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ABSTRACT. In this paper we establish Riemann-Roch and Lefschtez-Riemann-Roch theorems for arbitrary proper
maps of finite cohomological dimension between algebraic stacks in the sense of Artin. The Riemann-Roch theorem
is established as a natural transformation between the G-theory of algebraic stacks and topological G-theory for
stacks: we define the latter as the localization of G-theory by topological K-homology. The Lefschtez-Riemann-
Roch is an extension of this including the action of a torus for Deligne-Mumford stacks. This generalizes the
corresponding Riemann-Roch theorem (Lefschetz-Riemann-Roch theorem) for proper maps between schemes (that
are also equivariant for the action of a torus, respectively) making use of some fundamental results due to Vistoli and
Toen. A key result established here is that topological G-theory (as well as rational G-theory) has cohomological
descent on the isovariant étale site of an algebraic stack. This extends cohomological descent for topological G-theory
on schemes as proved by Thomason.

Table of Contents
1. Introduction
2. Review of equivariant algebraic topology
The isovariant étale site
Hypercohomology on the isovariant étale site.
5. Isovariant étale and étale cohomological descent.

6. Riemann-Roch and Lefschetz-Riemann-Roch between algebraic and topological G-theories

Supported by the Max Planck Institut and the IHES.



2 ROY JOSHUA

1. Introduction.

In this paper we consider the general Riemann-Roch problem for arbitrary proper maps of finite cohomological
dimension between algebraic stacks in the sense of Artin. Even in the case of Deligne-Mumford stacks, the problem
was only recently solved in [Toe-1] and the difficulties that can come up in general may be seen already in the
case of finite group actions on schemes. Let G denote a finite group, viewed as a group scheme over a field k: we
assume the order of G is prime to the characteristic of k. Now the Grothendieck group of vector bundles on the
stack [Spec k/G] may be identified with the representation ring of the finite group, namely R(G) or equivalently
K2(Spec k). Moreover, H?,([Spec k/G)];Q) = H}(BG;Q). Though R(G) is far from being trivial (even when
tensored with @), the cohomology ring H*(BG; Q) = Q. Therefore, the diagram

K2(Spec k) _ch® , H*(BG;Q)

n| |

K°(Spec k) —<— H*(Spec k;Q)

fails to commute, where p : [Spec k/G] — Spec k is the obvious (non-representable) map of algebraic stacks. (The
top row is the G-equivariant Chern-character, whereas the bottom row is the usual Chern-character which one may
identify with the rank map. One may identify the left most column with the map, sending a representation of G
to its G invariant part.) This problem was solved in [Toe-1] by a rather elaborate procedure, ultimately making
use of a theorem of Vistoli which says the equivariant higher algebraic K-theory of a regular scheme provided with
the action of a finite group is isomorphic to the higher étale K-theory of the inertia stack provided everything
is tensored with C. (See the discussion below for more details.) Though, the corresponding result is known for
compact lie group actions on manifolds, the techniques involved (especially induction) do not generalize to the
actions of reductive groups on regular schemes.

In fact the difficulty with Riemann-Roch for algebraic stacks may already be seen by the lack of commutativity
of the following diagram:

K¢(Spec k) —— H;([Spec k/G];Kq)

| 2

K°(Spec k) —— HP,(Spec k;Kg)
where the last terms in each row denote the étale hyper-cohomology of the corresponding stack computed with
respect to the presheaf Kg; this is the presheaf defined by U — K (U)g= the localization of the algebraic K-theory
spectrum K (U) at Q, U on the étale site of the appropriate stack. One of the key ideas in this paper may now be
stated in the above context as follows: if one replaces the étale topology above with another topology (called the
isovariant étale topology) we define in section 3 (and the presheaf K is replaced by the equivariant version K%),
then the corresponding diagram does commute.

We will adopt the following terminology in the statement of theorems (1.1) and (1.2). Let J denote a set of
primes in Z. Assume that the base scheme S is Noetherian of finite Krull dimension and that there is a uniform
bound on the I-torsion étale cohomological dimension of the residue fields k(s) for all points s in S and all leJ.
(Observe that this hypothesis holds if S is of finite type over an algebraically closed field or over Z[/—1] or if 2
does not belong to J and S is of finite type over Z.) Assume also that [ is invertible in Ox, for any X which is
an object over S (i.e. a scheme, an algebraic space or an algebraic stack) that we consider and for all primes le.J.
Assume also the hypotheses in ( 5.1) and that all the objects we consider are locally Noetherian over the given
base scheme. (However, most of our basic results will hold only for algebraic stacks that are finitely presented over
the given base scheme.)

We may summarize the main theorems of the paper as follows:

Theorem 1.1. (See Theorem 5.10 and Corollary 5.12.) Let G denote the presheaf of spectra corresponding to the
G-theory defined in Definition 5.4 and let Gk ® Z(g) denote the localization of the presheaf G first in the sense
of Bousfield by topological K-homology followed by inverting the primes not in J. Let S denote an algebraic stack,
finitely presented over the base scheme S, with Sis.c¢ denoting the isovariant étale site of the stack S defined in
section 8. Then the obvious augmentation

(1.0.1) G(S)K@Z(J)—>]H]/iso_et(S,GK®Z(J))

is a weak-equivalence of spectra where the right-hand-side denotes the hyper-cohomology spectrum computed on the
isovariant étale site. (One may restate the above result as: the presheaf Gk ® Z ;) has cohomological descent on
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the isovariant étale site.) Moreover, there exists a strongly-convergent spectral sequence
(1.0.2) Ey' = Hiyo (S, m(Gr ® L(g))) & 7 514(G(S)K @ L(y)).

In view of the above theorem we will call G(S)k ® Z topological G-theory. This will be denoted G*°P(S). The
presheaf Gx ® Z () of spectra will be called the presheaf of topological G-theory. (We may also use G(S)/ 1”167
for Gt°P(S) where [ is as above, v >> 0 and 3 denotes the Bott element.)

Theorem 1.2. (Riemann-Roch from algebraic to topological G-theory) Let f : ' — S denote any proper map
between two algebraic stacks finitely presented over S and of finite cohomological dimension. Then the direct image
map fi fits in the following homotopy commutative square:

G(S) —— Gtr(S)

.| |
G(S) —— GiP(S)

The above theorem might seem like a tautology, since the right hand side is a suitable localization of the left-
hand-side. However, as in [T-2], [T-3], it is the right-hand-side that can be computed by the spectral sequence in
the above theorem, whereas there is no such spectral sequence for computing the left-hand-side. We will in fact
prove a stronger version of the above two theorems including the action of a smooth group scheme on the stacks
S and S'.

As an application of cohomological descent for Gk ® Z ), one obtains the following Lefschetz-Riemann-Roch
theorem where G(S)k ® Z(y) is denoted by G**P(S). We will assume the base scheme S is the spectrum of an
algebraically closed field &, all the stacks we consider are Deligne-Mumford and finitely presented over k and that
the orders of the stabilizers on all the stacks we consider are different from the characteristic of k£ in the following.
Moreover, Qoo ) Will denote the algebra over Q generated by Q and pieo, With g denoting the roots of unity in
k imbedded in C*. Let T denote a torus, let R(T) denote the representation ring of 7' and let p denote a prime
ideal in R(T') corresponding to a sub-torus 7. Given an action of a sub-torus T" of T' (which may be either T
itself or the given sub-torus 7") on an algebraic stack S as in Definition 5.1, one lets Coh(S,T") = the category
of coherent sheaves on the stack S with a T"-action. We let G(S,T") = K(Coh(S,T")) = the K-theory spectrum
of the category Coh(S,T") and similarly G°?(S,T"') = the topological K-theory of the above category (defined as
above by localizing with respect to topological K-homology followed by inverting the primes not in J.) In this case
we define the fixed point stack ST as in Definition 6.4 so that the induced map i : ST — & is a closed immersion.
Let Igr denote the inertia stack associated to ST': there is an obvious map 77 : Igr — ST’ that is unramified
(or a local imbedding) since the stack S is assumed to be Deligne-Mumford. It is shown in 6.6 below that one
may find a finite étale cover T' — T', so that when T" acts on ST’ through the action of 7", this action is trivial.
Moreover, ST = ST" and when S is a smooth Deligne-Mumford stack, SZ, is also smooth.

Given a presheaf of spectra P, we let P ® Q the localization of P at Q in the sense of [B-K]. Next we follow
[Toe-1] and let Ge(S) ® Q = Hey (S, G ® Q) which is the étale hypercohomology of the stack S with respect to the
presheaf G ® Q. We also let G (S, T) @ Q = Het (S, G( ,T) ® Q) where G( ,T) ® Q denotes the presheaf of
spectra associated to T-equivariant coherent sheaves on S. Similarly K.(S,T) ® Q = H: (S, K( ,T) ® Q) where
K( ,T) denotes the presheaf of spectra associated to T-equivariant locally free coherent sheaves.

We will assume henceforth that S is a smooth Deligne-Mumford stack. Next, let Vg7 denote the conormal sheaf
associated to the local imbedding I P ST’ ; Toen associates to the class A1 (N srv) aclass agremo(Ket(Igr)®

Q)%)Q(uoo) which is invertible.

Recall that Toen (see [Toe-1] Théorem 3.15) defines a natural isomorphism ¢gz : W*(G(STI))QZZ)@(/J/OO) —
Tu(Get(Igrr) ® (@)%Q(um). (Here Qoo ) = the Qralgebra generated by the roots of unity of the field k; one may

choose an imbedding of this into C*.) In view of the isomorphisms

(1.0.3) T (GST | T") = ZIM @ (G(S™Y),

(1.0.4) T (Get(IST’ ,T/)) = Z[MI](%T‘-* (Get(IST-'))

this extends to define an isomorphism ¢ gz : 7. (G(ST' S TNOQ(fto ) — T (Get(Igrr, ™ ® Q)%Q(poo). Moreover,
zZ

it is shown in [Toe-1] Lemme 4.12 (see also 6.0.18 which shows some of the hypotheses in [Toe-1] may be relaxed)
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that the composition s = a;%, N( )o¢grm commutes with proper push—forwizrd. Assume in addition to the
above situation that the prime ideal p in R(T) corresponds to the sub-torus 7. In this case, we prove (see

Proposition 6.9 below) that if N is the conormal sheaf associated to the closed immersion i : ST, — S, the
class A_1 (N)emo (K (ST, T"))(p) is a unit and that the Gysin map i : T (G(ST,T"))(p) = T(G(S,T"))p) is an
isomorphism with inverse defined by i*( )N A_y(N) L.

Combining the above isomorphisms, we obtain the isomorphism:

- (M@t Vs -,
(1.0.5) T (G(S, T1) () @Qboe) — me (G(ST ) ) @Qpoe) — 7 (Get(Ig,T") ® Q) () %@(Hoo)

We will denote this isomorphism by ¥s.

Theorem 1.3. (Lefschtez-Riemann-Roch) Assume that T' is a sub-torus of the torus T acting on the smooth
Deligne-Mumford stacks S and S' and that f : 8" — S is a T'-equivariant proper map of finite cohomological
dimension. Let T' — T' denote a finite étale cover so that T' acts trivially on the stack ST and ST'. Let

i: ST 5 S andi': ST — S denote the associated closed immersions. Then the following diagram commutes:

ﬂ*(a(sﬁf’\ 7u(Ger(Ig 2, T")
~ v i /
f m(G(S', TI))(p)%Q(NOO) Z M (Get(Lgirr, T) ® Q) %@(Moo) FT
T (G(S’ TI)\ " ffj‘, Tx (Get (Is'f" ) TI))

T (G(S,T')) (58 Qoo ) 2 ™Gt (I, T") ® Q)qp) SQpoo)

Corollary 1.4. (i) Let S' denote a smooth Deligne-Mumford stack that is provided with a proper map f:S' — X
of finite cohomological dimension where X is a reqular scheme. Assume S' is provided with the action of a torus T,
T' is sub-torus and that the map f is T'-equivariant for the trivial action of T' on X . Assume further that X has an
ample family of line bundles, so that one obtains the weak-equivalence G(X) ~ K(X). Let F denote a T'-equivariant
coherent sheaf on the stack S'. Now we obtain the equality in mo (K (X, T’))(p)%(@(poo) = 7o (Kot (X, T’))(p)%(@(uoo):

(1.0.6) Rf.(F) = S(—-1) R f.F = (- ) R {17 (W (F))

(i) Taking X = Spec k, we obtain:
(1.0.7) Si(-1)'HY(S"; F) = 8i(-1)'H' (Ig,, ¥s (F))

in the ring R(T’)(p)(%n@(poc).

As has been noticed for sometime now, there is close connection between equivariant algebraic topology in the
sense introduced by Bredon and studied extensively by May et al and the cohomology theory of algebraic stacks.
(See for example, [Vi] or [Toe-1].) This was explained very nicely in [T-3] and we recall this in section 2 of the paper.
We hope this serves to nicely explain the leading ideas of this paper, in a rather elementary manner. In section 3
we define the isovariant étale site and study it in great detail, concluding with theorems 3.13, 3.26 and 3.27. These
show that the isovariant étale site of an algebraic stack is a good substitute for the étale topology of its coarse
moduli-space: the main advantage is that the isovariant étale site is defined for all algebraic stacks irrespective of
whether a coarse moduli space exists or not.

In the fourth section we define and study hyper-cohomology on the isovariant étale site with respect to presheaves
of spectra. Section 5 is devoted to cohomological descent on the isovariant étale site. The main results are
theorem 5.10 and proposition 5.15: theorem 5.10 provides cohomological descent for suitable localizations of G-
theory which may be viewed as variants of topological G-theory. Proposition 5.15 provides the identification of
the stalks of the topological G-theory presheaf on the isovariant étale site and finds application in the proof of the
Lefschetz-Riemann-Roch. The last section discusses several forms of Riemann-Roch as a natural transformation
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between G-theory and suitable topological G-theory and concludes with a Lefschetz-Riemann-Roch for the actions
of tori on Deligne-Mumford stacks.

In a sequel to this paper, we define cohomology and homology theories generalizing those of Bredon (i.e. Bredon-
style equivariant theories as in [Br], [LMS]) on the isovariant étale site of algebraic stacks. In the case where the
stack has finite diagonal (observe that these are in general Artin stacks), we obtain Riemann-Roch and Lefschetz-
Riemann-Roch theorems in this setting.

We would like to acknowledge the influence of [T-3], a paper of the late Robert Thomason, where he already
defines the isovariant topology in the context of group scheme actions. (It may be worth noting that the word stack
does not appear anywhere in that paper.) We would also like to thank the MPI and the THES, for very enjoyable
and productive visits and to Bertrand Toen for spending many hours with me discussing Riemann-Roch problems
and other related material on algebraic stacks. Finally we would like to express our gratitude and thanks to the
referee for doing a remarkable job with some very valuable comments and suggestions: these have been very helpful
in preparing the final version of this paper.

2. EQUIVARIANT ALGEBRAIC TOPOLOGY

First of all, one needs to point out that there are two distinct notions of equivariant cohomology theories, one
originally due to Bredon (see [Br], [LMS]) and another due to Borel (see [Bo], [Hs]). Though the latter is a coarser
invariant, it is easier to define and this often accounts for its popularity. In fact, in the algebraic setting (i.e.
for studying algebraic group actions on schemes) no one has even defined an analogue of the former theory. A
key difference between the two types of theories can be seen in the definition of a map to be a weak homotopy
equivalence. Let X denote a G-space where G is a compact topological group. In the Bredon style theories, one
defines the G-topology on X with the closed subsets of X given by G-stable closed sub-spaces of X. The points in
this topology therefore correspond to the orbits of G on X, all of which are closed since the group G is compact.
One may readily see that, therefore, the G-topology on X is equivalent to the topology on the quotient space X/G.
In Borel style theories, one defines a simplicial space EG (); X, then takes its realization, |EG (); X|, to obtain a space

and defines the topology to be the topology on the above realization.

The difference between the two is clearly seen in the definition of equivariant K-theory. The Atiyah-Segal
equivariant K-theory of X is the Grothendieck group of the category of all G-equivariant vector bundles on X.
This is a Bredon style theory, since it is defined only on G-stable subsets of X and a map f : X — Y between
two G-spaces induces an isomorphism on Atiyah-Segal G-equivariant K-theory, in general, only if there is a G-
equivariant map g : Y — X and G-equivariant homotopy equivalences f o g ~ idy and go f ~ idx. On the
other hand one may consider K°(|[EGX|). This is a Borel style equivariant cohomology theory. A G-equivariant
map f : X — Y induces an isomorphism on these groups, if there is a map g : ¥ — X, not necessarily G-
equivariant, so that the compositions fog ~ idx and go f ~ idy by homotopies that are once again not necessarily
G-equivariant. Moreover, one knows that the Borel-style equivariant K-theory of X is the completion of the
Atiyah-Segal equivariant K-theory of X (see [A.S2]) and is therefore a coarser invariant of X.

