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Abstract. In this paper we apply the Riemann-Roch and Lefschetz-Riemann-Roch theorems proved in our earlier
papers to define virtual fundamental classes for the moduli stacks of stable curves in great generality and establish
various formulae for them.
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1. Introduction

This is the last in a series of papers on the Riemann-Roch problem for algebraic stacks. The first part (see
[J-4]) presented a solution to this problem in general for the natural transformation between the G-theory and
topological G-theory of algebraic stacks. It also introduced a new site associated to algebraic stacks called the
isovariant étale site using which we proved a descent theorem for the topological G-theory of algebraic stacks
extending Thomason’s basic results to algebraic stacks. Continuing along the same direction, we defined and
studied Bredon style homology theories for algebraic stacks in [J-5]. We also established Riemann-Roch theorems
as natural transformations between the G-theory of dg-stacks and these Bredon-style homology theories. These
are only for algebraic stacks that admit coarse-moduli spaces which are quasi-projective schemes over a Noetherian
excellent base scheme (for example, a field k). It is important to observe that these already include Artin stacks.
One may recall that applications to virtual fundamental classes, dictated that we work out all these papers in the
setting of dg-stacks.

In the present paper, we indeed establish various formulae for the virtual structure sheaves on dg-stacks associated
to obstruction theories at the level of the G-theory of dg-stacks. Using Riemann-Roch and Lefschetz-Riemann-Roch
theorems, these provide push-forward and localization formulae for virtual fundamental classes taking values in
Bredon style homology theories. Making use of the relationships between Bredon style homology and homology
computed on the smooth and étale sites, one extends these formulae to more traditional homology theories for
algebraic stacks. In fact we show that it is possible to derive most formulae for virtual fundamental classes (some
not known before) , by first proving an appropriate formula at the level of virtual structure sheaves and then
by applying Riemann-Roch (as in [J-5] section 8) to it. For example, we prove a general push-forward formula
for virtual structure sheaves; then by applying Riemann-Roch to it we show it is possible to derive a general
push-forward formula for virtual fundamental classes, special cases of which provide a proof of the conjecture of
Cox, Katz and Lee as well as a strong form of the localization formula for virtual fundamental classes, both proven
elsewhere by distinct and separate methods at the level of virtual fundamental classes. All of these seem to validate
the idea, we believe due to Yuri Manin (and passed onto me by Bertrand Toen), that Riemann-Roch techniques
could be used to derive most formulae for virtual fundamental classes, once the corresponding formulae for virtual
structure sheaves are obtained. The latter seem more manageable and, as we show here, could be studied by
standard techniques in G-theory, suitably modified to handle virtual objects. The dg-stacks considered in this
paper are all dg-stacks in the sense of [J-5], i.e. they are algebraic stacks provided with a perfect obstruction
theory. The restriction to such dg-stacks (and not the more general derived moduli algebraic stacks) is mainly
because a comprehensive theory of derived moduli stacks is either still under development (or is only emerging) at
present.

Throughout the paper we will assume that for each of the algebraic stacks S considered, a coarse moduli space
M exists which is quasi-projective as a scheme and that the obvious map p : S → M is finite and has finite
cohomological dimension. (The last assumption will be satisfied if the orders of the stabilizer groups are prime to
the characteristics, for example in characteristic 0.) In addition we will freely adopt the terminology from [J-5].
Recall that, there, we start with Bloch-Ogus style homology/cohomology theories defined on algebraic spaces with
respect to complexes of sheaves denoted Γ(•) and Γh(•). An equivariant form of these are discussed briefly in
section 5 and the reader may consult that section to recall this theory. We begin section 2 by defining first virtual
structure sheaves and then virtual fundamental classes in great generality. This makes intrinsic use of the Riemann-
Roch transformation and the Bredon-style homology theories defined in [J-5]. We show that our definition reduces
to the more traditional cycle-theoretic definition (or definition in terms of homology classes) - see Corollary 2.10
and Theorem 1.2. The following is one of the main theorems proved in section 2.

Definition 1.1. (The resolution property) We say that a stack S has the resolution property if every coherent
sheaf on the stack S is the quotient of a vector bundle.

Theorem 1.2. (See Corollary 2.10). Let S denote a Deligne-Mumford stack provided with a perfect obstruction
theory E• in the sense of section 2.

(i) Then the virtual fundamental class of (S, E•) is defined without any further assumptions on S or E• except
those assumed in 1.1.7 taking values both in Bredon-style homology theories as in [J-5] and also in homology theories
defined on the étale site of the stack S.

(ii) Moreover, assume in addition to the above situation that the the resolution property holds. Then the image of
the class [S]virt

Br in the étale homology of the stack with respect to Γ(∗), agrees with the virtual fundamental classes
defined cycle theoretically in the latter.
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We review the definition of the virtual structure sheaves defined with respect to a given obstruction theory and
establish the above theorem in section 2. We also develop techniques for relating formulae in Bredon homology with
formulae in the homology theories of algebraic stacks defined on the smooth (and étale sites of algebraic stacks.
We discuss Gysin maps in the context of G-theory in section 3. This is done so that we obtain more convenient
expressions for the virtual structure sheaves considered in section 2. Section 4 is devoted to a thorough study of
push-forward for virtual structure sheaves and virtual fundamental classes for algebraic stacks. In section 5, we
extend the Bredon homology and cohomology in [J-5] to the equivariant setting and prove a Lefschetz-Riemann-
Roch in this setting: these are used in Theorems 1.8 and 1.9. Sections 6 and 7 summarize some of techniques used
elsewhere: for example the key properties of K-theory and G-theory for algebraic stacks, equivariant cohomology
for algebraic stacks provided with a group action and operational Chern classes form vector bundles on Deligne-
Mumford stacks.

We begin section 4, by obtaining convenient expressions for the virtual structure sheaves: given a Deligne-
Mumford stack S and an obstruction theory E• for it, we obtain several expressions for Ovirt

S as a class in π0(G(S)).
One may assume one of these for the following discussion: the theorems below form some of the remaining main
results of the paper.

1.0.1. We make the standing assumption that for all Deligne-Mumford stacks we consider, the stabilizer groups
have order prime to the residue characteristics: observe this holds automatically in characteristic 0.

1.1. Next we consider push-forward for closed immersions of Deligne-Mumford stacks provided with compatible
obstruction theories. The appropriate context for all of these is the following: assume that u : T → S and v : T̃ → S̃
are closed immersions and that the square

T
u //

iT
��

S

i

��
T̃

v //
S̃

is cartesian, with both S̃ and T̃ smooth Deligne-Mumford stacks and where the the vertical maps are also closed
immersions. To handle the equivariant case, we may assume that all these stacks are provided with the action
of a smooth group scheme G and the morphisms above are all G-equivariant. We will assume that (i) one is
provided with a perfect obstruction theory E• ( F •) for S → S̃ (T → T̃ , respectively ) (ii) that E• (F •) has a
global resolution by a complex of vector bundles and (iii) that these are weakly compatible in the following sense:
there is given a G-equivariant map φ : u∗(E•) → F • of complexes so that there exists a distinguished triangle
K• → u∗(E•)→ F • and K• is of perfect amplitude contained in [−1, 0]. (For example, the two obstruction theories
are weakly compatible if E• and F • may be replaced (upto G-equivariant quasi-isomorphism) by complexes of G-
equivariant vector bundles which will be still denoted E• and F • and the given map φ : u∗(E•) → F • is an
epimorphism in each degree. It follows that, in this case, the kernel, K• = ker(φ) is a complex of vector bundles.)

We will assume henceforth one of the following hypotheses:

• there exists a class (which we denote) λ−1(K̂0) in π0(GT ×A1(Ŝ)) so that for each tεA1, i∗t (λ−1(K̂0)επ0(GT×t((Ŝ)t))
identifies with the class of λ−1(K0) in π0(G(T )) or

• we are in the equivariant case.

Observe that in the latter case, we let T denote a fixed torus acting on a Deligne-Mumford stack X all defined
over an algebraically closed field k. T ′ will denote a sub-torus with associated prime ideal p in R(T ). G(X,T )
denote the T -equivariant G-theory of a stack X provided with the action of the torus T . (K(X,T ) will denote
the corresponding T -equivariant K-theory and if X admits a closed immersion into X̃ onto which the T -action
extends, KX(X̃, T ) will denote the T -equivariant K-theory of X̃ with supports in X.) Now observe that one
has the isomorphism π0(G(T × A1, T ))(p) = π0(GT ×A1(Ŝ, T ))(p)

∼= π0G(Ŝ, T )(p) and hence the class λ−1(K0) in
the first group (i.e. in π0(G(T , T ))(p)) lifts to a class in π0G(Ŝ, T )(p) which we denote by λ−1(K̂0) and a class
λ−1(K0

S)επ0(G(S, T ))(p). Observe also that in either case one may identify λ−1(K0
S) with a class in π0(KS(S̃, T ))

(or a localization of the latter in the equivariant case) so that tensor product with this class is well-defined and one
may take its Chern-character (as a local Chern character). We let Ovirt

S (Ovirt
T ) denote the virtual structure sheaf

associated to S (T , respectively ).



4 ROY JOSHUA

Definition 1.3. We define the virtual Todd class of the obstruction theory E• with values in H∗
smt(S,Γ(∗)) as

Td(E0).Td(E1)−1 where Ei = (Ei)∨. This will be denoted Td(TS)virt. Then we will define the virtual fundamental
class in Hsmt

∗ (S,Γ(∗)), [S]virt, to be σ∗([S]virt
Br ) where [S]virt

Br denotes the virtual fundamental class in Bredon
homology as defined in Definition 2.3 and σ∗ is the map from Bredon homology to étale homology.

Remark 1.4. One may observe readily that since the stacks are all Deligne-Mumford, the Todd-classes considered
above are invertible in the étale l-adic cohomology of the stack.

Theorem 1.5. (Push forward of virtual structure sheaves and virtual fundamental classes) Assume the above
situation. Then λ−1(K̂0) defines a class in π0(GT (S)) and one obtains the formulae:

(1.1.1) u∗(Ovirt
T .λ−1(K−1)) = Ovirt

S .λ−1(K0
S)

in π0(GT (S)) and

(1.1.2) u∗(τ(Ovirt
T ))ch(λ−1(K−1)) = τ(Ovirt

S ).ch(λ−1(K0
S)

in HBr
∗ (S,Γ(∗)) which is the Bredon-style homology defined in [J-5].

Next we obtain the formula

(1.1.3) u∗(([T ]virt).Eu(K1)) = [S]virt.Eu((K0
S)∨)

in Het
∗ (S,Γ(∗)). Here K1 = (K−1)∨ while Eu(V ∨) = Td(V ∨).Ch(λ−1(V )) (= the bottom term of Ch(λ−1(V ))

in the sense of Definition 2.3) for a vector bundle V where Ch denotes the Chern character with values in étale
cohomology and Eu denotes the Euler class.

Remarks 1.6. 1. Observe that the notion of compatibility of obstruction theories adopted above is indeed weaker
than the usual notion of compatibility as in [B-F] or [KKP]. Hence the adjective weak-compatibility is used in our
situation. There seem to be obstruction theories that are weakly compatible and not compatible: for example, the
obstruction theories as in the theorems below associated to the closed immersion of the fixed point stack for the
action of a given torus on an algebraic stack.

2. The above theorem provides many useful formulae for virtual fundamental classes and virtual structure
sheaves, some of which are considered next. For example, we answer the following strong form of the conjecture of
Cox, Katz and Lee (see [CKL]).

1.1.4. Let X denote a smooth projective variety. Let βεCH1(X) denote a class and let M0,n(X,β) denote the
moduli stack of n-pointed genus 0 stable maps to X of class β. Let V denote a vector bundle over X so that it
is convex. i.e. H1(C, f∗(V )) = 0 for all genus 0-stable maps f : C → X. Let en+1 : M0,n+1(X,β) → X send
(f, C, p1, ..., pn+1) to f(pn+1) and πn+1 :M0,n+1(X,β) →M0,n(X,β) denote the map forgetting the point pn+1.
Let Vβ,n = πn+1∗e

∗
n+1(V ); this is a vector bundle on Mo,n(X,β) in view of the convexity of V . Let i : Y → X

denote the inclusion of the zero locus of a regular section of V and for each γεH2(Y,Z) with i∗(γ) = β, let
iγ :M0,n(Y, γ)→M0,n(X,β) denote the induced closed immersion.

Theorem 1.7. (Conjecture of Cox, Katz and Lee: see [CKL] and also [CK] p. 386) Assuming the above situation

Σi∗(γ)=βiγ∗(Ovirt
M0,n(Y,γ)) = λ−1(Γ(Vβ,n)).Ovirt

M0,n(X,β) in π0(G(M0,n(X,β),OM0,n(X,β))).

(Here Γ(Vβ,n) denotes the sheaf of sections of the vector bundle Vβ,n.) In particular,

Σi∗(γ)=βiγ∗([M0,n(Y, γ)]virt) = [M0,n(X,β)]virt ◦ Eu(Γ(Vβ,n)) in HBr
∗ (M0,n(X,β); Γh(∗))

holds in HBr
∗ (M0,n(X,β),Γ(∗))Q for any choice of homology theories Γh(∗) as above. Here Eu(Vβ,n) denotes an

Euler class, which is defined as the term of appropriate weight and degree in ch(λ−1(Γ(Vβ,n))).

