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Abstract. In this paper we apply the Riemann-Roch and Lefschtez-Riemann-Roch theorems proved in our earlier
papers to define virtual fundamental classes for the moduli stacks of stable curves in great generality and establish

various formulae for them.
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1. Introduction

This is the last in a series of papers on the Riemann-Roch problem for algebraic stacks. The first part (see [J-4])
presented a solution to this problem in general for the natural transformation between the G-theory and topological
G-theory of algebraic stacks. It also introduced a new site associated to algebraic stacks called the isovariant étale
site using which we proved a descent theorem for the topological G-theory of algebraic stacks extending Thomason’s
basic results to algebraic stacks. Continuing along the same direction, we defined and studied Bredon style homology
theories for algebraic stacks in [J-5]. We followed this up in [J-6], by establishing Riemann-Roch and Lefschetz-
Riemann-Roch theorems as natural transformations between the G-theory of dg-stacks and these Bredon-style
homology theories. These are only for algebraic stacks that admit coarse-moduli spaces which are quasi-projective
schemes over a Noetherian excellent base scheme (for example, a field k). It is important to observe that these
already include Artin stacks. One may recall that applications to virtual fundamental classes, dictated that we
work out all these papers in the setting of dg-stacks.

In the present paper, we indeed establish various formulae for the virtual structure sheaves on dg-stacks associated
to obstruction theories at the level of the G-theory of dg-stacks. Using Riemann-Roch and Lefschetz-Riemann-
Roch theorems developed in the earlier papers, these provide pushforward and localization formulae for virtual
fundamental classes. In fact we show that it is possible to derive most formulae for virtual fundamental classes
(some not known before) , by first proving an appropriate formula at the level of virtual structure sheaves and
then by applying Riemann-Roch to it. For example, we prove a general push-forward formula for virtual structure
sheaves; then by applying Riemann-Roch to it we show it is possible to derive a general pushforward formula for
virtual fundamental classes, special cases of which provide a proof of the conjecture of Cox, Katz and Lee as well
as a strong form of the localization formula for virtual fundamental classes, both proven elsewhere by distinct and
separate methods at the level of virtual fundamental classes. All of these seem to validate the idea, we believe due
to Yuri Manin (and passed onto me by Bertrand Toen), that Riemann-Roch techniques could be used to derive
most formulae for virtual fundamental classes, once the corresponding formulae for virtual structure sheaves are
obtained. The latter seem more manageable and, as we show here, could be studied by standard techniques in
G-theory, suitably modified to handle virtual objects.

We begin section 2 by defining first virtual structure sheaves and then virtual fundamental classes in great
generality. This makes intrinsic use of the Riemann-Roch transformation. We show that our definition reduces to
the more traditional cycle-theoretic definition (or definition in terms of homology classes) - see Theorem 2.4. The
following is one of the main theorems proved in section 2.

Theorem 1.1. (See Theorem 2.4 and Proposition 2.7). Let S denote a Deligne-Mumford stack provided with a
perfect obstruction theory E• in the sense of section 2.

(i) Then the virtual fundamental class of (S, E•) is defined without any further assumptions on S or E• except
those assumed in 1.1.7 taking values both in Bredon-style homology theories as in [J-5] and also in homology theories
defined on the smooth site of the stack S.

(ii) Moreover, assume in addition to the above situation that the stack is an orbifold and that the complexes
{Γh(r)|r} are defined on the smooth site of all algebraic stacks. Let M0 denote the open subscheme of the moduli
space where the stabilizers are trivial. Assume further that Supp([S]virt

Br ) ∩M0 is non-empty, (where the support,
Supp([S]virt

Br ) is defined in Definition 2.5). Then the image of the class [S]virt
Br in the smooth homology of the stack

with respect to Γ(∗), agrees with the virtual fundamental classes defined cycle theoretically in the latter.

We begin the next section by reviewing basic definitions of obstructions theories and virtual structure sheaves.
We discuss Gysin maps in the context of G-theory in section 3. This is done so that we obtain more convenient
expressions for the virtual structure sheaves considered in section 2. Section 4 is devoted to a thorough study of
pushforward for virtual structure sheaves and virtual fundamental classes for algebraic stacks. We begin section
4, by obtaining convenient expressions for the virtual structure sheaves: given a Deligne-Mumford stack S and an
obstruction theory E• for it, we obtain several expressions for Ovirt

S as a class in π0(G(S)). One may assume one
of these for the following discussion.

1.1. Next we consider pushforward for closed immersions of Deligne-Mumford stacks associated to compatible
obstruction theories. The appropriate context for all of these is the following: assume that u : T → S and
v : T̃ → S̃ are closed immersions and that the square
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T
u //

iT
��

S

i

��
T̃

v //
S̃

is cartesian, with both S̃ and T̃ smooth Deligne-Mumford stacks and where the the vertical maps are also closed
immersions. To handle the equivariant case, we may assume that all these stacks are provided with the action
of a smooth group scheme G and the morphisms above are all G-equivariant. We will assume that (i) one is
provided with a perfect obstruction theory E• ( F •) for S → S̃ (T → T̃ , respectively ) (ii) that E• (F •) has a
global resolution by a complex of vector bundles and (iii) that these are weakly compatible in the following sense:
there is given a G-equivariant map φ : u∗(E•) → F • of complexes so that there exists a distinguished triangle
K• → u∗(E•)→ F • and K• is of perfect amplitude contained in [−1, 0]. (For example, the two obstruction theories
are weakly compatible if E• and F • may be replaced (upto G-equivariant quasi-isomorphism) by complexes of G-
equivariant vector bundles and the given map φ : u∗(E•)→ F • is an epimorphism in each degree. It follows that,
in this case, the kernel, K• = ker(φ) is a complex of vector bundles.)

We will also assume henceforth one of the following hypotheses:

• Let Ŝ = BlT ×0(S × A1) = the blow-up of S × A1 along T × 0. We will assume that there exists a class (which
we denote) λ−1(K̂0) in π0(GT ×A1(Ŝ)) so that for each tεA1, i∗t (λ−1(K̂0)επ0(GT×t((Ŝ)t)) identifies with the class
of λ−1(K0) in π0(G(T )). (The class i∗0(λ−1(K̂0)) will be denoted λ−1(K0

S) henceforth.)

• We are in the equivariant case satisfying the hypotheses of Theorem 1.7.

Observe that in the latter case, we let G(X,T ) denote the T -equivariant G-theory of a stack X provided with
the action of the torus T . (K(X,T ) will denote the corresponding T -equivariant K-theory and if X admits a
closed immersion into X̃ onto which the T -action extends, KX(X̃, T ) will denote the T -equivariant K-theory of
X̃ with supports in X.) Now observe that one has the isomorphism π0(G(T × A1, T ))(p) = π0(GT ×A1(Ŝ, T ))(p)

∼=
π0G(Ŝ, T )(p) and hence the class λ−1(K0) in the first group (i.e. in π0(G(T , T ))(p)) lifts to a class in π0G(Ŝ, T )(p)

which we denote by λ−1(K̂0) and a class λ−1(K0
S)επ0(G(S, T ))(p). Observe also that in either case one may identify

λ−1(K0
S) with a class in π0(KS(S̃, T )) (or a localization of the latter in the equivariant case) so that tensor product

with this class is well-defined and one may take its Chern-character (as a local Chern character). We let Ovirt
S

(Ovirt
T ) denote the virtual structure sheaf associated to S (T , respectively ).

Definition 1.2. Assume that the complexes Γ(∗) and Γh(∗) extend to the smooth site of all algebraic stacks. We
define the virtual Todd class of the obstruction theory E• with values in H∗

smt(S,Γ(∗)) as Td(E0).Td(E1)−1 where
Ei = (Ei)∨. This will be denoted Td(TS)virt. Then we will define the virtual fundamental class in Hsmt

∗ (S,Γ(∗)),
[S]virt, to be φ∗(τ(Ovirt

S )).Td((TS)virt)−1. This will be denoted [S]virt.

Remark 1.3. The justification for the above definition is provided by Theorem 1.4 of [J-5]. It is also observed there
that the Todd-classes considered above are invertible in the smooth cohomology of the stack.

Theorem 1.4. (Push forward of virtual structure sheaves and virtual fundamental classes) Assume the above
situation. Then λ−1(K̂0) defines a class in π0(GT (S)) and one obtains the formulae:

(1.1.1) u∗(Ovirt
T .λ−1(K−1)) = Ovirt

S .λ−1(K0
S)

in π0(GT (S)) and

(1.1.2) u∗(τ(Ovirt
T ))ch(λ−1(K−1)) = τ(Ovirt

S ).ch(λ−1(K0
S)

in HBr
∗ (S,Γ(∗)) which is the Bredon-style homology defined in [J-5].

Next assume that the complexes Γ(∗) and Γh(∗) extend to the smooth site of all algebraic stacks. Then we obtain
the formula

(1.1.3) u∗(([T ]virt).e(K1)) = [S]virt.e((K0
S)∨)

in Hsmt
∗ (S,Γ(∗)). Here K1 = (K−1)∨ while e(V ∨) = Td(V ∨).Ch(λ−1(V )) for a vector bundle V where Ch denotes

the Chern character with values in smooth cohomology and e denotes the Euler class.
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Remarks 1.5. 1. Observe that the notion of compatibility of obstruction theories adopted above is indeed weaker
than the usual notion of compatibility as in [BF] or [KKP]. Hence the adjective weak-compatibility is used in our
situation. There seem to be obstruction theories that are weakly compatible and not compatible: for example, the
obstruction theories as in the theorems below associated to the closed immersion of the fixed point stack for the
action of a given torus on an algebraic stack.

2. The above theorem provides many useful formulae for virtual fundamental classes and virtual structure
sheaves, some of which are considered next. For example, we answer the following strong form of the conjecture of
Cox, Katz and Lee (see [CKL]).

1.1.4. Let X denote a smooth projective variety. Let βεCH1(X) denote a class and let M0,n(X,β) denote the
moduli stack of n-pointed genus 0 stable maps to X of class β. Let V denote a vector bundle over X so that it
is convex. i.e. H1(C, f∗(V )) = 0 for all genus 0-stable maps f : C → X. Let en+1 : M0,n+1(X,β) → X send
(f, C, p1, ..., pn+1) to f(pn+1) and πn+1 :M0,n+1(X,β) →M0,n(X,β) denote the map forgetting the point pn+1.
Let Vβ,n = πn+1∗e

∗
n+1(V ); this is a vector bundle on M0,n(X,β) in view of the convexity of V . Let i : Y → X

denote the inclusion of the zero locus of a regular section of V and for each γεH2(Y,Z) with i∗(γ) = β, let
iγ :M0,n(Y, γ)→M0,n(X,β) denote the induced closed immersion.

Theorem 1.6. (Conjecture of Cox, Katz and Lee: see [CKL] and also [CK] p. 386) Assuming the above situation

Σi∗(γ)=βiγ∗(Ovirt
M0,n(Y,γ)) = λ−1(Γ(Vβ,n)).Ovirt

M0,n(X,β) in π0(G(M0,n(X,β),OM0,n(X,β))).

(Here Γ(Vβ,n) denotes the sheaf of sections of the vector bundle Vβ,n.) In particular, one obtains:

Σi∗(γ)=βiγ∗([M0,n(Y, γ)]virt) = e(Γ(Vβ,n)∨).[M0,n(X,β)]virt in HBr
∗ (M0,n(X,β); Γh(∗))

for any choice of homology theories Γh(∗) as above. Here e(Γ(Vβ,n)∨) denotes an Euler class, which is defined as
the term of appropriate weight and degree in ch(λ−1(Γ(Vβ,n))).

Assuming that the complexes Γ(∗) and Γh(∗) extend to the smooth site of all algebraic stacks, we also obtain:

Σi∗(γ)=βiγ∗([M0,n(Y, γ)]virt) = e(Γ(Vβ,n)∨).[M0,n(X,β)]virt in Hsmt
∗ (M0,n(X,β); Γh(∗)).

Here e(Γ(Vβ,n)∨) denotes the usual Euler class in smooth cohomology.

We conclude by considering localization formulae for virtual structure sheaves and virtual fundamental classes.

Theorem 1.7. Assume in addition to the hypotheses in 1.1 that the base scheme is an algebraically closed field,
the stacks S and S̃ are provided with actions by a torus T , T ′ is a given sub-torus with the associated prime ideal
in R(T ) being p. Moreover, we require that T = ST ′

and T̃ = (S̃)T ′
. (Here the fixed point stacks are defined in

[J-5].) We let the obstruction theory F • be defined as u∗(E•)T ′
. Then the class λ−1(K0)επ0(K(T , T )) lifts to a

class λ−1(K0
S)επ0(G(S, T ))(p) and one obtains the formula:

(1.1.5) u∗(Ovirt
T .λ−1(K−1)) = Ovirt

S .λ−1(K0
S)

in π0(G(S))p. Assuming that the complexes Γ(∗) and Γh(∗) extend to the smooth site of all algebraic stacks, this
implies the formula

(1.1.6) u∗([T ]virt.e(K1)) = [S]virt.e((K0
S)∨)

in smooth T -equivariant homology of S localized at the prime ideal p.

