→ (NZ(EΣl))∨ ⊗
ZΣl

A

Now the cohomology of the complex (NZ(EΣl))∨ ⊗
N(Z(Σl))

A identifies with

H∗(BΣl; Fl)⊗H∗(A) whereas the cohomology of the complex (NZ(EΣl))∨ ⊗
ZΣl

A⊗l

identifies with the equivariant cohomology: H∗(A⊗l

,Σl; Fl). Therefore, the map d̄
defines a map

(5.1.4) d̄∗ : H∗(A⊗
l

,Σl; Fl)→ H∗(BΣl; Fl)⊗H∗(A)

The formula defining d also shows that the map d̄∗ is a map of H∗(BΣl,Fl)-
modules. One may also observe readily that the l-th power map defines a map
H∗(A) → H∗(A⊗l

,Σl; Fl), a 7→ al. Let {ei, fei|i ≥ 0} denote a basis of the Fl-
vector space H∗(BΣl; Fl) dual to the basis {yi, xyi|i ≥ 0} for H∗(BΣl; Fl), i.e.
< ei, y

j >= 0, if i 6= j and = 1 if i = j. Also < fei, y
j >= 0 for all i , j,

< fei, xy
j >= 0 for i 6= j and = 1 for i = j. Observe that now we have the

following computation for a class α ∈ Hq(A):

< d̄∗(αl), ei ⊗ (−)∨ >=< θ̄∗l (ei, (−)∨), αl >=< (−)∨, θ̄l(ei, αl) > and

< d̄∗(αl), fei ⊗ (−)∨ >=< θ̄∗l (fei, (−)∨), αl >=< (−)∨, θ̄l(fei, αl) >

where (−)∨ ∈ H∗(A)∨ and θ̄∗l is the map induced by θ∗l on taking homology of
the corresponding complexes. (One may prove the above equalities, by observing
that the map d̄∗ is essentially the dual of θ∗l .) Since the map θ∗l was observed
to be chain homotopic to the diagonal, it follows that d̄∗ = ∆∗ where ∆ is the
obvious diagonal. Therefore, the coefficient of yi (xyi) in the expansion of d̄∗(αl) ∈
H∗(BΣl; Z/l) ⊗ H∗(A) identifies with θ̄i(ei, αl) (θ̄i(fei, αl), respectively). This
completes the proof of the proposition �

The main point of the above comparison is to provide the following corollary
where the corresponding results are shown to hold for the simplicial operations
defined operadically in [J1, Theorem 5.3] invoking the results of [May].

Theorem 5.2. Let F denote a pointed simplicial sheaf on (Sm/k)Nis in which
case H∗ will denote cohomology computed on the Nisnevich site or on (Sm/k)ét in
which case H∗ will denote cohomology computed on the étale site.

The simplicial cohomology operations

Qs : H̃q(F,Z/l(t))→ H̃q+2s(l−1)(F,Z/l(l.t)) and

βQs : H̃q(F,Z/l(t))→ H̃q+2s(l−1)+1(F,Z/l(l.t)).

satisfy the following properties:
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(i) Contravariant functoriality: if f : F ′ → F is a map between simplicial sheaves,
f∗ ◦Qs = Qs ◦ f∗

(ii) Let x ∈ H̃q(F,Z/l(t)). Qs(x) = 0 if 2s > q, βQs(x) = 0 if 2s ≥ q and if
(q = 2s), then Qs(x) = xl.

(iii) If β is the Bockstein, β ◦Qs = βQs.

(iv) Cartan formulae: For all primes l,

Qs(x⊗ y) = Σ
i+j=s

Qi(x)⊗Qj(y) and

βQs(x⊗ y) = Σ
i+j=s

βQi(x)⊗Qj(y) +Qi(x)⊗ βQj(y).