We also obtain:

Σi∗(γ)=βiγ∗([M0,n(Y, γ)]virt) = [M0,n(X,β)]virt ◦ Eu(Γ(Vβ,n)) in Hsmt
∗ (M0,n(X,β); Γ(•))

Here Eu(Γ(Vβ,n)) denotes the usual Euler class in étale cohomology.

We conclude by considering localization formulae for virtual structure sheaves and virtual fundamental classes.
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Theorem 1.8. Assume in addition to the hypotheses in 1.1 that the base scheme is an algebraically closed field,
the stacks S and S̃ are provided with actions by a torus T , T ′ is a given sub-torus with the associated prime ideal
in R(T ) being p. Moreover, we require that T = ST ′

and T̃ = (S̃)T ′
. (Here the fixed point stacks are defined in

[J-4] section 6.) We let the obstruction theory F • be defined as u∗(E•)T ′
. Then the class λ−1(K0)επ0(K(T , T ))

lifts to a class λ−1(K0
S)επ0(G(S, T ))(p)

∼= π0(KS(S̃, T ))(p) and one obtains the formula:

(1.1.5) u∗(Ovirt
T .λ−1(K−1)) = Ovirt

S .λ−1(K0
S)

in π0(G(S))p. This implies the formula

(1.1.6) u∗([T ]virt.Eu(K1)) = [S]virt.Eu((K0
S)∨)

in T -equivariant étale homology of S localized at the prime ideal p. Here K1 = (K−1)∨ and Eu denotes the Euler
class.

Theorem 1.9. Assume the hypotheses of the last theorem. Then one has a Gysin map u∗ : π0(KT (T̃ ,Ovirt
T̃ , T ))(p) →

π0(KS(S̃,Ovirt
T̃ , T ))(p) defined where the relative K-groups above are the Grothendieck groups of the category of per-

fect complexes of modules over dg-stacks defined as in appendix A. This has the property that

u∗(Ovirt
T̃ ⊗

OT̃

λ−1(K−1)) = Ovirt
S̃ ⊗

OS̃

λ−1(K0
S)

where K0
S is viewed as a class in π0(KS(S̃, T ))(p). Consequently one obtains

u∗u∗(F) = F ⊗ λ−1(K0)⊗ λ−1(K−1)−1, Fεπ0(K(T ,Ovirt
T , T )).

Moreover, a pull-back is defined on étale l-adic homology (under our hypotheses) and we obtain:

u∗([T ]virt.Eu(K1).Eu(K0)−1) = [S]virt

in HT
∗ (T ,Γ(∗))(p). Here HT

∗ (S,Γ(∗)) denotes the homology of the stack [T /T ] computed on the étale site with respect
to the complex Γ(∗) and p is the prime ideal in R(T ) corresponding to the sub-torus T ′. Moreover, K0 = (K0)∨,
K1 = (K−1)∨ and Eu(Ki) is the corresponding Euler class in in H∗

T (T ,Γ(∗))(p).

Remark 1.10. If we let the Euler class of the virtual normal bundle be defined by Eu(K1)−1.Eu(K0) we recover the
main result in [GP] proven there by other means. Observe that the use of dg-stacks and Riemann-Roch simplifies
the proof considerably. Moreover the formula in ( 1.1.3) and ( 1.1.6) seems to be not known before.

Acknowledgments. We would like to thank Bertrand Toen and Angelo Vistoli on several discussions over the
years on algebraic stacks. As one can see a key role is played by the push-forward formula in Proposition 3.2
originally proved by Vistoli in the context of intersection theory on algebraic stacks: see [Vi-1]. The relevance of
dg-stacks and the possibility of defining push-forward and other formulae for the virtual fundamental classes using
Riemann-Roch theorems on stacks, became clear to the author at the MSRI program on algebraic stacks in 2001
and especially during many conversations with Bertrand Toen while they were both supported by the MSRI.

After this paper was written up, we learned from David Cox that an alternate solution of the conjecture of Cox,
Katz and Lee appears in the recent paper [KKP]. However, as one can see, there are several important differences
in the proofs. The most important of course is that we prove an analogue of this formula for virtual structure
sheaves first as a corollary to our more general push-forward formula in Theorem 4.9, making use of methods from
K-theory and deformation to the normal cone. The conjectured formula of virtual fundamental classes then follows
by applying our Riemann-Roch to the formula at the level of virtual structure sheaves. Another difference that
seems worth mentioning is that our formula holds in all possible homology theories defined with respect to the
complexes Γh(∗) satisfying the basic hypotheses in [J-5] section 3. Moreover, the formulae in ( 1.1.3) and ( 1.1.6)
seem to be not known before.

1.1.7. Basic frame work. We will adopt the terminology and conventions from [J-5] throughout the paper. For
the sake of completeness we will recall these here. We will adopt the following terminology throughout the paper.
Let S denote an excellent Noetherian separated scheme which will serve as the base scheme. All objects we consider
will be locally finitely presented over S, and locally Noetherian. In particular, all objects we consider are locally
quasi-compact. However, our results are valid, for the most part only for objects that are finitely presented over the
base scheme S or for disjoint unions of such objects. Since we consider mostly dg-stacks, G-theory and K-theory
will always mean the theory associated to the dg-stack as in appendix A. i.e. If S is an algebraic stack provided
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with a dg-structure sheaf A and an action by a smooth group scheme G, we will let G(S,A, G) (K(S,A, G),
respectively ) denote the G-theory spectrum (the K-theory spectrum, respectively ) of the category of coherent
G-equivariant A-modules on S, (perfect G-equivariant A-modules, respectively ) as defined in Definition 6.2.

As pointed out earlier, the dg-stacks considered in this paper are all dg-stacks in the sense of [J-5], i.e. they
are algebraic stacks provided with a perfect obstruction theory. The restriction to such dg-stacks (and not the
more general derived moduli algebraic stacks) is mainly because a comprehensive theory of derived moduli stacks
is either still under development (or is only emerging) at present. In view of the fact that the Bredon style theories
in [J-5] are defined for all dg-stacks, makes it possible to extend the results of this paper to the setting of derived
moduli stacks, if the reader so desires: the only key results that need to be extended to this setting would be those
of sections 3 and 4 on the pushforward formulae for the virtual structure sheaves.

We will adopt the following conventions regarding moduli spaces. A coarse moduli-space for an algebraic stack
S will be a proper map p : S → MS (with MS an algebraic space) which is a uniform categorical quotient and a
uniform geometric quotient in the sense of [KM] 1.1 Theorem. Moreover, for purposes of Riemann-Roch, we will
assume that p always has finite cohomological dimension. (Observe that this hypothesis is satisfied if the order of
the residual gerbes are prime to the residue characteristics, for example in characteristic 0 for all Deligne-Mumford
stacks. Observe also that the notion of coarse moduli space above may be a bit different from the notion adopted
in [Vi-1].) It is shown in [KM] that if the stack S is separated and Deligne-Mumford, of finite type over k and the
obvious map IS → S is finite, then a coarse moduli space exists with all of the above properties.

Convention 1.11. Henceforth a stack will mean a DG-stack. DG-stacks whose associated underlying stack is of
Deligne-Mumford type will be referred to as Deligne-Mumford DG-stacks. We will assume that all coarse-moduli
spaces that we consider are quasi-projective schemes. In the presence of an action by a smooth affine group scheme,
we will assume these are G-quasi-projective in the sense that they admit G-equivariant locally closed immersion
into a projective space on which the group G acts linearly. Given a presheaf of spectra P , PQ will denote its
localization at Q. (Observe that then π∗(PQ) = π∗(P )⊗Q.)

2. Virtual structure sheaves and virtual fundamental classes: definitions and basic properties

We will begin by defining virtual structure sheaves and then as an application of Riemann-Roch theorems virtual
fundamental classes.

2.0.8. Virtual structure sheaves and virtual fundamental classes. Presently we will define virtual structure sheaves
and virtual fundamental classes associated to perfect obstruction theories: our approach using the Riemann-Roch
makes it possible to define virtual fundamental classes even when global resolutions of coherent sheaves by vector
bundles do not exist.

Throughout this discussion we will fix a base object B which will be in general any smooth Artin stack of finite
type over the given base scheme. (The base scheme may be assumed to be a field or a general Noetherian excellent
scheme of finite type over a field.) Let b = dim(B). All objects and morphisms we consider in this section will
be over B and therefore we will often omit the adjective relative. We begin by recalling briefly the definition of
the intrinsic normal cone from [B-F] section 3. (See also [CK] pp. 178-179). Convention: in what follows we will
ignore the fact the base is a smooth stack and not a field. Since this stack is smooth, all this does is to necessitate
modifying the dimensions by adding b to them.

First we proceed to define virtual structure sheaves associated to perfect obstruction theories, following [B-F].
Let S denote a Deligne-Mumford stack with u : U → S an atlas and let i : U → M denote a closed immersion
into a smooth scheme. Let CU/M (NU/M ) denote the normal cone (normal bundle, respectively ) associated to the
closed immersion i. (Recall that if I denotes the sheaf of ideals associated to the closed immersion i, CU/M =
Spec⊕

n
In/In+1 and NU/M = SpecSym(I/I2). Now [CU/M/i∗(TM )] ([NU/M/i∗(TM )]) denotes the intrinsic normal

cone denoted CS (the intrinsic abelian normal cone denoted NS , respectively ). In case the algebraic stack S is
provided with the action of a smooth group scheme G, we will assume that this action lifts to an action on the
intrinsic normal cone and the intrinsic abelian normal cone. This hypothesis is satisfied, for example, if the stack
S admits a closed immersion into a smooth Deligne-Mumford stack onto which the action of G extends making
the above closed immersion G-equivariant.

Let E• denote a complex of OS -modules so that it is trivial in positive degrees and whose cohomology sheaves in
degrees 0 and −1 are coherent. Let L•S denote the cotangent complex of the stack S over the base B. A morphism
φ : E• → L•S in the derived category of complexes of OS -modules is called an obstruction theory if φ induces an
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isomorphism (surjection) on taking the cohomology sheaves in degree 0 (in degree −1, respectively ). In case S
is provided with the action of a smooth group scheme G, we will assume that E• is a complex of G-equivariant
sheaves of OS -modules and that the homomorphism φ is G-equivariant. (Observe that, in this case, the cotangent
complex L•S is automatically a complex of G-equivariant OS -modules.) As in [B-F] section 5, we call the obstruction
theory E• perfect if E• is of perfect amplitude contained in [−1, 0] (i.e. locally on the étale site of the stack, it is
quasi-isomorphic to a complex of vector bundles concentrated in degrees 0 and −1). In this case, one may define
the virtual dimension of S with respect to the obstruction theory E• as rank(E0) − rank(E1) + b. Moreover, in
this case, we let ES = h1/h0(E•) = [E1/E0] where Ei = C(E−i) where C denotes the corresponding abelian cone
stack as in [B-F] section 1.

Now the morphism φ defines a closed immersion φ∨ : NS → ES . Composing with the closed immersion CS → NS
one observes that CS is a closed cone sub-stack of ES . Let the corresponding closed immersion be denoted iCS . Let
0ES : S → ES denote the vertex of the cone stack ES .

Definition 2.1. (Virtual structure sheaf) We let Ovirt
S = L0∗ES (OCS ) = OS

L
⊗

0−1
ES

(OES )

0−1
ES (OCS ) and call it the virtual

structure sheaf of the stack S. (Observe that in the G-equivariant case this defines a complex of G-equivariant
OS -modules.)

If one assumes the resolution property, one may obtain the following alternate description of Ovirt
S . Clearly such

a description also holds locally on the stack S always. Let E1 = C(E−1) and let OE1 : S → E1 denote the vertex of
the cone stack E1. We let C(E•) be defined by the cartesian square:

(2.0.9) C(E•)
iC(E•) //

��

E−1∨

��
CS

iCS //
ES

In view of our hypotheses, C(E•) has an induced action by the smooth group scheme G in the G-equivariant
situation. Let E1 = C(E−1) and let OE1 : S → E1 denote the vertex of the cone stack E1. Now Ovirt

S
∼=

L0∗E1
(OC(E•)) = OS

L
⊗

0−1
E1

(OE1 )

0−1
E1

(OC(E•)) the equality holding locally on Ssmt in general and globally on S if one

has the resolution property.

One may now observe that (S,Ovirt
S ) is a DG-stack in the sense of the appendix as follows. Recall that the

sheaf OCS is defined by a coherent sheaf of ideals in OES ; locally on the étale site of the stack S, one may find a
resolution of OCS by a complex of the form OES ← P−1 ← · · ·P−n ← · · · with each P−i a locally free coherent
sheaf on ES . Therefore, on applying L0∗ES to the above complex (where 0ES is the zero section S → ES), one gets a
complex of locally free coherent OS -modules, again locally on the étale site. Therefore the cohomology sheaves of
Ovirt,i
S are all coherent OS -modules. Proposition 2.2 below shows that Hi(Ovirt

S ) = 0 for i << 0. Making use of the
hypothesis that the stack is Noetherian, one may now replace Ovirt

S upto quasi-isomorphism by a bounded complex
of coherent OS -modules: see [J-5] Example 2.11 for more details. Therefore the hypotheses in the Definition 6.1
are satisfied. We will denote (S,Ovirt

S ) for simplicity by Svirt.

Often in the literature, one uses a Gysin map 0!
E1

in the place of L0∗E1
. Therefore, we next proceed to define

such Gysin maps at the level of G-theory of algebraic stacks and show that one could use it in the place of L0!
E1

.
(Further properties of Gysin maps are discussed in the next section.)