Theorem 1.8. Assume the hypotheses of the last theorem. Then one has a Gysin map u∗ : π0(KT (T̃ ,Ovirt
T̃ , T ))(p) →

π0(KS(S̃,Ovirt
T̃ , T ))(p) defined where the relative K-groups above are the Grothendieck groups of the category of per-

fect complexes of modules over dg-stacks defined as in the appendix. This has the property that

u∗(Ovirt
T̃ ⊗

OT̃

λ−1(K−1)) = Ovirt
S̃ ⊗

OS̃

λ−1(K0
S)

where K0
S is viewed as a class in π0(KS(S̃, T ))(p). Consequently one obtains

u∗u∗(F) = F ⊗ λ−1(K0)⊗ λ−1(K−1)−1, Fεπ0(K(T ,Ovirt
T , T )).
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Assuming the complexes Γ(∗) and Γh(∗) extend to the smooth site of all algebraic stacks, a pull-back is defined on
smooth homology (under our hypothesis) and we obtain:

u∗([T ]virt.e(K1).e(K0)−1) = [S]virt

in HT
∗ (T ,Γ(∗))(p). Here HT

∗ (S,Γ(∗)) denotes the homology of the stack [T /T ] computed on the smooth site with
respect to the complex Γ(∗) and p is the prime ideal in R(T ) corresponding to the sub-torus T ′. Moreover, K0 =
(K0)∨, K1 = (K−1)∨ and e(Ki) is the corresponding Euler class in in H∗

T (T ,Γ(∗))(p).

Remark 1.9. If we let the Euler class of the virtual normal bundle be defined by e(K1)−1.e(K0) we recover the
main result in [GP] proven there by other means. Observe that the use of dg-stacks and Riemann-Roch simplifies
the proof considerably. Moreover the formula in ( 1.1.6) seems to be not known before.

Acknowledgments. We would like to thank Dan Edidin, Bertrand Toen and Angelo Vistoli on several discussions
over the years on algebraic stacks. As one can see a key role is played by the push-forward formula in Proposition 3.2
originally proved by Vistoli in the context of intersection theory on algebraic stacks: see [Vi-1]. The relevance of
dg-stacks and the possibility of defining pushforward and other formulae for the virtual fundamental classes using
Riemann-Roch theorems on stacks, became clear to the author at the MSRI program on algebraic stacks in 2001
and especially during many conversations with Bertrand Toen while they were both supported by the MSRI.

After this paper was written up, we learned from David Cox that an alternate solution of the conjecture of Cox,
Katz and Lee appears in the recent paper [KKP]. However, as one can see, there are several important differences
in the proofs. The most important of course is that we prove an analogue of this formula for virtual structure
sheaves first as a corollary to our more general push-forward formulae in Theorem 4.9 and Theorem 1.4, making
use of standard methods from K-theory and deformation to the normal cone. The conjectured formula of virtual
fundamental classes then follows by applying our Riemann-Roch to the formula at the level of virtual structure
sheaves. Another difference that seems worth mentioning is that our formula holds in all possible homology theories
defined with respect to the complexes Γh(∗) satisfying the basic hypotheses in [J-5] section 3.

1.1.7. Basic frame work. We will adopt the terminology and conventions from [J-6] throughout the paper. For
the sake of completeness we will recall these here. Let S denote an excellent Noetherian separated scheme which will
serve as the base scheme. All objects we consider will be locally finitely presented over S, and locally Noetherian. In
particular, all objects we consider are locally quasi-compact. However, our results are valid, for the most part only
for objects that are finitely presented over the base scheme S or for disjoint unions of such objects. Since we consider
mostly dg-stacks, G-theory and K-theory will always mean the theory associated to the dg-stack as in the appendix.
i.e. If S is an algebraic stack provided with a dg-structure sheaf A and an action by a smooth group scheme G, we
will let G(S,A, G) (K(S,A, G), respectively ) denote the G-theory spectrum (the K-theory spectrum, respectively
) of the category of coherent G-equivariant A-modules on S, (perfect G-equivariant A-modules, respectively ) as
defined in Definition 5.2.

We will adopt the following conventions regarding moduli spaces. A coarse moduli-space for an algebraic stack
S will be a proper map p : S → MS (with MS an algebraic space) which is a uniform categorical quotient and a
uniform geometric quotient in the sense of [KM] 1.1 Theorem. Moreover, for purposes of Riemann-Roch, we will
assume that p always has finite cohomological dimension. (Observe that this hypothesis is satisfied if the order of
the residual gerbes are prime to the residue characteristics, for example in characteristic 0 for all Deligne-Mumford
stacks. Observe also that the notion of coarse moduli space above may be a bit different from the notion adopted
in [Vi-1].) It is shown in [KM] that if the stack S is Deligne-Mumford, of finite type over k and the obvious map
IS → S is finite, then a coarse moduli space exists with all of the above properties, except the map p may not be
proper (i.e. finite). However, if S is also separated over k, then the map p will also be proper (i.e. finite). To see
this observe (see [Vi-1]) that one may find an étale covering M′ →MS so that the induced map p′ : S ×

MS
M′ →M′

is finite. (In fact one may assume that the stack S ×
MS

M′ is the quotient stack associated a finite group action.)

Therefore, in this case p itself is finite and a coarse moduli space in our sense exists.

Convention 1.10. Henceforth a stack will mean a DG-stack. DG-stacks whose associated underlying stack is of
Deligne-Mumford type will be referred to as Deligne-Mumford DG-stacks. We will assume that all coarse-moduli
spaces that we consider are quasi-projective schemes. In the presence of an action by a smooth affine group scheme,
we will assume these are G-quasi-projective in the sense that they admit G-equivariant locally closed immersion
into a projective space on which the group G acts linearly. Given a presheaf of spectra P , PQ will denote its
localization at Q. (Observe that then π∗(PQ) = π∗(P )⊗Q.)
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2. Virtual structure sheaves and virtual fundamental classes: definitions and basic properties

2.0.8. Virtual structure sheaves and virtual fundamental classes. Presently we will define virtual structure sheaves
and virtual fundamental classes associated to perfect obstruction theories: our approach using the Riemann-Roch
makes it possible to define virtual fundamental classes even when global resolutions of coherent sheaves by vector
bundles do not exist.

Throughout this discussion we will fix a base object B which will be in general any smooth Artin stack of finite
type over the given base scheme. (The base scheme may be assumed to be a field or a general Noetherian excellent
scheme of finite type over a field.) Let b = dim(B). All objects and morphisms we consider in this section will be
over B and therefore we will often omit the adjective relative. We begin by recalling briefly the definition of the
intrinsic normal cone from [BF] section 3 or [CK] pp. 178-179. Convention: in what follows we will ignore the fact
the base is a smooth stack and not a field. Since this stack is smooth, all this does is to necessitate modifying the
dimensions by adding b to them.

First we proceed to define virtual structure sheaves associated to perfect obstruction theories, following [BF].
Let S denote a Deligne-Mumford stack with u : U → S an atlas and let i : U → M denote a closed immersion
into a smooth scheme. Let CU/M (NU/M ) denote the normal cone (normal bundle, respectively ) associated to the
closed immersion i. (Recall that if I denotes the sheaf of ideals associated to the closed immersion i, CU/M =
Spec⊕

n
In/In+1 and NU/M = SpecSym(I/I2). Now [CU/M/i∗(TM )] ([NU/M/i∗(TM )]) denotes the intrinsic normal

cone denoted CS (the intrinsic abelian normal cone denoted NS , respectively ). In case the algebraic stack S is
provided with the action of a smooth group scheme G, we will assume that this action lifts to an action on the
intrinsic normal cone and the intrinsic abelian normal cone. This hypothesis is satisfied, for example, if the stack
S admits a closed immersion into a smooth Deligne-Mumford stack onto which the action of G extends making
the above closed immersion G-equivariant.

Let E• denote a complex of OS -modules so that it is trivial in positive degrees and whose cohomology sheaves in
degrees 0 and −1 are coherent. Let L•S denote the cotangent complex of the stack S over the base B. A morphism
φ : E• → L•S in the derived category of complexes of OS -modules is called an obstruction theory if φ induces an
isomorphism (surjection) on taking the cohomology sheaves in degree 0 (in degree −1, respectively ). In case S
is provided with the action of a smooth group scheme G, we will assume that E• is a complex of G-equivariant
sheaves of OS -modules and that the homomorphism φ is G-equivariant. (Observe that, in this case, the cotangent
complex L•S is automatically a complex of G-equivariant OS -modules.) We call the obstruction theory E• perfect
if E• is of perfect amplitude contained in [−1, 0] (i.e. locally on the étale site of the stack, it is quasi-isomorphic to
a complex of vector bundles concentrated in degrees 0 and −1). In this case, one may define the virtual dimension
of S with respect to the obstruction theory E• as rank(E0) − rank(E−1) + b. Moreover, in this case, we let
ES = h1/h0(E•) = [E1/E0] where Ei = SpecSym(E−i). We will denote this by C(E−i).

Now the morphism φ defines a closed immersion φ∨ : NS → ES . Composing with the closed immersion CS → NS
one observes that CS is a closed cone substack of ES . Let the corresponding closed immersion be denoted iCS . We
let C(E•) be defined by the cartesian square:

(2.0.9) C(E•)
iC(E•) //

��

E1

��
CS

iCS //
ES

In view of our hypotheses, C(E•) has an induced action by the smooth group scheme G in the G-equivariant
situation.

Definition 2.1. (Virtual structure sheaf) Let E1 = C(E−1) and let OE1 : S → E1 denote the vertex of the cone

stack E1. We let Ovirt
S = L0∗E1

(OC(E•)) = OS
L
⊗

0−1
E1

(OE1 )

0−1
E1

(OC(E•)) and call it the virtual structure sheaf of the stack

S. (Observe that in the G-equivariant case this defines a complex of G-equivariant OS -modules.)

One may now observe that (S,Ovirt
S ) is a DG-stack in the sense of the appendix as follows. Recall that the

sheaf OC(E•) is defined by a coherent sheaf of ideals in OE1 ; locally on the étale site of the stack S, one may find a
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resolution of OC(E•) by a complex of the form OE1 ← P−1 ← · · ·P−n ← · · · with each P−i a locally free coherent
sheaf on E1. Therefore, on applying L0∗S to the above complex (where 0S is the zero section S → ES), one gets a
complex of locally free coherent OS -modules, again locally on the étale site. Therefore the cohomology sheaves of
Ovirt
S are all coherent OS -modules. Proposition 2.2 below shows that Hi(Ovirt

S ) = 0 for i << 0. Making use of the
hypothesis that the stack is Noetherian, one may now replace Ovirt

S upto quasi-isomorphism by a bounded complex
of coherent OS -modules. Therefore the hypotheses in the Definition 5.1 are satisfied. We will denote (S,Ovirt

S ) for
simplicity by Svirt.

Often in the literature, one uses a Gysin map 0!
E1

in the place of L0∗E1
. Therefore, we next proceed to define

such Gysin maps at the level of G-theory of algebraic stacks and show that one could use it in the place of L0∗E1
.

(Further properties of Gysin maps are discussed in the next section.)

Consider a cartesian square

(2.0.10) X ′
x //

g

��

X

f

��
Y ′

y //
Y

of Deligne-Mumford stacks where y is a regular closed immersion of algebraic stacks. We may assume all the stacks
are provided with the action of a smooth group scheme G and that all the maps above are G-equivariant. We will
assume that these are all non-dg stacks, or stacks in the usual sense. We will now define the refined Gysin-map (or
often what will be simply called the Gysin map)

(2.0.11) y! : G(X,G)→ G(X ′, G)

Since y is assumed to be a regular immersion, it follows that ifOY ′ is the structure sheaf of Y ′, y∗(O′Y )επ0(KY ′(Y,G)).
(Recall KY ′(Y,G) is the Waldhausen K-theory spectrum of perfect complexes on Y with supports in Y ′.) Now
pull-back of this class by f defines the class f∗(y∗(OY ′))επ0(KX′(X,G)). Next observe the natural pairing
◦ : π∗KX′(X,G)⊗ π∗G(X,G)→ π∗GX′(X,G)'→π∗G(X ′, G). Therefore, we define for any Fεπ∗G(X,G), y!(F ) =
the class of F ◦ f∗(y∗(OY ′)) in π∗G(X ′,OX′). (In case f and g are the identity maps, one may verify, that y!(F )
identifies with y∗(F )) as classes in π∗G(Y ′, G).) In case g is a closed immersion, we will often identify y!(F ) with
g∗(y!(F )), i.e. the image of the class y!(F ) defined above in π∗G(Y ′, G).

In the above case, one may define a refined Gysin map

(2.0.12) y! : D−(Mod(X,G))→ D−,X′(Mod(X,G))

whereMod(X,G) (Mod(X ′, G)) denotes the category ofG-equivariant coherentOX (OX′) modules. D−(Mod(X,G))
(D−,X′(Mod(X,G))) will denote the derived category of complexes in Mod(X,G) that are bounded above (com-
plexes in Mod(X,G) that are bounded above and whose cohomology sheaves have support in X ′, respectively ).

We let y!(M) = M
L
⊗
OX

Lf∗(y∗(OY ′)).

Proposition 2.2. Assume the situation in ( 2.0.9). Then Ovirt
S ' 0!

E1
(OC(E•)) as OS-modules with the natural

OS-module structure on Ovirt
S . In particular, both Ovirt

S and 0!
E1

(OC(E•)) define the same class in π0(G(S,OS)).

Proof. Observe that 0E1,∗(L0∗E1
(OC(E•))) = 0E1,∗(OS) ⊗

OE1

P • while 0!
E1

(OC(E•)) = Q• ⊗
OE1

OC(E•) where P • →

OC(E•) and Q• → 0E1,∗(OS) are resolutions by complexes of locally free coherent OE1-modules. Since OE1 is
a sheaf of commutative rings, it is clear that the two complexes 0E1,∗(L0∗E1

(OC(E•))) and 0!
E1

(OC(E•)) are quasi-
isomorphic as OE1-modules. The OS -module structures on the two complexes 0E1,∗(L0∗E1

(OC(E•))) and 0!
E1

(OC(E•))
are obtained now by using the map 0E1,∗(OS)→ OE1 . However, the OE1-module structure on 0E1,∗(L0∗E1

(OC(E•)))
is induced from the obvious 0E1,∗(OS)-module structure using the map OE1 → 0E1,∗(OS). Since the compo-
sition of the two maps 0E1,∗(OS) → OE1 → 0E1,∗(OS) is the identity, it follows that the quasi-isomorphism
0E1,∗(L0∗E1

(OC(E•))) ' 0!
E1

(OC(E•)) is one of 0E1,∗(OS)-modules where the OS -module structure on L0∗E1
(OC(E•))

is the obvious one. �
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We let G(Svirt, G) denote the G-equivariant G-theory of the DG-stack Svirt. Let H∗
Br(Svirt, G; Γh(∗)) denote a

Bredon-style G-equivariant homology theory associated to the DG-stack Svirt. Let τ = τG
Svirt : π∗(G(Svirt, G))→

H∗
Br(Svirt, G; Γh(∗)) denote the Riemann-Roch transformation considered in [J-6] section 2.