(v) Adem relations For each pair of integers i ≥ 0, j ≥ 0, we let (i, j) = (i+j)!
i!j! with

the convention that 0! = 1. We will also let (i, j) = 0 if i < 0 or j < 0. (See [May,
p. 183].) With this terminology we obtain:

If (l > 2, a < lb, and ε = 0, 1) or if (l = 2, a < lb and ε = 0) one has

(5.2.1) βεQaQb = Σi(−1)a+i(a− li, (l − 1)b− a+ i− 1)βεQa+b−iQi

where β0Qs = Qs while β1Qs = βQs. If l > 2, a ≤ lb and ε = 0, 1, one also has

βεQaβQb = (1− ε)Σi(−1)a+i(a− li, (l − 1)b− a+ i− 1)βQa+b−iQi

−Σi(−1)a+i(a− li− 1, (l − 1)b− a+ i)βεQa+b−iβQi
(5.2.2)

(vi) The operations Qs commute with the simplicial suspension isomorphism in
Hn(F ; Z/l(r)) ∼= Hn+1(S1

sF ; Z/l(r)).

(vii) The operation Qs commutes with change of base fields and also with the higher
cycle map into mod−l étale cohomology.

Remark 5.3. It is important to observe that Q0 is not the identity. The
property (ii) above shows that in general Q0(x) = xl, if x ∈ H0(X,Z/l(t)) =
H̃0(X+,Z/l(t)) for any smooth scheme X and any t ≥ 0. This will play a major
role in the comparison results in the next section.

6. Comparison between the motivic and simplicial operations

In view of the results established in the earlier sections we are able to provide
a nearly complete comparison of the motivic and simplicial operations.

6.0.1. The Motivic Bott element. Throughout the rest of this section, we
will assume that the field k has a primitive l-th root of unity. Recall that we have:

Hp
M(Spec,Z(1)) = 0, p 6= 1(6.0.2)

= k∗, p = 1

Now the universal coefficient sequence associated to the short exact sequence 0→
Z(1)×l→Z(1)→ Z/l(1)→ 0 of motivic complexes, provides the isomorphism

(6.0.3) H0
M(Spec k,Z/l(1)) ∼= µl(k)



Cohomology Operations 21

The Motivic Bott element is the class in H0
M(Spec k,Z/l(1)) corresponding under

the above isomorphism to the primitive l-th root of unity ζ. We will denote this
element by B. Since cycl(B) = ζ in H∗ét( , µl(∗)), multiplication by the class
cycl(B) induces an isomorphism: H∗ét( , µl(r)) → H∗ét( , µl(r + 1)). It follows
that the cycle map cycl induces a map of cohomology functors:

(6.0.4) cycl(B−1) : H∗M( ,Z/l(?))[B−1]→ H∗ét( , µl(?)).

It is shown in [Lev] that this map is an isomorphism on smooth schemes.
As observed above, the cohomology H∗(BΣgml ; Z/l) maps naturally to

H∗(BΣl; Z/l) under which the total power operation PM maps to the total power
operation Ps. Therefore, a simple comparison of the degrees and weights of the
classes involved provides the following proposition.

Proposition 6.1. Assume that the base field k has a primitive l-th root of
unity. Let α ∈ H2q

M(X,Z/l(q) for some q ≥ 0 with X ∈ (Sm/k). Then

P rs (α) = B(q−r).(l−1).P rM(α), βP rs (α) = B(q−r).(l−1).βP rM(α)

for r ≤ q. For r > q, P rs (α) = 0 = P rM(α).

Corollary 6.2. The same relation holds for any class α ∈ H̃i
M(F,Z/l(q))

when F is any pointed simplicial sheaf on (Sm/k)Nis provided i ≤ 2q.

Proof. We will first observe that the relations hold when i = 2q and F is
any pointed simplicial sheaf on (Sm/k)Nis. This follows readily in view of the
observation that the two total power operations PM and Ps are compatible as
natural transformations defined on the category of all pointed simplicial sheaves on
(Sm/k). Next we consider the statement when i < 2q. For example, if i = 2q − 1,
H̃2q−1
M (F,Z/l(q)) ∼= H̃2q

M(Σ1
s ∧ F,Z/l(q)). Now using the observation that both the

motivic and simplicial operations are stable with respect to the suspension Σ1
s∧ ,

such a degree-suspension reduces this to the case when i = 2q, which has been
proved already. Observe also that when i ≤ 2q, one knows that P rs (α) = 0 = P rM(α)
for r > q, (see [Voev1, Lemma 9.9] for a proof of the last equality) so that for the
classes α for which P rs is non-zero, the exponent (q−r)(l−1) of B is ≥ 0. (If i > 2q
this may no longer be true apriori.)