Consider a cartesian square

(2.0.10) X ′
x //

g

��

X

f

��
Y ′

y //
Y
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of Deligne-Mumford stacks where y is a regular local immersion of smooth algebraic stacks. We may assume all the
stacks are provided with the action of a smooth group scheme G and that all the maps above are G-equivariant. We
will assume that these are all non-dg stacks, or stacks in the usual sense. We will now define the refined Gysin-map
(or often what will be simply called the Gysin map)

(2.0.11) y! : G(X,G)→ G(X ′, G)

If OY ′ is the structure sheaf of Y ′, y∗(O′Y )επ0(KY ′(Y,G)) ' π0(G(Y,G)). (Recall KY ′(Y,G) is the Wald-
hausen K-theory spectrum of perfect complexes on Y with supports in Y ′.) Now pull-back of this class by f
defines the class f∗(y∗(OY ′))επ0(KX′(X,G)). Next observe the natural pairing ◦ : π∗KX′(X,G) ⊗ π∗G(X,G) →
π∗GX′(X,G)'→π∗G(X ′, G). Therefore, we define for any Fεπ∗G(X,G), y!(F ) = the class of F ◦ f∗(y∗(OY ′)) in
π∗G(X ′,OX′). (In case f and g are the identity maps, one may verify, that y!(F ) identifies with y∗(F )).)

In the above case, one may define a refined Gysin map

(2.0.12) y! : D−(Mod(X,G))→ D−,X′(Mod(X,G))

whereMod(X,G) (Mod(X ′, G)) denotes the category ofG-equivariant coherentOX (OX′) modules. D−(Mod(X,G))
(D−,X′(Mod(X,G))) will denote the derived category of complexes in Mod(X,G) that are bounded above (com-
plexes in Mod(X,G) that are bounded above and whose cohomology sheaves have support in X ′, respectively ).

We let y!(M) = M
L
⊗
OX

Lf∗(y∗(OY ′)).

Proposition 2.2. Assume the situation in ( 2.0.10). Then Ovirt
S and 0!

ES (OCS ) define the same class in π0(G(S,OS)).

Proof. Observe that 0ES ,∗(L0∗ES (OC(ES))) = OES ,∗(OS) ⊗
OES

P • while 0!
ES (OC(ES)) = Q• ⊗

OES

OCS where P • → OCS

and Q• → OS are resolutions by complexes of locally free coherent OES -modules. Since OES is a sheaf of com-
mutative rings, it is clear that the two complexes 0ES ,∗(L0∗ES (OCS )) and 0!

ES (OCS ) are quasi-isomorphic as OES -
modules. 0!

ES (OCS ) has supports contained in S and the push-forward map 0ES ,∗ is inverse to the isomorphism
π∗GS(ES)'→π∗G(S) defined by devissage in G-theory. Therefore the identification of Ovirt

S with 0!
ES (OCS ) as classes

in π0(G(S)) is clear. �

We let G(Svirt, G) denote the G-equivariant G-theory of the DG-stack Svirt. Let H∗
Br(Svirt, G; Γh(∗)) denote a

Bredon-style G-equivariant homology theory associated to the DG-stack Svirt. Let τ = τG
Svirt : π∗(G(Svirt, G))→

H∗
Br(Svirt, G; Γh(∗)) denote the Riemann-Roch transformation considered in [J-5] section 8.

2.0.13. It will be important to use the relationship between the Riemann-Roch transformation and the local Chern
character to be able to define the virtual fundamental classes. We will do this presently. Let S denote a separated
Deligne-Mumford stack with coarse moduli space M and let p : S → M denote the obvious map. Let F̄ denote
a perfect complex on M and let F = p∗(F̄ ) denote its inverse image on S. Then τ(F ) corresponds to the map
that sends a perfect complex E on the stack S to τM(p∗(p∗(F̄ ))⊗ E) = τM(F̄ ⊗ p∗(E)) = τM(F̄ ).chM̃|M(i∗p∗(E)),
where i : M → M̃ is a closed immersion of M into a smooth scheme, and chM̃|M is the local Chern character. In
particular, if E has supports in a closed algebraic sub-stack S0 of S with pure codimension c, i∗p∗(E) has supports
in a closed sub-scheme of M of pure codimension c. Therefore, in this case, (in view of our cohomological semi-
purity hypothesis - see [J-5 ] section 3)) chM̃|M(i∗p∗(E))(j) is trivial in Hi

M(M̃; Γ(j)) for j < c. If, in addition,
chM̃|M(i∗p∗(E))(c) 6= 0 as well, it follows that, in this case the non-trivial term of highest weight in τ(F ) is in
d− c, where d= the weight of the non trivial term in τM(F̄ ) of highest weight. Moreover if the non-trivial term in
τM(F̄ ) of highest weight is in weight d and degree 2d, the non-trivial term of highest weight in τ(F ) is in weight
d− c and degree 2d− 2c.

Definition 2.3. Let d denote the virtual dimension of the stack S with respect to the given obstruction theory.
We define the virtual fundamental class of the stack S in Bredon homology to be τ(OSvirt)2d(d), i.e. the part of
τ(OSvirt) in degree 2d and weight d. This will be denoted [S]virt

Br . If p : S →M denotes the obvious map from the
stack to its moduli space, we will also let [S]virt

Br denote p∗(τ(OSvirt)2d(d))εHBr
2d (M,Γ(d)).

The term of highest weight i and degree 2i in τ(Ovirt
S ) that is non-trivial will be called the the leading term

of τ(Ovirt
S ). We may define this more generally as follows. Let X denote any scheme of finite type over the base

scheme S and let αεHet
∗ (X,Γ(•)) where Γ(•) is a complex as in [J-5] ( ). Then the leading term (bottom term) of
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α will be defined to be the non-zero term of highest weight (lowest weight, respectively ). Let βεHBr
∗ (S,Γ(•)) or

a class in Het
∗ (S,Γ(•)) ∼= Het

∗ (M,Γ(•)) where S is any separated Deligne-Mumford stack as in ( 2.0.13) and M is
its coarse moduli space. Then the leading term of β denotes the term of highest weight in β. It follows from [J-5]
Proposition 6.14 that any class βεHBr

∗ (S,Γ(•)) has a leading term; the hypotheses in [J-5] (3.0.4) imply the same
conclusion for classes βεHet

∗ (S,Γ(•))Q ∼= Het
∗ (M,Γ(•))Q.

We proceed to compare the virtual fundamental class defined above with the virtual fundamental class defined
cycle theoretically elsewhere. The following theorems Theorem 2.6 will be the key to this. First we make the
following observation.

Proposition 2.4. Assume the homology theories satisfy the hypotheses as in [J-5] section 3; in particular they
come equipped with localization sequence for algebraic spaces and hence simplicial algebraic spaces.

If p : S →M is the finite map from a Deligne-Mumford stack to its coarse-moduli space and x : X → S is an atlas
with BxS its associated simplicial classifying space, the induced map p∗ : Het

∗ (S,Γ(•))⊗Q ∼= H∗
et(BxS,Γh(•))⊗Q→

Het
∗ (M,Γ(•))⊗Q is an isomorphism.

Proof. We may assume the proposition holds for all closed algebraic sub-stacks of S whose moduli spaces are of
dimension less than that of M. Therefore, the existence of localization sequences reduce to proving the proposition
for finite quotient stacks [X/G] for the action of a finite constant group-scheme on a scheme X and where the map
p in the proposition is also flat. In this case, the isomorphism in the proposition is clear. �

Next we make the following observations.

2.0.14.

• Let X denote a scheme of finite type over a field k. Let Z∗(X, 0) denote the cycle complex of X. Now the
support of a class αεZ∗(X) is the union of the irreducible closed sub-schemes of X appearing in the cycle
α. Next observe that if [α]εCHn(X), with [α] 6= 0, is represented by the algebraic cycle α, the dimension
of the support of α equals n. For any homology theory for schemes considered in [J-5] sections 3 and 4
defined as the étale hypercohomology of X with respect to a complex Γh(•), the weight of the of the cycle
class cycl([α])ε⊕

n
Het

2n(X,Γ(n)) is also n = the dimension of support of α.

• Next let S denote a separated Deligne-Mumford stack of finite type over a field k with coarse moduli space
M and p : S →M the obvious projection. Let CH∗(S) denote the Chow groups of the stack S defined in
any of the equivalent ways as in [Vi-1] or [J-2]. The weight of any class [α]εCHn(S) is n and if [α] 6= 0
this equals the dimension of the support of any representative of the algebraic cycle p∗([α])εCHn(M).
Therefore, if β = cycl([α])εHet

2n(S,Γ(n)) for any homology theory defined as above with respect to the
complex Γh(•), then the weight of β is the dimension of the support for any representative for the algebraic
cycle p∗([α]).

Corollary 2.5. Let S denote a separated Deligne-Mumford stack of finite type over a field k. (i) Assume that
[α], [β]ε⊕

n
CHn(S) are represented by the cycles α and β. Assume that each irreducible component of the support of

α and the support of β coincide on an open nonempty sub-stack S0 of S and dim(S − S0) < dim(S) and that the
restrictions of [α] and [β] to CHn(S0) are equal. Then the leading terms of cycl([α]) and cycl([β]) have the same
weight where cycl denotes the cycle map into any homology theory defined as above.

(ii) (ii) Let γε ⊕
i>c
H2i

et (S,Γ(i)) for some c ≥ 0. Then the leading term of γ ◦ α has weight at most a− c where a

denotes the dimension of support of α.

Proof. Clearly it suffices to assume S = X is a scheme of finite type over k. We may also assume that [α] and
[β] belong to CHn(X) for some fixed integer n. Let α (β) be a representative for [α] ([β], respectively ). Let
the support of α (β) be denoted A (B, respectively ). These are closed sub-schemes of X. Let Y = A ∪ B.
Observe that dim(A) = dim(B) = dim(Y ) = n. Now the localization sequence in Chow-groups for Y , X and
X − Y will show that the class [α] = i∗([ᾱ]) and [β] = i∗([β̄]) for classes ᾱ, β̄εCH∗(Y ) where i : Y → X is
the obvious closed immersion. Let X0 denote the open sub-scheme of X which intersects each component of Y
non-trivially. Now another localization sequence argument for Y −Y ∩X0, Y and Y ∩X0 shows that the difference
[ᾱ]− [β̄] = i∗([γ]) for some class [γ]εCH∗(Y −Y ∩X0). However, the dimension of Y −Y ∩X0 is strictly lower than
the dimension of Y = the weights of [ᾱ] and [β̄] so that we obtain the equality [ᾱ] = [β̄] in CHn(Y ). Therefore
cycl([α]) = i∗cycl([ᾱ]) = i∗cycl([β̄]) = cycl([β]) in any homology theory considered above.
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The proof of (i) follows readily from the above observations. (ii) is clear from the observation that the pairing
between cohomology and homology sends H2j

et (S,Γ(j))⊗Het
2i (S,Γ(i)) to Het

2i−2j(S,Γ(j − i)). �

In what follows, we will let Γ(•) = {Γ(r)|r} denote either one of the following: (i) a collection of complexes as
in [J-5] section 3, defining a Bloch-Ogus style cohomology theory on all algebraic spaces and which extends to
the étale sites of all Deligne-Mumford stacks or (ii) the higher cycle complex. In the first situation, we defined
a Chern-character map Ch : π0K(S) → H∗

et(S,Γ(•)) ⊗ Q in [J-2] section 4. In the second situation we define an
(operational) Chern character map Ch on π0K(S): this is discussed in appendix B. In the following discussion, Ch
will denote either one of these depending on the situation.

Theorem 2.6. Assume in addition to the above that the following hold:

S = [X/G] is a finite quotient stack with the map X → S finite and that the map p∗ : Het
∗ (S,Γ(•)) ⊗ Q →

Het
∗ (M,Γ(•))⊗Q is an isomorphism.

Let Gεπ0(G(S)), Fεπ0(K(S)) and αεHn
et(S,Γ(•))⊗Q for a fixed integer n. Then

α ◦ σ∗(τS,M(F ◦ G)) = α ◦ σ∗(ch(F) ◦ τS,M(G))(2.0.15)

= α ◦ Ch(F) ◦ σ∗(τS,M(G))

Moreover σ∗ : HBr(S,Γ(•))→ Het
∗ (S,Γ(•))⊗Q is the map from Bredon homology to étale homology considered in

[J-5] Theorem 6.15, Ch denotes the Chern-character as defined above, ch denotes the Chern-character with values
in Bredon cohomology and ◦ denotes pairings between homology and cohomology.