Next one considers the definition of equivariant cohomology in the sense of Bredon. We may define this concisely
as follows. (The definitions in [Br] and [LMS] are essentially equivalent to this, though the definitions seem
a bit more complicated as they are not stated in terms of sheaf cohomology.) First, define a presheaf R :
G —topology of X — (abelian groups) by I'(U, RY) = KZ(U) = the G-equivariant Atiyah-Segal K-theory of
U. One may observe that if G/H is a point on the above topology of X, the stalk RZ m = R(H), at least for
suitable X. Given an abelian presheaf P on the G-topology of X, one defines the Bredon equivariant cohomology
of X, H¢, ,(X; P) = RT(X, (P ® R)) where denotes the functor sending a presheaf to its associated sheaf and
RT(X, ) denotes the derived functor of the global section functor computed on the G-topology of X. So defined,
H¢, g, (X; P) is a module over Kg(X) and hence over R(G). Our procedure for defining Bredon style equivariant
cohomology may be therefore summarized as follows: define a topology where the open sets are G-stable open sets
and modify the abelian presheaf P on this site by the sheaf R® that contains information on the representations
of G. One may now contrast this with the definition of the usual G-equivariant cohomology of X (which is a Borel
style equivariant cohomology). Let P denote an abelian presheaf on the simplicial space EG é X. Then one defines

H:(X;P) = RF(EGéX, P). This is a module over H},(X,Z) and hence over H*(BG;Z).

Finally consider the case where G is a group scheme acting on a scheme X. One runs into various difficulties,
if one tries to define a Bredon style equivariant étale cohomology in this setting. The main difficulties are in the
definition of the G-topology. The discussion in [T-3] section 2, shows how to define an appropriate topology in
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this setting so that the definition of a Bredon style equivariant étale cohomology is still possible. Guided by this
example, we define and study a site (or topology) for any Artin stack in the next section which may be used to
define a finer variant of the cohomology of a stack.

3. The Isovariant étale site

3.0.8. Basic frame work. Let S denote a Noetherian separated scheme which will serve as the base scheme. All
objects (i.e. schemes, algebraic spaces and algebraic stacks) we consider will be defined over the base scheme S
and locally Noetherian. In particular, they are all locally quasi-compact. Fibered products over the base scheme
will be often denoted just as a product. (For the most part we may restrict to finitely presented objects over the
base scheme S; but it will often be necessary to consider filtered inverse limits of such objects with affine structure
maps for the inverse system.)

Let S denote an algebraic stack. We define and study several new sites associated to stacks in this section.

Given an algebraic stack S, recall the inertia stack Is associated to S is defined by the fibered product SA X AS .
,SXS,

Since A : § - S x S is representable, so is the obvious induced map Is — S.

Definitions 3.1. (i) Let f : &' — S be a map of algebraic stacks. We say f is isovariant if the natural map
Isi — IsxS' is a 1—isomorphism, where Is: (Is) denotes the inertia stack of S’ (S, respectively).
s

(ii) The smooth and étale sites. Given an algebraic stack S, we let Sgint (Ssme) denote the site whose objects are
smooth maps u : 8’ — S of algebraic stacks (smooth maps v : U — S with U an algebraic space). Given two such
objects u: 8" - S and v : 8" — S, a morphism v — v is a commutative triangle of stacks

S

(i.e. There is given a 2-isomorphism a : 4 — vo ¢.) The site Sg; is the full sub-category of S consisting of étale
representable maps u : 8’ — S, where &' is an algebraic stack. Finally, when S is a Deligne-Mumford stack, Se¢
will denote the full sub-catgeory of S consisting of étale maps u : U — § with U an algebraic space as objects.

(iii) The isovariant étale and smooth sites. If S is an algebraic stack, Siso.¢ Will denote the full sub-category of
St consisting of (representable) maps u : 8’ — S that are also isovariant. S;so.sme is defined similarly as a full
sub-category of Sgp¢. For the most part we will only consider the site Siso.ct- (It follows from the lemma below
that these indeed define pre-topologies (or sites) in the sense of Grothendieck.)

(iv) We will consider sheaves on any of the above sites with values in the category of abelian groups, or modules
over a ring etc. If C is any one of the above sites, we will denote the corresponding category of sheaves on C by
Sh(C).

Lemma 3.2. (i) Isovariant maps are representable.
(i) Isovariant maps are stable by base-change and composition.

Proof. (i) Let f : &' — S denote an isovariant map. Let ¢ : V — U denote a map of schemes and let
yeob(Sy). To prove (i), it suffices to show that for each such pair (¢,y), the category S, ,, whose objects are
pairs (zeob(Sy,), geHoms, (f(z),$*(y))) and where a morphism (z1,91) — (22, 92) is a morphism h : z; —
2 in Sy sothat g1 = g2 0 f(h) is discrete. Let hq, ho : 21 — 22 denote two such morphisms. We will show that
hy = hy. Observe that f(hi) = g5 ' 0 g1 = f(h2) and therefore f(hy ') o f(h1) = f(hy! o hy) = id; since f induces
an isomorphism on the inertia stacks, it follows that Ay Yo hy =id,ie. hy = hy. This proves the category S;I/,V is
equivalent to a set, i.e. is a discrete category. (i).

(ii) Recall the inertia stack Is = S x S where both the maps S — & X S are the diagonal maps. Now one may
SxS
show readily that an atlas for Is = the equalizer of the two maps
XxX = 5

S e —
P2
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where z : X — S is an atlas for the stack S. Since equalizers are preserved by pull-backs it follows readily that
isovariant maps are stable under base-change. It is clear that isovariant maps are also stable under composition. [

Example 3.3. (Quotient stacks). Let G denote a smooth group scheme acting on an algebraic space X. The
objects of [X/Giso.ct may be identified with maps u : U — X where U is an algebraic space provided with a
G-action so that u is étale and induces an isomorphism on the isotropy groups. Observe that any representable
map 8’ = [X/G] of algebraic stacks may identified with a G-equivariant map v : U — X, with U an algebraic
space. The iso-variance forces isomorphism of the isotropy sub-groups.

Definition 3.4. (See [L-MB] (1.4.3).) An algebraic groupoid X consists of a triple (Xo, X1, X3) of algebraic spaces
provided with the following data:

i) maps s,t : X; = Xo (s= the source, t = the target), Xo = X; x X;
S,Xo,t

ii) amapm:X; x Xj; — X, which is associative in the obvious sense (which we call the groupoid law)
S,X(],t

iii) a map e : Xo — X7 so that the composition soe = idx, = toe, a map in : X; — X; so that, in? = idx,,
soin =t,toin = s,tom = sopry and som = topr;. (Observe that, since in? = idx,, in must be an isomorphism.)
Moreover

iv) mo (idx, X e) =mo (e X idx,) =idx,, mo (in X id) =eos and mo (id X in) = eot.

Definition 3.5. Let X denote an algebraic groupoid. Given an algebraic space y : Y — X, a left-action of the
algebraic groupoid X on Y is given by an isomorphism @ : X; x Y =2 X; x Ysothat Y = (Y,X; x Y)with

5,X0,y t,Xo0,y $,X0,y
sy =sXidy,ty =t xXidy,ey =eXidy,iny =in Xidy, my : X7 x ¥YxX; x Y=2X; x X; x YV —
5, X0,y Y  5,Xo0y s,Xo0,t  8,X0,y

Xy x Y = m x idy defines an algebraic groupoid. We say y : Y — X has trivial action by the groupoid if
$,X0,y

the following conditions are satisfied: X; X Y = X; X Y and the isomorphism & = id. (See Proposition 3.7
8, X0,y t,Xo0,y
for a some what different explanation of groupoid actions. The above definition of an action being trivial, though

sufficient for our purposes (since we consider triviality for actions only by inertia groupoids) is not the most general.)

3.1. Classifying simplicial algebraic spaces.

3.1.1. Sites. Let S denote an algebraic stack and let  : X — S denote an atlas. Let B,S denote the classifying
simplicial algebraic space associated to z: i.e. (B;S), = (cosk§X), = Xg(X...g(X. One defines the small smooth

(étale) site of B,S as in [Fr] p. 7. Recall each object in this site will be an object in the smooth (étale site)
of some (B,S), for some n and a morphism between two such objects will be a map lying over some struture
map of B,S. We will denote these sites by B;Ssmt (BzSet, respectively). The corresponding big sites will be
denoted SMT(B,S) (ET(B,S), respectively). Recall that an object in the corresponding big site consists of an
object U in SMT(B,S,) (ET(B;S,)) for some fixed integer n with morphisms between two such objects defined
as morphisms lying over some structure map of the simplicial space B,S. Coverings are defined in the obvious
manner and coincide in the small and the corresponding big sites.

3.1.2. Topoi. Given a site as above associated to a simplical algebraic space X, a sheaf F' on X in the above
site will be given by a collection F = {F,|n} of sheaves F}, on the corresponding site of X,, along with maps
®, : a*(F,) —» F, for any structure map a : X,, — X,. Moreover, the maps {®,|a} are required to satisfy
an obvious compatibility condition. The category of all sheaves of sets on the small smooth site (the small étale
site, the big smooth site, the big étale site) of X will be denoted Shsers(Xsme) (Shsets(Xet), Shsets(SMT (X)),
Shsets(ET(X)), respectively). A sheaf F' = {F,|n} on a simplicial space X has descent if the maps ®, are all
isomorphisms. The category of sheaves with descent forms a full sub-category closed under extensions. For example,
the category of sheaves of sets with descent on the small smooth site will be denoted Shd¢? (X,¢). If C is any of

sets
the above sites, Preshsets(C) will denote the corresponding category of presheaves of sets.

3.1.3. The above discussion also applies to truncated simplicial algebraic spaces and in particular to algebraic

groupoids. Given an algebraic groupoid X, one defines the associated small (big) smooth and étale sites as the

corresponding sites of the truncated simplicial space consisting of the X, X; and X, = X; x X7 along with the given
Xo

structure maps between them. A sheaf on such a site will consist of a collection of sheaves F = {F,|n = 0,1,2},
with F; on X; along with structure maps {®, : a*(F,) — Fn|a} as above. For example, the category of sheaves of
sets on the small étale site of X will be denoted Shsess(Xet). The corresponding full sub-category of sheaves with
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descent will be denoted Sh2¢8, (X.;). (Presh?¢; (X.;) will denote the full subcategory of Preshges(Xe¢) where the

sets sets
corresponding maps ¥, are isomorphisms of presheaves.)

3.1.4. Observe that there exists an equivalence

Shsets(Xo,et) ~ (algebraic  spaces etale and locally)
(of finite type over Xp)

This extends to an equivalence

Shdes ((B,S)et) ~ (algebraic spaces Y in (Xo)et)

sets

(with an action by the groupoid X)

Remark 3.6. All the above definitions apply to abelian sheaves or sheaves of R-modules, where R is a commutative
ring. However, for the most part, we will be concerned with the topoi of sheaves of sets. We will also consider
mostly the étale sites.

3.1.5. One may obtain the following alternate description of sheaves with descent on the big étale site of an
algebraic groupoid X. Let X denote an algebraic groupoid. A sheaf F' of sets on ET(Xg) has an action by X if
there is a given a pairing:

p:X1 x F—>F
8,Xo,f

(where f : F — X is the obvious structure map) which makes the square

X, x F -t F

s,Xo, f
ST
X1 ———j———> Xo

cartesian and which is associative in the sense that the diagram

idXp

X1 x X4y x F— X; x F
s, Xo,t  §,Xo,f 5,Xo0,f
mxz’dl Il«l
X, x F 5 F
5,Xo0,f

commutes. (Here we view X; as the obvious sheaves represented by the algebraic spaces X;, i = 1,2.) We denote
this full sub-category of sheaves of sets on ET(Xy) by ShX, (ET(X,)).

sets

Proposition 3.7. There exists an equivalence

Shdes (ET(X)) ~ Sh¥

sets sets

(ET (Xo))

Proof. Let F = (Fy, F1, F», ®) denote a sheaf of sets with descent on ET(X). Let fo : Fy — Xo denote the given
map. Now one obtains the diagram

where the first and last squares are cartesian. Given a scheme Y over Xy and maps a: Y — Fy, go : Y — Xy and
g1:Y — Xj so that so g1 = go and fy o & = go, one defines the map (g1, go, @) : Y — Fy by first taking the

induced map Y — pr} (Fo)gm* (Fo) and then following it by the map p*(Fy) — Fp forming the last map in the
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top row of the above diagram. Now the associativity condition above follows from the co-cycle condition on the

isomorphism ®. Conversely maps Y — X; x F correspond under the action p to a unique map ¥ — X; x F
8,Xo,f t,Xo,f

~

thereby providing an isomorphism pr3(F) = p*(F). The associativity of the action will provide the necessary
co-cycle conditions. O

Proposition 3.8. Let S denote an algebraic stack, x : X — S an atlas, X = the associated algebraic groupoid and
B,S = the associated classifying simplicial algebraic space.

i) There exist maps T : (ByS)et — Set and & : X = tra(ByS)et — Set of sites
i1) One obtains an equivalence of categories:

Shsets(Ssme) ~ ShIeE (Xemi) ~ ShIeE (BuSsmi) = Shiet (BaSer) ~ Shiss (Xet).

sets

(Here tro denotes the truncation of the classifying simplicial algebraic space B,S above degree 2.)

Proof. The first assertion is clear. The first equivalence in (ii) is provided by descent theory while the second
follows readily by the identities relating the compositions of the structure maps of the simplicial space B,S. For an
algebraic space, any smooth cover has a refinement by an étale cover. Therefore, if € : Xy — Xt is the obvious
map of sites, €, o €* is naturally isomorphic to the identity showing e* is fully-faithful. One may also show the
composition €* o €, is naturally isomorphic to the identity showing the functor €* is an equivalence. O

Proposition 3.9. Let S denote an algebraic stack, x : X — S an atlas and B;S the corresponding simplicial
algebraic space. Then there exists a map of simplicial algebraic spaces mqy : B(X xIs) — B,S where the first is the
S

classifying simplicial algebraic space associated to the group-scheme X xIs over X .
S

Proof. Observe that B(X ng)n = the n-fold fibered product of X xIs over X. If n = 0, this is just X and in this
case the map mg = idx. Both the structure maps B(Xng)l = Xng - X = B(Xng)o are the same and are

given by the projection to the first factor. Observe that 1f T is scheme,

XX X(T) = {(th1, 92, )i X (T), ¢ : x(h)Sa(s) in S(T)} while

Xxs(T) = {(¥1, (0, ¥21), M1 X(T),  ¥20eS(T), 31 Aut(o), n:a@)Svh in S(T)}.

Now 71 (¥}, (¥he, ¥h1),m) = (1,91, 071 095, on). The remaining maps {m,|n > 1} are defined similarly and one
may readily verify that the maps 7,, commute with the structure maps of the simplicial algebraic spaces. O

Proposition 3.10. Let S denote an algebraic stack and let F' denote a sheaf on Sgpmi- Let € : Is — S denote the
obvious map, let p, pri, pro : IsxIs — Is denote the group action and the obvious projections and let e : S — Ig
s

denote the unit.

i) Let x : X — S denote an atlas for S. The map 7 = 7y : Xé[s — X§X makes the triangle

X x
S

commute.

1) Let T : XXIS — Is denote the obvious map induced by x. Let fi, Pry, DTy : XXISXIS — X xIs denote the
S S
obvious maps mduced by p, pr1 and pra. Leté: X — Xng denote the map induced by e. Then there ezists an

isomorphism ¢ : T*e*(F) — T*e*(F) satisfying a cocycle condztzon between the pull-backs by &r, pFy and Pry and so
that the pull-back by € is the identity.

Proof. Let x : X — S denote an atlas for S. The last proposition shows we obtain the commutative diagram:
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XxXxX —d1—> X xX RN
(3.1.6) 7S S - X

d2
I"’TT ﬂT idT
dy
Xé[sé[s—dj—)Xéfsprl X
dy

The maps d; are the obvious maps of the simplicial algebraic spaces above. Now there exists an isomorphism
¢ : pix*(F) — piz*(F) satisfying an obvious co-cycle condition. Consider 7*(¢). Observe that n*pfz*(F) =
priz*(F) = z*e*(F) and similarly 7*piz*(F) = priz*(F) = £*€*(F). Therefore, 7*(¢) defines an 1somorphism
Z*e*(F) — T*e¢*(F). Moreover, the commutative diagram on the left provides the cocycle condition between the
three pull-backs of this to X ?S< Igé[g. The map € is a section to pr; and if § : X — X §X is the diagonal,

d=moe. O

Example 3.11. Let S = [X/G] where G is a finite group acting on a scheme. Now XxIS = U Gy x X% and

it is clear that there is an action by X xIs on any G-equivariant sheaf F' on X: in fact thls corresponds to a
S

representation of G, on each stalk F.