2.0.13. It will be important to use the relationship between the Riemann-Roch transformation and the local
Chern character to be able to define the virtual fundamental classes. We will do this presently. Let S denote a
Deligne-Mumford stack with coarse moduli space M and let p : S → M denote the obvious map. Let F̄ denote
a perfect complex on M and let F = p∗(F̄ ) denote its inverse image on S. Then τ(F ) corresponds to the map
that sends a perfect complex E on the stack S to τM(p∗(p∗(F̄ ) ⊗ E) = τM(F̄ ⊗ p∗(E)) = τM(F̄ ).chM̃|M(i∗p∗(E)),
where i : M → M̃ is a closed immersion of M into a smooth scheme, and chM̃|M is the local Chern character. In
particular, if E has supports in a closed algebraic sub-stack S0 of S with pure codimension c, i∗p∗(E) has supports
in a closed sub-scheme of M of pure codimension c. Therefore, in this case, (in view of our cohomological semi-
purity hypothesis - see [J-5 ] section 3)) chM̃|M(i∗p∗(E))(j) is trivial in Hi

M(M̃; Γ(j)) for j < c. If, in addition,
chM̃|M(i∗p∗(E))(c) 6= 0 as well, it follows that, in this case the non-trivial term of highest weight in τ(F ) is in
d− c, where d= the weight of the non trivial term in τM(F̄ ) of highest weight. Moreover if the non-trivial term in
τM(F̄ ) of highest weight is in weight d and degree 2d, the non-trivial term of highest weight in τ(F ) is in weight
d− c and degree 2d− 2c.

Definition 2.3. Let d denote the virtual dimension of the stack S with respect to the given obstruction theory.
We define the virtual fundamental class of the stack S in Bredon homology to be τ(OSvirt)2d(d), i.e. the part of
τ(OSvirt) in degree 2d and weight d. This will be denoted [S]virt

Br . If p : S →M denotes the obvious map from the
stack to its moduli space, we will also let [S]virt

Br denote p∗(τ(OSvirt)2d(d))εHBr
2d (M,Γ(d)).

The term of highest weight i and degree 2i in τ(Ovirt
S ) that is non-trivial will be called the the leading term of

τ(Ovirt
S ). We proceed to show that, when the the stack S is flat over its moduli space (for example, if the stack

is a gerbe), the leading term of τ(Ovirt
S ) is of weight d and degree 2d, where d is the virtual dimension defined by

the obstruction theory. For this, first observe from [J-6] Definition 2.13, that the Riemann-Roch transformation
localizes on M̃et and hence on Met. Clearly the virtual structure sheaf localizes on Set. Therefore, it suffices to
prove this for the stack S1 which is defined as the pull-back S×

M
M1 where M1 →M is a finite étale map. Therefore,

we reduce to the situation where the stack S is the quotient stack associated to a finite étale constant group-scheme
action, i.e. S = [X/G] and the map π̄ : X → X/G = M is finite surjective.

Next one may pull-back all objects defined over M to those defined over X. i.e. We let Ēi = π̄∗(Ei), C̄(E•) =
π̄∗(C(E•)). Now C̄(E•) is a closed algebraic sub-stack of Ē1 and hence defines a class [C̄(E•)]εHBr

∗ (Ē1,Γ(∗)) ∼=
Het
∗ (Ē1,Γ(∗)).

Recall from [J-5] Theorem 1.2 that there is defined a map φ : HBr
∗ (S,Γ(∗))→ Hsmt

∗ (S,Γ(∗)) (compatible with
push-forwards by proper representable morphisms) under the assumption that the complexes {Γ(i)|i} and {Γh(i)|i}
extend to the big smooth site of all algebraic stacks.

Theorem 2.4. Assume in addition to the above situation that the base stack B is a scheme (i.e. the obstruction
theory is absolute) and that the stack S is flat over its coarse moduli space M.

(i) Then τ(OSvirt)(i)2i = 0 for all i > d, where d = the virtual dimension. Moreover if [C̄(E•)]εHBr
∗ (Ē1,Γ(∗)) ∼=

Het
∗ (Ē1,Γ(∗)) is nonzero, the leading term of τ(OSvirt) is in weight = d and degree 2d, where d = the virtual

dimension.

(ii) Let [S]virt = [C(E•)] • Ch(pr∗(λ−1(E−1)) where [C(E•)]Br = the leading term of τ(OC(E•)) with values in
Bredon homology, [C(E•)] = its image in smooth homology and Ch(pr∗(λ−1(E−1)) is the Chern character with
values in smooth cohomology, where pr : E1 → S is the obvious projection. Moreover • denotes the obvious pairing
between smooth homology and cohomology. Then [S]virt = the term of φ∗(τ(Ovirt

S )) in smooth homology with highest
weight and degree 2∗the weight.

Proof. For simplicity we will only consider the non-equivariant case: our arguments readily extend to the equivariant
case. Let M denote the coarse moduli space of the stack S.

Step 1. Next we show that it is possible to reduce to the case where M has been replaced by X, i.e. after pulling
back all objects defined over S to those defined over S ′ = S×

M
X by the obvious map π : S ′ → S. We will let S ′

with the obvious induced dg-structure-sheaf i.e. π∗(Ovirt
S ), though this is not defined by an obstruction theory. To
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see that this in fact defines a class in π0G(S ′) we may argue as follows. First one applies the pull-back S ′×
S
− to

the square in ( 2.0.9). Observe that S ′×
S
E1 = C(π∗(E−1)). Now C(π∗(E•)) = S ′×

S
C(E•). Therefore

(2.0.14) π∗(Ovirt
S ) = OC(π∗(E•)).Λ−1(π∗(pr−1E−1))

and hence π∗(Ovirt
S ) defines a class in π0(G(S ′)). Next observe that, by the projection formula, one obtains:

π∗(π∗(Ovirt
S )) = π∗(OS′)⊗Ovirt

S(2.0.15)

The projection π : S ′ → S factors as the composition of the two maps S ′ = S ×
X/G

X
π1→S ×

X/G
S π2→S ×

X/G
X/G ∼= S.

The first map π1 is finite étale since it is obtained by base-change from the map X → [X/G]. Let n denote the
degree of this map. Then π1∗(OS′) = π1∗π

∗
1(OS ×

X/G
S) = nOS ×

X/G
S .

Observe next that for the finite map π̄2 : S = [X/G] → X/G, π̄2∗(OS) = OX/G. The map π2 : S ×
X/G
S → S is

induced by flat base-change from the map π̄2. Therefore π2∗(OS ×
X/G

S) = OS . It follows, therefore, that

π∗(OS′) = nOS and hence

π∗(π∗(Ovirt
S )) = nOvirt

S(2.0.16)

Let p : S → M and p′ : S ′ → X denote the obvious maps and let M → M̃ and M′ → M̃′ denote closed im-
mersions into smooth schemes. Recall that, by the Riemann-Roch theorem proved in section 3, p∗(τS(Ovirt

S )) =
τM(p∗(Ovirt

S )) and p′∗τS′(π
∗(Ovirt

S )) = τX(p′∗(π
∗(Ovirt

S ))), where τM (τX) denotes the Riemann-Roch transforma-
tion into the homology of the moduli space M (X, respectively ). Now π̄∗p

′
∗τS′(π

∗(Ovirt
S )) = π̄∗τX(p′∗(π

∗(Ovirt
S ))) =

τM(π̄∗p′∗(π
∗(Ovirt

S ))) = τM(p∗π∗(π∗(Ovirt
S ))), where π̄ : X →M is the induced map. This agrees with nτM(p∗(Ovirt

S )) =
np∗(τS(Ovirt

S )) by ( 2.0.16). Therefore, the non-trivial term of highest weight occurs in the same weight in both of
the classes π̄∗p′∗τS′(π

∗(Ovirt
S )) and p∗(τS(Ovirt

S )).

Step 2. From now onwards, we will let M itself denote X, S denote S ′ and Ovirt
S denote π∗(Ovirt

S ) defined
above. Observe that now the vector bundles E1 and E0 (the cone C(E•)) descend to vector bundles Ē1 and Ē0 (a
cone C(Ē•) defined on the coarse moduli space M with Ēi being a coarse-moduli space for Ei). (Observe that, the
Ei no longer define an obstruction theory, which is fine for the proof: all we require is that the virtual structure
sheaf π∗(Ovirt

S ) (i.e. what we denote Ovirt
S henceforth) be defined as in ( 2.0.14).

Next consider the class [OC(E•)].pr∗(Λ−1(E−1)) in π0(GS(E1)) ∼= π0(G(S)) where pr : E1 → S is the obvious
projection. Observe that Λ−1(E−1) is the Koszul complex associated to the zero section imbedding 0 : S → E1.
The hypothesis that the bundles E1 and E0 descend to vector bundles Ē1 and Ē0 on the moduli space M shows
that there exist finite flat maps pi : Ei → Ēi, i = 0, i = 1. Now Ch(Λ−1(E−1)) in smooth cohomology is the
pull-back of the class Ch(Λ−1(Ē−1)) from Bredon cohomology of Ē1 which identifies with its étale cohomology.
Observe also that the class [C(E•)] is the pull-back of the class [C(Ē•)]εH∗(Ē1; Γ(∗)). (Moreover the map to the
smooth hypercohomology of E1 from the hypercohomology of Ē1 is compatible with the obvious pairings: see [J-5]
Theorem 1.2.) Therefore, it suffices to prove (ii) with Ch(pr∗Λ−1(Ē−1)) ([C(Ē•)]) in the place of Ch(pr∗Λ−1(E−1))
([C(E•)], respectively ), where pr : Ē1 →M is the obvious projection.

Step 3. When we view Ovirt
S as a class in π0(GS(E1)), we may apply p1∗ to it to get a class in π0(G(Ē1)) ∼=

π0(GĒ1
(Ẽ1)) and then apply the Riemann-Roch transformation τĒ1

: this defines a class in HBr
∗ (Ē1; Γ(∗)). (Here

Ē1 → Ẽ1 is the closed immersion into a smooth scheme.) We proceed to determine this class.

We consider:

p1∗(τE1(OSvirt)) = τĒ1
(p1∗(OC(E•).pr

∗(Λ−1(E−1))))

= τĒ1
(p1∗(p∗1(OC(Ē•).pr

∗(Λ−1(Ē−1)))))

= τĒ1
(p1∗OC(E•)).Ch(pr∗(Λ−1(Ē−1)))

= p1∗(τE1(OC(E•))).Ch(pr∗(Λ−1(Ē−1)))(2.0.17)

where Ch denotes the local Chern character on Ẽ1 with supports in Ē1 and p̄r : Ē1 →M is the obvious projection.
(The identifications p1∗(τE1(OSvirt)) = τĒ1

(p1∗(OC(E•).pr
∗(Λ−1(E−1)))) and τĒ1

(p1∗OC(E•)) = p1∗(τE1(OC(E•)))
follow readily from the definition of the Riemann-Roch transformation. See the basic example in [J-6] Example
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3.8. Observe also that τĒ1
is the usual Riemann-Roch transformation associated to the scheme Ē1 (imbedded in Ẽ1)

and that C(Ē•) is a sub-scheme of the cone Ē1. τE1 is the Riemann-Roch transformation defined in [J-6] section 2
at the level of stacks.)

Since pr∗(Λ−1(Ē−1)) has supports contained in M, it is clear Ch(pr∗(Λ−1(Ē−1)))(i) = 0 for all i < c where c =
the codimension of M in Ē1 (= the codimension of S in E1.) It follows therefore that the nonzero term of highest
weight in p1∗(τE1(OSvirt) occurs in weight n−c and degree 2n−2c where n= the dimension of C(E•). (See 2.0.13.)
From our discussion below (see 4.0.21) one may identify the dimension of C(Ē•) with rank(E0) + b, where b = the
dimension of the base stack B.

Therefore, now it suffices to identify p1∗τ̃E1(OSvirt) with p∗τ(OSvirt). Observe that in the latter Ovirt
S is viewed

as a class in π0(G(S)) whereas in the former Ovirt
S is viewed as a class in π0(GS(E1)) (i.e. actually as 0∗Ovirt

S ,
where 0 : S → E1 is the zero section). Moreover, for the latter we apply τM to p∗(Ovirt

S ), whereas for the former
we apply τE1 to p1∗(Ovirt

S ). Therefore, a straightforward application of the usual Riemann-Roch theorem for the
closed immersions 0̄ : M→ Ē1 and 0 : S → E1 shows that one may in fact identify p1∗τ̃E1(OSvirt) and p∗τS(OSvirt).
This completes the proof of the first assertion in the proposition. The second assertion also follows readily from
the above arguments: see for example, the formulae in 2.0.17 above. �

Definition 2.5. We define the support of any class αεHBr
n (S,Γh

S(∗))Q) as follows. Clearly one has an obvious map
K( )M → p∗(K( )S) of presheaves on Met; this provides a map p̄∗ : HBr

n (S,Γh
S(∗))Q) → Hn(M;Sp(Γh(∗)))Q)

compatible with localization on the Zariski (or even étale) site of M. We define the support of the class α as
{mεM|0 6= π∗(α)mεH−n( , Sp(Γh(∗))))˜m}.
Example 2.6. Take the complex Γ(r) = Zr(X, .) = the higher cycle complex. Now the support of any class
αεHBr

2n (S,Γ(n)) is the closed subscheme of M defined by the union of the irreducible closed subvarieties of M
appearing in the algebraic cycle p∗([S]virt).