Next let E denote a vector bundle on the stack S and let Gεπ0(G(E)), Fεπ0(K(E)) and αεHn
et(E ,Γ(•)) for a

fixed integer n. Then

α ◦ σ∗(τE,Ē(F ◦ G)) = α ◦ σ∗(ch(F) ◦ τE,Ē(G))(2.0.16)

= α ◦ Ch(F) ◦ σ∗(τE,Ē(G))

where Ē denotes a coarse moduli space for the vector bundle E. σ∗ (Ch) now denotes the corresponding maps
associated to the stack E

Proof. We will prove the statement in ( 2.0.15) first. Recall that the map p∗(τS,M(E)) is the map G 7→ τM(p∗(p∗(G)◦
E)) = τM(G ◦ p∗(E)) = chBr(G) ◦ τM(p∗(E)), for GεΓ(M, i−1π∗(K( )M̃)). (Here M → M̃ is a closed immersion
into a smooth scheme and chBr denotes the Chern-character with values in the cohomology of M.) Therefore, one
identifies the class p∗(τS,M(E)) with the class τM(p∗(E)). Let p∗et : H∗

et(M,Γh(•)) ⊗ Q → H∗
et(S, p∗Γh(•)) ⊗ Q ∼=

denote the obvious map. The definition of the map σ∗ from Bredon homology to étale homology shows that one
obtains:

(2.0.17) σ∗(τS,M(E)) = p∗et(τM(p∗(E)))

(In view of our hypothesis the map p∗et is also an isomorphism with inverse defined by (1/d)pet∗, where d is the
degree of the map p.)

Let n be the degree of the map x : X → S. Now we obtain

nτM(p∗(F ◦ E)) = τM(p∗x∗x∗(F ◦ E))

= p∗x∗τX(x∗(F ◦ E)) = p∗x∗τX(x∗(F) ◦ x∗(E))

The first equality holds since the map x is finite étale of degree n. The second equality holds by Riemann-Roch
applied to the composite finite map X → S →M. In view of our hypothesis, it follows that

α ◦ np∗et(τM(p∗(F ◦ E))) = α ◦ dx∗τX(x∗(F) ◦ x∗(E))

= α ◦ dx∗(Ch(x∗(F) ◦ τX(x∗E))) = α ◦ d(Ch(F) ◦ x∗(τX(x∗E)))

The last but one equality holds by the formula (see [Ful] Theorem 18.2) :τ(F ◦ E) = Ch(F) ◦ τ(E) for a class
Fεπ0(K(X)) and Eεπ0(G(X)). If we take F = OS and α = 1 in the above formula, we obtain: dx∗τX(x∗(E)) =
np∗et(τM(p∗(E))). Substituting this into the formula for np∗et(τM(p∗(F ◦ E))) , we obtain the formula

(2.0.18) α ◦ p∗etτM(p∗(F ◦ E)) = α ◦ Ch(F) ◦ p∗et(τM(p∗(E)))
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In view of the identification in ( 2.0.17), this proves the assertion in ( 2.0.15).

Next we consider the assertion in ( 2.0.16). To keep our discussion brief, we will assume that α = 1. For this first
observe that the vector bundle E is also a separated Deligne-Mumford stack so that it has a coarse moduli space
Ē ; by our standing hypothesis in 1.0.1, this will be a vector bundle over M and hence quasi-projective as a scheme.
Since the obvious induced map E → Ē×

M
S is purely inseparable and surjective, and all cohomology we consider is

with rational coefficients, we will identify E with Ē×
M
S. Let EX = X×

S
E and let xE : EX → E and pE : E → Ē denote

the obvious induced maps. Now we obtain the following identifications:

npE∗τE,Ē(F ◦ G) = nτĒ(pE∗(F ◦ G)) = τĒ(pE∗(xE∗x∗E(F ◦ G)))

= pE∗xE∗τEX
(x∗E(F ◦ G)) = pE∗xE∗τEX

(x∗E(F) ◦ x∗E(G))

= pE∗xE∗(Ch(x∗E(F)) ◦ τEX
(x∗E(G))) = pE∗(Ch(F) ◦ xE∗τEX

(x∗E(G)))

The first equality above is from the definition of the Riemann-Roch transformation as in [J-5] and the second
equality is from the observation xE is finite étale of degree n and the fifth is from [Ful] Theorem 18.2 as above. The
remaining identifications are clear. Next observe that pE∗ : Het

∗ (E ,Γ(•))⊗Q→ Het
∗ (Ē ,Γ(•))⊗Q is an isomorphism

with inverse provided by the map (1/d)p∗E . Therefore, one obtains the identification

np∗E(τĒ(pE∗(F ◦ G))) = Ch(F) ◦ dxE∗(τEX
(x∗E(G)))

Taking F = OE , one obtains np∗EτĒ(pE∗(G)) = dxE∗(τEX
(x∗E(G))). Substituting this into the last formula proves

the assertion in ( 2.0.16). �

Definition 2.7. (Euler class). We define the Euler class of a vector bundle F to be the bottom term of
Ch(λ−1(F∨)).

Remark 2.8. See [F-L] Chapter 1 for more details on this definition in the setting of vector bundles on schemes.

We begin with the following observation:

2.0.19. Next observe from [J-5] Proposition 6.5, that the Riemann-Roch transformation localizes on M̃et and
hence on Met. Locally on Met one knows that the Deligne-Mumford stack S is a quotient stack. This implies
that for each irreducible component of M, one may find a nonempty Zariski open sub-scheme U and a finite étale
surjective map Ũ → U so that the stack S̃U = S×

M
U×

U
Ũ ∼= S×

M
Ũ is a finite quotient stack. Let π : S̃U → S×

M
U = SU

denote the induced map. Then the induced map p∗ : H∗
et(S×

M
U,Γh(•))Q → H∗

et(S×
M
Ũ ,Γh(•))Q is a split injection.

Therefore if one has equality of two classes α, βεH∗
smt(S,Γh(•)) after restriction to SU and pull back by p∗, then

one has equality of α and β on restriction to the stack SU .

Corollary 2.9. Let S denote a separated Deligne-Mumford stack.

(i) Assume GM is a bounded complex of coherent OE -modules and F is a bounded complex of vector bundles on
S. Then the leading term of σ∗(τS,M(F ◦ G)) = the leading term of σ∗(ch(F) ◦ τS,M(G)) = (the bottom term of
Ch(F)) ◦ ( the leading term of (σ∗(τS,M(G))). In particular, if F denotes the class λ−1(F ) of a vector bundle F
on S, one obtains the formula:

leading term of σ∗(τS,M(F ◦ G)) = Eu(F∨)) ◦ ( the leading term of (σ∗(τS,M(G))).

(ii) Next assume that E a vector bundle on S, G a bounded complex of coherent OE -modules and F a bounded
complex of vector bundles on E. Assume that the support of F ⊗ G is contained in S.

Then the leading term of σ∗(τE,Ē(F ◦ G)) = the leading term of σ∗(ch(F) ◦ τE,Ē(G)) = (the bottom term of
Ch(F)) ◦ ( the leading term of (σ∗(τE,Ē(G))). In particular, if F denotes the class λ−1(F ) of a vector bundle F on
E, one obtains the formula:

leading term of σ∗(τE,Ē(F ◦ G)) = Eu(F∨)) ◦ ( the leading term of (σ∗(τE,Ē(G))).

Proof. Since the proof of (i) is entirely similar to that of (ii) we will only consider (ii). The first equality in (ii) is
clear in view of the formula τE,Ē(F ◦G) = ch(G) ◦ τE,Ē(G), where ch denotes the Chern character map defined on
Bredon cohomology: see [J-5] Remark 6.10.
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To prove the remaining assertions, first we consider the Riemann-Roch transformation and the Chern character
with values in the Chow-groups of the stack E where the support of classes in the Chow groups is defined as
in 2.0.14. For each irreducible component Si of maximal dimension of Support(F ⊗ G), choose a Zariski open
neighborhood U open in the irreducible component of M that contains Si so that there is a finite étale surjective
map π : Ũ → U and the induced stack S̃U = S×

M
Ũ is a finite quotient stack. Let E0 denote the pull-back of E to S̃

and let F0 (G0) denote the pull-back of F (G) to E0. On S̃U and hence on SU one has strict equality:

(2.0.20) σ∗(τE0,Ē0
(F0 ◦ G0)) = Ch(λ−1(F0)) ◦ σ∗(τE0,Ē0

(G0))

It follows that U intersects non-trivially with an irreducible component Ti of the support of Ch(λ−1(F)) ◦
σ∗(τE,Ē(G)). In particular the leading terms of the expressions on either side identify on SU . It follows (see 2.0.14)
that Ti is a component of maximal dimension in the support of Ch(λ−1(F )) ◦ σ∗(τE,Ē(G)). Since U is chosen to
intersect non-trivially with the component Si, it follows that the U ∩Si is open and dense in Si and similarly U ∩Ti

is open and dense in Ti. Since one has the strict equality σ∗(τE0,Ē0
(F0 ◦ G0)) = Ch(λ−1(F0)) ◦ σ∗(τE0,Ē0

(G0)) on
SU , it follows that dim(U ∩ Si) = dim(U ∩ Ti) and therefore, the dimension of Ti = the dimension of Si.

Observe that one may cover M by open sets of the form U as above. Therefore one may drop any components
in a cycle representing Ch(λ−1(F)) ◦ τE,Ē(G) on which the above class is zero and assume that each irreducible
component of maximal dimension in the support of Ch(λ−1(F)) ◦ τE,Ē(G) intersects non-trivially some open set U
chosen as above (which intersects non-trivially with an irreducible component of the support of F ⊗ G). It follows
readily now that the dimension of supports of F ⊗ G and Ch(λ−1(F)) ◦ σ∗(τE,Ē(G)) are the same.

Therefore one may apply Corollary 2.5(i) to derive the formula in the second statement of the Corollary when
the Riemann-Roch transformation and the Chern character take values in the Chow groups of the stack. The
second statement involving the Euler class follows immediately from its definition. The corresponding formulae in
other cohomology theories then follow by applying a cycle map. �

Next we proceed to compare the virtual fundamental class defined as in ( 2.3) with the virtual fundamental
class defined cycle theoretically assuming the resolution property holds. Let C(E•) denote the cone in E1 defined
as in (2.0.9). This is a closed sub-scheme of the vector bundle E1 and the support of (OC(E•) ⊗ λ−1(pr∗(E−1))) is
contained in S. The cycle-theoretic definition of the virtual fundamental class is 0!([C(E•)]) where [C(E•)] denotes
the fundamental class of C(E•) and 0! is the refined Gysin map as in [Ful] Chapter 6. Recall we have already
identified [C(E•)] with the leading term of σ∗(τE,Ē(OC(E•))): see [J-5] Theorem 1.1. Moreover the definition of
Gysin maps as in section 3 (below) shows (since we only consider the term of top weight and degree) that one has
the identification:

(2.0.21) [S]virt = (the bottom term of Ch(λ−1(pr∗(E−1)))) ◦ (leading term of σ∗(τE,Ē(OC(E•)))

Corollary 2.10. Assume the above situation. Then [S]virt = the leading term of σ∗(τE,Ē(Ovirt
S )).

Moreover, σ∗(τ(OSvirt))(i)2i = 0 for all i > d, where d = the virtual dimension. If [C(E•)]εHBr
∗ (E1,Γ(∗)) ∼=

Het
∗ (E1,Γ(∗)) is nonzero, the leading term of τ(OSvirt) is in weight = d and degree 2d, where d = the virtual

dimension.

Proof. Recall (see 2.2) that Ovirt
S = λ−1(pr∗(E−1))⊗OC(E•) at least as classes in π0(G(S)). Moreover the support

of this is contained in S. Therefore, the hypotheses of Corollary 2.9 are satisfied. Therefore,

the leading term of σ∗(τE,Ē(Ovirt
S )) = (the bottom term of Ch(λ−1(pr∗(E−1))))◦(leading term of σ∗(τE,Ē(OC(E•)))

= [S]virt.

The second assertion in the corollary now follows readily once we observe that the λ−1(pr∗(E−1)) is a Koszul
resolution of OS by OE1-modules, so that the complex λ−1(pr∗(E−1)) has supports in S which is of codimension
= the rank of the vector bundle E1 in E1. It is observed in ( 4.0.25) that the dimension of C(E•) is b+ rank(E0),
where b = dim(B), with B being the base-scheme. Therefore, we obtain the second assertion in the corollary. �

Corollary 2.11. Assume the hypotheses of Theorem 1.5. Then the leading term of σ∗(τT ,MT (Ovirt
T ◦λ−1(K−1))) =

Eu(K1)◦(the leading term of σ∗(τT ,MT
(Ovirt

T ))) and similarly the leading term of σ∗(τS,MS (Ovirt
S ◦λ−1(K0

S))) =
Eu((K0

S)∨)◦(the leading term of σ∗(τS,MS (Ovirt
S ))). (Here MT (MS) denotes the coarse moduli space of the

stack T (S, respectively ).)

Proof. One may readily verify the hypotheses of Corollary 2.9(i) are satisfied in both the above situations. Therefore
the conclusion follows. �
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Corollary 2.12. Assume in addition to the above situation that G denotes a smooth affine group scheme acting
on the Deligne-Mumford stack S. Then the results of the corollary 2.9 and the following ones extend to equivariant
homology as defined in appendix B.

Proof. In view of the observations made in ( 6.2.2), it suffices to show the equality of the classes as in the last
corollaries in Het

∗ (S,Γh(•)). This is proven in the corollaries above. �

3. Gysin maps in G-theory

In this section we explore basic properties of Gysin maps at the level of G-theory with the goal of applying these
in the next section. This roughly parallels the treatment in [Ful] where such Gysin maps are defined at the level
of algebraic cycles.

Proposition 3.1. Assume the situation in ( 2.0.10). Let αεπ0(G(X)), βεπ0(G(X ′)) so that y!(α) = β. Then
x∗(β) = α⊗ Lf∗(y∗(OY ′)) in π0(GX′(X)) and in π0(G(X))..