Definition 3.12. Assume as in the above situation that S is an algebraic stack, z : X — & is a given atlas and
B,S the associated classifying simplicial algebraic space. We let Shi’i"(B,S,;) denote the full-sub-category of

sets

Shies (B,S.:) where the isomorphism ¢ given in the last proposition is the identity. Shi"i"(try(B;S)e) is defined

sets sets

similarly. (One defines Preshi’;*(B,S,;) similarly.)
The following result should be taken as the key to understanding and working with the isovariant étale sites.

Theorem 3.13. Assume that S is finitely presented over the base scheme S, a coarse moduli space M exists (as
an algebraic space) for the stack S and that S is a gerbe over M. (i) Then the functor V —V X S, Mer — Siso.et
m

is an equivalence of sites. (ii) Let m : S — I denote the obvious map. Then the functor F — z*m*(F) defines
an equivalence of categories Sh(Me;) — Shi™"(B,Set)

Proof. We will prove the second part of the theorem first. We consider the following commutative diagram

(317) X xX —>'X mox m

Wt 7

Let F denote a sheaf on B,S,; so that F' = z*m*(F) for some sheaf F' on 9,;. Now we retrace our arguments above
showing the existence of the isomorphism 7* (@) : m*pfz*(F) — w*piz*(F) (See ( 3.1.6 ).). The key observation

is that the composition X é Is 5™ X é XAX x X factors as X X Is =P X -2 X x X. Since A*(¢) is the
m _ m )
identity, it follows that so is 7*(¢). This proves that if F is a sheaf on s, then Z*m*(F)eSht™"(BySes).

To see the converse suppose F is a sheaf on B,S,; with descent. Using the notation as in ( 3.1.6 ), there exists
an isomorphism ¢ : p}(F) — pi(F) satisfying an obvious cocycle condition and whose pull-back by the diagonal
to X is the identity. We will first show that there exists an isomorphism <Z pi*(F) — py*(F) so that ¢ = n*(¢).
To see this one needs to observe that the map induced by m, X >< xX3Ax xX is faithfully-flat. (Since this is

local on M in the fppf topology, one may readily reduce to the case where the stack is a neutral gerbe in which
case the map m and therefore the above induced map has a section. To be precise, consider the pull-back of the
stack to X by the map X — S — 91 where X — S denotes an atlas. The pull-backed stack is a neutral gerbe
over X and X is flat over 91.) Therefore, by faithfully-flat descent it suffices to show that 7} (¢) = 75(¢$) where

: X 39< X XXX X 29< X - X >< X denotes the projection to the i-th factor. (Recall that faithfully flat maps

X

between algebralc spaces satisfy the following condition (see [Mur] p.121, p.124): let X — Y denote a faithfully
flat map and which is also locally of finite type between algebraic spaces. Then a map f: X — X descends to a
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map g : Y — Y if #7(f) = n5(f), where 7; : X})ﬁX — X is the projection to the i-th factor.) Observe from the

* ok of ¥

diagram ( 3.1.7 ) that p; = pl on, i = 1,2. Therefore, 7} (¢) : min*p} " (F) — 7in*py"(F). Now nom =nom. It
follows therefore that both 7 (¢) and 73 (¢) map 7in*p,* (F) to min*ph*(F). Recall that the fibres of m; are the
orbits of X x Is and that the map 7} (¢) is an equivariant map between two equivariant sheaves for the action of

S
the group-scheme X X Is. Therefore, it suffices to show that the maps 7} (¢) and 73(¢) agree at the stalk at a
S

point in each fibre. Since the maps m; have a section, namely the diagonal map, it follows that this is indeed the
case. Therefore, 7} (¢) = 73 (#) and therefore there exists a map ¢ : p}*(F) — p)”* (F) so that ¢ = n*(4).

Observe that the projection pry : X x Is — X is faithfully flat by the hypotheses and that non = Aopry. The

S —_ —_ p—

hypothesis that FeSh!™"(B,S,;) implies that the isomorphism 7*n*(¢) is the identity. But prjA*(¢) = 7*n*(4)

and pr; is faithfully flat; therefore, A* (@) itself is the identity. The faithful flatness of 5 readily implies that the
pull-backs of ¢ to X x X x X satisfy the required co-cycle condition. This completes the proof of the second part
m m

of the theorem.

Now we consider the first part. Observe that any isovariant étale map &' — S in S;,,.¢; i a representable étale
map. We will show that &' = 9 x S for some étale map M’ — M. Let 2 : X — S denote an atlas for the stack

Mm
Sandlet ' : X' = X x &' — S’ denote the induced atlas for S'. Observe that X x Is is a group scheme over
S S
X and that it acts on X x X as in Proposition 3.10 with the geometric quotient being X x X. By isovariance,
S Mm

Is: =215 x 8" and X'xIg = X'x X xIs. Therefore, we obtain the cartesian square:
S S X S

X' x X'[(X'xXxIg) — X x X/XxIs
s X s s s

X' X

The two left columns define a flat equivalence relation on X'. (They are flat since the are obtained by base-change
from the two right most columns: now one may identify X x X /(X xIs) with X x X and the two projections pr;
S s Mm

with the corresponding projections from the latter to X.) Therefore, the quotient of this flat equivalence relation
exists as an algebraic space 9’'. Moreover, the map X' — X induces a map MM’ — 9N so that one obtains a
cartesian square:

|
m M
Now the bottom map is also étale by descent theory. Observe that X'x X' = X §X éS’ = (X E;X )xM' and
S M
XxS8" = X x9'. Therefore, S’ = M’ x S. This completes the proof of the first assertion in the theorem O
S m M

Corollary 3.14. Assume the hypotheses of theorem 3.13. Then one obtains an equivalence of the following cate-
gories of sheaves:

Shirin(BySet), Sh(Siso.et) and Sh(Met)
Proof. This is clear from the last theorem. O

Remark 3.15. Let Shi"/"(S,;) denote the category of all sheaves of sets on S,; with trivial action by the inertia
stack Is as in Definition 3.12. It is necessary for us (see Proposition 3.18) below to show that this is a Grothendieck
topos and therefore that there exists a site S so that the category of sheaves of sets on S is Shiin(S,;).
We will begin by recalling the situation in Definition 3.5.

Proposition 3.16. Let X = (Xo, X1) denote an algebraic groupoid associated to an algebraic stack S with z :
Xo = S an atlas. Then Sh¥¢¢ (X)) and She¢ (B,Se;) are Grothendieck topoi.

sets sets

Proof. Observe that the small étale topos on Xo, Shsess(Xo,e¢) is a Grothendieck topos. By using suitable universes
one may also ensure that so is the big étale topos on Xo, i.e. Shsers(ET(Xp)). Let X = tra(B,S) denote the



12 ROY JOSHUA

algebraic groupoid obtained by truncating the simplicial algebraic space B,;S. Since the obvious functor from the
category of sheaves on the groupoid to the category of sheaves on Xy preserves and reflects colimits and finite limits
the conditions in [SGAJ4, IV, 1.1.2(a), (b) and (c) hold. Now it suffices to show that the categories Shd¢; (X.;)

sets
and Sh2¢ (B,S.t) have a small family of generators.

We begin with the observation that the category Shgets(Ssme) is a Grothendieck topos and therefore has a small
family of generators. Now the equivalences of categories in Proposition 3.8 completes the proof. O

Proposition 3.17. Leti : So — S denote a closed immersion of algebraic stacks with open complement j : S — S.
Now j induces an open immersion of the topoi with complementary closed immersion i (in the sense of [SGA] 4,
1V, (9.8.5) i.e. i, and j. are fully-faithful and that the image of i, is the sub-category of objects that j* sends to

):

(3.1.8) Sh(BaySo.et) 3 Sh(BySet) & Sh(By, St et)
(3.1.9) ShETIM( By Sp.et) 3 ST (BySey) & ShT M (B, Sy ot)

Moreover, the functor ji : Sh(Bz,S1,et) = Sh(BgSet) (ix : Sh(BgSo,et) = Sh(BzSet)) induces a functor ji :
Shirin (B, 81 et) = ShiTi"(BySet) (is : ShI™"(ByoSo,et) = Shi™1"(B;Set), respectively) with ji (ix ) left-adjoint
to j* (right-adjoint to i*, respectively).

Proof. The results of [SGA] 4, VIII, (6.3) extended to algebraic spaces and then to simplicial algebraic spaces
readily proves the assertion for ( 3.1.8). The observation that in the diagram

X xIs, 5 X xIs&X x Is,
So S Sl

j is an open immersion with 7 its complementary closed immersion, along with ( 3.1.8) shows that ( 3.1.9) is also
true. The last assertion regarding j; and i, may be verified readily. O

Proposition 3.18. Let S denote an algebraic stack that is finitely presented over the base scheme S with an atlas
z: X — 8. Then the topos Shii"(B,S.) is a Grothendieck topos.

sets

Proof. Since the obvious functor Sh!™"(B,S.;) — Sh(B;S.:) preserves and reflects colimits and finite limits,
the conditions in [SGA]4, IV, 1.1.2(a), (b) and (c) hold. Now it suffices to show the existence of a small family
of generators to satisfy the condition of [SGAJ4, IV, 1.1.2(d). Observe that there exists a finite filtration Sy C
S1 C ... € S, = S by locally closed algebraic substacks S; so that each (S; — Si;—1)req is a gerbe over its coarse
moduli-space. Let x; : X; = S; — S;—1 denote the induced atlas for S; — S;_;. By Theorem 3.13, each of the topos
Shimin(B,.(S; — Si_1)et) is a Grothendieck topos. The last proposition shows that the category Shi™"(B,S,) is
obtained by gluing the sub-categories Shi™"(B,,(S; — Si_1)et)- For each i =1,...n, let j; : S; — S;_1 — S denote
the obvious locally closed immersion. Clearly, if {G%¥|a} is a set of generators for Shi™"(B,,(S; — Si—1)et), the
collection {ji(G$)|a,i} will be a set of generators for Shi™"(B,S.;). O

Corollary 3.19. (i) There exists a site B,S!™ so that the category of sheaves of sets on the latter is equivalent
to ShITi"(B,Se).

sets

(i) Now there exist a map
stéglin_ehsiso.et

of sites. The corresponding inverse-image functor e~' sends coverings to coverings. €* : Shsets(Siso.et) —
ShtT'Z"(BzSet) 18 fully—faltthl

sets
(iii) There exists a map of topoi f* : ShET " (B,Set) — Shi¢3,(BySet) which is also faithful and conservative.

Proof. The first assertion follows from Giraud’s Theorem as in [SGA]4, IV Theorem (1.2) in view of the proposition
above. It may be worthwhile recalling the construction of the associated site starting with the given set of generators
for the category Shii"(B,S,;). First, one enlarges the given set of generators by taking all finite inverse limits
among them. These form the objects of the site. The topology on this site is the one induced by the canonical

topology on the given category Shi"i"(B,S.;). Now observe that coverings are given by universal epimorphisms.

Given an object 8" — S in S;s0.ct, Observe that Isr = S8’ xIs. Therefore, the sheaf represented by X' = §'xX
S S
on B,S.; has trivial action by X ?S<I5. Clearly it has descent. Therefore, it defines a sheaf in Sh!"i"(B,S.;). The

sets
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functor §’ = X' — hx: = the sheaf represented by X', preserves pull-backs and sends coverings to epimorphisms.
This defines the map of sites e. To show that e* is fully-faithful, it suffices to show that e, o e* = id. We will
establish this as follows.

First consider the functor e™! : Sisp.er — BoSH™™. We observe this is fully faithful as follows. Suppose
f,9: 8" — 8" are maps in Sisp.et 50 that e 1(f) = e (g) : e 1(S') — e 1(S8"). This being a map of sheaves in
Shirin(B,S.;) C Sh®*(B,S:) satisfies descent conditions to descend to a unique map &’ — S”. i.e. f and g must
be equal to begin with. This shows the functor e ! is faithful. To see it is full, let f: e 1(S') = hx: = e 1(S") =
hx» denote a map in Sh!™"(B,S,;). By the Yoneda lemma, f is induced by a map g : X' — X" which satisfies
descent conditions to descend to a unique map S’ — S”. This shows e~! is also full.

Now consider T'(U, ese*(F), for UeS;iso.et and FeSh(Siso.ct). e*(F) is the sheafification of the presheaf e# (F)

and T(U, e.e? (F)) =T (e 1(U),e#(F)) = lz'_7>n (W, F). By the arguments in the above paragraph the last
e~ l(U)y—se—l(w)
colimit identifies with lim I'(W, F) = T'\(U, F). This shows e, o e#(F) = F for any sheaf FeSh(S;so.et). Therefore
—
U—-WwW

(denoting the functor sending a presheaf to the associated sheaf by a) and making use of Proposition 3.25 (below)
we obtain: e, o e*(F) = exoaoe#(F)=aoe,0e?(F)=e,0e#(F) = F. It follows that e* is fully-faithful.

Now we consider (iii). The obvious (inclusion) functor Sh!""(B,Se;) — Sh2¢s, (B;Set) preserves all colimits
and finite limits and therefore by [SGA]4 , IV, 3.13, may be written as f* for a map f of the corresponding topoi.
Clearly this functor is (fully)-faithful and hence conservative. O

Remark 3.20. In Theorem 3.27 we will prove that the functor e* is an equivalence of categories, in general. Observe
that the forgetful functor sending a presheaf of abelian groups, or modules over a ring to the corresponding presheaf
of sets preserves limits. Therefore, it sends sheaves to sheaves and induces an equivalence between the category
of sheaves of, say abelian groups and the sub-category of abelian-group objects of the category of sheaves of sets.
This observation shows that there exists a functor e* on the corresponding categories of sheaves of, say abelian
groups. This will also be fully-faithful on the corresponding categories.

Proposition 3.21. Let f : S; — Sy denote a representable map of algebraic stacks finitely presented over S that
is integral, radicial and surjective. Let xo : Xo — So denote an atlas, B,;,So the corresponding simplicial algebraic

space, x1 : X1 = XoxS1 — &1 the induced atlas and By, S1 the corresponding simplicial algebraic space. Then f*
So
defines equivalences

Shsets(B:cOSO,et) — Shsets(Bw1$1,et): Sh?é}i;b(Bz()SO,et) — Sh?é}i;b(lesl,et)-
Moreover, f* also induces an equivalence:

Shsets (SO,iso.et) — Shsets (Sl,iso.et) -

Proof. The induced map B f, : By, S1 — By, So is integral, radicial and surjective in each degree. Moreover, so is
the induced map BX; xIs, - BXoxIs,. (One may verify the latter by observing the cartesian square (where
S1 So

is the map defined in Proposition 3.9:

XxIs —— XxX
s s

! !

X — 5 xXxxX

)

This proves the first assertion. Now f* induces a map Shsets(So.iso.ct) — Shsets(S1,is0.et). Since the functors
e* : Shsets(Soiso.et) = ShITiM(BySo.et), € + Shsets(Stiso.et) = ShiTi™(By, S1,et) are fully-faithful, it follows from
the first assertion that f* : Shsets(So,iso.ct) = Shsets(S1,isoct) i also fully-faithful. Therefore, it suffices to show
the following: given S| — S; isovariant and étale in the site S1 is0.et, there exists an isovariant étale map 8§ — So
so that S| = 36‘;(31.

0

For this, observe that f* induces an equivalence of the étale sites Xg ¢t — X1 et and (Xo x Xo)et = (X1 X X7)et-
0 1
Therefore, one obtains equivalences of categories:

Shsets(XO,et) = Shsets(Xl,et)7 Shsets((X0§<X0)et) = Shsets((Xngl)et)'
0 1
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In view of the equivalence of categories in Proposition 3.8, one observes that the functor

(3110) f* : Shsets(XO,smt) — Shsets(Xl,smt)

is also fully faithful.