Proposition 2.7. Assume in addition to the above situation that the stack is an orbifold and that the complexes
{Γh(r)|r} are defined on the smooth site of all algebraic stacks. Let M0 denote the open subscheme of the moduli
space where the stabilizers are trivial. Assume further that Supp([S]virt

Br ) ∩M0 is non-empty. Then the image
of the class [S]virt

Br in the smooth homology of the stack with respect to Γ(∗), agrees with the virtual fundamental
classes defined cycle theoretically in the latter (i.e. modulo classes that are supported on strictly smaller dimensional
sub-spaces of the moduli space).

Proof. Observe that the cycle theoretic definition of the virtual fundamental class in smooth homology is

[C(E•)].Ch(λ−1(E−1))

where [C(E•)] (Ch(λ−1(E−1))) is the class of C(E•) in smooth homology (is the Chern character of λ−1(E−1) in
smooth cohomology. On the other hand, the image of [S]virt

Br in smooth homology is given by
p∗smt(p∗([S]virt

Br .ch(λ−1(E−1)))): see [J-5] Theorem 1.2. Here p : S →M is the obvious map, p∗([S]virt
Br .ch(λ−1(E−1)))

is the corresponding image in H∗
et(M,Γh(∗))Q, p∗smt : H∗

et(M,Γh(∗))Q ∼= H∗
smt(M,Γh(∗)) → H∗

et(S,Γh(∗))Q is the
corresponding pull-back to the smooth homology of the stack and ch denotes the Chern character with values in
Bredon cohomology. Since the map p0 : S0 = S×

M
M0 → M0 is the identity, one can see that we have equality

of [C(E•|S0
)].Ch(λ−1(E−1

|S0
)) and p∗smt(p∗([S0]virt

Br .ch(λ−1(E−1
|S0

)))). Moreover the difference between these and the
corresponding classes for the stack S is given by classes supported on strictly lower dimensional sub-spaces of
Supp([S]virt). �

Remark 2.8. Observe that we are able to define the virtual fundamental class without the hypothesis that one can
replace the obstruction theory E• (upto quasi-isomorphism) by a complex of G-equivariant vector bundles.

3. Gysin maps in G-theory

In this section we explore basic properties of Gysin maps at the level of G-theory with the goal of applying these
in the next section. This roughly parallels the treatment in [F] where such Gysin maps are defined at the level of
algebraic cycles.

Proposition 3.1. Assume the situation in ( 2.0.10). Let αεπ0(G(X)), βεπ0(G(X ′)) so that y!(α) = β. Then
x∗(β) = α⊗ Lf∗(y∗(OY ′)) in π0(GX′(X)) and in π0(G(X)).

Proof. Observe that the map x∗ : π0G(X ′)→ π0GX′(X) is an isomorphism with its inverse given by the devissage
theorem in G-theory. The hypotheses imply that under this inverse isomorphism the class α⊗Lf∗(y∗(OY ′)) maps
to the class β. Therefore, x∗(β) = α⊗ Lf∗(y∗(OY ′)). �
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Proposition 3.2. Consider the commutative square

N×
Y
C //

��

C ′
//

��

C

��
N×

Y
X //

��

X ′
x //

g

��

X

f

��
N

ρ //
Y ′

y //
Y

where the following hold: the bottom right square is as in ( 2.0.10) with f a local immersion with Y smooth,
C = CX(Y ) = the cone associated to this immersion and the rest of the diagram is defined so that all the squares
are cartesian. Then

y!(OC) = OCX′ (Y ′) in π0(G(N×
Y
C)) ∼= π0(G(C ′))

Proof. This is a rather well known result; the corresponding results for algebraic cycles appears in [Vi-1] and may
be proved along similar lines by reducing to the case when Y ′ and X are divisors in Y . The key observation is that
we define y! : G(C)→ G(C ′) by taking for the map f in ( 2.0.10) not the map f above but instead the composition
of the two maps forming the right-most column. We skip the details. �

Proposition 3.3. Assume the square

X ′
i′ //

g

��

X

f

��
Y ′

i //
Y

is cartesian and that one is given maps π : Y → Y ′ and s : Y ′ → X ′ so that g ◦ s = idY ′ and π ◦ i = idY ′ . Assume
also, that both the maps i and s are regular closed immersions. Then the composite map

π0(G(X,OX)) i!→π0(GX′(X,OX))'→π0(G(X ′,OX′)) s!

→π0(G(Y ′,OY ′))

is also equal to the map induced by the map M 7→ α ⊗
OX

(f∗π∗(λ−1(NY ′/Y ) ⊗
OY ′

(λ−1(NY ′/X′)))), MεCoh(X,G) =

Coh([X/G]). Here NY ′/Y (NY ′/X′) is the conormal sheaf associated to the closed immersion Y ′ → Y (Y ′ → X ′,
respectively ).

Proof. If M denotes a coherent OX -module, it follows from the definition that

i!(M) = [M ⊗
OX

f∗π∗λ−1(NY ′/Y )]

which is the class of M ⊗
OX

f∗π∗λ−1(NY ′/Y )επ0(G(X ′)).

Similarly, g∗(λ−1(NY ′/X′)) is a resolution of s∗(OY ′). It follows therefore, that for M a coherent OX -module,

s!i!(M) = [M ⊗
OX

f∗π∗λ−1(NY ′/Y )] ⊗
OX′

g∗λ−1(NY ′/X′)).

Observe, in view of our hypothesis that NY ′/X′ is a locally free OY ′ -module. Moreover π∗(λ−1(NY ′/Y )) is a
resolution of i∗(OY ′). Therefore, each term of F • = f∗π∗λ−1(NY ′/X′) is a locally free OX -module. Moreover the
commutativity of the square in the proposition shows that i′∗(F •) = g∗(λ−1(NY ′/X′)). Therefore

s!i!(M) = [M ⊗
OX

f∗π∗λ−1(NY ′/Y )] ⊗
OX′

i′
∗(F •).
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Since M ⊗
OX

f∗π∗λ−1(NY ′/Y ) has supports contained in X ′ and each term of the complex F • is a locally free

OX -module, one obtains the identification

[M ⊗
OX

f∗π∗λ−1(NY ′/Y )] ⊗
OX′

i′
∗(F •) = [M ⊗

OX

f∗π∗λ−1(NY ′/Y ) ⊗
OX

F •]

as classes in π0(GY ′(Y )) ∼= π0(G(Y ′)). �

Remark 3.4. The above proposition enables us to obtain a convenient reformulation of the virtual structure sheaves
as in Definition 4.1.

Later on in this section, we will need the following alternate definition of the refined Gysin maps defined using
deformation to the normal cone. We begin by defining the specialization map to the normal cone at the level of
G-theory. If X ′ → X is a closed immersion of Deligne-Mumford stacks, one performs the blow-up of X × P1 along
X × {∞}; let this be denoted M and let X̃ be the blow-up of X along X ′. Let Mo denote the complement of X̃
in M . Now j : X × A1 imbeds as an open sub-stack of Mo with complement C = CX′X = the normal cone to

X ′ in X. Therefore one obtains the localization sequence: G(C) i∗→G(Mo)
j∗→G(X × A1) where i : C → Mo is the

obvious closed immersion. Since C is a divisor in Mo, it follows that i is a regular closed immersion of codimension
1 and therefore that one has a pull-back i∗ : G(Mo) → G(C). Moreover the composition i∗ ◦ i∗ : G(C) → G(C)
is null-homotopic, since the normal bundle to the immersion i is trivial. Therefore, the map i∗ : G(Mo) → G(C)
factors through j∗. The induced map G(X × A1) → G(C) will be denoted sp′. We define the specialization map
sp : G(X)→ G(C) as the composition sp′ ◦ pr∗1 , where pr1 : X × A1 → X is the obvious projection.

Given a diagram as in ( 2.0.10), one may first replace it with the diagram:

X ′
x0 //

g

��

CX′X

f0

��
Y ′

y0 //
NY ′Y

One has a refined Gysin map y0
! : G(CX′X) → G(X ′). We may pre-compose this with the specialization map

sp : G(X)→ G(CX′X) to define the alternate refined Gysin map y!
alt : G(X)→ G(X ′).

Proposition 3.5. y! = y!
alt : π0(G(X))→ π0(G(X ′))

Proof. First observe by the localization sequence that the restriction j∗ : π0(G(Mo))→ π0(G(X×A1) is surjective.
(See [Qu] section 5, Theorem 5: observe that this is stated for abelian categories and therefore applies to algebraic
(non-dg) stacks as well.) Therefore the specialization map on the Grothendieck groups is simply defined by starting
with a class α in π0(G(X)) , pulling it back to π0(G(X × A1)) by pr∗1 , lifting this to a class in π0(G(Mo)) and
then applying i∗. Therefore, the specialization map at the level of Grothendieck groups is compatible with pairings
in the following sense: assume the situation of ( 2.0.10). Now the specializations sp : GY ′(Y ) → GY ′(NY ′Y ) and
sp : G(X)→ G(CX′X) are compatible in the sense the following square commutes:

π0(G(X))

sp

��

y!
//
π0G(X ′)

id

��
π0(G(CX′X))

y!
0 //

π0G(X ′)

For this observe that both the Gysin maps y! and y!
0 are defined by pairing with the Koszul-Thom class of Y ′ in

Y . Therefore, it suffices to show that the Koszul-Thom class of Y ′ in Y specializes to the Koszul-Thom class of Y ′

in NY ′Y . We skip this verification to the reader. �

4. Pushforward and localization formulae for virtual structure sheaves and virtual fundamental
classes

Next we proceed to establish a push-forward formula for the virtual fundamental classes. Using Lefschetz-
Riemann-Roch, it suffices to establish a push-forward formula for the virtual structure sheaves instead. For this,
we will first find another more convenient alternate definition of the virtual structure sheaf. We will assume
henceforth that the given stack S admits a G-equivariant closed immersion into a smooth Deligne-Mumford stack
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S̃ onto which the G-action extends. Assuming this closed immersion is denoted i and is defined locally by the sheaf
of ideals I, the cotangent complex of S truncated outside the interval [−1, 0] can be identified with the complex:

(4.0.18) τ≥−1L
•S : I/I2 → i∗(ΩS̃)

4.0.19. Basic pushforward hypothesis. We will also assume henceforth that the obstruction theory is given by a
strict map of complexes E• → τ≥−1L

•
S and that Ei, i = −1, 0 are vector bundles. As observed in [GP], the

hypotheses that every coherent sheaf on the stack is a quotient of a vector bundle, implies one may make the above
assumption without further loss of generality.

One may show that our hypothesis that E• is an obstruction theory associated to the immersion i (in the above
sense) implies that the sequence of sheaves E−1 → E0⊕I/I2 γ→ΩS̃|S → 0 is exact. Then one obtains the associated
exact sequence of abelian cones:

(4.0.20) 0→ T S̃|S → C(I/I2)×
S
E0 → C(Q)→ 0

where C(Q) is the cone associated to Q = ker(γ) and E0 = C(E∨0 ). Since Q is a quotient of E−1, C(Q) imbeds in
E1. The normal cone to S in S̃, CS(S̃) is a closed substack of C(I/I2). Observe that CS(S̃)×

S
E0 is a T S̃|S -cone.

If Q′ denotes the kernel of CS(S̃)×
S
E0 → E0 ⊕ I/I2 γ→ΩS̃|S , we obtain the short exact sequence 0 → Q′ →

E0 ⊕ CS(S̃)→ ΩS̃|S → 0 and therefore the exact sequence 0→ T S̃|S → CS(S̃)×
S
E0 → C(Q′)→ 0.

Observe that C(Q′) = C(E•) in the terminology used earlier. Viewing the above as an exact sequence of objects
over S, one may compute the dimension of C(Q′) as follows:

(4.0.21) dim(C(E•)) = dim(C(Q′)) = rank(E0) + b

Moreover, Ovirt
S = 0!

E1
(OC(Q′)). Alternatively, one has the cartesian square

(4.0.22) T S̃|S
//

p

��

CS(S̃)×
S
E0

f

��
S

0E1 //
E1

Here p : T S̃|S → S is the obvious projection and f is the map induced by the map E−1 → E0 ⊕ I/I2; let
sT S̃|S : S → T S̃|S denote the obvious zero-section. Now one obtains a quasi-isomorphism:

(4.0.23) Ovirt
S ' s!

T S̃|S
0!
E1

(OCS(S̃)×
S
E0

)

(This follows from the observation: s!
T S̃|S

0!
E1

(OCS(S̃)×
S
E0

) ' s∗
T S̃|S

0!
E1

(OCS(S̃)×
S
E0

) ' 0!
E1

(s∗
T S̃|S
OCS(S̃)×

S
E0

) = 0!
E1

(OC(Q′))

as classes in π0(G(S)). The last but one ' follows from the observation that locally, CS(S̃)×
S
E0 is a product of

C(Q′) and T S̃|S .)

Proposition 3.3 shows that as classes in π0G(S), one has the identification:

[Ovirt
S ] = [f∗π∗E(λ−1(E−1)⊗

OS
λ−1(ΩS̃|S))].

Here πE : E1 → S is the obvious projection. Observe that the right-hand-side is only a complex of quasi-coherent
sheaves on S: nevertheless it is a complex of coherent sheaves on the stack CE0 with supports in the closed sub-stack
S.