Proof. Observe that the map x∗ : π0G(X ′)→ π0GX′(X) is an isomorphism with its inverse given by the devissage
theorem in G-theory. The hypotheses imply that under this inverse isomorphism the class α⊗Lf∗(y∗(OY ′)) maps
to the class β. Therefore, x∗(β) = α⊗ Lf∗(y∗(OY ′)). �

Proposition 3.2. Consider the commutative diagram

N×
Y
C //

��

C ′
//

��

C

��
N×

Y
X //

��

X ′
x //

g

��

X

f

��
N

ρ //
Y ′

y //
Y

where the following hold: the bottom right square is as in ( 2.0.10) with f a local immersion, C = CX(Y ) = the
cone associated to this immersion and the rest of the diagram is defined so that all the squares are cartesian. Then

y!(OC) = OCX′ (Y ′) in π0(G(N×
Y
C)) ∼= π0(G(C ′))

Proof. This is a rather well known result; the corresponding results for algebraic cycles appears in [Vi-1] and may
be proved along similar lines by reducing to the case when Y ′ and X are divisors in Y . The key observation is that
we define y! : G(C)→ G(C ′) by taking for the map f in ( 2.0.10) not the map f above but instead the composition
of the two maps forming the right-most column. We skip the details. �

Proposition 3.3. Assume the square

X ′
i′ //

g

��

X

f

��
Y ′

i //
Y

is cartesian and that one is given maps π : Y → Y ′ and s : Y ′ → X ′ so that g ◦ s = idY ′ and π ◦ i = idY ′ . Assume
also, that both the maps i and s are regular local immersions. Then the composite map

π0(G(X,OX)) i!→π0(GX′(X,OX))'→π0(G(X ′,OX′)) s!

→π0(G(Y ′,OY ′))

is also equal to the map induced by the map M 7→ α ⊗
OX

(f∗π∗(λ−1(NY ′/Y ) ⊗
OY ′

(λ−1(NY ′/X′)))), MεCoh(X,G) =

Coh([X/G]). Here NY ′/Y (NY ′/X′) is the conormal sheaf associated to the closed immersion Y ′ → Y (Y ′ → X ′,
respectively ).
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Proof. If M denotes a coherent OX -module, it follows from the definition that

i!(M) = [M ⊗
OX

f∗π∗λ−1(NY ′/Y )]

which is the class of M ⊗
OX

f∗π∗λ−1(NY ′/Y )επ0(G(X ′)).

Similarly, g∗(λ−1(NY ′/X′)) is a resolution of s∗(OY ′). It follows therefore, that for M a coherent OX -module,

s!i!(M) = [M ⊗
OX

f∗π∗λ−1(NY ′/Y )] ⊗
OX′

g∗λ−1(NY ′/X′)).

Observe, in view of our hypothesis that NY ′/X′ is a locally free OY ′ -module. Moreover π∗(λ−1(NY ′/Y )) is a
resolution of i∗(OY ′). Therefore, each term of F • = f∗π∗λ−1(NY ′/X′) is a locally free OX -module. Moreover the
commutativity of the square in the proposition shows that i′∗(F •) = g∗(λ−1(NY ′/X′)). Therefore

s!i!(M) = [M ⊗
OX

f∗π∗λ−1(NY ′/Y )] ⊗
OX′

i′
∗(F •).

Since M ⊗
OX

f∗π∗λ−1(NY ′/Y ) has supports contained in X ′ and each term of the complex F • is a locally free

OX -module, one obtains the identification

[M ⊗
OX

f∗π∗λ−1(NY ′/Y )] ⊗
OX′

i′
∗(F •) = [M ⊗

OX

f∗π∗λ−1(NY ′/Y ) ⊗
OX

F •]

as classes in π0(GY ′(Y )) ∼= π0(G(Y ′)). �

Remark 3.4. The above proposition enables us to obtain a convenient reformulation of the virtual structure sheaves
as in Definition 4.1.

Later on in this section, we will need the following alternate definition of the refined Gysin maps defined using
deformation to the normal cone. We begin by defining the specialization map to the normal cone at the level of
G-theory. If X ′ → X is a closed immersion of Deligne-Mumford stacks, one performs the blow-up of X × P1 along
X × {∞}; let this be denoted M and let X̃ be the blow-up of X along X ′. Let Mo denote the complement of X̃
in M . Now j : X × A1 imbeds as an open sub-stack of Mo with complement C = CX′X = the normal cone to

X ′ in X. Therefore one obtains the localization sequence: G(C) i∗→G(Mo)
j∗→G(X × A1) where i : C → Mo is the

obvious closed immersion. Since C is a divisor in Mo, it follows that i is a regular closed immersion of codimension
1 and therefore that one has a pull-back i∗ : G(Mo) → G(C). Moreover the composition i∗ ◦ i∗ : G(C) → G(C)
is null-homotopic, since the normal bundle to the immersion i is trivial. Therefore, the map i∗ : G(Mo) → G(C)
factors through j∗. The induced map G(X × A1) → G(C) will be denoted sp′. We define the specialization map
sp : G(X)→ G(C) as the composition sp′ ◦ pr∗1 , where pr1 : X × A1 → X is the obvious projection.

Given a diagram as in ( 2.0.10), one may first replace it with the diagram:

X ′
x0 //

g

��

CX′X

f0

��
Y ′

y0 //
NY ′Y

One has a refined Gysin map y0
! : G(CX′X) → G(X ′). We may pre-compose this with the specialization map

sp : G(X)→ G(CX′X) to define the alternate refined Gysin map y!
alt : G(X)→ G(X ′).

Proposition 3.5. y! = y!
alt : π0(G(X))→ π0(G(X ′))

Proof. First observe by the localization sequence that the restriction j∗ : π0(G(Mo))→ π0(G(X×A1) is surjective.
(See [Qu] section 5, Theorem 5: observe that this is stated for abelian categories and therefore applies to algebraic
(non-dg) stacks as well.) Therefore the specialization map on the Grothendieck groups is simply defined by starting
with a class α in π0(G(X)) , pulling it back to π0(G(X × A1)) by pr∗1 , lifting this to a class in π0(G(Mo)) and
then applying i∗. Therefore, the specialization map at the level of Grothendieck groups is compatible with pairings
in the following sense: assume the situation of 2.0.10. Now the specializations sp : GY ′(Y ) → GY ′(NY ′Y ) and
sp : G(X)→ G(CX′X) are compatible in the sense the following square commutes:
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π0(GY ′(Y ))⊗ π0(G(X))

sp⊗sp

��

//
π0G(X ′)

id

��
π0(GY ′(NY ′Y ))⊗ π0(G(CX′X))

//
π0G(X ′)

For this, it suffices to show that the Koszul-Thom class of Y ′ in Y specializes to the Koszul-Thom class of Y ′ in
NY ′Y . We skip this verification to the reader. �

4. Push-forward and localization formulae for virtual structure sheaves and virtual fundamental
classes

Next we proceed to establish a push-forward formula for the virtual fundamental classes. Using Lefschetz-
Riemann-Roch, it suffices to establish a push-forward formula for the virtual structure sheaves instead. For this,
we will first find another more convenient alternate definition of the virtual structure sheaf. We will assume
henceforth that the given stack S admits a G-equivariant closed immersion into a smooth Deligne-Mumford stack
S̃ onto which the G-action extends. Assuming this closed immersion is denoted i and is defined locally by the sheaf
of ideals I, the cotangent complex of S truncated outside the interval [−1, 0] can be identified with the complex:

(4.0.22) τ≥−1L
•S : I/I2 → i∗(ΩS̃)

4.0.23. Basic push-forward hypothesis. We will also assume henceforth that the obstruction theory is given by
a strict map of complexes E• → τ≥−1L

•
S and that Ei, i = −1, 0 are vector bundles. As observed in [GP], the

hypotheses that every coherent sheaf on the stack is a quotient of a vector bundle, implies one may make the above
assumption without further loss of generality.

One may show that our hypothesis that E• is an obstruction theory associated to the immersion i (in the above
sense) implies that the sequence of sheaves E−1 → E0⊕I/I2 γ→ΩS̃|S → 0 is exact. Then one obtains the associated
exact sequence of abelian cones:

(4.0.24) 0→ T S̃|S → C(I/I2)×
S
E0 → C(Q)→ 0

where C(Q) is the cone associated to Q = ker(γ) and E0 = C(E∨0 ). Since Q is a quotient of E−1, C(Q) imbeds
in E1. The normal cone to S in S̃, CS(S̃) is a closed sub-stack of C(I/I2). We let CE0 = CS(S̃)×

S
E0, which is a

T S̃|S -cone.

If Q′ denotes the kernel of D → E0⊕I/I2 γ→ΩS̃|S , we obtain the short exact sequence 0→ Q′ → E0⊕CS(S̃)→
ΩS̃|S → 0 and therefore the exact sequence 0→ T S̃|S → CS(S̃)×

S
E0 → C(Q′)→ 0.

Observe that C(Q′) = C(E•) in the terminology used earlier. Viewing the above as an exact sequence of objects
over S, one may compute the dimension of C(Q′) as follows:

(4.0.25) dim(C(E•)) = dim(C(Q′)) = rank(E0) + b

Moreover, Ovirt
S = 0!

E1
(OC(Q′)). Alternatively, one has the cartesian square

(4.0.26) T S̃|S
//

p

��

CE0

f

��
S

0E1 //
E1

Here p : T S̃|S → S is the obvious projection; let sT S̃|S : S → T S̃|S denote the obvious zero-section. Now one
obtains a quasi-isomorphism:

(4.0.27) Ovirt
S ' s!

T S̃|S
0!
E1

(OCE0)

(This follows from the observation: s!
T S̃|S

0!
E1

(OCE0) ' s∗
T S̃|S

0!
E1

(OCE0) ' 0!
E1

(s∗
T S̃|S
OCE0) = 0!

E1
(OC(Q′)). The last

but one ' follows from the observation that locally, CE0 is a product of C(Q′) and T S̃|S .)
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Proposition 3.3 shows that as classes in π0G(S), one has the identification:

[Ovirt
S ] = [f∗π∗E(λ−1(E−1)⊗

OS
λ−1(ΩS̃|S))].

Here πE : E1 → S is the obvious projection. Observe that the right-hand-side is only a complex of quasi-coherent
sheaves on S: nevertheless it is a complex of coherent sheaves on the stack CE0 with supports in the closed sub-stack
S.

Definition 4.1. Henceforth we will let

(4.0.28) Ovirt
S = f∗π∗E(λ−1(E−1)⊗

OS
λ−1(ΩS̃|S))

viewed as a complex of sheaves on the stack CE0. Proposition 6.5 in Appendix A shows that if I is the sheaf of
ideals defining S in CE0, then, ΣiRHomOCE0

(Ii−1/Ii, f∗π∗E(λ−1(E−1)⊗
OS
λ−1(ΩS̃|S)))[−i] is a complex of coherent

OS-modules and that as classes in π0G(S) this identifies with the class [Ovirt
S ]. (In fact, the sum on the right is a

finite sum.) Therefore, it is often convenient to use the following variant of the virtual structure sheaf:

(4.0.29) Ōvirt
S = ΣiRHomOCE0

(Ii−1/Ii, f∗π∗E(λ−1(E−1)⊗
OS
λ−1(ΩS̃|S)))[−i]

4.0.30. Next assume that i0 : T → T̃ and i : S → S̃ are closed immersions and that the square

T
u //

i0
��

S

i

��
T̃

v //
S̃

is cartesian, with both S̃ and T̃ smooth Deligne-Mumford stacks and where the maps u and v are closed immersions.

4.0.31. Weak compatibility of obstruction theories. We will assume that one is provided with a perfect obstruction
theory E• ( F •) for S → S̃ (T → T̃ , respectively ) satisfying the hypotheses as in 4.0.23 and that these are
weakly compatible in the following sense: there is given a G-equivariant map φ : u∗(E•)→ F • of complexes so that
there exists a distinguished triangle K• → u∗(E•)→ F • and K• is of perfect amplitude contained in [−1, 0]. For
example, the two obstruction theories are weakly compatible if one has G-equivariant resolutions of coherent sheaves
by vector bundles, E• and F • may be replaced by complexes of vector bundles and the given map φ : u∗(E•)→ F •

is an epimorphism. It follows that, in this case, the kernel, K• = ker(φ) is a complex of vector bundles.

Lemma 4.2. E• and F • are weakly compatible if and only if there exists a distinguished triangle K ′• → E′
• →

π∗(F •) → K ′•[1] of complexes of OCT (S)-modules so that (i) K ′• and E′
• are complexes of perfect amplitude

contained in [−1, 0] and (ii) 0∗(E′•) = u∗(E•). Here π : CT (S)→ T is the obvious projection while 0 : T → CT (S)
is the obvious closed immersion of the vertex of the cone.