Let S{ — &1 denote an isovariant étale map in the site St iso.et; let X{ = X1 xS]. The equivalence of the étale
S1

sites of Xy and X; shows that there exists an étale map X§ — Xo so that f*(X() = X{. Similarly there exists an

étale map XJ — Xox X so that f*(X{') = X] xX] = X{'. Let a1, b1 denote the two obvious maps X" — X]: the
So St

map X{ al—x>b1X{ x X is separated and quasi-compact. By ( 3.1.10), it follows that there exist two smooth maps

ag, by : X§ — X{ so that f*(ag) = a1 and f*(by) = by. Since the induced maps X; — X§ and X{ — X[ are

radicial and surjective (and hence universal homeomorphisms), one may see that the induced map X§*2° X} x X},
is separated and quasi-compact.

a,
Therefore, XY — X defines an algebraic groupoid. (The groupoid law is defined by requiring that f* applied
—
bo
to the the composition X' x X{' — X[ is the composition X' x X{' — X|'. Similarly the remaining structure maps
X5 X1

of the groupoid are defined by requiring f* applied to a structure map of the groupoid is the corresponding structure

a1
y—

1 —
b1

algebraic stack. Clearly f*(S§) = Sj since f*(X{§) = X1 and f*(X{) = X{".

map of the groupoid X X, that corresponds to the algebraic stack Sj.) Let S} denote the corresponding

Now we proceed to show that Sy — S is isovariant étale and that the induced map S] — S is integral, radicial
and surjective. The last assertion follows by faithfully flat descent since the maps X{ — X{§ and X' — X[ are
both integral, radicial and surjective. One may show the isovariance of S} — Sy as follows. First the iso-variance
of S — S; implies X; ;5131 acts trivially on the sheaf X| where the action is defined as in Proposition 3.10.

1

The diagrams in ( 3.1.6) for X = X; and X, (with the corresponding stack & = & and Sp) correspond under
pull-back by maps that are integral radicial and surjective: therefore, the action of X §< Is, on X| is also trivial.
0

This shows XX Is, C XX Is;. Since the map Sy — So sends Is; to Is,, clearly XgxIs; C XgxIs,. Therefore
So S Sh So
XoxSyxls, = XgxIss. Since X — & is faithfully flat, it follows that SyxIs, = Is;. This proves the map
81" So St So
Sy — Sp is isovariant. To see it is also étale, observe the commutative diagram:

ag

Xo - Xp So

X()XX(] LXO —>SO

80 —_—
by

By comparison with the corresponding diagram involving S and Si, one may see that the squares in the above
diagram are in fact cartesian; similarly X§ = X{xXj. The two left vertical maps are étale and therefore, by
Sl

0
faithfully flat descent, the induced map S§ — Sp is also étale. O

Theorem 3.22. Let i : So — S denote a closed immersion of algebraic stacks finitely presented over the base
scheme S. Let a: S — So denote an isovariant étale map in Sp iso.ct- Then there exists an isovariant étale map
S'" = S in Siso.et s0 that i*(S') = S§.

Proof. Let ¢ : X — S denote a fixed atlas for & which we will assume is a separated and quasi-compact scheme.
Let S1 =8 — & and let z; : X; — S; denote the induced atlases for S;, i = 0,1. Clearly X, is a closed sub-scheme
of X with open complement X;.
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Step 1. Next we begin with the following diagram: X}

N

1
Xo

X

where X = SééX . In this diagram, the map ¢ is étale, while i is a closed immersion. By [EGA]IV, 18.1.1 the
following hold: there exists a family {U; — X|i} of étale maps so that {U;xXo — Xo|i} forms an étale cover
b's

of X, and each of the maps U;xXo — X factors through the map ¢o : X) — Xo, with the corresponding map
X
U;ixXo — X| a Zariski open immersion. Let X' = UU; and &' : X’ — X be the obvious induced map. This map
X i

is étale and the map X'x X, — X, factors through an étale surjective map to X
b'¢

Observe that X' ;((Xo = X' ;((X g(So ~ X' 2580. Therefore, the induced map of this to Sy factors through a

smooth surjective map to Sj. i.e. X'xSy is also an atlas for the stack S}.
s

Let
(3.1.11) Ry = X'xSyx X'xS8,
s s, S
Since the map X' 230 — &) is smooth surjective,
_8>. v !
(3.1.12) Ro: Ry X fs<50

t

defines an algebraic groupoid. (Observe that the map 8 = (s,t) : Ry — X'xSy x X'xS, is quasi-compact and
S S
separated in view of the hypotheses. The separatedness follows from the observation that X'xS, is a separated
S
scheme. The groupoid law is the obvious one.) Therefore, Ry defines an algebraic stack with X'xSp as an atlas.
S

By [L-MB] Remarque (4.8) this stack may be identified with the stack Sj.
Next consider X' ;Xl where X; = X — Xy. Now the cartesian square
X'xX; —— X'
X

X3 — X

and the observation that the map X’ — X is étale, shows the induced map X’xX; — X; is also étale. Therefore,
X
the image of this map is an open dense sub-scheme of Xj: call it W. Observe again that X'xX; = X'xX xS =
X X s

X'xS;. Let
S

3.1.13 Ry = (X'x8;)x (X'xS8
( ) 1= ( X 1)&( X 1)
Now

(3.1.14) Ry Rl 5('?51

defines an algebraic groupoid and therefore an algebraic stack with X’xS; as an atlas. (Once again the separat-
s

edness and quasi-compactness of § = (s, t) follows from that of X’ fs<31-) We will denote this algebraic stack by Sj.

Clearly this maps to S;. In order to show this defines an open sub-stack of S; one may proceed as follows. First,
using the construction of the algebraic stack Sj, starting with the algebraic groupoid R1, one may observe that
the map §] — &; is a mono-morphism and hence also representable. (See [L-MB] Proposition (1.4.1.2).) The map
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from the groupoid R4 to the groupoid ( X 1§< X1 — X, ) factors through the sub-groupoid given by the images
1 E—

of R1 in X, ;< X; and W; this sub-groupoid also defines the stack S;. Therefore, S is an open sub-stack of S;.
1

Step 2. Next we consider R = Ry |J R;.

_ We claim that R defines an algebraic groupoid R on X' and that it is in fact an open sub-algebraic space of
X'xX'".

s
We consider the induced map:

(3.1.15) xSoxX’xSO = X'x8yx X'xS,
s sy S S S

Observe that the last term above may be identified with X'xX'xSy = (X' xS’ ) (X ! xSO) Clearly the latter
s s
maps by p = (id X a) x id to (X’XSO) (X xSO) One may now readily verlfy that the composition p o s is the

identity. (One may verify this, for example on the points of the algebraic spaces we are considering.) Clearly p,
being induced by a, is étale. Therefore, it follows that s (being a section to an étale map) is an open immersion.

Now observe that Ry = X'éSng'xSl ~ ( X’)?;Sl Let ® : Ry|UR:1 — ( xX)xSO U(X"xX")xSl =
1 S S

(X'xX")xS = X'x X' be the map induced by s on Ry to (X'xX')xSy and by the identity on Ry to (X'xX')xS;.
s s S s s s ’s
Using the observation that s is an open immersion and that R; maps by the identity to its image, one may readily

see that the map @ is in fact an open immersion and hence in particular étale. Therefore, the compositions given
by @ and the two projections X'x X' — X' are also smooth.
S

Therefore, p L8 7N —i> X defines an algebraic groupoid and an associated algebraic stack.
S e

(Once again the groupoid law is the obvious one.) We denote this stack by S’. The observation that RéSg =TRo
and RéSl =R, show that 5'§30 =~ S} and 3'§31 = an open sub-stack of S;.

Finally it suffices to show that the map &' — S is representable and is isovariant. For the first it suffices to
show that if z : Z — S is a map from an algebraic space, ZxS' is an algebraic space. Now ZxS'xS) — ZxS'
S s & S

is a closed immersion while Zx8'xS] — Zx8' is the complimentary open immersion. Both ZXx8'xS8}) =2 ZxS8}
s & s s & S
and ZxS8'xS] =2 ZxS; are algebraic spaces: recall that S) - So = S and §] = §1 — S are both representable
s & s

morphisms. Therefore, it follows that Z xS’ is also an algebraic space proving the map S’ — S is representable.
s

Observe also that the maps S; — S; are isovariant: for ¢ = 0 this follows from the hypothesis that Sy — Sy is
isovariant while for 4 = 1 this follows from the observation that S; — S; is an open immersion. O

Remark 3.23. The above theorem is established for quotient stacks in [T-3] Lemma 2.14. Even for the action of a
trivial group, such a result seems relatively unknown and seems to hold only in the setting of algebraic spaces and
not schemes. The only result for schemes that holds in general, seems to be the result from [EGA] IV, 18.1.1 that
we used in Step 1 of the proof.

Throughout the next proposition Presh(C) will denote the category of presheaves of sets on the site C. Sh(C)
will denote the corresponding category of sheaves of sets and a : Presh(C) — Sh(C) will denote the functor sending
a presheaf to its associated sheaf.

Proposition 3.24. Let i : So — S denote a closed immersion of algebraic stacks. Let iy : Presh(So iso.et) —
Presh(Siso.et) be defined by T'(V,ixP) = F(V;(So, P). iy : Preshgets(BySo,et) = Preshgers(BySet) will denote the

corresponding functor defined similarly. Let i : Sh(S, iso.ct) = SM(Sisowet); ix 1 SA™"(BySo et) = Sht™"(B;Set)
denote the corresponding functors at the level of sheaves. Now iy induces a functor Presh'Ti"(B,Sp.et) —
Preshi™i"(B,S,;) and one obtains the equality

sets
(3.1.16) @oiy =i, o0a.
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Moreover, if €* : Sh(Siso.ct) = Shi™"(B,S) and €* : Sh(Soiso.ct) = Shi™"(B.,So) are the functors in
Corollary 3.19, one also obtains the equality
(3.1.17) e*oi, =i,0€"
Proof. According to [SGAJ4, II, section 3, the sheafification functor a on any site C is defined by
(3.1.18) a(P) = LL(P), PePresh(C)

where Presh(C) denotes the category of presheaves of sets on the site C,

(3119) F(U,L(P)) = lz_r)n HompTesh(c)(R, P)

ReJ(U)
and J(U) is the category of covering sieves of U, UeC. If R is generated by {u; : U; — Uli},

Hompyresn(c)(R, P) = Equalizer ( IIT'(U;, P) — H,F(UiEUj,P) ).

— 4,

Recall that ¢, is just ix restricted to the category of sheaves. Therefore, it suffices to show that i L = Liy. For
U—Sin Siso.et;

(3.1.20) L(U,LiyP) = lim Hom(R,iyP) = lim Hom(RxSo,P)

ReJ(U) ReJ(U)

By Theorem 3.22, J(U) 3;80 is cofinal in J(U éSg). Therefore, the above colimit is equal to the corresponding colimit
lim Hom(R',P). One may identify this with I'(U xSy, L(P)) = I'(U,ixL(P)) as required. This proves the
R':J(_Jéso) §
first assertion for the functor 4, : Sh(So,is0.et) = Sh(Siso.et). The remarks in 3.23 first show that the results of the
last theorem hold on the étale site of algebraic spaces and that functor i4 : Preshsets(BzSo,et) — Preshsets(BzSet)
preserves presheaves with descent and induces a functor iy : PreshiTi"(B;So ) — Preshili®(B,S.:). Now the
identity in ( 3.1.16) follows for the functor i. : Sh'™"(B,Sp et) — Shi™"(B;Set) by entirely similar arguments as
above.

Next we consider the second assertion. Let F' denote a sheaf on Siso.er Or 0n Sp iso.cr- According to [SGA] 4, 11T
(1.3), e*(F) is the sheafification of the presheaf e# F defined by

T(U,e*F)= lim T(W,F)

U—se—1(W)

Here et : Sisp.e¢ = BSUi" is the inverse-image functor associated to the map of sites e in Corollary 3.19. The
colimit is taken over the filtered category which is the opposite of the comma category U/e. (Recall the objects of
the category U/e are w : W — S in Sj,, ¢t along with a map w' : U — e~ (W). Morphisms from (w; : Wy — S, w})
to (wg : Wy — S, w}) are given by maps ¢ : Wy — Wa in Sis0.er 50 that w) = w) o e~1(4). (A similar description
applies to the functor e# for ™' : S izo.et = BoaSEoim.)

Next apply the identity in ( 3.1.16) for the map of sites By, S{:i" — B, Sk ™. Therefore, iy 0e* =i, 0ao0e¥ =
aoiyoe®. ie. i,oe*(F) is the sheaf associated to the presheaf
(3.1.21) D(U,ige® F) = T(UxSp,e* F) = lim (W', F)

S —

(UxSg)—e—1(W’)
s

On the other hand, €*i,(F) = ae*i,F = ae*ixF) which is the sheaf associated to the presheaf
(3.1.22) T(U,e*iyF) = lim T(W,iyF)

U—e— (W)
= lim T(WxS&,F)
- S

U—ose—l(w)

The colimit is taken over the isovariant étale W — S provided with a map U — e '(W). By Theorem 3.22,
the filtered category appearing in the last colimit is cofinal in the filtered system appearing in the colimit in
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( 3.1.21). Therefore, the colimits in ( 3.1.21) and ( 3.1.22) are isomorphic. This proves the second assertion of the
proposition. O

Proposition 3.25. Let S denote an algebraic stack finitely presented over the base-scheme S.

Let e, : Preshges(ByS™") — Preshgess(Siso.ct) denote the direct image functor associated to the map of sites
e: B,S"" 5 8o 0t. If a denotes the functor sending a presheaf to the associated sheaf, then there is a natural
isomorphism a o e, =2 e, o a.

Proof. Observe that if L is the functor as defined in ( 3.1.18), then a = Lo L. Therefore, it suffices to show that e,
commutes with the functor L. This will follow, once we show that given any cover v : V — e~1(U) in Sh!""(B,S,;)
for any UeS;so.ct, one may find an isovariant étale u' : U’ — Ujgo.er 50 that v =e1(u') : V = e 1(U') — e 1(U).
Let V — e 1(U) be a given cover. Observe that V is a sheaf of sets with descent and with trivial action by the inertia

on B,U,;. Observe also that e~!(U) — U is an atlas and therefore e~(U)xe~1(U) +—> ¢~1(U) is a presentation
U _—

for the algebraic stack U. V is represented by an algebraic space which will be denoted by V itself. Since V is sheaf

with descent, there is an action by the above groupoid on V' (in the sense of 3.1.5) so that there is an isomorphism

@ : s*(V) = t*(V) satisfying cocycle conditions. Therefore one obtains an algebraic groupoid ¢+(y7) — > 1/ which
—_—

defines an algebraic stack u' : U’ — U. (The quasi-compactness of the map § = (s,t) : s*(V) —» V x V follows
from hypothesis on S. Observe that we may assume the atlas X is quasi-compact. The separatedness of § may be
deduced from that of (s, ) : e‘l(U)Ee_l(U) — e Y (U) x e71(U).) The map v’ will be étale by descent theory and

the hypothesis that V' has trivial action by the inertia implies ' is isovariant. (Observe that V has trivial action
by the inertia implies Iy xV = Iy xV.) One may now show that v = e 1(u') as in the proof of Corollary 3.19. O
U U

Theorem 3.26. Leti: Sy — S denote a closed immersion of algebraic stacks finitely presented over the given base
scheme S with open complement j : S — S. Now j induces an open immersion of the topoi with complementary
closed immersion i (in the sense of [SGA] 4, IV, (9.3.5)):

(3-1 23) Sh (SO,iso.et)E)Sh(siso.et)#Sh(sl,iso.et)

Proof. By [SGA] 4,1V, (9.3.5), the assertions are equivalent to proving that i, and j, are fully-faithful and that the
image of i, is the sub-category of objects that j* sends to ¢. Recall that we already established the corresponding
assertions for the étale topos of B, S and for the corresponding full sub-category of sheaves with trivial action by
the inertia -see ( 3.1.8) and ( 3.1.9). We will now use this to deduce that ( 3.1.23) also holds. As j: S — S'is
a mono-morphism in the site Sigo.cs, it is clear that j. : Sh(S1is0.et) = Sh(Siso.et) is an open immersion of topoi
and therefore is fully-faithful. (See [SGA]4, IV, 9.2 and VIII, 6.2.)