Definition 4.1. Henceforth we will let

(4.0.24) Ovirt
S = f∗π∗E(λ−1(E−1)⊗

OS
λ−1(ΩS̃|S))
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viewed as a complex of sheaves on the stack CE0. Proposition 7.8 in [J-6] shows that if I is the sheaf of ideals
defining S in CE0, then, ΣiRHomOCE0

(Ii−1/Ii, f∗π∗E(λ−1(E−1)⊗
OS
λ−1(ΩS̃|S)))[−i] is a complex of coherent OS-

modules and that as classes in π0G(S) this identifies with the class [Ovirt
S ]. (In fact, the sum on the right is a finite

sum.) Therefore, it is often convenient to use the following variant of the virtual structure sheaf:

(4.0.25) Ōvirt
S = ΣiRHomOCE0

(Ii−1/Ii, f∗π∗E(λ−1(E−1)⊗
OS
λ−1(ΩS̃|S)))[−i]

4.0.26. Next assume that i0 : T → T̃ and i : S → S̃ are closed immersions and that the square

T
u //

i0
��

S

i

��
T̃

v //
S̃

is cartesian, with both S̃ and T̃ smooth Deligne-Mumford stacks and where the maps u and v are closed immersions.

4.0.27. Weak compatibility of obstruction theories. We will assume that one is provided with a perfect obstruction
theory E• ( F •) for S → S̃ (T → T̃ , respectively ) satisfying the hypotheses as in 4.0.19 and that these are weakly
compatible in the following sense: there is given a G-equivariant map φ : u∗(E•)→ F • of complexes so that there
exists a distinguished triangle K• → Lu∗(E•) → F • and K• is of perfect amplitude contained in [−1, 0]. For
example, the two obstruction theories are compatible if one has G-equivariant resolutions of coherent sheaves by
vector bundles, E• and F • may be replaced by complexes of vector bundles and the given map φ : Lu∗(E•)→ F •

is an epimorphism. It follows that, in this case, the kernel, K• = ker(φ) is a complex of vector bundles.

Lemma 4.2. E• and F • are weakly compatible if and only if there exists a distinguished triangle K ′• → E′
• →

Lπ∗(F •) → K ′•[1] of complexes of OCT (S)-modules so that (i) K ′• and E′
• are complexes of perfect amplitude

contained in [−1, 0] and (ii) L0∗(E′•) = Lu∗(E•). Here π : CT (S) → T is the obvious projection while 0 : T →
CT (S) is the obvious closed immersion of the vertex of the cone.

Proof. Assume that one is given a distinguished triangle K ′• → E′
• → Lπ∗(F •) → K ′•[1] satisfying the above

hypotheses. Taking K• = L0∗(K ′•) provides a distinguished triangle K• → Lu∗(E•) → F • → K•[1] showing
the weak compatibility of the obstruction theories. Conversely given a distinguished triangle, K• → Lu∗(E•) →
F • → K•[1] with K• a complex of perfect amplitude contained in [−1, 0], one may take E′• = Lπ∗(Lu∗(E•)) and
K ′• = Lπ∗(K•). �

4.0.28. The deformed virtual structure sheaf. Let CT (E0) denote the normal cone associated to the composite closed
immersion T → S → E0. Now CT (S) is a closed subscheme of CT (E0): moreover the obvious projection E0 → S
induces a splitting to the above map so that CT (S) is a factor of the cone CT (E0). Moreover CT (E0|T ) is also a
sub-scheme of CT (E0). Now a local computation will show that the obvious map CT (S)×

T
CT (E0|T )→ CT (E0) is an

isomorphism. In addition, one readily obtains the isomorphism CT (E0|T ) ∼= CF0(E0|T )×
T
F0. Therefore, one obtains

the isomorphism

(4.0.29) CT (E0) ∼= CT (S)×
T
CF0(E0|T )×

T
F0

We consider the commutative diagram:

(4.0.30) CCT (S)(CT̃ (S̃)) ×
CT (S)

CT (E0)
π0 //

π1

��

CT (T̃ )×
T
F0

β //
CT (T̃ )

α

��
CCT (S)(CT̃ (S̃))

φ1 //
CT (S)

π //
T

where π0 is the obvious projection induced by the projections CT (S)→ T , CCT (S)(CT̃ (S̃))→ CT (T̃ ) and CT (E0)→
F0. Moreover π1 denotes the projection to the first factor. We let the composition of maps α ◦ β by f0 and let
C = CCT (S)(CT̃ (S̃)). Let 0 : CT (T̃ )×

T
F0 → C ×

CT (S)
CT (E0) denote the obvious closed immersion. (Observe that

this is a section to the map π0.) Then we provide the following definition of the deformed virtual structure sheaf:
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Definition 4.3. Ovirt
C = π∗0f

∗
0 (λ−1(E−1

|T ) ⊗ λ−1(ΩCT̃ (S̃)|T )) = π∗1φ
∗
1π

∗(λ−1(E−1
|T ) ⊗ λ−1(ΩCT̃ (S̃)|T )) and call this

the deformed virtual structure sheaf.

Remark 4.4. Having replaced S by the cone CT (S) and the virtual structure sheaf Ovirt
S by its deformation, OCT (S),

we have greater flexibility: the main advantage is the presence of the morphism π : CT (S)→ T so that π ◦0 = idT ,
where 0 : T → CT (S) is the obvious zero-section imbedding. See 4.0.46 below for more details on this deformation.
Throughout the following theorem we will let CCT (S)(CT̃ (S̃)) ×

CT (S)
CT (E0) (CT (T̃ )×

T
F0) be denoted by CE0 (CF0,

respectively ).

Theorem 4.5. Assume the above situation. Now one obtains the formula

π∗0f
∗
0 (λ−1(K−1))⊗ 0∗(Ovirt

T ) = 0∗(f∗0 (λ−1(K−1)) ⊗
OCT (T̃ )×

T
F0

Ovirt
T ) = λ−1(π∗0f

∗
0K

0)⊗Ovirt
C

in π0(GT (Cπ∗(E0|T ))). In case S, T are provided with a compatible action by a smooth group scheme G and the
obstruction theories are G-equivariant, the last formula holds in π0(GT (C(π∗(E0|T )), G)). (Here ⊗ denotes the
tensor product over OCCT (S)(CT̃ (S̃)) ×

CT (S)
CT (E0)

.)

Proof. Let ΩCT̃ (S̃)|T (ΩS̃0|S0
) denote the restriction of ΩCT̃ (S̃) (ΩT̃ , respectively ) to T . Let g and πF be defined

by the following obvious diagram:

(4.0.31) CT S

π

��

CE0
π0

��
T F1

πF
oo CF0

g
oo

Step 1. By definition, the right-hand-side identifies with

(4.0.32) λ−1(π∗0f
∗
0 ΩCT̃ (S̃)|T ) ⊗

OCE0

λ−1(π∗0f
∗
0 (E−1

|T )) ⊗
OCE0

λ−1(π∗0f
∗
0K

0)

Definition 4.1 applied to the cartesian square

(4.0.33) T T̃ |T

g′

��

// CT (T̃ )×
T
F0

g

��
T 0F1

//
F1

shows that the left-hand-side identifies with

(4.0.34) 0∗(λ−1(g∗π∗FΩT̃ |T ) ⊗
OCF0

λ−1(g∗π∗F (F−1))) ⊗
OCE0

λ−1(π∗0f
∗
0K

−1))

Henceforth ⊗ will denote ⊗
OCE0

.

Step 2. Next, one considers the obvious immersion 0 : CT (T̃ )×
T
F0 in CCT (S)(CT̃ (S̃)) ×

CT (S)
CT (E0) (which we denoted

0). This factors as

CT (T̃ )×
T
F0

α→CCT (S)(CT̃ (S̃)) ×
CT (S)

π∗(F0)
v→CCT (S)(CT̃ (S̃)) ×

CT (S)
CT (E0).

The first observation here is that, in this situation, one obtains the identifications:

(4.0.35) CT (E0) = CT (S)×
T
CF0(E0|T )×

T
F0, π∗(F0) = CT (S)×

T
F0
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4.0.36. Therefore, the map α identifies with the map CT (T̃ )×
T
F0

i×id→ CCT (S)(CT̃ (S̃))×
T
F0 where i : CT (T̃ ) →

CCT (S)(CT̃ (S̃)) is the obvious immersion.

Next we apply the Proposition 3.2 to the bottom square of the following diagram (i.e. the bottom square
corresponds to the bottom right square in Proposition 3.2):

(4.0.37) CT (T̃ )
x //

��

CCT (S)(CT̃ (S̃))

φ1

��
T

//

��

CT (S)

φ0

��

T̃
y //

NT̃ (S̃)

Therefore, it follows first that y!(OCCT (S)(CT̃ (S̃))) = OCT (T̃ ) and then by invoking Proposition 3.1 that

x∗(OCT (T̃ )) = OCCT (S)(CT̃ (S̃)) ⊗ λ−1(φ∗π̃∗(NT̃ (S̃)))

in π0(G(CCT (S)(CT̃ (S̃)),OCCT (S)(CT̃ (S̃)))).

Here φ = φ0◦φ1 (π̃) is the map forming the right vertical column in the above square (is the projection NT̃ (S̃)→ T̃ ,
respectively ). Moreover, it is clear that λ−1(φ∗π̃∗(NT̃ (S̃))) = λ−1(φ∗1π

∗(NT̃ (S̃))T ). It follows from the observation
about the map α in 4.0.36 above that

(4.0.38) α∗(OCF0) = OCCT (S)(CT̃ (S̃)) ×
CT (S̃)

π∗(F) ⊗ λ−1(φ∗π̃∗(NT̃ (S̃)))

in π0(GCF0(CCT (S)(CT̃ (S̃)) ×
CT (S̃)

π∗(F),OCCT (S)(CT̃ (S̃)) ×
CT (S̃)

π∗(F0|T ))).

The short exact sequence 0→ K ′0 → E′
0 → π∗(F 0)→ 0 shows on taking the symmetric algebras associated to

E′
0 and π∗(F 0) that the kernel of the obvious surjection Sym(E′0)→ Sym(π∗(F 0)) is the ideal K ′0 ⊗ Sym(E′0).

One may identify (K ′0 ⊗ Sym(E′0)/(K ′0 ⊗ Sym(E′0))2 with (K ′0 ⊗ π∗(Sym(F 0)))/(K ′0 ⊗ π∗(Sym(F 0)))2 =
K ′0/(K ′0)2 ⊗ π∗(Sym(F 0)). Clearly one obtains a natural map of the last term to (K ′0 ⊗ Sym(E′0)/(K ′0 ⊗
Sym(E′0))2; by working locally one may show this is an isomorphism. Therefore one gets the formula:

v∗(OCCT (S)(CT̃ (S̃)) ×
CT (S̃)

π∗(F0)) = OCE0 ⊗ λ−1(π∗0f
∗
0K

0)(4.0.39)

= OCE0 ⊗ λ−1(π∗1φ
∗
1π

∗(K0))(4.0.40)

in the Grothendieck group π0(G(CE0,OCE0)). (Recall K•′ = π∗(K•). Therefore the commutative diagram in
( 4.0.30) shows that π∗0f

∗
0 (λ−1(K0)) = π∗1(φ∗1(π

∗(λ−1(K0)))).) Combining these provides the identification

0∗(OCF0) = OCE0 ⊗ λ−1(π∗1φ
∗
1π

∗NT̃ (S̃))⊗ λ−1(π∗0f
∗
0K

0)(4.0.41)

= OCE0 ⊗ λ−1(π∗0f
∗
0 (NT̃ (S̃)|T ))⊗ λ−1(π∗0f

∗
0K

0)

in π0GCF0(CE0,OCE0).

Step 3. Here we show that

λ−1(π∗0f
∗
0 ΩCT̃ (S̃)|T ) = λ−1(π∗0g

∗π∗FΩT̃ |T )⊗ λ−1(π∗0g
∗π∗FNT̃ (S̃))(4.0.42)

= λ−1(π∗0f
∗
0 ΩT̃ |T )⊗ λ−1(π∗0f

∗
0NT̃ (S̃)|T )

Observe that the normal cone to the immersion T̃ in CT̃ (S̃) identifies with the normal bundle NT̃ (S̃). We begin
with the the split short exact sequence 0→ NT̃ (S̃)→ 0̃∗(ΩCT̃ (S̃))→ ΩT̃ → 0. Here 0̃ : T̃ → CT̃ (S̃) is the obvious
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map. Let π̃ : CT̃ (S̃)→ T̃ denote the obvious projection. We apply the pull-back by π̃∗ and restriction to CS0(S)
(= restriction to T and pull-back by π∗ ) to obtain:

(4.0.43) λ−1(π∗ΩCT̃ (S̃)|T ) = λ−1(π∗(ΩT̃ |T ))⊗ λ−1(π∗NT̃ (S̃)|T )

of perfect complexes. Recall from the commutative diagram ( 4.0.30) that π ◦ φ1 ◦ π1 = f0 ◦ π0. Therefore, the
pull-back of this by π∗1 ◦ φ∗1 then provides the identification

λ−1(π∗0f
∗
0 ΩCT̃ (S̃)|T ) = λ−1(π∗0f

∗
0 ΩT̃ |T )⊗ λ−1(π∗0f

∗
0NT̃ (S̃)|T )

Finally observe that the map πF ◦ g : CT (T̃ )×
T
F0 → T also identifies with the map f0 defined in ( 4.0.30). See also

( 4.0.31). This provides the identification in ( 4.0.42).