Proof. Assume that one is given a distinguished triangle K ′• → E′
• → π∗(F •) → K ′•[1] satisfying the above

hypotheses. Taking K• = 0∗(K ′•) provides a distinguished triangle K• → u∗(E•) → F • → K•[1] showing
the weak compatibility of the obstruction theories. Conversely given a distinguished triangle, K• → u∗(E•) →
F • → K•[1] with K• a complex of perfect amplitude contained in [−1, 0], one may take E′• = π∗(u∗(E•)) and
K ′• = π∗(K•). �

4.0.32. The deformed virtual structure sheaf. Let CT (E0) denote the normal cone associated to the composite
closed immersion T → S → E0. Now CT (S) is a closed sub-scheme of CT (E0): moreover the obvious projection
E0 → S induces a splitting to the above map so that CT (S) is a factor of the cone CT (E0). Moreover CT (E0|T ) is
also a sub-scheme of CT (E0). Now a local computation will show that the obvious map CT (S)×

T
CT (E0|T )→ CT (E0)

is an isomorphism. In addition, one readily obtains the isomorphism CT (E0|T ) ∼= CF0(E0|T )×
T
F0. Therefore, one

obtains the isomorphism

(4.0.33) CT (E0) ∼= CT (S)×
T
CF0(E0|T )×

T
F0
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We consider the commutative diagram:

(4.0.34) CCT (S)(CT̃ (S̃)) ×
CT (S)

CT (E0)
π0 //

π1

��

CT (T̃ )×
T
F0

β //
CT (T̃ )

α

��
CCT (S)(CT̃ (S̃))

φ1 //
CT (S)

π //
T

where π0 is the obvious projection induced by the projections CT (S)→ T , CCT (S)(CT̃ (S̃))→ CT (T̃ ) and CT (E0)→
F0. Moreover π1 denotes the projection to the first factor. We let the composition of maps α ◦ β by f0 and let
C = CCT (S)(CT̃ (S̃)). Let 0 : CT (T̃ )×

T
F0 → C ×

CT (S)
CT (E0) denote the obvious closed immersion. (Observe that

this is a section to the map π0.) Then we provide the following definition of the deformed virtual structure sheaf:

Definition 4.3. Ovirt
C = π∗0f

∗
0 (λ−1(E−1

|T )⊗ λ−1(ΩCT̃ (S̃)|T )) and call this the deformed virtual structure sheaf.

Remark 4.4. Having replaced S by the cone CT (S) and the virtual structure sheaf Ovirt
S by its deformation, OCT (S),

we have greater flexibility: the main advantage is the presence of the morphism π : CT (S)→ T so that π ◦0 = idT ,
where 0 : T → CT (S) is the obvious zero-section imbedding. See 4.0.50 below for more details on this deformation.
Throughout the following theorem we will let CCT (S)(CT̃ (S̃)) ×

CT (S)
CT (E0) (CT (T̃ )×

T
F0) be denoted by CE0 (CF0,

respectively ).

Theorem 4.5. Assume the above situation. Now one obtains the formula

π∗0f
∗
0 (λ−1(K−1))⊗ 0∗(Ovirt

T ) = 0∗(f∗0 (λ−1(K−1)) ⊗
OCT (T̃ )×

T
F0

Ovirt
T ) = λ−1(π∗0f

∗
0K

0)⊗Ovirt
C

in π0(GT (Cπ∗(E0|T ))). In case S, T are provided with a compatible action by a smooth group scheme G and the
obstruction theories are G-equivariant, the last formula holds in π0(GT (C(π∗(E0|T )), G)). (Here ⊗ denotes the
tensor product over OCCT (S)(CT̃ (S̃)) ×

CT (S)
CT (E0)

.)

Proof. Let ΩCT̃ (S̃)|T (ΩS̃0|S0
) denote the restriction of ΩCT̃ (S̃) (ΩT̃ , respectively ) to T . Let g and πF be defined

by the following obvious diagram:

(4.0.35) CT S

π

��

CT (E0)

π0

��
T F1

πF

oo CF0
g

oo

Step 1. By definition, the right-hand-side identifies with

(4.0.36) λ−1(π∗0f
∗
0 ΩCT̃ (S̃)|T ) ⊗

OCE0

λ−1(π∗0f
∗
0 (E−1

|T )) ⊗
OCE0

λ−1(π∗0f
∗
0K

0)

Definition 4.1 applied to the cartesian square

(4.0.37) T T̃ |T

g′

��

// CT (T̃ )×
T
F0

g

��
T 0F1

//
F1

shows that the left-hand-side identifies with

(4.0.38) 0∗(λ−1(g∗π∗F ΩT̃ |T ) ⊗
OCF0

λ−1(g∗π∗F (F−1)) ⊗
OCF0

λ−1(π∗0f
∗
0K

−1))
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Henceforth ⊗ will denote ⊗
OCE0

.

Step 2. Next, one considers the obvious immersion 0 : CT (T̃ )×
T
F0 in CCT (S)(CT̃ (S̃)) ×

CT (S)
CT (E0) (which we denoted

0). This factors as

CT (T̃ )×
T
F0

α→CCT (S)(CT̃ (S̃)) ×
CT (S)

π∗(F0)
v→CCT (S)(CT̃ (S̃)) ×

CT (S)
CT (E0).

The first observation here is that, in this situation, one obtains the identifications:

(4.0.39) CT (E0) = CT (S)×
T
CF0(E0|T ), π∗(F0) = CT (S)×

T
F0

4.0.40. Therefore, the map α identifies with the map CT (T̃ )×
T
F0

i×id→ CCT (S)(CT̃ (S̃))×
T
F0 where i : CT (T̃ ) →

CCT (S)(CT̃ (S̃)) is the obvious immersion.

Next we apply the Proposition 3.2 to the bottom square of the following diagram (i.e. the bottom square
corresponds to the bottom right square in Proposition 3.2):

(4.0.41) CT (T̃ )
x //

��

CCT (S)(CT̃ (S̃))

φ1

��
T

//

��

CT (S)

φ0

��

T̃
y //

NT̃ (S̃)

Therefore, it follows first that y!(OCCT (S)(CT̃ (S̃))) = OCT (T̃ ) and then by invoking Proposition 3.1 that

x∗(OCT (T̃ )) = OCCT (S)(CT̃ (S̃)) ⊗ λ−1(φ∗π̃∗(NT̃ (S̃)))

in π0(G(CCT (S)(CT̃ (S̃)),OCCT (S)(CT̃ (S̃)))).

Here φ = φ0◦φ1 (π̃) is the map forming the right vertical column in the above square (is the projection NT̃ (S̃)→ S̃0,
respectively ). Moreover, it is clear that λ−1(φ∗π̃∗(NT̃ (S̃))) = λ−1(φ∗1π

∗(NT̃ (S̃))T ). It follows from the observation
about the map α in 4.0.40 above that

(4.0.42) α∗(OCF0) = OCCT (S)(CT̃ (S̃)) ×
CT (S̃)

π∗(F) ⊗ λ−1(φ∗π̃∗(NT̃ (S̃)))

in π0(GCF0(CCT (S)(CT̃ (S̃)) ×
CT (S̃)

π∗(F),OCCT (S)(CT̃ (S̃)) ×
CT (S̃)

π∗(F0|T ))).

The short exact sequence 0→ K ′0 → E′
0 → π∗(F 0)→ 0 shows on taking the symmetric algebras associated to

E′
0 and π∗(F 0) that the kernel of the obvious surjection Sym(E′0)→ Sym(π∗(F 0)) is the ideal K ′0 ⊗ Sym(E′0).

One may identify (K ′0 ⊗ Sym(E′0)/(K ′0 ⊗ Sym(E′0))2 with (K ′0 ⊗ π∗(Sym(F 0)))/(K ′0 ⊗ π∗(Sym(F 0)))2 =
K ′0/(K ′0)2 ⊗ π∗(Sym(F 0)). Clearly one obtains a natural map of the last term to (K ′0 ⊗ Sym(E′0)/(K ′0 ⊗
Sym(E′0))2; by working locally one may show this is an isomorphism. Therefore one gets the formula:

v∗(OCCT (S)(CT̃ (S̃)) ×
CT (S̃)

π∗(F0)) = OCE0 ⊗ λ−1(π∗0f
∗
0K

0)(4.0.43)

= OCE0 ⊗ λ−1(π∗1φ
∗
1π
∗(K0))(4.0.44)
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in the Grothendieck group π0(G(CE0,OCE0)). (Recall K•′ = π∗(K•). Therefore the commutative diagram in
( 4.0.34) shows that π∗0f

∗
0 (λ−1(K0)) = π∗1(φ∗1(π

∗(λ−1(K0)))).) Combining these provides the identification

0∗(OCF0) = OCE0 ⊗ λ−1(π∗1φ
∗
1π
∗NT̃ (S̃))⊗ λ−1(π∗0f

∗
0K

0)(4.0.45)

= OCE0 ⊗ λ−1(π∗0f
∗
0 (NT̃ (S̃)|T ))⊗ λ−1(π∗0f

∗
0K

0)

in π0GCF0(CE0,OCE0).

Step 3. Here we show that

λ−1(π∗0f
∗
0 ΩCT̃ (S̃)|T ) = λ−1(π∗0g

∗π∗F ΩT̃ |T )⊗ λ−1(π∗0g
∗π∗FNT̃ (S̃))(4.0.46)

= λ−1(π∗0f
∗
0 ΩT̃ |T )⊗ λ−1(π∗0f

∗
0NT̃ (S̃)|T )

Observe that the normal cone to the immersion T̃ in CT̃ (S̃) identifies with the normal bundle NT̃ (S̃). We begin
with the the split short exact sequence 0→ NT̃ (S̃)→ 0̃∗(ΩCT̃ (S̃))→ ΩT̃ → 0. Here 0̃ : T̃ → CT̃ (S̃) is the obvious

map. Let π̃ : CT̃ (S̃)→ T̃ denote the obvious projection. We apply the pull-back by π̃∗ and restriction to CS0(S)
(= restriction to T and pull-back by π∗ ) to obtain:

(4.0.47) λ−1(π∗ΩCT̃ (S̃)|T ) = λ−1(π∗(ΩT̃ |T ))⊗ λ−1(π∗NT̃ (S̃)|T )

of perfect complexes. Recall from the commutative diagram ( 4.0.34) that π ◦ φ1 ◦ π1 = f0 ◦ π0. Therefore, the
pull-back of this by π∗1 ◦ φ∗1 then provides the identification

λ−1(π∗0f
∗
0 ΩCT̃ (S̃)|T ) = λ−1(π∗0f

∗
0 ΩT̃ |T )⊗ λ−1(π∗0f

∗
0NT̃ (S̃)|T )

Finally observe that the map πF ◦ g : CT (T̃ )×
T
F0 → T also identifies with the map f0 defined in ( 4.0.34). See also

( 4.0.35). This provides the identification in ( 4.0.46).

Step 4. Next, using the observation that 0∗π∗0 = id, the projection formula and the diagram ( 4.0.35), one may
identify the term in ( 4.0.38) with

(4.0.48) λ−1(π∗0g
∗π∗F ΩT̃ |T )⊗ λ−1(π∗0g

∗π∗FF
−1)⊗ λ−1(π∗0f

∗
0K

−1)⊗ 0∗(OCT (T̃ )×
T
F0

)

= λ−1(π∗0f
∗
0 ΩT̃ |T )⊗ λ−1(π∗0f

∗
0F

−1)⊗ λ−1(π∗0f
∗
0K

−1)⊗ 0∗(OCT (T̃ )×
T
F0

)

Now we consider the term in ( 4.0.36). In view of 4.0.46, clearly this may be written as

(4.0.49) λ−1(π∗0f
∗
0 ΩT̃ |T )⊗ λ−1(π∗0f

∗
0NT̃ |S(S̃)|T ))⊗ λ−1(π∗0f

∗
0 (E−1

|T ))⊗ λ−1(π∗0f
∗
0K

0)

Therefore, a comparison of the terms in ( 4.0.48) with that in ( 4.0.49) (making use of ( 4.0.45)) shows that the
left-hand-side (right-hand-side) of the equation we wish to establish in the theorem is obtained by tensoring the
left-hand-side (right-hand-side, respectively ) of ( 4.0.45) by λ−1(π∗0f

∗
0 ΩT̃ |T )⊗ λ−1(π∗0f

∗
0 (F−1))⊗ λ−1(π∗0f

∗
0K

′−1).
(Recall the short exact sequence 0→ K−1 → E−1

|T → F−1 → 0, shows λ−1(E−1
|T ) = λ−1(K−1)⊗ λ−1(F−1).)

So far the arguments show that the required formula holds in the Grothendieck group of sheaves of modules
over OCT (E0) with supports contained in CF0. However, it is clear (see Definition 4.1 and Proposition 3.3) that the
term Ovirt

T has supports in T . Therefore, we obtain the required formula in the Grothendieck group with supports
contained in T . This completes the proof of the theorem. �

4.0.50. Deformation to the normal cone. We will presently define a deformation of the virtual structure sheaf
making use of the deformation to the normal cone. This will produce the deformed virtual structure sheaf considered
above. We begin with

(4.0.51) D̂ = CBlT×0(S×A1)(BlT̃ ×0(S̃ × A1)) ×
BlT×0(S×A1)

BlT ×0(E0 × A1)
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We begin with the composite map D̂ → CS×A1(S̃ × A1) ×
S×A1

E0 × A1 ∼= (CS(S̃) × A1) ×
S×A1

E0 × A1 → E1 × A1

where the last map is defined by the given obstruction theory on S. The composition of this map with the obvious
projection to S ×A1 factors also as the projection of D̂ to the factor CBlT×0(S×A1)(BlT̃ ×0(S̃×A1)) followed by the
projection to the vertex of the cone given by BlT ×0(S × A1) and the projection of the latter to S × A1. We will
denote the composite map D̂ → CBlT×0(S×A1)(BlT̃ ×0(S̃ ×A1))→ BlT ×0(S ×A1) by π̂f̂ : observe that this map is
a map between schemes flat over A1. π̂f̂t=1 identifies with the map π ◦ f : D → E1 → S as in ( 4.0.26) and π̂f̂t=0

identifies with the map φ1 ◦ π1 as in ( 4.0.32).