Showing that i, is fully-faithful is equivalent to showing the adjunction map 4* o i, — id is an isomorphism
in Sh(So,iso.et). As e* : Sh(Sp,iso.et) — ShI™"(By,So.et) is faithful, it suffices to show that e*i*i, — e* is an
isomorphism in Shi™"(B, Sy..¢). By the proposition 3.24, e*i*i, = i*e*i. = i*i.e*. Therefore, it suffices to show
that i* o4, — id is an isomorphism as functors on Sh!™"(B,,S.ct), which is true by ( 3.1.9). Finally it remains
to show that if FeSh(S;so.et) and j*F = ¢, then the natural map F — 4,¢*F is an isomorphism. However, if
J¥(F) = ¢, j*e*(F) = e*j*(F) = ¢ and therefore e*(F) — i,i*e*(F) is an isomorphism in Sh*""(B,S,;). Since e*
is faithful, the map F — i,i*(F) is an isomorphism as required. a

Theorem 3.27. Let S denote a finitely presented algebraic stack over the base scheme S with x : X — S an atlas.
Then the map

(3.1.24) e* : Sh(Siso.ct) = Shi™"(BySet)
is an equivalence of topoi. There is a finite filtration of S
(3.1.25) S CS8C---CS, =8

by locally closed algebraic sub-stacks so that each (S; — Si—1)req 5 a gerbe over its coarse moduli-space IM; (which
exists as an algebraic space) and Sh((S; — Si—1)iso.ct) 15 equivalent to the topos of sheaves on M; o¢. The isovariant
étale site has a conservative family of points and the points correspond to the geometric points of the coarse-moduli
space of M; for all i.

Proof. First observe that a filtration as in ( 3.1.25) with each S; —S;_1 a gerbe over its coarse moduli space exists for
any reduced algebraic stack. Therefore, the second statement follows immediately from Theorem 3.13. Moreover,
the same theorem shows that the functor e* induces an equivalence Shsets((Si — Si—1)iso.et) = Shiti™(By, (Si —

Si—1)et) where z; is the induced atlas for S; — S;_;. By the previous theorem (by Proposition 3.17), Shsets(Siso.et)
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(Shirin(B,S.)) is obtained by gluing the topoi Shets((Si — Si—1)iso.et) (ShEi"(By, (Si — Si—1)et), respectively).
This proves the first statement.

As shown in Theorem 3.13, the isovariant étale site of S; —S;_1 is equivalent to the étale site of its coarse-moduli
space IMM;. Since the topos Shsets(Siso.ct) is obtained by gluing the topoi Shsets((S; — Si—1)iso.et), it follows that
the geometric points of the coarse moduli-space of all the S; — S;_1, all ¢, form a conservative family of points. O

Remark 3.28. In view of Remark 3.20, the results of both the above theorems extend to sheaves with values in
other categories, like abelian sheaves, sheaves of modules over a ring etc.

4. HYPERCOHOMOLOGY ON THE ISOVARIANT ETALE SITE

In this section we define and establish several properties for the hyper-cohomology computed on the isovariant
site with respect to a presheaf of spectra. In view of Theorem 3.27, we may use the Godement resolutions to define
this: in fact the general framework of presheaves on a site with values in a complete pointed simplicial category
adopted in [J-2] and [J-3] is perfectly suitable for us. We begin by adding a few more basic hypotheses.

4.1. Further hypotheses. Let J denote a set of primes in Z. Assume that the base scheme S is of finite Krull
dimension and that there is a uniform bound on the étale cohomological dimension of the residue fields k(s) for all
points s in S with respect to all [-torsion sheaves and all leJ. (Observe that this hypothesis holds if S is of finite
type over an algebraically closed field or over Z[/—1] or if 2 does not belong to J and S is of finite type over Z.)
Assume also that [ is inwvertible in Ox, for any X which is a finitely presented object over the base scheme S that
we consider.

4.2. Conventions. Let C denote a site which is closed under all finite inverse limits, let C denote a set, let (sets)
denote the category of all small sets and let (sets)¢ denote the product of the category (sets) indexed by C. Assume
that we are given a conservative family of points of C indexed by C: recall this means we are given a morphism
7 : (sets)¢ — C of sites so that a sequence of sheaves F' — F — F" (with values in any Abelian category) is short-
exact if and only if 0 — 7#*(F') —» 7*(F) — 7*(F") — 0 is exact. For the most part S will denote the category
of fibrant spectra, though any of the other categories appearing in [J-2] may also be used. Now Presh(C,S) will
denote the category of all presheaves on the site C taking values in S. If S denotes the category of fibrant spectra
and PePresh(C,S), m,(P) ~ will denote the sheaf associated to the Abelian presheaf on C : U — m,(T'(U, P))
where m, is the n-th (stable) homotopy group. A map of presheaves f : P — P’ in Presh(C,S) will be called a
quasi-isomorphism if it induces an isomorphism on 7, (f) ~ (Throughout we will denote quasi-isomorphisms by ~
while isomorphisms will be denoted by =.)

4.2.1. Cohomology truncation. In all cases, 7<, P will denote an object in Presh(C, S) defined by 7;(I'(U, 7<, P)) =
m(T'(U, P)) if i <n and = 0 otherwise, for any U in the site C. In the case of fibrant spectra, the above truncation
functors are defined by the canonical Postnikov truncation functors. (See [T-5] Lemma (5.51), for example). One
may observe that {T'(U, 7<,P)|n} is an inverse system of fibrations for each U in this case. Moreover, the natural
map P — ol)i{—nnTSnP is an isomorphism of presheaves .

4.2.2. Homotopy inverse limits. Observe that there exists a bi-functor:
® : (pointed simplicial sets) x Presh(C,S) — Presh(C,S)

(The functor ® is defined in [J-2] section 6 as a colimit and therefore commutes with colimits in either argument.)
Let L(Const) : Presh(C,S) — Presh(C,S)® denote the functor sending an object MeS to the cosimplicial object
n— Anly @ M.

The above functor has a right adjoint which is called the homotopy inverse limit along A and denoted hoéim.
This will be defined as an end and therefore will commute with inverse limits. (See [J-2] section 6 for details on

the homotopy inverse limit.)

In the above situation, a map f : X* — Y® between two cosimplicial objects in Presh(C,S) will be called a
quasi-isomorphism if for each n, the map f™ : X™ — Y™ is a quasi-isomorphism. In the above situations, the
functor hoiim preserves quasi-isomorphisms (and therefore defines a functor at the level of the associated derived

categories). (See [J-2] (6.3.4) for a discussion of these.)
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4.2.3. The canonical resolutions of Godement. We will assume the situation of 4.2. Let C denote a site as there.

Assume that we are given a conservative family of points of C indexed by C as above. (For each point p of C is

associated a point of the site C indexed by p itself.) Let a denote the functor sending a presheaf on (sets)¢ to its

associated sheaf and let U denote the forgetful functor sending a sheaf on the site C to its underlying presheaf.

Now the functors U o 7, and a o ©* define a triple; let G = Uo7, 0a07* = T, oU oa o 7*. Observe that

G= H@p* oUoaop* where, for each point p of C is the associated map of sites p : (sets) — C. Let PePresh(C;S).
pe

The above triple defines an augmented cosimplicial object
G'P:PSGP.GMHP
in Presh(C;S). We define GP = hoEm{G”Pm} ie. I'(U,GP) = hoiim{F(U, G"P)|n} for any U in the site C.

Let C, C' denote two sites and let ¢, : Presh(C';S) — Presh(C;S) denote a left-exact functor. We define the
right-derived functor Re¢, : Presh(C';S) — Presh(C;S) by

(4.2.4) R¢.(P) = holim{¢(G"P)|n}

This is the presheaf defined by U — ['(U, R¢«(P)) = hogim{I‘(U, ¢«(G™P))|n}.

The spectral sequence of [J-2], (6.3.6) provides a spectral sequence
(4.2.5) EY' = RPp.(n7Y(P)) = R**.(P)

We also define the global section functor for presheaves. For this purpose let pt denote the site with one object, pt,
and one morphism which is the identity map of pt. (This category is made into a site in the obvious trivial manner.)
Now one may identify presheaves on pt with values in a category S with the category S itself. If C is a site with a
terminal object X, we define a map of sites 7 : C — pt by sending pt to X. We let I'(C, P) = I'(X, P) = m.(P) for
any PePresh(C,S) and

(4.2.6) He (X, P) = RT'(X, —)(P)

where the right-hand-side is defined as in ( 4.2.4). This defines the hyper-cohomology on the isovariant étale site
with respect to any presheaf of spectra P. This will be denoted H;y,.¢; (X, P).

Proposition 4.1. Assume in addition to the above situation that there exists a functor ¢* left adjoint to ¢.. Then
the obvious map Ro.(P) — lim Ro. (1<, P) is a quasi-isomorphism for any PePres(C',S).
oo—nN -

Proof. See [J-2] (3.4.1) for a proof. O

Corollary 4.2. Assume that both the sites above are closed under finite inverse limits.

(i) Next assume the following in addition to the hypothesis of ( 4.2.4). Let C be a full sub-category of C', let
¢ :C' = C be the map of sites associated to a fully-faithful functor ¢ : C — C' and let ¢, be the direct image functor
of presheaves associated to ¢. Assume that every C-covering of any object U in C is a C'-covering and that every
C'-covering of such an object is dominated by a C-covering. If PePresh(C',S), the natural map ¢.(P) — Rep.(P)
is o quasi-isomorphism.

(i1) Assume the following in addition to the hypotheses of ( 4.2.4). There exists a map of sites ¢ : C' — C so that
@* is the inverse image functor of presheaves associated to ¢. If PePresh(C,S), the obvious map P — R¢p.¢*(P)
is a quasi-isomorphism if the corresponding map F — Rp.¢* (F) is a quasi-isomorphism for any Abelian sheaf F
on the site C.

Proof. We consider (i) first. The hypotheses readily imply that the functor ¢, on Abelian sheaves is exact. (See
[Mi] p. 111.) It follows also that the spectral sequence in ( 4.2.5) degenerates identifying 7 (R¢«(P))  with
¢+ (mx(P)) . Since the sites are all closed under finite inverse limits, the direct limits involved in the definition
of the stalks are all filtered direct limits and commute with taking 7. The hypotheses imply that the stalks of
7k (0« (P)) and ¢, (P)  are both isomorphic to the stalks of the presheaf m,(P). It follows that the natural
map 7 (¢« (P)) — ¢u(mx(P)) is an isomorphism. This proves (i).

First we show that (ii) holds when P is replaced by 7<, P for any fixed integer n. Recall ¢* is exact in the sense
it commutes with finite direct and inverse limits. (This follows from the hypothesis that the sites are closed under
finite inverse limits.) It follows that the spectral sequence in [J -1](6.3.6) for R¢, o ¢*(P) now reduces to the spectral
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sequence in ( 4.2.5) for R¢, applied to ¢*(P). The hypothesis on P ensures that this spectral sequence converges
strongly. Therefore, we reduce to showing that the map m;(P) ~“— R¢.¢*(m(P) ~ ) is a quasi-isomorphism for
all t. This proves (ii) holds when P is replaced by any 7<,P.

Now P = ligl T<nP. Applying Proposition 4.1 to P replaced by ¢*(P), it suffices to show that ¢*(7<,P) ~
o« n - -

T<n(¢*(P)) as presheaves. Since the functor 7<,, is characterized by mp (1<, P) = m(P) if k < n and = 0 otherwise,
it suffices to show 7 (¢*(P)) = ¢*(mr(P)) as Abelian presheaves. Since ¢* is assumed to be the inverse image
functor associated to a map of sites it is defined by a filtered direct limit which commutes with taking 7. O

Proposition 4.3. Let S denote an algebraic stack finitely presented over the base scheme S. Under the above
hypotheses, there is a uniform bound M >> 0 so that for every S’ — S in the site Siso.ct, H%p o1 (S', F) = 0 for
all n > M and all sheaves F' of Zy)-modules on Siso.et- (Here Zyy denotes the localization of Z by inverting all
primes not in J.)

Proof. The proof is by Noetherian induction. We will assume inductively that the proposition is true for every
proper closed immersion Sg — S of algebraic stacks. By Theorem 3.27, we may assume without loss of generality
that S is reduced and that there exists such a closed immersion so that if S; denotes the complement of Sp, & is
a gerbe over its coarse moduli space ;. Now 901; is an algebraic space finitely presented over the base scheme S
and therefore, there exists a uniform bound on the étale cohomological dimension of 9t} — My in the étale site of
M. By the equivalence of topoi as in the theorem ( 3.13), the conclusion of the proposition now holds for S;. Let
M; denote the uniform bound on the cohomological dimension here and let My denote the uniform bound on the
cohomological dimension on Sy. Now M = M; + My + 1 will be a uniform cohomological bound on S;s,.¢¢- This
argument follows exactly as in [T-3] pp. 607-608 and is therefore skipped. O

Proposition 4.4. Let S denote an algebraic stack that is Noetherian. Then the isovariant étale site of S as well
as the corresponding topos is algebraic and coherent in the sense of [SGA] 4, VI, 2.3. Therefore, if {P,la} is a
filtered direct limit of abelian presheaves,

COlim]HIiso.et (S; Pa) ~ Hfiso.et (S; COlimPa)

The same conclusion holds if {Py|a} is a filtered direct system of presheaves taking values in S so that m,(Py)
are all sheaves of modules over Zj).

Proof. The site S;s0.¢¢ consists of Noetherian algebraic stacks and is closed under fibered products. Moreover, every
isovariant étale cover for an object in S;s0.¢¢ has a finite sub-cover. Therefore, every object U in this site is both
quasi-compact and quasi-separated both in the site and also when viewed as an element of the topos Shsets(Siso.et)-
(See [SGA] 4, VI, 2.1.1, 1.1 and 1.2.) By [SGA] 4, 2.3, 2.4.1, the site Sis0.et and the topos Shsets(Siso.et) are both
algebraic and coherent. This proves the first assertion. Now the second assertion holds when {P,|a} is a filtered
direct system of abelian sheaves by [SGA] 4, 8.7.3, 3.1 and VII, 5.7.

Observe that the spectral sequence ( 4.2.5) with ¢ = His.¢ (S, ) converges strongly for every presheaf P with
values in S so that 7.(P) is a sheaf of modules over Z ). Therefore, the hyper-cohomology also commutes with
filtered colimits of presheaves taking values in S satisfying the hypotheses of the proposition. O

Proposition 4.5. Let {Saf<ci5$5|a, Bel} denote q filtered direct system of Noetherian algebraic stacks where each
map fop is representable and affine.

(i) Then the inverse limit limS, = S exists as an algebraic stack. There exists a compatible system of projections
[e3
{pa : S = Sula}.

(ii) For each a, let P, denote a presheaf on Sy iso.et With values in S so that m.(Py) ~are sheaves of modules
over Z ). Assume further that for each 8 > «a, there is given a map f:,ﬁ(Pa) — Pg so that the collection of such
maps are compatible (in the obvious sense). Let P = the direct limit of the filtered direct system {pl(Py)|a} of
presheaves on Siso.c¢. Now the canonical map

COlimHiso.et (Saa Pa)ilHI’iSO-et (87 COlimpZPa)

is o quasi-isomorphism.
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Proof. We will first show that S exists. Pick an apgel and consider the cofinal system of Sel so that 8+ ap. Let
ZTap : Xay = Sa, denote an atlas and let

Sao
(4.2.7) Koo X Xao — x,,

@0
tag

denote the corresponding algebraic groupoid. Since each fqo, 5 : Sg = Sa, is representable, one may take pull-backs
by this map of the algebraic groupoid in ( 4.2.7) to obtain the algebraic groupoid

sp
(4.2.8) Xo X X6 "7 X 8> ag

o

The induced maps of the corresponding algebraic groupoids are affine and therefore, one may take the inverse limit
to define an algebraic groupoid

limsg
. s .
(4.2.9) X1 = lzﬂm(XaSXﬁXg) > Xo =limXg

limta
B

Since s = ligwg and t = lignt,g the diagonal map § = (s,t) = lign(Sg,tg) : X7 — XoxXj is also quasi-compact

and separated. Therefore, by [L-MB] Corollaire (4.7), the above groupoid defines an algebraic stack S. Clearly the
projections p, : & = S, exist. These prove the first assertion. The second assertion for the case of abelian sheaves
follows readily from [SGA] IV, Exposé VI, 8.7.4. The general case follows as in the proof of Proposition 4.4. O

We end this section by briefly considering Cech hyper-cohomology on the isovariant site.

Definition 4.6. Weakly cofinal system of coverings. Let S denote an algebraic stack. A system, {Sy|a}, of
isovariant étale coverings of S is weakly cofinal in the system of all isovariant étale coverings of S, if each isovariant
étale covering has a refinement in the given system.