Step 4. Next, using the observation that 0∗π∗0 = id, the projection formula and the diagram ( 4.0.31), one may
identify the term in ( 4.0.34) with

(4.0.44) λ−1(π∗0g
∗π∗FΩT̃ |T )⊗ λ−1(π∗0g

∗π∗FF
−1)⊗ λ−1(π∗0f

∗
0K

−1)⊗ 0∗(OCT (T̃ )×
T
F0

)

= λ−1(π∗0f
∗
0 ΩT̃ |T )⊗ λ−1(π∗0f

∗
0F

−1)⊗ λ−1(π∗0f
∗
0K

−1)⊗ 0∗(OCT (T̃ )×
T
F0

)

Now we consider the term in ( 4.0.32). In view of ( 4.0.42), clearly this may be written as

(4.0.45) λ−1(π∗0f
∗
0 ΩT̃ |T )⊗ λ−1(π∗0f

∗
0NT̃ |S(S̃)|T ))⊗ λ−1(π∗0f

∗
0 (E−1

|T ))⊗ λ−1(π∗0f
∗
0K

0)

Therefore, a comparison of the terms in ( 4.0.44) with that in ( 4.0.45) (making use of ( 4.0.41)) shows that the
left-hand-side (right-hand-side) of the equation we wish to establish in the theorem is obtained by tensoring the
left-hand-side (right-hand-side, respectively ) of ( 4.0.41) by λ−1(π∗0f

∗
0 ΩT̃ |T )⊗ λ−1(π∗0f

∗
0 (F−1))⊗ λ−1(π∗0f

∗
0K

−1).
(Recall the short exact sequence 0→ K−1 → E−1

|T → F−1 → 0, shows λ−1(E−1
|T ) = λ−1(K−1)⊗ λ−1(F−1).)

So far the arguments show that the required formula holds in the Grothendieck group of sheaves of modules
over OCT (E0) with supports contained in CF0. However, it is clear (see Definition 4.1 and Proposition 3.3) that the
term Ovirt

T has supports in T . Therefore, we obtain the required formula in the Grothendieck group with supports
contained in T . This completes the proof of the theorem. �

4.0.46. Deformation to the normal cone. We will presently define a deformation of the virtual structure sheaf
making use of the deformation to the normal cone. This will produce the deformed virtual structure sheaf considered
above. We begin with

(4.0.47) D̂ = CBlT×0(S×A1)(BlT̃ ×0(S̃ × A1)) ×
BlT×0(S×A1)

BlT ×0(E0 × A1)

We begin with the composite map D̂ → CS×A1(S̃ × A1) ×
S×A1

E0 × A1 ∼= (CS(S̃) × A1) ×
S×A1

E0 × A1 → E1 × A1

where the last map is defined by the given obstruction theory on S. The composition of this map with the obvious
projection to S ×A1 factors also as the projection of D̂ to the factor CBlT×0(S×A1)(BlT̃ ×0(S̃×A1)) followed by the
projection to the vertex of the cone given by BlT ×0(S × A1) and the projection of the latter to S × A1. We will
denote the composite map D̂ → CBlT×0(S×A1)(BlT̃ ×0(S̃ × A1)) → BlT ×0(S × A1) by π̂f̂ : observe that this map
is a map between schemes flat over A1. π̂f̂t=1 identifies with the map π ◦ f : CS(S̃)×

S
E0 → E1 → S as in ( 4.0.22)

and π̂f̂t=0 identifies with the map φ1 ◦ π1 as in ( 4.0.30).

Let p̂ : BlT ×0(E1 × A1) → BlT ×0(S × A1) denote the obvious projection. Observe that the obvious maps
BlT ×0(S × A1) and BlT ×0(S × A1) to A1 are flat. Therefore, to show p̂ is smooth, it suffices to show that for
each fiber of p̂ over each point t of A1 : see [AK] Chapter VII, Corollary (1.9). This assertion is clear. Let
0Bl : BlT ×0(S × A1) → BlT ×0(E1 × A1) denote the map induced by the obvious zero-section S × A1 → E1 × A1.
Since this is a section to π̂, it follows readily that 0Bl is a regular immersion locally. (See, for example, [F],
(B.7.3).) Let Ê1 denote the conormal sheaf associated to the regular immersion 0Bl. Let Ŝ = BlT ×0(S ×A1) and
ˆ̃S = BlT̃×0(S̃ × A1). Observe that the obvious map ˆ̃S → A1 is flat.
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We let

(4.0.48) Ovirt
Ŝ = (π̂f̂)∗(λ−1(Ω ˆ̃S/A1|S̃

⊗ λ−1(Ê−1))

This is a complex of coherent sheaves on D̂, and for each tεA1, is a perfect complex on D̂t. (Observe that when t = 1,
the corresponding complex is just the virtual structure sheaf Ovirt

S as in ( 4.0.24). When t = 0, the corresponding
complex is the deformed virtual structure sheaf as in Definition 4.3.) We let Ōvirt

Ŝ denote the corresponding complex
of coherent sheaves on Ŝ defined as in ( 4.0.25).

Recall that one has the isomorphisms KT (T̃ ) ' G(T ) and KS(S̃) ' G(S). Therefore, one has a restriction map
G(S)→ G(T ). Next we will also need to consider the equivariant case where a torus acts on the algebraic stacks
S and S̃. In this case we will assume the following :

• the base scheme is an algebraically closed field so that the results on the fixed point stacks as in [J-4] section
6 apply,

• T = ST ′
and T̃ = S̃T ′

for a fixed sub-torus T ′ of T and

• p ⊆ R(T ) is the prime ideal corresponding to T ′.

4.0.49. Basic pushforward hypothesis:II. We will assume henceforth that the vector bundle K0 satisfies one of the
following hypotheses:

• there exists a class (which we denote) λ−1(K̂0) in π0(GT ×A1(Ŝ)) so that for each tεA1, i∗t (λ−1(K̂0))επ0(GT×t((Ŝ)t))
identifies with the class of λ−1(K0) in π0(G(T )) or

• we are in the equivariant case.

Observe that in the latter case, one has the isomorphism

(4.0.49) (Ŝ)T ′
= T × A1

To see this it suffices to observe that there are no fixed vectors in the normal cone CT (S) ⊆ CT̃ (S̃). Since the fixed
point stack T = ST ′

(T̃ = (S̃)T ′
) is defined as a closed sub-stack of S (S̃, respectively ) (see [J-4] section 6), one

may reduce this assertion to the case of schemes where it is well-known. (See, for example, the proof of Proposition
6.8 in [J-4].) Therefore: π0(G(T × A1), T )(p) = π0(GT ×A1(Ŝ);T )(p)

∼= π0G(Ŝ;T )(p) and hence the class λ−1(K0)
in the first group lifts to a class in π0G(Ŝ;T )(p). Observe also that in either case one may identify λ−1(K̂0) with

a class in π0(KŜ( ˆ̃S;T )) (or a localization of the latter in the equivariant case) so that tensor product with this
class is well-defined. A similar argument applies to show that the tensor product with the class λ−1(K−1) is well
defined.

Definition 4.6. Observe that the class i∗1(λ−1(K̂0))επ0(GT ×1((Ŝ)1)) (επ0(GT ×1((Ŝ)1), T ) in the equivariant case)
maps to a class in π0(G(S)) ∼= π0(KS(S̃)) (in π0(G(S, T )) ∼= π0(KS(S̃, T )), respectively ). (Recall (Ŝ)t=1 = S.)
We will denote this class by λ−1(K0

S).

Examples 4.7. There are various situations where the hypothesis (4.0.49) is satisfied. The simplest is where
the stacks T and S are smooth so that the above K-groups identify with the corresponding homotopy groups of
G-theory. In this case the required hypothesis is satisfied, by taking the obstruction theories to be ΩS [0] and ΩT [0].
Observe that now K0 identifies with the conormal sheaf. Using deformation to the normal cone, one may define a
class as required.

An alternate situation is the following. Assume that there exists a vector bundle K0
S on S and a section s of

K0
S so that T is defined as the sub-stack where s vanishes. Let K0

S = Γ(K0
S) = the sheaf of sections of K0

S . Then
λ−1(K0

S) is a perfect complex of OS -modules which is a resolution of u∗(OT ). Let K̂0
S = BlT ×0(K0

S ×A1): this is a
vector bundle on Ŝ. Observe that (K̂0

S)t=t0|T
∼= K0 where t0εA1 is any closed point and K0 is defined as in 4.0.27.

Therefore, the class of λ−1(K̂0
S)επ0(GT ×A1(Ŝ)) satisfies the hypotheses in ( 4.0.49).

Henceforth we will denote CT (T̃ )×
T
F0 by DT and the corresponding closed immersion DT → D = CS(S̃)×

S
E0

by w.

Proposition 4.8. (Preliminary pushforward formula) Assume the above hypotheses. Now one obtains the formulae
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i) w∗(Ovirt
T ⊗g∗π∗Fλ−1(K−1)) = Ovirt

S ⊗f∗π∗E(λ−1(K0
S)) in π0(GT (D)) ∼= π0(G(T ,OT )) and hence in π0(GS(D) ∼=

π0(G(S)). In the equivariant case, the corresponding formula holds in the above Grothendieck groups localized at
the prime ideal p.

ii) w∗(τ(Ovirt
T )⊗ ch(g∗π∗Fλ−1(K−1))) = τ(Ovirt

S )⊗ ch(f∗π∗E(λ−1(K0
S)) in HBr

∗ (S,Γ(∗)).

(Here πE : E1 → S is the obvious projection and f : D → E1 is the map considered in Definition 4.0.22.) τ is
the Riemann-Roch transformation defined with values in Bredon-style homology and ch is the Chern-character with
values in Bredon-style cohomology: these were defined in [J-5].

Proof. One begins with the (homotopy) commutative diagram:

GT (DT )
w∗ //

GT (D)
//
GS(D)

GT ×A1(DT × A1)
w∗ //

i∗1'

OO

i∗0 '
��

GT ×A1(D̂)

i∗1'

OO

i∗0 '
��

GT (DT )
0∗ //

GT (CT (E0))

Recall D = CE0 = CS(S̃)×
S
E0 and DT = CF0 = CT (T̃ )×

T
F0. The vertical maps in the first column are weak-

equivalences provided by the homotopy property of G-theory and the maps in the rightmost column are the
weak-equivalences provided by the usual devissage and the homotopy property in G-theory. By devissage, the
G-theory with supports in T (T × A1) identifies with the G-theory of T (the G-theory of T × A1, respectively
). Therefore the horizontal maps in the diagram may be identified with the identity showing that the squares
commute.

The image of Ovirt
T ⊗π∗0f∗0π∗(K−1) by the map 0∗ in the bottom row is described by the last theorem. We next

show that the class Ovirt
C lifts to the class Ovirt

S under the isomorphisms forming the right vertical maps, i.e. the
class of Ovirt

Ŝ in π0(GT ×A1(D̂) maps under the map i∗1 (i∗0) to the class of Ovirt
S in π0(GT (D)) (the class of Ovirt

CT (S)

in π0(GT (CT (E0))), respectively ).

For this recall first that

Ovirt
Ŝ

= (π̂f̂)∗(λ−1(Ω ˆ̃S|S̃/A1)⊗ λ−1(Ê−1)).

Therefore,

i∗0(Ovirt
Ŝ

) = (π̂f̂)∗t=0(π
∗(λ−1(ΩCT̃ (S̃)|T )⊗ π∗(λ−1(E−1

|T )))) = π∗1φ
∗
1(π

∗(λ−1(ΩCT̃ (S̃)|T ))⊗ π∗(λ−1(E−1
|T )))

= π∗0f
∗
0 (λ−1(ΩCT̃ (S̃)|T ⊗ λ−1(E−1

|T )) = Ovirt
C

since f0 ◦ π0 = π ◦ φ1 ◦ π1. Clearly,

i∗1(Ovirt
Ŝ

) = f∗π∗(λ−1(ΩS̃|S)⊗ λ−1(E−1)) = Ovirt
S

Observe that Ovirt
Ŝ

has supports in Ŝ while Ovirt
C has supports in T and Ovirt

S has supports in S. Recall the
class λ−1(K̂0) has supports in T × A1 and λ−1(K0) has supports in T . Therefore, Ovirt

Ŝ ⊗ (π̂f̂)∗λ−1(K̂0) has
supports in T × A1 ⊆ Ŝ; similarly Ovirt

S ⊗ (π̂f̂)∗t=1i
∗
t=1(λ−1(K̂0)) has supports in T × 1 ⊆ S × 1 while Ovirt

C has
supports contained in T ×0 ⊆ CT (E0|T ). (Since λ−1(K0

S) lifts to a class in π0(KT (S)) it follows that one may take
the product of the lifts of the classes λ−1(K0) and Ovirt

C . A corresponding reasoning shows that the remaining
tensor products above are also defined at the level of G-theory.) This completes the proof of the proposition in the
non-equivariant case.

In the equivariant case the proof is exactly the same after localization; the key point is that after tensoring
the above candidates for the virtual structure sheaves with the classes (π̂f̂)∗t (λ−1(K̂0)), the resulting complexes
all live in the appropriate Grothendieck groups localized at the prime ideal p, and hence in the above localized
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Grothendieck groups with supports in T × A1; therefore they identify under the isomorphisms defined by i∗0 and
i∗1.

The formula ii) in the proposition follows from the first by applying the Riemann-Roch theorem and making
use of the property (vii) in Theorem 1.1 of [J-5] (which relates the Todd homomorphism and the Chern character
with values in Bredon-style homology and cohomology, respectively ). �

Theorem 4.9. (Pushforward formula) Assume the above hypotheses. Now one obtains the formulae

i) u∗(Ōvirt
T ⊗ λ−1(K−1)) = Ōvirt

S ⊗ λ−1(K0
S) in π0(GT (S)) and hence in π0(G(S)) in the non-equivariant case

and in the above groups localized at the prime ideal p in the equivariant case.

ii) u∗(τ(Ōvirt
T )⊗ ch(λ−1(K−1))) = τ(Ōvirt

S )⊗ ch(λ−1(K0
S)) in HBr

∗ (S,Γ(∗)).

The last formula also holds in equivariant forms of homology (and cohomology) (as in [J-5] Definition 5.12) in the
equivariant case .