In case F is in fact a scheme X ∈ (Sm/k), the identification Hi
M(X,Z/(q)) ∼=

CHj(X, 2q−i; Fl) shows that these groups are trivial if i > 2q. Therefore, it suffices
to consider the case when i ≤ 2q in case F is in fact a scheme X ∈ (Sm/k). �

Next we will consider what may be said about the case i > 2q. First observe
that the Bott element B defines a class in H0

M(X,Z/l(1)) for any smooth scheme
X by pull-back. Next consider a a pointed simplicial sheaf F . Then one finds a
resolution of F by pointed simplicial schemes X•,+: see [Voev1, section 3]. The
structure map X1 → Spec k factors through the structure map X0 → Spec k, so
that B pulls-back to define a class (still denoted) B ∈ H̃0

M(F,Z/l(1)).

Lemma 6.3. Let F denote a pointed simplicial sheaf on (Smt/k)Nis. Then
(i) Q0(B) = Bl.
(ii) if x ∈ H̃q

M(F,Z/l(t)), then P rs (B.x) = BlP rs (x) and βP rs (B.x) = BlβP rs (x)
for all x ∈ H̃q

M(F,Z/l(t)).
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Proof. (i) Take x = B in Theorem 5.2(ii). Then q = 0 = s there so that
P rs (B) = 0 for r > 0 and Q0(B) = Bl. This proves (i). (ii) now follows from (i)
making use of the Cartan formula in Theorem 5.2(iv). �

Our basic technique to handle the case where the degree > twice the weight
(i.e. i > 2q) is to apply suitable weight and degree suspensions so as to reduce to
the case where the degree = twice the weight. Then we handle this case by the
comparison above. Both the motivic and simplicial operations commute with degree
suspension, and the motivic operations commute with weight suspensions as well.
The simplicial operations do not, however, commute with weight suspensions. But
weight suspensions may effected by multiplying with the class B and the behavior
of the simplicial operations with respect to tensoring with B is explained by the
results above. Therefore, we obtain the extension of our comparison to classes of
all degree and weight as explained below.

Proposition 6.4. Suppose x ∈ H̃2q+t
M (F,Z/l(q)), with t > 0.

(i) If t = 2t′ for some integer t′, then

Bt
′lP rs (x) = B(q+t′−r)(l−1).Bt

′
P rM(x) and

Bt
′lβP rs (x) = B(q+t′−r)(l−1).Bt

′
βP rM(x), 0 ≤ r ≤ q + t′.

(ii) If t = 2t′ + 1,

B(t′+1)lP rs (x) = B(q+t′+1−r)(l−1).Bt
′+1P rM(x) and

B(t′+1)lβP rs (x) = B(q+t′+1−r)(l−1).Bt
′+1βP rM(x), 0 ≤ r ≤ q + t′ + 1.

Proof. To obtain (i), one first applies an iterated weight suspension t′-times:
this is effected by multiplying x by Bt

′
. Now the class Bt

′
x ∈ H̃2q+2t′

M (F,Z/l(q+t′)),
so that one may apply the comparison in Proposition 6.1 to it and obtain:

P rs (Bt
′
x) = B(q+t′−r)(l−1)P rM(Bt

′
x) and βP rs (Bt

′
x) = B(q+t′−r)(l−1)βP rM(Bt

′
x).