Proposition 4.7. Let S denote an algebraic stack as before and let P denote a presheaf on Siso.et with values in
S so that m.(P) ~is a sheaf of modules over Zy. Let

(4.2.10) Hiso.et (S, P) = holim limI(cosko(u), P)

where the colimit is over a weakly cofinal system of isovariant étale coverings u : U — S of S. Now there exists
quasi-isomorphisms

(4211) ]I'Hiso.et (S, P) jad ]Hliso.et (87 ]H]iso.et( 7P))

Let (alg.stacks/S);so.ct denote the big isovariant étale site of algebraic stacks over S: i.e. objects are algebraic stacks
over S, morphisms are morphisms over S and coverings are isovariant étale coverings. Let P denote a presheaf on
(alg.stacks/S)iso.et which has the localization property: i.e. for each closed immersion Sp — S of algebraic stacks
with open complement S; — S, one obtains a fibration sequence of presheaves ['(Sg, P) — I'(S,P) — T'(S1,P)
in the sense of Definition 5.6. In this case, one also obtains the quasi-isomorphism: Hig, et (S, Hiso.et( ,P)) ~

mso.et (Sa P)

Proof. In view of the hypotheses, there is a uniform cohomological bound which shows that the hypotheses of [T-5]
Theorem 1.46 are met. This proves the first quasi-isomorphism. Again, by the hypotheses, one has a uniform
cohomological bound, which enables one to prove the last quasi-isomorphisms as in [T-5] Proposition 1.54. (Using
the observation that ]I:Eiso,et( ,—) and His, ¢ ( ,—) preserve fibration sequences, one may in fact use devissage
as in Theorem 3.27 to reduce to the case where the isovariant étale site is replaced by the étale site of the coarse
moduli space. At this point one may invoke [T-5] Proposition 1.54 to finish the proof.) O

5. ISOVARIANT ETALE AND ETALE COHOMOLOGICAL DESCENT

5.1. Additional hypotheses. In this section we need to put additional hypotheses as in [T-3] (3.1) on the base
scheme S, in addition to the ones in ( 4.1). We will assume the following: There is a Tate-Tsen filtration on the
separable closure of the residue fields k(s) at all points of S as in [T-5] 2.112. This hypothesis is satisfied if k(s) is
of finite transcendence degree over Q, Q,} F,, F,((t)) or over a separably closed field &.
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Definition 5.1. Let S denote an algebraic stack and let G denote an affine smooth group-scheme both defined
over a a Noetherian base ring S. A representable morphism p: G xS — S defines an action of G on S if it satisfies
the following conditions:

(laz associativity and lax unit): viewing G x G x S, G x § and § as lax-functors (schemes/S)°P — (groupoids)
the obvious associativity and unit axiom for group-actions hold in the 2-category of lax-functors.

Remarks 5.2. 1. Recall a lax-functor F' : (schemes/S)°P — (groupoids) is a not a functor, but the following data:
for each Xe(schemes/S), one is given a groupoid F'(X) and for each morphism f : Y — X of schemes over S, one
is given a morphism F(f) : F(X) — F(Y) so that if g : Z — Y is another morphism of schemes, one is given a
natural isomorphism €4 ¢ : F'(g) o F(f )3 F(go f) so that the natural isomorphisms satisfy an obvious associativity
and unital condition. (See [Hak] Chapitre I, for details: lax-functors are called 2-functors there.) An algebraic
stack may be viewed, therefore, as a lax-functor in the above sense satisfying certain other conditions.

2. In general, there may not exist an atlas for the stack onto which the group-scheme action extends. This is
similar to the situation where an algebraic group acts on a scheme, and in general, there may not be an affine cover
of the scheme, which is stable by the group action. Assume that G is a torus or a diagonalizable group scheme
acting on a stack S that is normal. By [Sum] and [J-2], we see that any atlas onto which the action extends may
be refined to an atlas that is affine.

3. Suppose in addition to the hypothesis in ( 5.1), that a coarse moduli space 90 exists (as an algebraic space) for
the stack S. Then G x 9 is a coarse-moduli space for the stack G x S. The universal property of the coarse-moduli
space for maps from algebraic stacks to algebraic spaces shows that the composition G x S5S — 9 factors through
G x M, where p denotes the group-action. It follows that one obtains an induced action of G on the coarse-moduli
space .

4. A particularly simple example of a group action on an algebraic stack is the following. Assume that the stack
Sin ( 5.1) is in fact the quotient stack [X/H] associated to the action of a group-scheme H on the algebraic space
X. We will, assume in this situation, that X itself is the atlas of [X/H] onto which the G-action lifts and that the
actions of G and H on X commute. Therefore, we obtain an action of the group-scheme G x H on X.

Definition 5.3. Let G denote an affine smooth group scheme acting on the algebraic stack S. We say the action
is trivial if there is a splitting to the top-row in the diagram (i.e. there is a 1-morphism s : G x § — P so that

there is given a 2-isomorphism € o s3idgxs):

(5.1.1) P~ TGxS

l l(u,prz)
A

S SxS

(Equivalently the two morphisms pu, pra : G x § — S may be identified in the 2-category of lax-functors
(schemes/S)°P — (groupoids) and lax-natural transformations between them.)

Definition 5.4. Let S denote an algebraic stack and let Sg,,,; denote the smooth site of S. A sheaf F' of Og-
modules on Sgp,: is a coherent sheaf (a vector bundle) if for any atlas z : X — S, z*(F) is a coherent sheaf
(a vector bundle, respectively) on Xg,,¢. One may see that the category of coherent sheaves (vector bundles) is
abelian (ezact) and also symmetric monoidal under the direct sum operation. The former (latter) category will
be denoted Coh(S) (Vect(S), respectively). We let G(S) (K(S)) denote the algebraic K-theory spectrum of the
category of coherent sheaves (vector bundles, respectively). One may also consider the corresponding presheaves of
fibrant spectra on the site S;s0.¢;: these are denoted G and K, respectively. In addition, we may need to consider
the situation where a smooth group scheme G acts on an algebraic stack S as in Definition 5.1. Making use of
Proposition ( 7.1) in the appendix, one may observe that G-equivariant coherent sheaves (vector bundles) on the
stack S correspond to coherent sheaves (vector bundles, respectively) on the quotient stack [S/G]. i.e. If we let
Coh(S,G) (Vect(S,G)) denote the category of coherent sheaves (vector bundles, respectively) on the stack S that
are equivariant with respect to the action of G, then there is an equivalence of categories Coh(S, G) ~ Coh([S/G])
and Vect(S,G) ~ Vect([S/G]). (Recall a coherent sheaf F' on S is G-equivariant, if there exists an isomorphism
¢ pr3(F) — p*(F) satisfying the usual conditions. Here pro (1) : G xS — S is the projection to the second factor
(group action, respectively). Now these conditions correspond to the descent data for a coherent sheaf (vector
bundle) on the stack S to descend to the stack [S/G].) Therefore, making use of Proposition ( 7.1), one may
incorporate the equivariant theory into the following discussion.
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Remark 5.5. Tt is often advantageous to replace the presheaf K by the presheaf of K-theory spectra corresponding
to perfect complexes on a stack. Then it is shown in [J-3] that, if the stack S is smooth, one obtains a weak-
equivalence K(S) ~ G(S) where G(S) is the same G-theory considered above.

Definition 5.6. Let C denote a site. One may define fibration sequences of presheaves of spectra on C in the
following manner. First one has the notion of a Path object associated to any presheaf P. One defines this as
Map(A[l]4, P) along with the obvious maps d* = Map(d;, P) : Map(A[1]4, P) = Map(A[0]4+,P) 2 P, i =0,1.
We will denote this object as Path(P). Observe that since I'(U, P) is a fibrant spectrum, the maps I'(U,d*) are
fibrations for each U in the site C; if f : P' — P is a map of presheaves, one defines Path(f) = P X 0Path(P) and
f7Y7d
Q(f) = the kernel of the map Path(f) — P induced by the map d*. We call Q(f) the canonical homotopy fibre
of f. A diagram @ — PLpr of presheaves of spectra is called a fibration sequence of presheaves if there exists a
map Q — Q(f) which is a quasi-isomorphism and fitting in a commutative diagram

Q y P I, pr
l idl idl
Q(f) y p—L 5 pr

Proposition 5.7. (i) Let i : S — S denote a closed immersion of algebraic stacks finitely presented over the base
scheme S with open complement j : S; — S. Denoting by iy (ju) the direct image functor for presheaves, one
obtains a fibration sequence

(5.1.2) i#Gs, () > Gs( ) = jGs, ()
where Gs,;( ) (Gs( )) denotes the presheaf of spectra defined by G( ) on Siiso.ct (Siso.et, respectively).

(i) Assume the following in addition to the hypotheses of (i): S denotes an algebraic stack provided with the
action of a smooth group scheme G and that p : S — X is a G-equivariant map to an algebraic space X provided
with an action of G. Leti: Xg = X (j : X1 = X — Xo — X ) denote the G-equivariant closed immersion of a
closed sub-algebraic space (the G-equivariant open immersion of its complement, respectively). Let S; = X;; ));S and

pi : Si = X, denote the induced maps. Then one obtains the fibration sequence on ([X/G))iso.et

(5.1.3) i#Po# Gso/a1( ) = P Gis/a)( ) = jepixGis,/a( )

where Gis;/q1( ) (Gis/q)( )) denotes the presheaf of spectra defined by G( ) on [Si/Gliso.ct (([S/G])iso.ct
respectively) and py, pix are the obvious direct image functors of presheaves.

Proof. (i) Let §' — S denote an object in the site Sizo.et- Now S'xXSy — &' is a closed immersion with open
S

complement §'xS; — §’. The commutative diagram
S

[(8,ixGs,( ) — T(S,Gs( ) — I(S,5#Gs, ()

| | -

GE'xS)  ——  GE)  —— GSxS)

shows it suffices to prove the bottom row is a fibration sequence of spectra. By invoking Quillen’s localization

theorem for abelian categories, it suffices to show that the restriction map induces a weak-equivalence of K-

theory spectra: K(Coh(S')/Coh(S])) — K(Coh(S])) where §) = &'xSp and §] = &§'xS1 . Let J be the
s S

sheaf of ideals defining Sy in S. In order to apply Quillen’s localization theorem one needs to show that every
coherent sheaf F' on the stack S; admits an extension to a coherent sheaf on the stack S: this follows from [L-MB]
Proposition (8.5). This completes the proof of (i). An entirely similar argument applies to complete the proof of
(ii). The only additional observation needed is that the map p (p;) induces a map of sites [S/Gliso.ct = [X/Gliso.et
([Si/Gliso.ct = [Xi/Gliso.et, respectively). This is clear by Lemma 3.2 (ii). O

Proposition 5.8. Let i : S — S denote a closed immersion of algebraic stacks and let P denote o presheaf of
fibrant spectra on So iso.ct- Denoting by iy the direct image functor for presheaves, one obtains a weak-equivalence
of spectra

]H]dso.et (S(),P) A Hiso.et (S, 7'#P)

that is natural in P.
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Proof. In view of Proposition 4.1, it suffices to prove this proposition with P replaced by 7<,P for some n. In
this case the spectral sequence in ( 4.2.5) applied t0 His.e: (S, ) and Higo.et (S, ) o i reduces the problem to
showing an isomorphism at the Fs-terms of the corresponding spectral sequences. i.e. we obtain an isomorphism

~

(5.1.4) Hiso e4(So, aH™ (P)) S Hio o1 (S, aH™ (i3 P))

Observe that H™(ixP) = ix(H™(P)) and by Proposition 3.24, a 0ix =i, o a so that the right-hand-side identifies
with H, ..(S,i.aH™(P)). Observe from Theorem ( 3.26) that i, is a closed immersion of topoi and therefore,
by [SGA] 4, IV, section 14, is an ezact functor. i.e. One may identify i, with Ri,. Therefore, the isomorphism in

( 5.1.4) follows. O

5.1.5. Localization of K-theory spectra and other variants. Let S denote an algebraic stack as before and let G( )
denote the presheaf of G-theory spectra on S;s.¢;- Denoting by K= topological K-homology, one obtains the
presheaf of spectra Gg( ) which is a localization of G( ) by K in the sense of Bousfield. (See [Bous].) Given
a set of primes J in Z as before, one may now localize the above presheaf by inverting all primes that are not
in J. The resulting presheaf of spectra will be denoted Gx( ) ® Z(s). One may also smash G( ) with the
Moore-spectrum M (I”), v >> 0 to obtain the presheaf G/I”( ). Finally one may also invert the Bott element 3
to obtain the presheaf G/I”[3~!]( ). (See [T-5] chapter 5 for more details.) In addition, one may consider the
localization of G( ) at Q in the sense of [B-K] or [T-5]: this will be denoted G{ ) ® Q

Proposition 5.9. All of the above presheaves are continuous in the following sense. Let {Saf<a—’ﬁ83|a, Bel} denote a
filtered direct system of Noetherian algebraic stacks where each map fo g is representable and affine. Let S = limS,,.
(o4

Now colimI' (S, P) ~ T'(S, P) if P denotes any of the above presheaves.

Proof. The existence of the inverse limit stack is shown in Proposition 4.5. Observe that a coherent sheaf F' on an

algebraic stack S is given by a coherent sheaf Fy on an atlas z : X — § along with descent data. In the above

situation, if z, : X, — S, are atlases, a coherent sheaf F' on X = limX, along with descent data correspond to
«

a compatible collection of coherent sheaves {F, on X, along with descent datala}. It follows that the
presheaf G is continuous. One may prove similarly that the presheaf K is also continuous. Since localizations
of spectra as well as smashing with a fixed spectrum commute with filtered colimits the remaining presheaves in
( 5.1.5) are also continuous. O

Theorem 5.10. (i) Let S denote an algebraic stack finitely presented over the base scheme S. Then the presheaves
of spectra G () ® Z(y), G/I"[671]( ) as well as G( ) ® Q have cohomological descent on the isovariant étale
site of S. i.e. the obvious augmentations

Gk (8) ® Z(J)iniso.et (Sa GK( ) & Z(J)); G(S)/ly[ﬂ_l]iHiso.et (Sa G/ly[ﬂ_l]( )) and
G(S) ® Q3 His.et (S, G( ,G) @ Q)
are weak-equivalences.

(ii) Assume in addition to the hypotheses in (i) that the stack S is provided with the action by a smooth group
scheme G. Let p: S — X denote a G-equivariant map to an algebraic space provided with o G-action. Then the
augmentations

GK([S/G]) X Z(J)gﬂﬂiso.et([X/G]ap#GK( ) ® Z(J))7 G([S/G])/ly[ﬂil]E)Hiso.et([X/G]JP#G/ZV[Bil]( )) and

G([S/G]) ® Q’_%H'iso.et([X/G]ap#G( ) ® Q)
are weak-equivalences.

Proof. (i) Since the proofs of the last two quasi-isomorphisms are entirely similar to the first, we will explicitly
consider only the first. Since hyper-cohomology on any site sends fibration sequences of presheaves (of spectra) to
fibration sequences of spectra, and in view ( 5.1.2), it should be clear that both sides define localization sequences.
ie. if §o — S is a closed immersion with open complement S; — S, one obtains a commutative diagram whose
rows are fibration sequences:

G(SU)K®Z(J) —_— G(S)K®Z(J) —_— G(Sl)K(X)Z(J)

! ! !

H;so.et (SOa GK( ) G) ® Z(J)) — Hiso.et (87 GK( :G) ® Z(J)) — Hiso.et (Sla GK( 7G) ® Z(J))
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Therefore, (see Theorem 3.27) it suffices to consider the situation when the stack S is a gerbe over its coarse mod-
uli space 9. In this case, the equivalence of sites as in Theorem 3.13, shows that one may identify Hisp ¢t (S, Gk ( )®
L)) with Hey (M, p# (G ( )®Z(y))). Here pu(Gr( )®Z(s)) is the presheaf on M., defined by I'(U, px(Gr( )®
Z(J))) = F((U;)(IS), Gk )®Z(J) = GK(U;;{S)@Z(J). Therefore, T'(IM, px (G K ( )®Z(J))) =T(S,Gk( )®Z(J)).

i.e. It suffices to show that we have cohomological descent on the étale site of the algebraic space I for the presheaf
of spectra px(Gx( )®Z(s)). The continuity property and the localization sequence ( 5.1.2) reduce to establishing
cohomological descent for the case 9 is replaced by an Artin local ring - see [T-5] section 2. Moreover, observe that
the map G(Sp) = G(S) induces a weak-equivalence for any closed immersion Sp — S of algebraic stacks defined
by a nilpotent ideal. As in [T-5] Lemma (2.10), this shows it suffices to establish cohomological descent for the
presheaf px(Gx( ) ® Z(j)) on the étale site of fields.