Observe that π∗(TCT̃ (S̃)|T ) sits over CT (S) so that we have the diagrams:

(4.0.52) π∗(TCT̃ (S̃)|T )

p0

��
CT (S)

0 //
CT (E1)

(with the the obvious projection p0 : π∗(E1|T )→ CT (S)) and

(4.0.53) TBlT̃ ×0(S̃×A1)|BlT×0(S×A1)

p̂

��
BlT ×0(S × A1)

0Bl //
BlT ×0(E1 × A1)

Let p̂ : BlT ×0(E1 × A1) → BlT ×0(S × A1) denote the obvious projection. Observe that the obvious maps
BlT ×0(S ×A1) and BlT ×0(S ×A1) to A1 are flat. Therefore, to show p̂ is smooth, it suffices to show that for each
fiber of p̂ over each point t of A1 : see [AK] Chapter VII, Corollary (1.9). This assertion is clear since the fibers
of p̂ over each t may be identified with either E1 (if t 6= 0) and Proj(E−1 ⊕ 1) if t = 0. Since 0Bl is a section to
p̂, it follows readily that 0Bl is a regular immersion locally. (See, for example, [Ful], (B.7.3).) Let Ê−1 denote the
conormal sheaf associated to the regular immersion 0Bl. (Since Ê1 = BlT ×0(E1 × A1), Ê−1 = Γ(Ê1) = the sheaf

of sections of Ê1.) Let ˆ̃S = BlT ×0(S̃ × A1), Ŝ = BlT ×0(S × A1). Observe that the obvious map Ŝ → A1 is flat.
Clearly the sheaf of sections of TBlT̃ ×0(S̃×A1)|BlT×0(S×A1) is given by the relative sheaf of differentials Ω ˆ̃S/A1|S̃

.

We let

(4.0.54) Ovirt
Ŝ = (p̂f̂)∗(λ−1(Ω ˆ̃S/A1|S̃

⊗ λ−1(Ê−1))

This is a complex of coherent sheaves on D̂, and for each tεA1, is a perfect complex on D̂t. (Observe that when t = 1,
the corresponding complex is just the virtual structure sheaf Ovirt

S as in ( 4.0.28). When t = 0, the corresponding
complex is the deformed virtual structure sheaf as in Definition 4.3.) We let Ōvirt

Ŝ denote the corresponding complex
of coherent sheaves on Ŝ defined as in ( 4.0.29).

Recall that one has the isomorphisms KT (T̃ ) ' G(T ) and KS(S̃) ' G(S). Therefore, one has a restriction map
G(S)→ G(T ). Next we will also need to consider the equivariant case where a torus acts on the algebraic stacks
S and S̃. In this case we will assume the following :

• the base scheme is an algebraically closed field so that the results on the fixed point stacks as in [J-4] section
6 apply,

• T = ST ′
and T̃ = S̃T ′

for a fixed sub-torus T ′ of T and

• p ⊆ R(T ) is the prime ideal corresponding to T ′.

4.0.55. Basic push-forward hypothesis:II. We will assume henceforth that the vector bundle K0 satisfies one of
the following hypotheses:

• there exists a class (which we denote) λ−1(K̂0) in π0(GT ×A1(Ŝ)) so that for each tεA1, i∗t (λ−1(K̂0))επ0(GT×t((Ŝ)t))
identifies with the class of λ−1(K0) in π0(G(T )) or
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• we are in the equivariant case.

Observe that in the latter case, one has the isomorphism

(4.0.55) (Ŝ)T = T × A1

To see this it suffices to observe that there are no fixed vectors in the normal cone CT (S) ⊆ CT̃ (S̃). Since the fixed
point stack T = ST (T̃ = (S̃)T ) is defined as a closed sub-stack of S (S̃, respectively ) (see [J-4] section 6), one
may reduce this assertion to the case of schemes where it is well-known. (See, for example, the proof of Proposition
6.8 in [J-4].) Therefore: π0(G(T × A1), T )(p) = π0(GT ×A1(Ŝ);T )(p)

∼= π0G(Ŝ;T )(p) and hence the class λ−1(K0)
in the first group lifts to a class in π0G(Ŝ;T )(p). Observe also that in either case one may identify λ−1(K̂0) with

a class in π0(KŜ( ˆ̃S;T )) (or a localization of the latter in the equivariant case) so that tensor product with this
class is well-defined. A similar argument applies to show that the tensor product with the class λ−1(K−1) is well
defined.

Definition 4.6. Observe that the class i∗1(λ−1(K̂0))επ0(GT ×1((Ŝ)1)) (επ0(GT ×1((Ŝ)1), T ) in the equivariant case)
maps to a class in π0(G(S)) ∼= π0(KS(S̃)) (in π0(G(S, T )) ∼= π0(KS(S̃, T )), respectively ). (Recall (Ŝ)t=1 = S.)
We will denote this class by λ−1(K0

S).

Examples 4.7. There are various situations where the hypothesis 4.0.55 is satisfied. The simplest is where the
stacks T and S are smooth so that the above K-groups identify with the corresponding homotopy groups of G-
theory. In this case the required hypothesis is satisfied, by taking the obstruction theories to be ΩS [0] and ΩT [0].
Observe that now K0 identifies with the conormal sheaf. Using deformation to the normal cone, one may define a
class as required.

An alternate situation is the following. Assume that there exists a vector bundle K0
S on S and a section s of

K0
S so that T is defined as the sub-stack where s vanishes. Let K0

S = Γ(K0
S) = the sheaf of sections of K0

S . Then
λ−1(K0

S) is a perfect complex of OS -modules which is a resolution of u∗(OT ). Let K̂0
S = BlT ×0(K0

S ×A1): this is a
vector bundle on Ŝ. Observe that (K̂0

S)t=t0|T
∼= K0 where t0εA1 is any closed point and K0 is defined as in 4.0.31.

Therefore, the class of λ−1(K̂0
S)επ0(GT ×A1(Ŝ)) satisfies the hypotheses in 4.0.55.

Henceforth we will denote CT (T̃ )×
T
F0 by DT and the corresponding closed immersion DT → D = CS(S̃)×

S
E0

by w.

Proposition 4.8. (Preliminary push-forward formula) Assume the above hypotheses. Now one obtains the formulae

i) w∗(Ovirt
T ⊗g∗π∗Fλ−1(K−1)) = Ovirt

S ⊗f∗π∗E(λ−1(K0
S)) in π0(GT (D)) ∼= π0(G(T ,OT )) and hence in π0(GS(D) ∼=

π0(G(S)). In the equivariant case, the corresponding formula holds in the above Grothendieck groups localized at
the prime ideal p.

ii) w∗(τ(Ovirt
T )⊗ ch(g∗π∗Fλ−1(K−1))) = τ(Ovirt

S )⊗ ch(f∗π∗E(λ−1(K0
S)) in HBr

∗ (S,Γ(∗)).

(Here πE : E1 → S is the obvious projection and f : D → E1 is the map considered in Definition 4.0.26.)

Proof. One begins with the (homotopy) commutative diagram:

GT (DT )
w∗ //

GT (D)
//
GS(D)

GT ×A1(DT × A1)
w∗ //

i∗1'

OO

i∗0 '
��

GT ×A1(D̂)

i∗1'

OO

i∗0 '
��

GT (DT )
0∗ //

GT (CT (E0))

Here we let D = CE0 = CS(S̃)×
S
E0 and DT = CF0 = CT (T̃ )×

T
F0. The vertical maps in the first column are

weak-equivalences provided by the homotopy property of G-theory and the maps in the rightmost column are the
weak-equivalences provided by the usual devissage and the homotopy property in G-theory. By devissage, the
G-theory with supports in T (T × A1) identifies with the G-theory of T (the G-theory of T × A1, respectively
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). Therefore the horizontal maps in the diagram may be identified with the identity showing that the squares
commute.

The image of Ovirt
T ⊗π∗0f∗0π∗(K−1) by the map 0∗ in the bottom row is described by the last theorem. We next

show that the class Ovirt
C lifts to the class Ovirt

S under the isomorphisms forming the right vertical maps, i.e. the
class of Ovirt

Ŝ in π0(GT ×A1(D̂) maps under the map i∗1 (i∗0) to the class of Ovirt
S in π0(GT (D)) (the class of Ovirt

CT (S)

in π0(GT (CT (E0))), respectively ).

For this recall first that

Ovirt
Ŝ

= (π̂f̂)∗(λ−1(Ω ˆ̃S|S̃/A1)⊗ λ−1(Ê−1)).

Therefore,

(Ovirt
Ŝ

)t=0 = (π̂f̂)∗0(π
∗(λ−1(ΩCT̃ (S̃)|T )⊗ π∗(λ−1(E−1

|T )))) = π∗1φ
∗
1(π

∗(λ−1(ΩCT̃ (S̃)|T ))⊗ π∗(λ−1(E−1
|T )))

= π∗0f
∗
0 (λ−1(ΩCT̃ (S̃)|T ⊗ λ−1(E−1

|T )) = Ovirt
C

since f0 ◦ π0 = π ◦ φ1 ◦ π1. Clearly,

(Ovirt
Ŝ

)t=1 = f∗π∗(λ−1(ΩS̃|S)⊗ λ−1(E−1)) = Ovirt
S

Observe that Ovirt
Ŝ

has supports in Ŝ while Ovirt
C has supports in T and Ovirt

S has supports in S. Recall the
class λ−1(K̂0) has supports in T × A1 and λ−1(K0) has supports in T . Therefore, Ovirt

Ŝ ⊗ (π̂f̂)∗λ−1(K̂0) has
supports in T × A1 ⊆ Ŝ; similarly Ovirt

S ⊗ (π̂f̂)∗t=1i
∗
t=1(λ−1(K̂0)) has supports in T × 1 ⊆ S × 1 while Ovirt

C has
supports contained in T ×0 ⊆ CT (E0|T ). (Since λ−1(K0

S) lifts to a class in π0(KT (S)) it follows that one may take
the product of the lifts of the classes λ−1(K0) and Ovirt

C . A corresponding reasoning shows that the remaining
tensor products above are also defined at the level of G-theory.) This completes the proof of the proposition in the
non-equivariant case.

In the equivariant case the proof is exactly the same after localization; the key point is that after tensoring
the above candidates for the virtual structure sheaves with the classes (π̂f̂)∗t (λ−1(K0

Ŝ)), the resulting complexes
all live in the appropriate Grothendieck groups localized at the prime ideal p, and hence in the above localized
Grothendieck groups with supports in T × A1; therefore they identify under the isomorphisms defined by i∗0 and
i∗1.

The formula ii) in the proposition follows from the first by applying the Riemann-Roch theorem and making
use of the property (vii) in Theorem 1.1 of [J-5] (which relates the Riemann-Roch transformation and the Chern
character with values in Bredon-style homology and cohomology, respectively ). �

Theorem 4.9. (Push-forward formula) Assume the above hypotheses. Now one obtains the formulae

i) u∗(Ōvirt
T ⊗ λ−1(K−1)) = Ōvirt

S ⊗ λ−1(K0
S) in π0(GT (S)) and hence in π0(G(S)) in the non-equivariant case

and in the above groups localized at the prime ideal p in the equivariant case.

ii) u∗(τ(Ōvirt
T )⊗ ch(λ−1(K−1))) = τ(Ōvirt

S )⊗ ch(λ−1(λ−1(K0
S)) in HBr

∗ (S,Γ(∗)).

The last formula also holds in H∗
smt(S,Γ(∗)) if the stack S is smooth and in equivariant forms of homology (and

cohomology) (as in [J-5] Definition 5.12) in the equivariant case .

Proof. It suffices to interpret the formula of the last theorem in the form stated. For that, we recall the cartesian
squares:

(4.0.56) T S̃|S
//

p

��

D

f

��
S

0E1 //
E1

and
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(4.0.57) T T̃|T
//

p0

��

DT

g

��
T

0F1 //
F1

Let πE be the projection E1 → S, z : S → T S̃|S be the zero section and i : T S̃|S → D the map in the
above square. (Let πF is the projection F1 → T , zT : T → T T̃|T be the zero section and iT : T T̃|T → DT
the map in the above square, respectively ). Then one observes that the composition i ◦ z (iT ◦ zT ) is a section
to the composite map πE ◦ f : D → E1 → S (to the composite map πF ◦ g : DT → F1 → T , respectively ).
Recall Ōvirt

T επ0G(T ) ∼= π0GT (DT ) and in fact iT ∗(zT ∗(Ōvirt
T )) identifies with Ovirt

T under the above isomorphism.
Similarly i∗z∗(Ōvirt

S )επ0G(S) identifies with Ovirt
S under the isomorphism π0G(S) ∼= π0GS(D). Therefore we

obtain:

Ovirt
S ⊗ f∗π∗E(λ−1(K0

S)) = i∗z∗(Ōvirt
S )⊗ f∗π∗E(K0

S)

= i∗z∗(Ōvirt
S ⊗ z∗i∗f∗π∗E(K0

S)) = i∗z∗(Ōvirt
S ⊗K0

S).

Recall the isomorphism π0(KS(S̃)) ∼= π0(G(S)) and π0(KT (T̃ )) ∼= π0(G(T )). Therefore, the above tensor products
define well-defined classes in G-theory. This provides the required identification of the right-hand-side of the
formula in Theorem 4.9 i) with the right-hand-side of the formula in Proposition 4.8 i).