Proof. It suffices to interpret the formula of the last theorem in the form stated. For that, we recall the cartesian
squares:

(4.0.50) T S̃|S
//

p

��

CS(S̃)×
S
E0

f

��
S

0E1 //
E1

and

(4.0.51) T T̃|T
//

p0

��

DT

g

��
T

0F1 //
F1

Let πE be the projection E1 → S, z : S → T S̃|S be the zero section and i : T S̃|S → CS(S̃)×
S
E0 the map

in top row of the first square. (Let πF is the projection F1 → T , zT : T → T T̃|T be the zero section and
iT : T T̃|T → DT the map in the top row of the second square, respectively ). Then one observes that the
composition i ◦ z (iT ◦ zT ) is a section to the composite map πE ◦ f : CS(S̃)×

S
E0 → E1 → S (to the composite

map πF ◦ g : DT → F1 → T , respectively ). Recall Ōvirt
T επ0G(T ) ∼= π0GT (DT ) and in fact iT ∗(zT ∗(Ōvirt

T ))
identifies with Ovirt

T under the above isomorphism. Similarly i∗z∗(Ōvirt
S )επ0G(S) identifies with Ovirt

S under the
isomorphism π0G(S) ∼= π0GS(CS(S̃)×

S
E0). Therefore we obtain:

Ovirt
S ⊗ f∗π∗E(λ−1(K0

S)) = i∗z∗(Ōvirt
S )⊗ f∗π∗E(K0

S)

= i∗z∗(Ōvirt
S ⊗ z∗i∗f∗π∗E(K0

S)) = i∗z∗(Ōvirt
S ⊗K0

S).

Recall the isomorphism π0(KS(S̃)) ∼= π0(G(S)) and π0(KT (T̃ )) ∼= π0(G(T )). Therefore, the above tensor products
define well-defined classes in G-theory. This provides the required identification of the right-hand-side of the
formula in Theorem 4.9 i) with the right-hand-side of the formula in Proposition 4.8 i).

We may identify the left-hand-side of the formula in i) using similar arguments applied to the second square
above:

w∗(Ovirt
T ⊗ g∗π∗F (λ−1(K−1))) = w∗(iT ∗zT ∗(Ōvirt

T )⊗ g∗π∗Fλ−1(K−1)) = w∗(iT ∗zT ∗(Ōvirt
T ⊗ λ−1(K−1))

= i∗z∗u∗(Ōvirt
T ⊗ λ−1(K−1))

The last identification uses w ◦ iT ◦ zT = i ◦ z ◦ u.

The second formula in the theorem follows from the first by applying Riemann-Roch. �
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Remark 4.10. One would have liked to prove the equality in the first formula of the last theorem in π0GT (S,Ovirt
S );

however, this does not seem to hold because the class of the virtual structure sheaf Ovirt
Ŝ

does not seem to specialize
to the classes of the other virtual structure sheaves unless one uses G-theory in the usual sense.

4.0.52. Proofs of Theorems 1.4 and 1.7. The last theorem readily proves the first two formulae in Theorem 1.4
and the first formula in Theorem 1.7. Observe the maps from Bredon homology and cohomology to smooth
homology and cohomology are compatible with the pairings between cohomology and homology: this is proved
in Theorem 1.2 of [J-5]. Moreover, it is observed in the same theorem that the Chern character maps into
Bredon cohomology and smooth cohomology are related by the above map from Bredon cohomology to smooth
cohomology. Therefore, denoting the map from Bredon homology to smooth homology (Bredon cohomology to
smooth cohomology) by φ∗ (ψ∗, respectively ) one obtains the following formula by applying φ∗ to the formula 1.1.2:

(4.0.53) u∗(φ∗(τ(Ovirt
T ).ψ∗(ch(λ−1(K−1)))) = φ∗(τ(Ovirt

S )).ψ∗(ch(λ−1(K0
S)))

(Recall from Theorem 1.2 of [J-5] that φ∗ is compatible with push-forwards by representable proper maps.) Now
we multiply both sides of the above equation by (Td(TS)virt)−1 = Td(E0)−1.Td(E1) where Ei = E∨−i. Making
use of the projection formula, the left-hand-side of ( 4.0.53) multiplied by (Td(TS)virt)−1 becomes:

u∗(φ∗(τ(Ovirt
T )).Td(E0|T )−1.Td(E1|T ).ψ∗(ch(λ−1(K−1)))).

At this point the short exact sequences 0 → Fi → Ei|T → Ki → 0 with Ki = (K−i)∨ provides the relations
Td(Ei|T ) = Td(Fi).Td(Ki). Substituting these in the last formula and observing that K0

S restricts to K0, we
obtain the formula

u∗(φ∗(τ(Ovirt
T )).(Td(TT )virt)−1.Ch(λ−1(K−1)).Td(K1)) = φ∗(τ(Ovirt

S )).(Td(TS)virt)−1.Ch(λ−1(K0
S)).Td((K0

S)∨).

Now the definition of the virtual fundamental classes in smooth homology as in Definition 2.3 and the observation
that for a vector bundle V , the Euler class of V ∨ in smooth homology, e(V ∨) = Td(V ∨).Ch(λ−1(V )) (see [FL]
p.22) completes the proof of the formula 1.1.3 in Theorem 1.4. The second formula in Theorem 1.7 follows by
similar reasoning.

Examples 4.11. a) Observe that the when the stacks S and T are smooth we recover the usual pushforward
formula for the structure sheaves. i.e. We may let the obstruction theories for S and T to be given by ΩS [0]
and ΩT [0]. Then we recover the familiar formulae: u∗(OT ) = OS .λ−1(N∨) where N∨ denotes the conormal sheaf
associated to the closed immersion u : T → S. Applying the usual Riemann-Roch to this formula, then provides
u∗([T ]) = [S].e(N) where e(N) denotes the Euler class of N , [T ] ([S] denotes the fundamental class of T (S,
respectively ). All the remaining examples will fit into the second class of examples considered in 4.7.

b) Next we consider the following situation, in preparation for the general case of the setting of the conjecture
of Cox, Katz and Lee as in Theorem 1.6. Accordingly X is a smooth projective variety and Y is a closed sub-
variety. We will further assume that X is convex, for example, X is a flag variety. Let V be a convex vector
bundle on X, so that H1(C, f∗(V )) = 0 for all genus 0 stable maps f : C → X and let s be a section of V so
that Y identifies with the zeros of s. βεCH1(X,Z), γεCH1(Y,Z) are cycle classes so that γ maps to β under
the map Y → X. We consider the moduli stacks M0,n(X,β) and M0,n(Y, γ). Let ek : M0,n(X,β) → X be the
obvious map sending the stable map f : (C, p1, ..., pn) → X to f(pk). The universal stable curve over M0,n(X,β)
is πn+1 : M0,n+1(X,β) which ignores the last marked point and contracts any components which have become
unstable. Let Vβ,n = πn+1∗e

∗
n+1(V ) which is a vector bundle on M0,n(X,β) by the convexity of V . Observe that

the section s defines a section σ of the bundle Vβ,n such that ti∗(γ)=βM0,n(Y, γ) identifies with the zeros of the
section σ.

Now we obtain the cartesian square:

(4.0.54) ti∗(γ)=βM0,n(Y, γ)
s′ //

��

M0,n(X,β)

0

��
M0,n(X,β)

σ // Vβ,n

Observe that this is a diagram as in 4.0.26, with S̃ = Vβ,n, T̃ = S = M0,n(X,β) and S0 = ti∗(γ)=βM0,n(Y, γ). Now
we let E−1 = Γ(Vβ,n) = the sheaf of sections of Vβ,n, E0 = 0∗(ΩVβ,n

) with the obvious map E−1 → E0. We also let
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F−1 = s′
∗(E−1) and F 0 = s′

∗ΩS with the map F−1 → F 0 defined as dual to the following map. The differential
of the section σ defines a map T T̃ → TVβ,n: we compose this with the projection TVβ,n → Vβ,n to obtain a map
T T̃ → Vβ,n. Now observe that the F−1 = s′

∗(E−1) so that K−1 = 0 and K0 = kernel(s′∗0∗(ΩVβ,n
) → s′

∗(ΩS)
which identifies with s′∗(E−1) again.

Theorem 4.9 shows that with the above obstruction theories, one obtains the formula:

⊕i∗(γ)=βiγ∗(OM0,n(Y,γ)) = λ−1(Γ(Vβ,n)).OM0,n(X,β)

c). Next we consider a generalization of the case in the previous example, where X is no longer required to be
convex, but only smooth. We will also require that V satisfy the following hypotheses:

i) V is generated by global sections and ii) the exact sequence Γ(X,V )⊗OX → V → 0 defines a closed immersion
of X in the Grassmanian of r-planes in An, where n = dim(Γ(X,V )).

In this situation we may first assume that X is imbedded in the Grassmanian, G(r, k). Moreover, the section σ
induces a section σQ of the universal quotient bundle Q on G(r, k) via the tautological quotient mappingH0(X,V )⊗
OG(r,k) → Q. Let G ⊆ G(r, k) be the zero locus of σQ. It follows that σQ is a regular section of Q, that
G ∼= G(r, k− 1) and that Y = X ∩G. Let βεH2(X) be fixed and let β map to dεH2(G(r, k)) ∼= H2(G) ∼= Z. We let
the vector bundle on M0,n(G(r, k), d) defined by Q be denoted Vd,n. Therefore, we obtain the cartesian diagram
as in 4.0.26 with T = t

i∗(γ)=β
M0,n(Y, γ), S = M0,n(X,β), T̃ = M0,n(G, d) and S̃ = M0,n(G(r, k), d). Moreover T̃

is defined by the vanishing of a section of Vd,n.

In this case there is a proof of the required formula in [CKL] using prior work of [Gat]. However, we will show
that Theorem 4.9 provides a quick independent proof. Let I define the sheaf of ideals defining S in S̃. Since S̃ is
smooth, the complex I/I2 → Ω1

S̃|S is an obstruction theory for S. Now we claim, F−1 = Γ(Vd,n|T )⊕ u∗(I/I2) →
Ω1
S̃|T = u∗(Ω1

S̃|S) = F 0 defines an obstruction theory for T . First observe the short exact sequence:

Γ(CT̃ (S̃))⊗
OT̃

OT → Γ(CT (S̃))→ Γ(CT (T̃ )→ 0

where we have used CX(Y ) = the normal cone of a closed substack X in Y and Γ(CX(Y )) denotes its sheaf of
sections, which is the conormal sheaf. Next observe that u∗(I/I2)(= u∗Γ(CS(S̃))) maps to Γ(CT (S̃)) so that
the composition into Γ(CT (T̃ )) is a surjection. Moreover there is a natural surjection Γ(Vd,n|T ) = u∗(Γ(Vd,n) →
u∗Γ(CT̃ (S̃)). It follows that one has an induced surjection F−1 → Γ(CT (S̃)).

The differential F−1 → F 0 is defined by the surjection F−1 → Γ(CT (S̃)) followed by the obvious map of
the latter to Ω1

S̃|T . The fact that the map F−1 → Γ(CT (S̃)) is a surjection also shows that the sequence F−1 →
Ω1
S̃|T ⊕Γ(CT S̃)→ Ω1

S̃|T → 0 is exact. Therefore F−1 → F 0 defines a perfect obstruction theory for T . (See 4.0.19.)

Next one observes that there is a distinguished triangle u∗(E−1) → F−1 → Γ(Vd,n|T ) and that the map
u∗(E0)→ F 0 is an isomorphism. One views the map u∗(E)→ F as double complex of sheaves and takes the total
complex to obtain the mapping cone; one follows this by the shift [−1] to obtain the homotopy fiber which is the
complex K. These observations readily show that K−1 = 0 and that K0 = Γ(Vd,n|T ). Therefore, Theorem 4.9
provides the required formula directly.

4.1. Proof of the conjecture of Cox, Katz and Lee. ( See Theorem 1.6.)

Finally we consider the most general case of the above examples, where X is still required to be smooth, but there
are no other hypotheses on V except that it is convex. The required result will follow from the general pushforward
formula and the examples 4.7 once we show that it is possible to choose weakly-compatible obstruction theories
with K−1 = 0 and K0

S = Vβ,0 = πn+1∗e
∗
n+1(V ) the vector bundle induced by V onM(X,β)0,n.

In this case let the base stack B =M0,n = the stack of pre-stable curves with n-marked points. Clearly there is a
forgetful map F :M0,n(X,β)→ B which forgets the map but does not stabilize. Now one may make the following
choice for a perfect relative obstruction theory for the stack S =M0,n(X,β): E• = Rπn+1∗e

∗
n+1(σ≥−1LX)[1] where

LX is the cotangent complex of X and σ≥−1LX its naive truncation to degrees ≥ −1. (Observe that the fibers
of the map πn+1 are curves so that Rπn+1 has cohomological dimension at most 1.) In fact one has the following
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more explicit description of σ≥−1LX : choose a closed immersion i of X into a smooth convex variety, P, and let
Γ(CX(P)) denote the corresponding co-normal sheaf. Then σ≥−1LX = Γ(CX(P))→ i∗(ΩP) as in ( 4.0.18).

This choice works even when X is not smooth, so that the same choice would be give us a relative obstruction
theory for T =M0,n(Y, γ). However, to obtain a relative obstruction theory F • weakly compatible with E•, one
may make the following alternate choice: let Ob•Y be the two-term complex V ⊕Γ(CX(P))|Y → ΩP|Y in degrees −1
and 0 where the differential is defined as in the last example above. (As shown in the last example above, this in
fact defines a perfect obstruction theory for Y .) Now a straight-forward spectral sequence computation will show
that F • = Rπn+1∗ev

∗
n+1(Ob

•
Y )[1] is also a perfect obstruction theory forM0,n(Y, γ).