At this point one needs to show that the presheaf of spectra p4(Gx( ) ® Z(,)) has hyper-transfer in the sense
of Thomason, [T-5] (2.25). (Given such a hypertransfer, Lemma (3.10) of [T-3] applies to complete the proof.) For
this we will use the following arguments as outlined in [T-5] Example (2.30). First we begin with the definition of
the hyper-transfer as in [T-5] section (2.21). Let G denote a discrete group acting on a spectrum F. We consider
G as a category with one object and whose morphisms are the elements of G. Now F' may be viewed as a functor
from this category to the category of spectra. One defines the hyper-homology of G with respect to F' to be given
by

(5.1.6) H, (G, F) = hocglimF

This functor preserves weak-homotopy equivalences and homotopy (co-)fibre sequences in F' and moreover the
homotopy colimit is characterized by a universal mapping property as shown in [T-5] (5.15). The group hyper-
homology considered above has several properties of which the most important is the following;:

Induction weak-equivalence (See [T-5] Lemma (2.22).) Let G denote a group with sub-group H and let F' denote
a spectrum on which H acts. Let Gl7IHF denote the wedge (= the co-product in the category of spectra) indexed

by G/H. Now the inclusion of H — G and the map F' — GI7IHF induce a weak-equivalence:

(5.1.7) H. (H, F)3H, (G, )

Definition 5.11. Let F' denote a presheaf of spectra on the étale site of the spectrum of a field L. F is said to
have a hyper-transfer if for all finite Galois extensions L'/L and all algebras A over L, there is a map of spectra

T :H, (Gal(L'/L); F(AQL')) — F(A)
L
satisfying the following conditions:

e the transfer map T must be natural in A
e whenever A = L" is a separable extension of L containing L', there is a homotopy commutative diagram

He (Gal(L'/L), F(L"®L")

T

He (Gal(L'/L), Gal(E[’/L)F(L”)) FL")

| /

H, (Gal(L'/L), U "~ F(L"))

Gal(L'/L)

formed from the hyper-transfer 7" and the maps in the induction weak-equivalence above.
e finally the following diagram homotopy commutes:
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H-(LI/L?T)
Ho(Gal(L1/L); Ho(Gal(L2/L); F(A®Li®Ls))) —— > Ha(Gal(L1/L); F(AGL1))

T

T

| B
|

Ho(L1/L;T)
Ho(Gal(La/L); Hy(Gal(Ln/L); F(ASLi®Ly))) —— = Ha(Gal(Ly/L), F(ALy))

Given this, one needs to check the hypotheses in [T-3] Lemma (3.10) hold for the presheaf F = px(Gx( ,G)®
Z(y))- (Recall that these are the following:

i) the presheaf F' above is a presheaf of module-spectra over the presheaf of K-theory spectra. (i.e. F(A) is
a module spectrum over K(A) where K(A) is the algebraic K-theory spectrum of A for all A as above and this
structure is compatible with the structure of presheaves on the étale site of the field L.)

ii) the hypertransfer in Definition 5.11 is a map of K (A)-module-spectra (i.e. the projection formula holds)

iii) the hypertransfer in Definition 5.11 is compatible (in the sense of [T-3] (3.13)) with the hypertransfer for
the presheaf of K-theory spectra.)

The arguments as in [T-5] Example (2.30) and [T-4] (3.20) through (3.22) (see also Example (2.30) in [T-5]) apply
to define a hyper-transfer for the presheaf F' = p4(G( )) defined on the étale site of 9 by I'(U,px(G( ))) =
G(U xS8): one may readily verify the above hypotheses. Now px(Gx( ) ® Z(,)) inherits this hyper-transfer.

m

This completes the proof of (i) for the two presheaves Gk ( ) ® Z(y)) and G( )/1”[7']. The proof for the
presheaf G( ) ® Q is simpler since one has a strict transfer or what is called a weak-transfer in [T-5] and [J-1]:
the same proof as above using the hyper-transfer works as well.

Now we consider the proof of (ii). We will first consider the case when the group G is trivial and the stack
is Deligne-Mumford. In this case, the localization sequence in ( 5.1.3) enables one to reduce to the case when
the stack S is the quotient stack associated to a finite group action on a scheme: this case now follow from [T-3]
Theorem (3.8). In case the map p: S — X is the identity (i.e. S itself) is an algebraic space, (ii) also follows from
[T-3] Theorem (3.8). Next we consider the general case. The localization sequence 5.1.3 enables one to reduce
to the case when the quotient stack [X/G] is a gerbe over its coarse moduli-space which can be assumed to be a
scheme: the coarse-moduli space is a scheme-theoretic quotient in the sense of [T-3] Definition (2.3), which is also a
geometric quotient. Therefore, we will denote this by X/G. If p: [X/G] — X /G is the obvious map, now it suffices
to establish cohomological descent for the presheaf py (px(Gx( ) ® Z(j))) on (X/G)et- The continuity property
of the presheaf Gg( ) enables one to reduce to the case where X /G has been replaced by the spectrum of a local
ring and the localization property as in ( 5.1.2) enables one to reduce to the case when X /G has been replaced by
the spectrum of an Artin-local ring. (See [T-5] section 2 for details.) Moreover, as in the proof of (i), we may reduce
to the case of fields. Now it suffices to show that a hypertransfer exists for the presheaf pu(px(Gk( ) ® Z(s))
when X/G has been replaced by the spectrum of a field. The rest of the proof is entirely similar. O

Corollary 5.12. (Atiyah-Hirzebruch spectral sequences) (i) Assume the hypotheses of Theorem 5.10 (i). Then
there exists a strongly-convergent spectral sequence:
Byt = H,\ o (S,m(Gr( ) ®Z(1))) = T s11(Gr(S) ® L)

(ii) Assume the hypotheses of Theorem 5.10(ii). Then there exists a strongly-convergent spectral sequence:

Eyt = HE,, o (1X/G),m(p2Gk( ) ® L)) = m—srt(Gk ([S/G]) ® Z(,))

The corresponding statements also hold with the presheaf Gk replaced by G/1”[371] and Gg.

Proof. (i) This spectral sequence is provided by ( 4.2.5) with ¢ = His,.:(S, ). The strong convergence follows
from the observation that the hypotheses imply ES** = 0 for s >> 0. The proofs of (ii) and the last assertion are
similar. O

Remark 5.13. Observe that Theorem 5.10 and the corollary 5.12 extend the results of [T-3]: if the stacks are
assumed to be algebraic spaces, we recover these results. Moreover, taking the group G to be trivial in the
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statements (ii) of Theorem 5.10 and the corollary 5.12, we see that the presheaves pxGg and pxGg have descent
on the étale site of the moduli space 9 provided it exists as an algebraic space with a proper map p: S — 9.

Remark 5.14. In order to be able to use Theorem 5.10, one needs to be able to identify the stalks of the presheaf
Gk ® Z(yy on the isovariant étale site. The following result shows that it is possible to do this generically, in
general in characteristic 0, and globally for Deligne-Mumford stacks, which suffices for the applications. It suffices
to do this for the non-equivariant case.

Proposition 5.15. Let S denote an algebraic stack as before so that it is a gerbe over its coarse moduli space 9.
Let p: S — M denote the obvious map, let T : Spec Q — I denote a fized geometric point and let R(Z) denote
the corresponding strict henselization of Ogn at . Then one obtains the identification of the stalk of the presheaf
p#(Gkr ® Z(J)) at T

p#(Gk ® Z(5))s = Gk (Sk(z)) ® L)

where Sp(z) = (Spec  R(Z))xS. (If the stack S is smooth and K denotes the K-theory of perfect complezes, one
M
obtains a weak-equivalence Gk (Sgr(z)) ~ Kk (Sr(z))- )

(i) If, in addition, S is smooth over its coarse-moduli space, (or more generally if Sp(z) is smooth over
Spec  R(Z)), Sr(z) is neutral gerbe over Spec R(Z). (In particular this holds generically if the map p : S — M
is smooth generically and the base scheme S is the spectrum of a field or more generally is an excellent scheme.)
Moreover, in this case Kk (Sr(z)) ® Z(j) ~ Kk (Spec R(z),G3z) where Gz is the stabilizer at R(x) in the stack
Sk(z)-

(i) Moreover, if T corresponds to a regular point of M (or if K denotes the K-theory of perfect compleres) and
the stack Sg(z) is smooth over Spec R(Z), the stalk G(Sg(z))/1"[87'] ~ K(Srz)/1"[B7"] ~ K(Sk@) /1" [87'].

(i) If the stack is Deligne-Mumford, Sg(z) is the quotient stack associated to a finite group-scheme action for
all geometric points T of M.

Proof. The continuity property of the presheaf px(Gx ® Z()) provides the first weak-equivalence. Let 2 : X — S
denote an atlas for the stack. If the stack is smooth over Spec R(Z), one may find a lifting of idr(Z) to a map
Spec  R(Z) = Xp(z) over Spec R(Z). Now the structure map of the stack Sg(z) — Spec R(Z) has a section
which shows Sg(z) is a neutral gerbe. This proves (i). In view of (i), the first weak-equivalence in (ii) follows from
the weak-equivalence between the equivariant G-theory and equivariant K-theory of regular schemes: see [T-1].
The last weak-equivalence in (ii) follows by the rigidity theorem for mod-I* topological K-theory of regular schemes.
In order to prove (iii), observe that if the stack is Deligne-Mumford, one may localize on the étale topology of the
moduli-space and assume the stack is a quotient stack. O

Proposition 5.16. (See [Toe-1]) (Poincaré duality for smooth Deligne-Mumford stacks). Assume that S is a
Deligne-Mumford stack which is regular. Now the obvious map Gk (S) ® Z(y) ~ Het (M, ppGr( ) ® Z(y)) +
Het (MM, pp K () ® Z(y)) is a weak-equivalence.

Proof. Tt suffices to show the map is a weak-equivalence locally on the étale topology of the moduli-space. Therefore,
we reduce to the case when the stack is a quotient stack for the action of a finite group. In this case the above
weak-equivalence follows from [T-1]. O

5.1.8. We end this section with the following criterion for cohomological descent on the étale site of an algebraic
space for presheaves of spectra that come up often in this paper. Let G denote a fixed smooth group scheme
over the base scheme S and let (alg.stacks/S,G) denote the category with objects all algebraic stacks over the
base scheme S that are Noetherian and provided with a G-action. The morphisms are all G-equivariant maps of
algebraic stacks. Let P denote a presheaf of spectra on this category having the following properties:

(i) There exists a Gysin map i. : P(Sp) — P(S) for any G-equivariant closed immersion i : So — S (which is a
weak-equivalence if the closed immersion is given by a nilpotent sheaf of ideals). The Gysin map is functorial in 4.

(ii) Given a G-equivariant closed immersion as in (i) with open complement j: S =S — Sg — S, there exists a
fibration sequence ixi*P — P — juj*P of presheaves where ix, jx (i*, j*) are the obvious direct image functors
(inverse image functors, respectively) (as in section 5). Moreover, the map ixi* P — P is given by the Gysin map
in (i).
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(iii) The presheaf P has the following continuity property: let {S,|a} denote an inverse system of algebraic stacks
with G-action and where the structure maps of the inverse system are affine. Now the obvious map colimI'(S,, P) —
«

I'(S, P) is a weak-equivalence.

Let S denote a given algebraic stack, finitely presented over the base scheme S, with a G-action, X a given
algebraic space (with trivial action by G) and p: S - X a G-equivariant map. We define a presheaf px(P) on X,
by I'(U,pxP) = T(U XS, P).

X

Proposition 5.17. Assume the above situation.

(i) Then the presheaf px(P) has cohomological descent on the étale site of X if for every L = a field that is
étale over a residue field of X, one has cohomological descent for the restriction of pu(P) to the étale site of L

(ii) If the presheaf of homotopy groups mp(pxP) are all Q-vector spaces, the conclusion of (i) holds if the presheaf
px(P) restricted to the étale site of every field L as in (i) has the weak-transfer property (as in [T-5] (2.12) or see
remark 5.18 below)

Proof. This is essentially in [T-5] section 2. O

Remark 5.18. The weak-transfer property for a presheaf F' on the étale site of a field L means that for every finite
étale map \: Spec L' — Spec L, there is given a transfer map A, : F(Spec L') — F(Spec L) satisfying the
hypotheses in [T-5] Definition (2.12). The existence of a weak-transfer suffices to obtain étale cohomological descent
for presheaves of spectra satisfying the hypotheses in 5.1.8 whose homotopy groups are all *vector spaces. The
hypertransfer is a variant of the transfer that also provides étale cohomological descent for presheaves of spectra
whose homotopy groups are not necessarily Q-vector spaces.

6. RIEMANN-ROCH THEOREMS FOR ALGEBRAIC VS. TOPOLOGICAL G-THEORY

In this section we obtain a general Riemann-Roch theorem relating algebraic and topological G-theories for
algebraic stacks.

Definition 6.1. Let S denote an algebraic stack as before provided with the action of a smooth group scheme G.
Let J denote a set of primes in Z. We define the G-equivariant topological G-theory of S to be G(S,G)k ® Z(y).
We will also often call G(S,G)/I”[371] G-equivariant topological G-theory of S. Either of these will be denoted
G'°P (8, Q) in this section.

Remark 6.2. Theorem 5.10 shows that the G-equivariant topological G-theory has descent on the isovariant étale
site of the stack [S/G] and therefore justifies being called topological G-theory. The following Riemann-Roch
theorem might seem like a tautology: however the fact that topological G-theory has descent on the isovariant
étale site makes the right-hand-side computable by means of the spectral sequence in Corollary 5.12, whereas there
is no such spectral sequence for the left-hand-side.

Theorem 6.3. (Riemann-Roch) Let f : §' — S denote a proper map between algebraic stacks that are finitely
presented over S. Assume that a smooth group scheme G acts on both the stacks making f G-equivariant and that
f has finite cohomological dimension. Then the following square

G(S',G) —— G™?(S8,G)

/| |-

G(S,G) —— G™"?(S,G)

commutes.
Proof. This is clear since the right-hand-side is simply the localization of the left-hand-side. O

We consider group actions on algebraic stacks and the resulting Lefschetz-Riemann-Roch in the rest of this
section. We begin first by defining actions by group schemes on algebraic stacks and their fixed point stacks.

6.0.9. Throughout the rest of this section, the base scheme S is assumed to be the spectrum of an algebraically
closed field k. We will further restrict to actions of algebraic groups G on smooth Deligne-Mumford stacks S, all
over k. It seems, to us, that the more systematic definition of the fixed point stack & would make it not a closed
algebraic sub-stack of S, but one that is unramified over S. However, the following approximation to the fixed
point stack seems sufficient for the situation considered above.
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Definition 6.4. Let MY denote the fixed point algebraic sub-space of the coarse moduli space. We let S¢ =
MY xS. We adopt this as the definition of the fixed point stack.
m

Remark 6.5. Since the coarse moduli space of S¢ has the same points as MY, it follows that the points of the
group G act trivially on the points of the stack S¢. However the group G' may not act trivially on residual gerbes
at each point. Since the base scheme is assumed to be the spectrum of an algebraically closed field &, these residual
gerbes may be identified with quotient stacks for the action of finite groups. The following result will however show
that, we may find a finite étale cover of the group G that acts trivially on the stack S¢, provided we work over an
algebraically closed field k£ and the group G is a torus.

Proposition 6.6. Assume the base scheme is the spectrum of an algebraically closed field k and the group G =T
is a torus, that the stack S is smooth and the coarse moduli space M is an algebraic space of finite type over k.
Then there exists a finite étale cover T =T — T so that the torus T (with the obvious induced action) acts trivially

on the stack ST. We may now identify ST with ST.

Proof. We begin with the cartesian square

4
(6.0.10) I T x ST

Pl l(u,pTz)

ST . ST x ST
X

defining IgT. Let X — ST denote an atlas for the stack ST. The right column is the map defined by the two
maps g : T x ST — ST and the projection pry : T x ST — ST. Clearly IZ; x X is a group scheme over X.
ST

Moreover, the obvious map ¢’ : IgT X X — T x X induced by ¢ is unramified and surjective. (To see ¢ is surjective,
ST

one may take points of the diagram ( 6.0.10). Observe from [L-MB] Proposition (5.3.1) that the induced map
L | — |ST|‘5TXST||T x 8T| is surjective. The definition of the fixed point stacks above shows the last term is
X
isomorphic to [MT|  x  |T|x|MT| = |mT  x
|9MT| x |9mT | ML x M
associated to the trivial action of 7' on the moduli space 9MT. Therefore, it maps surjectively to |T x 97| and
hence ¢ itself is surjective.) Since X is generically integral (recall the base scheme is a field), it follows that the
map ¢’ is generically flat and hence finite étale. One may now stratify X by locally closed subschemes, U;, which
are the atlases of locally closed substacks of ST, so that over U; — U;_; the map &’ is finite étale of degree n;. Let
SiT denote the algebraic sub-stack corresponding to U; — U;_1.