Making use of Lemma 6.3, we see that P rs (Bt
′
x) simplifies to Bt

′lP rs (x) while
βP rs (Bt

′
x) simplifies to Bt

′lβP rs (x). P rM(Bt
′
x) = Bt

′
P rM(X) and βP rM(Bt

′
x) =

Bt
′
βP rM(x). These prove (i). To obtain (ii), one needs to apply an iterated weight

suspension t′ + 1-times followed by a degree suspension once. This produces the
class Σ1

sB
t′+1x ∈ H̃2q+2t′+2

M (Σ1
sF,Z/l(q+ t′+ 1)). Now one applies the comparison

in Proposition 6.1 to it. Then one makes use of Lemma 6.3 to pull-out the B from
the left-hand-side. �

Examples 6.5. (i) Take t = 1. In this case one obtains

BlP rs (x) = B(q+1−r)(l−1)BP rM(x) and

BlβP rs (x) = B(q+1−r)(l−1)BβP rM(x).

One may now also take r = q to obtain, BlQq(x) = BlP q(x) and BlβQq(x) =
BlβP q(x). Since B is not invertible, multiplication by B need not be injective
and therefore, one cannot conclude that therefore Qq(x) = P q(X) or that
βQq(x) = βP q(x).

(ii) Take t = 2. In this case one obtains BlP rs (x) = B(q+1−r)(l−1)BP rM(x) and
BlβP rs (x) = B(q+1−r)(l−1)BβP rM(x).
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(iii) Take t = 3. In this case one obtains B2lP rs (x) = B(q+2−r)(l−1)B2P rM(x) and
B2lβP rs (x) = B(q+2−r)(l−1)B2βP rM(x). If, in addition, r = q+1, then this be-
comes B2lP rs (x) = Bl+1P rM(x) and B2lβP rs (x) = Bl+1βP rM(x). Once again,
since B in not invertible, one cannot conclude that therefore Bl−1P rs (x) =
P rM(x) or that Bl−1βP rs (x) = βP rM(x).

Observe that by the multiplicative properties of the operations and the obser-
vation that P rM(B) = 0 if r ≥ 1 ([Voev1, Lemma 9.8]):

P rM(Bjα) = BjP rM(α),(6.5.1)

βP rM(Bjα) = BjβP rM(α).

The above relations show that the motivic cohomology operations above induce
operations on H∗( ,Z/l(?))[B−1] in the obvious manner: we define P rM(α.B−1) =
P rM(α).B−1 and βP rM(α.B−1) = βP rM(α).B−1. Next we proceed to compare these
induced motivic and simplicial operations on mod−l étale cohomology,

Proposition 6.6. (Comparison of operations in mod−l étale cohomology.) As-
sume that the base field k has a primitive l-th root of unity. Let F denote a pointed
simplicial sheaf on (Sm/k)ét. Let α ∈ Hi

ét(F, µl(q)) for some q ≥ 0. Then

P rs (α) = B(q−r).(l−1).P rM(α), βP rs (α) = B(q−r).(l−1).βP rM(α)

for r ≤ i/2 and all i ≥ 0. P rs (α) = 0 and P rM(α) = 0 for r > i/2.

Proof. For the case r ≤ q this follows from Proposition 6.1. For the other
cases it follows by expanding the exponents of B on both sides of the formulae in
Proposition 6.4 and canceling out all the powers of B on the left-hand-side. �

7. Cohomological operations that commute with proper push-forwards
and Examples

The operations considered so far commute with pull-backs only and do not
commute with push-forwards by proper maps. In this section we modify the above
operations to obtain operations that commute with proper-push-forwards. The
goal of this discussion is to consider the analogues of degree formulae in mod-p
motivic cohomology: such degree formulae have played a major role in some of the
applications of motivic cohomology operations. The key to this is the following
formula, which follows by a deformation to the normal cone argument as shown
in [FL, Chapter VI]. We state this for the convenience of the reader. Recall that
motivic cohomology is a contravariant functor on smooth schemes. By identifying
motivic cohomology with higher Chow groups, one may show the former is also
covariant for proper maps.