To verify that these are weakly-compatible, one first needs to observe that the square

M0,n+1(Y, γ)
v //

πY
n+1

��

M0,n+1(X,β)

πX
n+1

��
M0,n(Y, γ)

u //
M0,n(X,β)

is cartesian. Moreover using the observation that πn+1 is flat of relative dimension 1, one may make use of
Grothendieck duality and flat-base-change to conclude that the base-change map u∗(RπY

n+1∗) → RπX
n+1∗v

∗ is an
isomorphism of derived functors. Therefore, one observes that for the two obstruction theories, E• and F • defined
above, u∗(E0) ' F 0 and F−1 = Rπn+1∗ev

∗
n+1(V ) ⊕ u∗(E−1). One may also observe using the convexity of the

bundle V that R1πn+1∗ev
∗
n+1(V ) = 0 so that F−1 = πn+1∗ev

∗
n+1(V ) ⊕ u∗(E−1). Now an argument as in the last

two examples shows K−1 = 0 and K0
S = πn+1∗ev

∗
n+1(V ). Therefore, Theorem 4.9 provides the required formula in

Bredon homology.

Recall the definition of the virtual fundamental class as a term of weight = d= the virtual dimension and degree
= twice the weight in τ(Ovirt

S ): see 2.3. If c is the virtual codimension of the stacks, i.e. the difference between
the virtual dimensions of the ambient stack S and the sub-stack T , one defines the Euler class e(Γ(E)∨) to be the
term of weight c and degree 2c in ch(λ−1(Γ(E))). Observe that since the vector bundle E is obtained by pull-back
from X, it descends to a vector bundle Ē on the coarse moduli space of M0,n(X,β). Therefore, one can see from
the definition of our Riemann-Roch transformation in [J-5] that the Chern-character is essentially the usual Chern-
character of the corresponding complex λ−1(Γ(Ē)) on the moduli space, so that it makes sense to take terms of a
certain degree. Then one obtains the corresponding formula involving the virtual fundamental classes by taking
the terms of appropriate degree. The last formula in smooth homology is obtained as in the proof of Theorem 1.4.
This completes the proof of Theorem 1.6.

4.2. Proof of Theorem 1.8. Next assume the situation of Theorem 1.8. We first let Ovirt
S̃

be the complex of
sheaves of OS̃ modules obtained as extension by zero of Ovirt

S ; similarly Ovirt
T̃

will be the extension by zero of
Ovirt
T to T̃ . We proceed to define a Gysin map u∗ : π0(KT (T̃ ,Ovirt

T̃
, T ))(p) → π0(KS(S̃,Ovirt

S̃
, T ))p where the

Grothendieck groups are the Grothendieck groups of PerfS(S̃,Ovirt
S̃ , T ) and of PerfT (T̃ ,Ovirt

T̃
, T ).

Recall from ( 5.0.4) that an object PεPerfT (T̃ ,Ovirt
T̃

, T ) has a finite increasing filtration F0 ⊆ F1 ⊆ · · · ⊆ Fn

so that for each 0 ≤ i ≤ n, Fi(P )/Fi−1(P ) ' Ovirt
T̃
⊗
OT̃

Qi, where QiεPerfT (T̃ ,OT̃ , T ) and is a complex of flat

OT̃ -modules. Therefore, it suffices to define u∗ on a class of the form Ovirt
T̃
⊗
OT̃

Q, where Q is a complex as one of

the Qis above.

Next observe the isomorphism u∗ : π0(KT (T̃ , T ))(p) → π0(KS(S̃, T ))(p). Moreover u∗ is also an isomor-
phism, though not the inverse of u∗. Therefore, for each class QT επ0(KT (T̃ , T ))(p), there exists a unique class
QSεπ0(KS(S̃, T ))(p) such that u∗(QS) = QT . Observe that there is a natural pairing π0(KS(S̃, T ))⊗π0(KS(S̃,Ovirt

S̃
, T ))

induced by the tensor product. We define

(4.2.1) u∗(Ovirt
T̃
⊗
OT̃

QT ⊗
OT̃

λ−1(K−1)) = Ovirt
S̃
⊗
OS
λ−1(K0

S)⊗QS
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Observe also that the classes λ−1(K0
S)επ0(KS(S̃, T ))(p) and λ−1(K−1)επ0(KT (T̃ , T ))(p) are invertible. Therefore,

the above formula defines u∗ on π0(KT (T̃ ,Ovirt
T̃

, T ))(p).

Observe that a pull-back u∗ : π0(KS(S̃,Ovirt
S̃

, T )) → π0(KT (T̃ ,Ovirt
T̃

, T )) is always defined. In view of the
formula for u∗ above, we see that the composition u∗ ◦ u∗ is given by:

(4.2.2) u∗u∗(F ) = F ⊗
OT̃

λ−1(K0)⊗
OT̃

λ−1(K−1)−1, Fεπ0((KT (T̃ ,Ovirt
T̃

, T )))(p)

(To obtain this first apply u∗ to both sides of ( 4.2.1). This provides the formula: u∗u∗(F ⊗ λ−1(K−1)) =
F ⊗ λ−1(K0). Now replace F by F ⊗ (λ−1(K−1))−1 in this formula. This is possible since the class λ−1(K−1) is
invertible in the above localized K-groups.) We have thereby proven all but the last formula in Theorem 1.8.

We proceed to consider this next. By the hypotheses on the complexes Γh(∗) restricted to the smooth sites
of schemes, we may identify the latter with H∗

smt,ET×
T
S(ET×

T
S̃,Γ(∗)). We will denote this by H∗

T (S,Γ(∗)). In

view of this we obtain a restriction map u∗ : HT
∗ (S,Γ(∗)) → HT

∗ (T ,Γ(∗)). Moreover one has a localization
isomorphism HT

∗ (S,Γ(∗))(p)
∼= HT

∗ (T ,Γ(∗))(p) induced by both u∗ and hence u∗. Therefore the Euler-class e(K0)
is the restriction of the class e(KS

0 )εHT
∗ (S,Γ(∗))(p) where KS

0 = (K0
S)∨. Therefore, the projection formula applied

to the formula ( 1.1.6) in Theorem 1.7 provides the formula:

u∗([T ]virt.e(K1).e(K0)−1) = u∗([T ]virt.e(K1).u∗(e(KS
0 )−1)) = u∗([T ]virt.e(K1)).e(KS

0 )−1 = [S]virt

Observe that our hypotheses imply that the the class e(K0) is invertible in the localized equivariant homology:
HT
∗ (T ,Γ(∗))(p)

∼= HT
∗ (S,Γ(∗))(p). Hence so is the class e(KS

0 ). This proves the last formula in Theorem 1.8 and
completes the proof of Theorem 1.8.

5. Appendix: G-theory and K-theory of DG-stacks, Equivariant homology for algebraic stacks

For the convenience of the reader, we summarize some of the key definitions and properties of dg-stacks and
their G-theory and K-theory. Further details may be found in [J-5], [J-6] and [J-7].

Definition 5.1. A DG-stack is an algebraic stack S of Artin type which is also Noetherian provided with a sheaf of
commutative dgas, A, on Ssmt, so that Ai = 0 for i > 0 Hi(A) = 0 for i << 0, A0 = OS and each Ai is a coherent
OS -module. We will further assume that each H∗(A) is a sheaf of graded Noetherian rings. (The need to consider
such stacks should be clear from from the applications to virtual structure sheaves and virtual fundamental classes
considered in this paper. See [J-7] for a comprehensive study of such stacks from a K-theory point of view.) For
the purposes of this paper, we will define a DG-stack (S,A) to have property P if the associated underlying stack
S has property P : for example, (S,A) is smooth if S is smooth.Often it is convenient to also include disjoint unions
of such algebraic stacks into consideration.

5.0.3. Morphisms of dg stacks. A 1-morphism f : (S ′,A′)→ (S,A) of DG-stacks is a morphism of the underlying
stacks S ′ → S together with a map A → f∗(A′) compatible with the map OS → f∗(OS′). Such a morphism will
have property P if the associated underlying 1-morphism of algebraic stacks has property P . Clearly DG-stacks
form a 2-category. If (S,A) and (S ′,A′) are two DG-stacks, one defines their product to be the product stack
S × S ′ endowed with the sheaf of DGAs A�A′. An action of a group scheme G on a DG-stack (S,A) will mean
morphisms µ, pr2 : (G× S,OG �A)→ (S,A) and e : (S,A)→ (G× S,OG �A) satisfying the usual relations.

Let i : S → S̃ denote a closed immersion of algebraic stacks. Assume S is provided with a sheaf of dgas A making
(S,A) a dg-stack. One may now define a dg-structure sheaf Ã = i∗(A). For the following discussion we consider
the category of modules over Ã: clearly this discussion reduces to the case of modules over A by considering the
case i = the identity.

5.0.4. A left Ã-module is a complex of sheaves M of OS̃ -modules, bounded above and so that M is a sheaf
of left-modules over the sheaf of dgas Ã. The category of all left Ã-modules and morphisms will be denoted
Modl(S, Ã). A diagram M ′ → M → M ′′ → M [1] in Modl(S, Ã) is a distinguished triangle if it is one in
Modl(S,OS̃). We define a map M ′ →M in Modl(S, Ã) to be a quasi-isomorphism if it is a quasi-isomorphism in
Mod(S,OS̃). Since we assume A is a sheaf of commutative dgas, there is an equivalence of categories between left
and right modules; therefore, henceforth we will simply refer to Ã-modules rather than left or right Ã-modules.
The derived category D(S̃, Ã) is the localization of Modl(S, Ã) by inverting maps that are quasi-isomorphisms.
An Ã-module M is perfect if the following holds: there exists a non-negative integer n and distinguished triangles

FiM → Fi+1M → A
L
⊗
OS

Pi → FiM [1] in Mod(S, Ã), for all 0 ≤ i ≤ n − 1 so that F0M ' Ã
L
⊗
OS̃

P0 with each



RIEMANN-ROCH FOR ALGEBRAIC STACKS:III VIRTUAL STRUCTURE SHEAVES AND VIRTUAL FUNDAMENTAL CLASSES25

Pi a perfect complex of OS̃ -modules. (In the presence of a group-scheme action G on the stack, we define a
Ã-module M to be perfect if it has a similar filtration with each Pi a perfect complex of G-equivariant OS̃ -
modules.) The morphisms between two such objects will be just morphisms of Ã-modules. This category will be
denoted Perf(S̃, Ã). One may similarly define the category PerfS(S̃, Ã) where the complexes Pi are required to
be perfect complexes of OS̃ -modules with supports contained in S. Let Perffl,S(S̃, Ã) denote the full sub-category
of PerfS(S̃, Ã) consisting of flat Ã-modules. We will let Coh(S,A) (Per(S,A)) denote the above category with
this Waldhausen structure.

An Ã-module M is coherent if H∗(M) is bounded and finitely generated as a sheaf of H∗(Ã)-modules. Again
morphisms between two such objects will be morphisms of Ã-modules. This category will be denoted Coh(S, Ã).

Definition 5.2. The categories Coh(S, Ã), Perf(S̃, Ã) and PerfS(S̃, Ã) along with quasi-isomorphisms as Ã-
modules form Waldhausen categories with fibrations and weak-equivalences. The fibrations are maps of Ã-modules
that are degree’s surjections (i.e. surjections of OS -modules) and the weak-equivalences are maps of Ã-modules
that are quasi-isomorphisms. The K-theory (G-theory) spectra of (S̃, Ã) will be defined to be the K-theory
of the Waldhausen category Perf(S, Ã) (Coh(S, Ã), respectively ) and denoted K(S, Ã) (G(S, Ã), respectively
). KS(S̃, Ã) will denote K(PerfS(S̃, Ã)). When A = OS , K(S,A) (G(S,A)) will be denoted K(S) (G(S),
respectively ).

Proposition 5.3. (i) There exists a natural tensor-product pairing PerfS(S̃,OS̃)⊗ PerfS(S̃, Ã)→ PerfS(S̃, Ã)
making K(PerfS(S̃, Ã)) a module-spectrum over K(PerfS(S̃,OS̃)).

(ii) Given a distinguished triangle M ′ → M → M ′′ → M ′[1] of Ã-modules, with two of M ′, M and M ′′ in
PerfS(S̃, Ã), the third also belongs to PerfS(S̃, Ã).

(iii) Let MεPerfS(S̃, Ã). Then there exists a flat Ã-module M̃εPerffl,S(S̃, Ã) together with a quasi-isomorphism
M̃ →M .

Proof. We skip the details here. One may consult [J-6] and [J-7] for details. �



26 ROY JOSHUA

References

[AV1] D. Abramovich and A. Vistoli: Compactifying the space of stable maps, J. Amer. Math. Soc., 15, (2002), no. 1, 27-75

[AV2] D. Abramovich and A. Vistoli: Complete moduli for fibered surfaces, Recent Progress in Intersection Theory (Bologna,

1997), 1-31, Trends Math, Birkhauser Boston, MA, 2000
[Ar] M. Artin:Versal deformations and algebraic stacks, Invent. Math.,27(1974), 165-189

[AB] M. Atiyah, R. Bott: A Lefschetz fixed point theorem for elliptic operators Ann. Math., 86 (1967) 374-407, 87(1968) 451-491
[AS1] M. Atiyah, G. Segal: The index of elliptic operators II: Ann. Math., 87(1968) 531-545.

[AS2] M. Atiyah, G. Segal: Equivariant K-theory and completion, J. Diff. Geom., 3(1969)1-18

[AK] A. Altman, S. Klieman: Introduction to Grothendieck duality theory. Lecture Notes in Mathematics, Vol. 146 Springer-
Verlag, Berlin-New York, 1970

[BF] K. Behrend, B. Fantechi: The intrinsic normal cone, Invent. Math, 128 , 128 (1997), no. 1, 45-88.

[Bl1] S. Bloch: Algebraic cycles and higher K-theory. Adv. Math. 61, 267-304 (1986)
[Bl2] S. Bloch: The moving lemma for higher Chow groups. J. Algebraic Geom. 3, 537-568 (1994)

[Bl-O] S. Bloch and A. Ogus: Gersten’s conjecture and the homology of schemes, Ann. Scient. École Norm.Sup, 7, (1974), 181-201
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