T x MT|. The latter is the set of points of the inertia stack
T

IfZ : Spec k — U; —U;_1 is any geometric point of U; — U;_1, IgT X X x& = T3 is a torus isomorphic to T', but
ST X

the map Tz — T induced by 4 is finite étale of degree = n;. If Spec R(Z) denotes the strict henselization of X at

7, the corresponding induced map Tspe. prz) — T X Spec  R(z) induced by § will also be finite étale of the same

degree. Therefore, we may find an étale covering V' — U; — U;_1 so that IgT xV 2T x V with the induced map
ST

to T x ST xV (=T x V) is finite étale of the same degree. We will denote the torus T appearing in the former
ST

by T}: this is a finite étale cover of the original torus 7. The algebraic groupoid T; x VSXTV —TTIxV defines
_—

the algebraic stack I, = IL. x (ST);. Therefore, we obtain the diagram with both squares cartesian:
(8T ST ér
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(6.0.11) Iy =TI x (8T

o,

(Ir)i 2T x (ST)i = T x (8"
lp |

ST)i X (ST)i

Clearly the top row has a splitting. Therefore, if we consider the étale cover of T, T] — T of degree n;, and we let
T! act through the action of T, it will act trivially on the locally closed substack (ST); : see ( 5.1.1). Therefore,
let T — T denote an étale cover of sufficiently large degree (> ny, for all 7) and let it act on the stack through the
action of T and the homomorphism 7' — T'. Then the action of T on ST will be trivial. Since the homomorphism
T — T is surjective, we see that ST = ST. O

Lemma 6.7. Assume the above hypotheses. Then one may find a finite sub-group scheme F of T of order prime
to the characteristic of k so that IMT = MF .

Proof. Observe that the elements of T' of finite order different from the characteristic p are dense in T'. If T
denotes the subgroup generated by these elements, one may observe that MM’ = 9MT7. On the other hand, T} can

( (n1

be written as the union qu where T} ) denotes the elements of order n; in T, for a sequence of integers n;
(2

(n;)
different from the characteristic. Therefore 9! = OEDITf . Since 9 is Noetherian by hypothesis, it follows that
K3

(n;)
T =9’ " for some i. (We thank Michel Brion for supplying this lemma.) O

Proposition 6.8. Assume the above situation. Then SZ ; is smooth.

Proof. Let T : Spec k — IMT denote a fixed geometric point of MT, let x : Spec k — ST denote lifting of Z
and let G, denote the corresponding residual gerbe. One may observe that G, is the neutral gerbe associated to a
finite group scheme since the stack is assumed to be Deligne-Mumford. Moreover, we may therefore assume that
z represents an atlas for this residual gerbe.

Let I denote the sheaf of ideals defining S” as a closed sub-stack of S: we will show that I, is defined by a
regqular sequence in Os , which is the strict henselization of Og at z. If m, is the maximal ideal of Og, let Z1,...,
Zk, Tgy1, -, Tn denote a basis for k(x) = m,/m?2. Lift these basis vectors to Z1,..., T, in m,: now they form a
regular sequence in m,.

By the preceding lemma, we may now find a finite subgroup scheme F of T' of order prime to the characteristic
p, so that MMF = 9MT. Observe that, by our definition, S¥ = ST. We may further find a map ¥ — S and a lift § of
the point  so that Y is an affine scheme, with an action of F, § is fixed by F and with yi,..., y,, in its co-ordinate
ring so that each x; maps to the image of 1y; in the strict hensehzatlon of the local ring at §. Moreover the action
of F on Y is compatible with the action of T on S. We may define Y as follows. We may first find an affine
smooth scheme with an étale map a : Y — S provided with a lift 3 of the point 2 and g; in its co-ordinate ring
so that each z; maps to the image of g; in the the strict henselization of the local ring at . ¥ may not have an
action by F. Next replace Y by the iterated fibered product of f(Y), (over S), feF: f(Y) is the fibered product
of Y over S and the map f~! : § — S with the map from f(Y) — S being the induced map (= foao f;',
where fg . f(Y) = Y is the map induced by f' : S — S). This is a smooth separated scheme provided with
an (obvious) action by F (which we denote by V), with an étale map to S, a lift of the point z fixed by F (which
we denote by §) and y1,..., ¥ in the stalk of its structure sheaf at the chosen point § so that z; ‘maps to to the
image of y; in the strict henselization of the local ring at . Observe that the action by F' on Y is compatible
with the action of T on S. However, Y is not necessarily affine. Now take an affine open neighborhood Ny of §
in V: since YV is separated, ¥ = fQF f.Ny is an affine open neighborhood of § stable by F. This also shows that

such neighborhoods are co-final in the system of affine neighborhoods of § in Y, so that we may lift the y; to one
such neighborhood. Since the group F is linearly reductive, we may also assume that F' acts on y; with nontrivial
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character x;, j = k+1,...,n and trivially on y,, ...yx. Observe that ¥ = STxY is a closed subscheme of ¥ defined
s

by a sheaf of ideals I. Moreover Y — S7 is an atlas for ST.

We will next show that F' acts trivially on Y and that the map ¥ — ST is fixed by every element of F. To see
this recall F' acts on ST through the action of T on S: T acts trivially on ST and therefore the action of F on S*
is trivial. Now recall the definition of Y as the iterated fibered product of f(Y), feF. Here f(Y) is the fibered

— -1
product of Y38 and ! : S - 8. Since F acts trivially on S¥, the composition S — S5 Sis simply the
original closed immersion ST — S; therefore STx foao fo' : STx f(Y) — ST identifies with ST xa. It follows
S s S

that F leaves every point of Y fixed and fixes the map ¥ — S7.

Let j > k denote a fixed integer and let x; denote the corresponding character by which F' acts on y;. Recall
Y is affine; therefore the {y;|j} are elements of the co-ordinate ring of Y. Let y’eY denote an arbitrary (closed)
point. If y; does not vanish at the point y’eY’, the stabilizer F;» must be contained in ker(x;). Since ker(x;)
is properly contained in F' (otherwise F' would act trivially on y; contrary to the choice of y;), it follows that y'
would not be a fixed point for F. (Recall F acts trivially on every point y' of Y.) Therefore, it follows that y;
vanishes at every point of Y: i.e. (yxy1,.,yn) C I. Since Y is defined by the ideal (Y11, ..., ¥n), it follows that
Y C YF. Now observe that Og , = O%,hg = the strict henselization of Oy ; at § and that I, = Igo® O%hﬂ when

Y.g
Iy=1 ® Oy ;. Therefore, it follows that (zx+1, ..., Zn) C L.
F(Y’of/,g) '

Conversely we will show I, C (Zg41,...,2,). For this, it suffices to show that V¥ C Y which implies that

I C (Ykt1,--,Yn). Since Y = STxY, the closed immersion Y¥ — Y factors through Y. Now an argument as in
s

the last paragraph shows I, = (g41,-..,%n) Which is a regular sequence in Os . Therefore, Ogr , is a regular

local ring for every closed point x of ST. This proves SL,; is smooth. O

e

6.0.12. Proof of Theorem 1.3. It follows from the above proposition that the closed immersion i : SL, — S is a
regular immersion. Let N denote the conormal sheaf associated to this closed immersion.

Proposition 6.9. Assume the above situation. (i) Then the class )\_1(N)ETI’()(G(ST,,Tl))(p)@Q is a unit. (i)
z

Moreover the Gysin map i : W*(G(STI,TI))(p) — m(G(S, T'))(p) is an isomorphism. (iii) The inverse to this

isomorphism tensored with Q is provided by i*( )N A_1(N) L.

Proof. Throughout the proof, we will identify the G-theory of an algebraic stack with the G-theory of the associated
reduced stack. We will first prove the first statement. We first recall the the canonical isomorphism (see 1.0.3):

(6.0.13) T (G(S,T")) = Z[M’]%W* (G(S))

where M' is the character group of T' and T' acts trivially on the stack S. Throughout the proof we will let
G( ,T")gr (K( ,T")gz:) denote the presheaf of spectra associated to the category of T'-equivariant coherent

(coherent and locally free, respectively) sheaves on the stack ST

Let p: & — M and pT' : ST" 5 9MT denote the obvious maps. Using the notation as in 5.10, the presheaf
pi (G( ,T")g#) ® Q satisfies the hypotheses in Proposition 5.17. Therefore, we obtain a spectral sequence:
(6.0.14) Eyt = H,,MT i m (L (G( 1)) ® Q) = m_o(G(ST, T") @ Q)

In view of the hypotheses, this spectral sequence converges strongly. One may localize this spectral sequence at
the prime ideal p in R(T') corresponding to the sub-torus 7": clearly the resulting spectral sequence also converges
strongly. Therefore, the kernel of the edge-map

e:mo(GST, T ® Q) = EL - Ey° = Hgt(fmTJo(P;(G( T ) © Qp))

is nilpotent and it suffices to show that e(A_;(/N)) is a unit. Next observe that e(A_;(V)) is in the image of the
natural map

(6.0.15) H,OT  mo(pl, (K( ,T")s2) ® Qo)) SHLOMT, m0 (0% (G(,T")s7) © Q)(p))

Therefore, we will denote by e(A_1(IV)) the corresponding class on the left-hand-side of the previous equation. The
isomorphism in ( 6.0.13) for K-theory (and the observation that T’ indeed acts trivially on the stack ST") enables
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one to obtain the isomorphism:
(6.0.16) ST w00 (K( T gr) @ Q) = My QB O, mo(f (K( )grr) © Q)

Next, in order to show e(A_1(JV)) is a unit, it suffices to show that it maps to a unit at each of the stalks (taken at
the geometric points of the moduli space 9T") of the presheaf Z[M (o) @m0 (pg (K( )gr ®Q)). Since the stack is
Z

Deligne-Mumford, one may localize on the moduli space 9MT" and assume the stack is a quotient stack associated to
a finite group action. Therefore, we reduce to showing that the class A1 (V) is a unit in Z[M'],)@mo (K (ST)eQ
z z

when the stack ST is a quotient stack associated to the action of a finite group on a scheme of finite type over k.

At this point, one observes that the ~y-filtration on the Grothendieck group of equivariant vector bundles on a
scheme of finite type over k, equivariant with respect to the action of a finite group is nilpotent modulo torsion.
(See [A].) Therefore it suffices to show that the image of A_; (V) in Z[M'](,)®Q is a unit. In fact it suffices to do

z

this for the image of A_; (V) in Z[M'](;). The stalk N is the sum of non-trivial one dimensional representations

¥;m;: therefore the image of (A_; (IV)) = II(1 —m;). One may readily show m; # 1(mod)p. It follows that (1 —m;)
K2

is a unit in Z[M"]( for all i: i.e. (A_1(/N)) maps to a unit in the given stalk. This completes the proof of the first

statement of the proposition.

Next we will show the Gysin-map

(6.0.17) i T (GST T ) = T (G(S, T ()

is an isomorphism. By the localization sequence in G-theory and induction on the dimension of the stack, it suffices
to prove that on any sufficiently small open substack Sy of S—ST', . (G(Sv, T" D) = 0. Let V C M—IT denote

any open nonempty 1’-stable and smooth sub-algebraic space. We may in fact assume that it is a scheme. Let
Sy = SxV. Observe that G(V,T") ~ K(V,T") since V is regular and that G(Sy,T") is a module over K (V,T").
m

The latter is trivial on localization at the prime ideal p by [T-2]. Therefore, W*(G(Sv,TI))(p) ~ 0 and hence
7. (GPP(Sy, T" ))p) = 0. This shows that the Gysin map in ( 6.0.17) is an isomorphism and completes the proof
of the second statement of the proposition. The last assertion follows readily since the composition of i, and *
corresponds to multiplying by A_; (V). This completes the proof of the proposition. O

6.0.18. Proof of Theorem 1.3. This is clear in view of the previous proposition. The key observation is that the
map ¥ commutes with proper push-forward by [Toe-1] Lemme (4.12). In fact, in [Toe-1] Lemme (4.12) is stated in
a restrictive form with the hypothesis that every coherent sheaf on the stacks ST" and S'T" is a quotient of a locally
free coherent sheaf. This is a very restrictive hypotheses which, fortunately may be removed as follows. Let S
denote either of the above stacks: recall these are both smooth. It suffices to show that there exists a Chow envlope
S — S which is strongly projective, i.e. factors through a closed immersion into Proj(£) where £ is a locally free
coherent sheaf on S followed by the obvious projection to S. Since the stack S is smooth and defined over a field k,
one may find such a S as follows. Since S is smooth, it is well known that S is a gerbe over Sg where the latter is
another smooth Deligne-Mumford stack which is generically a scheme. By Theorem 2.18, [EHKV], Sy is a quotient
stack and therefore every coherent sheaf on &g is the quotient of a locally free coherent sheaf. Therefore every
morphism &' — &y that factors as the composition of a closed immersion into Proj(E), with E a coherent sheaf
on Sy and the obvious projection is in fact strongly projective in the sense above, i.e. one may assume without loss
of generality that E is in fact locally free. In particular if S — Sp is a Chow envelope, it is strongly projective.
Now one takes the pull-back S = Sh ;S — §. This is strongly projective and is a Chow-envelope, since S — Sy

0
is a gerbe. Therefore one may apply Lemme (4.12) of Toen without further restrictions on the stacks. (We thank
Bertrand Toen for supplying the above argument.) The map i*( )N A_;(N)~! being inverse to i, also commutes
with proper push-forward for equivariant maps.

6.0.19. Proof of Corollary 1.4. This is also clear in view of the previous results. Etale Cohomological descent for
the presheaf K( )) ® Q provides the isomorphism 7o (K (X, T")) ) ®Qteo ) = 7o (Ket(X, T")) () @ Qoo )-
z z
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7. APPENDIX: QUOTIENT STACKS OF ALGEBRAIC STACKS

In this section we will briefly show that the quotient of an algebraic stack by the action of a smooth group
scheme exists as an algebraic stack. This seems well known, though nothing appears in the literature.

7.1. Let S denote an algebraic stack with an action by a smooth group scheme G. We define the category, [S/G]
fibered in groupoids over schemes as follows. For a given scheme T', the objects of the category [S/G](T) are given
by diagrams of the following form:

(7.1.1) g

where g is a principal G-bundle over T, s corresponds to an object in the stack S over 9, the object v is provided
with an by G, so that if u, pro : G x 9 — 1 are the group action and the projection, then there is given an
isomorphism ¢ : u*(s) = prj(s) satisfying an obvious co-cycle condition on further pull-back to G x G x ¢ by the
obvious maps and so that the pull-back to 4 by the identity section e : ¢ — G x 9 is the identity. A morphism
between two such objects in the category [S/G](T) is an isomorphism preserving all the structure.

Proposition 7.1. Assume the above situation. Then [S/G] is an algebraic stack so that there exists a representable
smooth map S — [S/G] of algebraic stacks. If x : X — S is an atlas for the stack S, the composition X - S —
[S/G] defines an atlas for the stack [S/G].

Proof. We skip the verification that [S/G] is a stack. The map S — [S/G] is given by sending an object ' in S(T')
to the diagram

(7.1.2) W =G xn
l/ pra2
GxT T

One may verify that the map S — [S/G] is representable. Finally to show that the stack [S/G] is algebraic,
one may proceed as follows. First let g : Xg — S denote an atlas for the stack § with X, a separated scheme. If
p:GxS8 — Sandpry: G xS — S are the projections, one obtains an isomorphism (not necessarily satisfying
any co-cycle conditions) between the two pull-backs u*(Xo) and prj(Xo). We will denote pr3(Xo) by X;. Making
use of this isomorphism, one obtains the commutative square:

GxSP2 _ S

Lol

— >
X1 _ P2~ X,

where the the two maps in the bottom row are the obvious ones induced by the ones in the top row. Now the
square is cartesian with the maps p and g’ (pro and pr), respectively). Moreover, all the maps are smooth and the
schemes are all separated (and quasi-compact). We may now extend this to the diagram:

n
GxS__Pr S
|-l
—[J’%

X1 X

1,

X1 x Xj 5> Xox X
GxS —_— S

Once again all the maps are smooth and the schemes are all separated (and quasi-compact). Therefore, the diagonal
of the above diagram:
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X1 X X1—>X

GxS — 40

defines an algebraic groupoid. (Observe that X; = G x Xo. Therefore one obtains a composition X; x X; — X
Xo

X x Xy ——
k, lst 1—>X1

induced by the group-law G x G — G. Next observe that, since G x S is an algebraic stac

is an algebraic groupoid. Therefore one has a composition X; x X; x X; x X; = X; x X;. Combining these

GxS X1 GxS GxS8
two compositions, one obtains a composition X; x X; xX; x X; — X; x X; that defines the groupoid law.
GxS Xo GxS GxS

Now one needs to verify that the required identities hold.) The associated stack may be identified with [S/G]. O
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