Proposition 7.1. Let

X
i //

f

��

W

g

��
X ′

i′ //
W ′

denote a cartesian square with all schemes smooth and with the vertical maps either
regular closed immersions or projections from a projective space. Let the normal
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bundle associated to i (i) be N (N ′, respectively). Then the square commutes:

H∗(X ′,Z/l(•))
i′∗ //

e(N)f∗

��

H∗(W ′,Z/l(•))

g∗

��
H∗(X,Z/l(•))

i∗ //
H∗(W,Z/l(•))

where N = f∗(N ′)/N is the excess normal bundle and e(N) denotes the Euler-class
of N . In case g and hence f are also closed immersions with normal bundles Ng and
Nf , respectively, then N ∼= Ng |X/Nf . Moreover if a finite constant group scheme G
acts on the above schemes, the corresponding assertions holds in the G-equivariant
motivic cohomology defined below.

Definition 7.2. Let G denote a finite group acting on a scheme X. Then
we let HG(X,Z/(r)) = holim

∆
RΓ(EG×

G
X,Z/l(r)) following the terminology in [J2,

Section 6]. We let Hn
G(X,Z/l(r)) = π−n(HG(X,Z/l(r)) .

Remarks 7.3. 1. One may now verify that if G = Z/l, for a fixed prime l,
then

H∗G(Spec k,Z/l(•)) ∼= H∗(Spec k,Z/l(•))⊗H∗sing(BG,Z/l)

where H∗(Spec k,Z/l(•)) denotes the motivic cohomology of Spec k and
H∗sing(BG,Z/l) denotes the singular cohomology of the space BG with
Fl-coefficients. Recall that if l = 2, H∗sing(BG,Z/l) is a polynomial ring in one
variable and when l > 2, H∗sing(BG,Z/l) = Z/l[t] ⊗ Λ[ν] where βt = ν and Λ[ν]
denotes an exterior algebra in one generator ν.

2. The situation where will apply the above proposition will be the following: X
will denote a given smooth scheme and X ′ will denote X×

l

. W will denote another
smooth scheme provided with a closed immersion X →W and W ′ will denote W×

l

.
In this case the normal bundle associated to the diagonal imbedding of X in X×

l

is T
X×l−1 (the normal bundle associated to the diagonal imbedding of W in W×

l

is T
W×l−1 ,respectively). As equivariant vector bundles for the obvious permutation

action of Z/l on X×
l

and W×
l

these identify with R ⊗k TX and R ⊗k TW where
R is the representation of Z/l given by (k[x]/(xl − 1))/k. For a line bundle E , let
w(E , t) = 1 + c1(L)l−1t. One extends the definition of w(E , t) to all vector bundles
E by making this class take short exact sequences to products. Then the Euler-class
e(R⊗k TX) = tdim(X)w(TX , 1/t) and e(R⊗k TW ) = tdim(W )w(TW , 1/t).

At this point, we may adopt the arguments as in [Bros] to define cohomology
operations that are compatible with push-forwards by proper maps between quasi-
projective schemes. i.e. Let Q• : H∗(X,Z/l(•)) → H∗(X,Z/l(•)) denote the
total operation defined by Q• = ΣsQs. Now we define the covariantly functorial
operations Qs by letting

(7.3.1) Q• = ΣsQs = Q• ∩ w(TX)−1

(Recall that the class w(TX) is invertible.) If we re-index motivic cohomology
homologically, (i.e. if X is proper and of pure dimension d, we let Hn(X,Z/l(r)) =
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H2d−n(X,Z/(d− r))) the operations Qs map Hn(X,Z/l(t)) to
Hn−2s(l−1)(X,Z/l(tl − d(l − 1))).

Proposition 7.4. Let f : X → Y denote a proper map between quasi-projective
schemes over Spec k. Then Q• ◦ f∗ = f∗ ◦Q•.

Proof. Since X and Y are quasi-projective, f may be factored as a closed
immersion i : X → Y ×Pn for some projective space Pn and the obvious projection
π : Y × Pn → Y . Therefore, it suffices to prove the assertion separately for f = i
and for f = π. The case f = i is clear from the statements above. Next observe
that Pn is a linear scheme and therefore the motivic cohomology of X×Pn is given
by an obvious Kunneth formula: see [AJ, Appendix] for example. Therefore the
Cartan formula immediately implies the required assertion for the case f = π. �

We proceed to consider various examples.

7.5. Examples. The first example we consider is an operation

Qs : Hq(X,Z/l(t))→ Hq−2s(l−1)(X,Z/l(tl − d(l − 1)))

on a projective smooth scheme X of dimension d so that the composition with the
proper map π∗ : Hq−2s(l−1)(X,Z/l(tl−d(l−1)))→ Hq−2s(l−1)(Spec k,Z/l(tl−d(l−
1))) is in fact zero.

For example, one may take dim(X) = 3, q = 2, t = 1, s = 1 and l = 2. Now
we have the operation

Q1 : H2(X,Z/2(1))→ H0(X,Z/2(−1)).

In cohomology notation this identifies with an operation Q1 : H4(X,Z/2(2)) →
H6(X,Z/2(4)). The projection to Spec k sends the source to the group
H2(Spec k,Z/2(1)) ∼= H−2(Spec k,Z/2(−1)) ∼= CH−1(Speck k,Z/2) = 0. It follows
that π∗◦Q1 = 0. Recall thatH4(X,Z/2(2)) identifies with CH2(X,Z/2). Therefore
any closed integral sub-scheme of X of codimension 2 defines a class in this group.
If α is such a class, our conclusion is that π∗(Q1(α)) = 0.

So far we did not put any restriction on the prime l. Next we assume l = p.
Let ν(r) be the sheaf that is kernel of W ∗ − C : ZΩrX/S → Ωr

X(p)/S
. Here X(p)

is the scheme obtained as the pull-back of X×
S
S where the map S → S is the

absolute Frobenius and S = Spec k is the base field. Moreover W ∗ is defined as the
adjoint to the obvious map ΩrX/S → W∗ΩrX(p)/S

and ZΩrX/S denotes the kernel of

the differential d : ΩrX/S → Ωr+1
X/S . (See [Ill, 2.4] for more details.) It is known that

ν(0) = the constant sheaf Z/p, ν(1) = dlog(O∗X) and that ν(r), viewed as a sheaf
on Xét is generated locally by dlog(x1). · · · dlog(xr), xi ∈ O∗X .

It is shown in [GL, Theorem 8.4] that if X is a smooth integral scheme over
k and k is perfect, then one has the natural isomorphism (induced by a quasi-
isomorphism ν(r)[−r] ' Z/p(r)) Hs(X, ν(r)) ∼= Hs+r(X,Z/p(r)), where cohomol-
ogy denotes cohomology computed either on the Zariski or étale sites.

Therefore, if we require l = p and the field k is perfect, the last operation takes
on the form

Q1 : H2(X, ν(2))→ H2(X, ν(4))
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where cohomology denotes cohomology computed either on the Zariski or étale
sites.

As another example, we may assume dim(X) = 4, q = 3, t = 1, s = 1 and
l = 3. Now we obtain the operation Q1 : CH3(X,Z/3, 1) ∼= H5(X,Z/3(3)) →
H9(X,Z/3(9)). Re-indexing homologically this identifies with

Q1 : H3(X,Z/3(1))→ H−1(X,Z/3(−5)).

Now π∗ ◦Q1 = Q1 ◦π∗ and π∗ maps the group H3(X,Z/3(1)) to H3(Spec k,Z/3(1))
∼= H−3(Spec k,Z/3(−1)) ∼= CH−1(Spec k,Z/3, 1) = 0 since the higher Chow groups
indexed by the codimension are trivial for negative codimension. Therefore, the
composition π∗ ◦Q1 = 0. In case l = p, this operation now takes on the form

Q1 : H2(X, ν(3))→ H0(X, ν(9)).

As yet another example, we will presently show that the only simplicial opera-
tions that send the usual mod-l Chow groups to the usual mod-l Chow groups are
the power operations. Recall that the usual mod−l Chow groups are given by the
mod−l motivic cohomology groups H2n(X,Z/l(n)). Now let Qs : H2t(X,Z/l(t))→
H2t+2s(l−1)(X,Z/l(lt)) be given so that the 2t+ 2s(l − 1) = 2lt. Then 2s(l − 1) =
2t(l − 1) so that s = t. Therefore we see from Theorem 5.2(ii) that the given
operation is none other than the l-th power operation.
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