We may identify the left-hand-side of the formula in i) using similar arguments applied to the second square
above:

w∗(Ovirt
T ⊗ g∗π∗F (λ−1(K−1))) = w∗(iT ∗zT ∗(Ōvirt

T )⊗ g∗π∗Fλ−1(K−1)) = w∗(iT ∗zT ∗(Ōvirt
T ⊗ λ−1(K−1))

= i∗z∗u∗(Ōvirt
T ⊗ λ−1(K−1))

The last identification uses w ◦ iT ◦ zT = i ◦ z ◦ u.

The second formula in the theorem follows from the first by applying Riemann-Roch. �

Remark 4.10. One would have liked to prove the equality in the first formula of the last theorem in π0GT (S,Ovirt
S );

however, this does not seem to hold because the class of the virtual structure sheaf Ovirt
Ŝ

does not seem to specialize
to the classes of the other virtual structure sheaves unless one uses G-theory in the usual sense.

4.0.58. Proofs of Theorems 1.5 and 1.8. The last theorem readily proves the first two formulae in Theorem 1.5
and the first formula in Theorem 1.8. Now corollary 2.11 completes the proof of the formula ( 1.1.3) in Theorem 1.5.
The second formula in Theorem 1.8 follows by similar reasoning.

Examples 4.11. We already observed that the when the stacks S and T are smooth we recover the usual push-
forward formula for the structure sheaves. All the remaining examples will fit into the second class of examples
considered in 4.7.

a) Next we consider the following situation, in preparation for the general case of the setting of the conjecture
of Cox, Katz and Lee as in Theorem 1.7. Accordingly X is a smooth projective variety and Y is a closed sub-
variety. We will further assume that X is convex, for example, X is a flag variety. Let V be a convex vector
bundle on X, so that H1(C, f∗(V )) = 0 for all genus 0 stable maps f : C → X and let s be a section of V so
that Y identifies with the zeros of s. βεCH1(X,Z), γεCH1(Y,Z) are cycle classes so that γ maps to β under
the map Y → X. We consider the moduli stacks M0,n(X,β) and M0,n(Y, γ). Let ek : M0,n(X,β) → X be the
obvious map sending the stable map f : (C, p1, ..., pn) → X to f(pk). The universal stable curve over M0,n(X,β)
is πn+1 : M0,n+1(X,β) which ignores the last marked point and contracts any components which have become
unstable. Let Vβ,n = πn+1∗e

∗
n+1(V ) which is a vector bundle on M0,n(X,β) by the convexity of V . Observe that

the section s defines a section σ of the bundle Vβ,n such that ti∗(γ)=βM0,n(Y, γ) identifies with the zeros of the
section σ.
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Now we obtain the cartesian square:

(4.0.59) ti∗(γ)=βM0,n(Y, γ)
s′ //

��

M0,n(X,β)

0

��
M0,n(X,β)

σ // Vβ,n

Observe that this is a diagram as in 4.0.30, with S̃ = Vβ,n, T̃ = S = M0,n(X,β) and S0 = ti∗(γ)=βM0,n(Y, γ). Now
we let E−1 = Γ(Vβ,n) = the sheaf of sections of Vβ,n, E0 = 0∗(ΩVβ,n

) with the obvious map E−1 → E0. We also let
F−1 = s′

∗(E−1) and F 0 = s′
∗ΩS with the map F−1 → F 0 defined as dual to the following map. The differential

of the section σ defines a map T T̃ → TVβ,n: we compose this with the projection TVβ,n → Vβ,n to obtain a map
T T̃ → Vβ,n. Now observe that the F−1 = s′

∗(E−1) so that K−1 = 0 and K0 = kernel(s′∗0∗(ΩVβ,n
) → s′

∗(ΩS)
which identifies with s′∗(E−1) again.

Theorem 4.9 shows that with the above obstruction theories, one obtains the formula:

⊕i∗(γ)=βiγ∗(OM0,n(Y,γ)) = λ−1(Γ(Vβ,n)).OM0,n(X,β)

2. Next we consider a generalization of the case in the previous example, where X is no longer required to be
convex, but only smooth. We will also require that V satisfy the following hypotheses:

i) V is generated by global sections and ii) the exact sequence Γ(X,V )⊗OX → V → 0 defines a closed immersion
of X in the Grassmanian of r-planes in An, where n = dim(Γ(X,V )).

In this situation we may first assume that X is imbedded in the Grassmanian, G(r, k). Moreover, the section σ
induces a section σQ of the universal quotient bundle Q on G(r, k) via the tautological quotient mappingH0(X,V )⊗
OG(r,k) → Q. Let G ⊆ G(r, k) be the zero locus of σQ. It follows that σQ is a regular section of Q, that
G ∼= G(r, k− 1) and that Y = X ∩G. Let βεH2(X) be fixed and let β map to dεH2(G(r, k)) ∼= H2(G) ∼= Z. We let
the vector bundle on M0,n(G(r, k), d) defined by Q be denoted Vd,n. Therefore, we obtain the cartesian diagram
as in 4.0.30 with T = t

i∗(γ)=β
M0,n(Y, γ), S = M0,n(X,β), T̃ = M0,n(G, d) and S̃ = M0,n(G(r, k), d). Moreover T̃

is defined by the vanishing of a section of Vd,n.

In this case there is a proof of the required formula in [CKL] using prior work of [Gat]. However, we will show
that Theorem 4.9 provides a quick independent proof. Let I define the sheaf of ideals defining S in S̃. Since S̃ is
smooth, the complex I/I2 → Ω1

S̃|S is an obstruction theory for S. Now we claim, F−1 = Γ(Vd,n|T )⊕ u∗(I/I2) →
Ω1
S̃|T = u∗(Ω1

S̃|S) = F 0 defines an obstruction theory for T . First observe the short exact sequence:

Γ(CT̃ (S̃))⊗
OT̃

OT → Γ(CT (S̃))→ Γ(CT (T̃ )→ 0

where we have used CX(Y ) = the normal cone of a closed sub-stack X in Y and Γ(CX(Y )) denotes its sheaf
of sections, which is the conormal sheaf. Next observe that u∗(I/I2)(= u∗Γ(CS(S̃))) maps to Γ(CT (S̃)) so that
the composition into Γ(CT (T̃ )) is a surjection. Moreover there is a natural surjection Γ(Vd,n|T ) = u∗(Γ(Vd,n) →
u∗Γ(CT̃ (S̃)). It follows that one has an induced surjection F−1 → Γ(CT (S̃)).

The differential F−1 → F 0 is defined by the surjection F−1 → Γ(CT (S̃)) followed by the obvious map of
the latter to Ω1

S̃|T . The fact that the map F−1 → Γ(CT (S̃)) is a surjection also shows that the sequence F−1 →
Ω1
S̃|T ⊕Γ(CT S̃)→ Ω1

S̃|T → 0 is exact. Therefore F−1 → F 0 defines a perfect obstruction theory for T . (See 4.0.23.)

Next one observes that there is a distinguished triangle u∗(E−1) → F−1 → Γ(Vd,n|T ) and that the map
u∗(E0)→ F 0 is an isomorphism. One views the map u∗(E)→ F as double complex of sheaves and takes the total
complex to obtain the mapping cone; one follows this by the shift [−1] to obtain the homotopy fiber which is the
complex K. These observations readily show that K−1 = 0 and that K0 = Γ(Vd,n|T ). Therefore, Theorem 4.9
provides the required formula directly.

4.1. Proof of the conjecture of Cox, Katz and Lee. ( See Theorem 1.7.)
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Finally we consider the most general case of the above examples, where X is still required to be smooth, but
there are no other hypotheses on V except that it is convex. The required result will follow from the general push-
forward formula and the examples 4.7 once we show that it is possible to choose weakly-compatible obstruction
theories with K−1 = 0 and K0

S = Vβ,0 = πn+1∗e
∗
n+1(V ) the vector bundle induced by V onM(X,β)0,n.

In this case let the base stack B =M0,n = the stack of pre-stable curves with n-marked points. Clearly there is a
forgetful map F :M0,n(X,β)→ B which forgets the map but does not stabilize. Now one may make the following
choice for a perfect relative obstruction theory for the stack S =M0,n(X,β): E• = Rπn+1∗e

∗
n+1(σ≥−1LX)[1] where

LX is the cotangent complex of X and σ≥−1LX its naive truncation to degrees ≥ −1. (Observe that the fibers
of the map πn+1 are curves so that Rπn+1 has cohomological dimension at most 1.) In fact one has the following
more explicit description of σ≥−1LX : choose a closed immersion i of X into a smooth convex variety, P, and let
Γ(CX(P)) denote the corresponding co-normal sheaf. Then σ≥−1LX = Γ(CX(P))→ i∗(ΩP) as in 4.0.22.

This choice works even when X is not smooth, so that the same choice would be give us a relative obstruction
theory for T =M0,n(Y, γ). However, to obtain a relative obstruction theory F • weakly compatible with E•, one
may make the following alternate choice: let Ob•Y be the two-term complex V ⊕Γ(CX(P))|Y → ΩP|Y in degrees −1
and 0 where the differential is defined as in the last example above. (As shown in the last example above, this in
fact defines a perfect obstruction theory for Y .) Now a straight-forward spectral sequence computation will show
that F • = Rπn+1∗ev

∗
n+1(Ob

•
Y )[1] is also a perfect obstruction theory forM0,n(Y, γ).

To verify that these are weakly-compatible, one first needs to observe that the square

M0,n+1(Y, γ)
v //

πY
n+1

��

M0,n+1(X,β)

πX
n+1

��
M0,n(Y, γ)

u //
M0,n(X,β)

is cartesian. Moreover using the observation that πn+1 is flat of relative dimension 1, one may make use of
Grothendieck duality and flat-base-change to conclude that the base-change map u∗(RπY

n+1∗) → RπX
n+1∗v

∗ is an
isomorphism of derived functors. Therefore, one observes that for the two obstruction theories, E• and F • defined
above, u∗(E0) ' F 0 and F−1 = Rπn+1∗ev

∗
n+1(V ) ⊕ u∗(E−1). One may also observe using the convexity of the

bundle V that R1πn+1∗ev
∗
n+1(V ) = 0 so that F−1 = πn+1∗ev

∗
n+1(V ) ⊕ u∗(E−1). Now an argument as in the last

two examples shows K−1 = 0 and K0
S = πn+1∗ev

∗
n+1(V ). Therefore, Theorem 1.5 provides the required formula.

and completes the proof of Theorem 1.7.

4.2. Proof of Theorem 1.9. Next assume the situation of Theorem 1.9. We first let Ovirt
S̃

be the complex of
sheaves of OS̃ modules obtained as extension by zero of Ovirt

S ; similarly Ovirt
T̃

will be the extension by zero of
Ovirt
T to T̃ . We proceed to define a Gysin map u∗ : π0(KT (T̃ ,Ovirt

T̃
, T ))(p) → π0(KS(S̃,Ovirt

S̃
, T ))p where the

Grothendieck groups are the Grothendieck groups of PerfS(S̃,Ovirt
S̃ , T ) and of PerfT (T̃ ,Ovirt

T̃
, T ).

Recall from ( 6.2) that an object PεPerfT (T̃ ,Ovirt
T̃

, T ) has a finite increasing filtration F0 ⊆ F1 ⊆ · · · ⊆ Fn

so that for each 0 ≤ i ≤ n, Fi(P )/Fi−1(P ) ' Ovirt
T̃
⊗
OT̃

Qi, where QiεPerfT (T̃ ,OT̃ , T ) and is a complex of flat

OT̃ -modules. Therefore, it suffices to define u∗ on a class of the form Ovirt
T̃
⊗
OT̃

Q, where Q is a complex as one of

the Qis above.

Next observe the isomorphism u∗ : π0(KT (T̃ , T ))(p) → π0(KS(S̃, T ))(p). Moreover u∗ is also an isomor-
phism, though not the inverse of u∗. Therefore, for each class QT επ0(KT (T̃ , T ))(p), there exists a unique class
QSεπ0(KS(S̃, T ))(p) such that u∗(QS) = QT . Observe that there is a natural pairing π0(KS(S̃, T ))⊗π0(KS(S̃,Ovirt

S̃
, T ))

induced by the tensor product. We define

(4.2.1) u∗(Ovirt
T̃
⊗
OT̃

QT ⊗
OT̃

λ−1(K−1)) = Ovirt
S̃
⊗
OS
λ−1(K0

S)⊗QS

Observe also that the classes λ−1(K0
S)επ0(KS(S̃, T ))(p) and λ−1(K−1)επ0(KT (T̃ , T ))(p) are invertible. Therefore,

the above formula defines u∗ on π0(KT (T̃ ,Ovirt
T̃

, T ))(p).
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Observe that a pull-back u∗ : π0(KS(S̃,Ovirt
S̃

, T )) → π0(KT (T̃ ,Ovirt
T̃

, T )) is always defined. In view of the
formula for u∗ above, we see that the composition u∗ ◦ u∗ is given by:

(4.2.2) u∗u∗(F ) = F ⊗
OT̃

λ−1(K0)⊗
OT̃

λ−1(K−1)−1, Fεπ0((KT (T̃ ,Ovirt
T̃

, T )))(p)

We have thereby proven all but the last formula in Theorem 1.9.

We proceed to consider this next. By the hypotheses on the complexes Γh(∗) restricted to the étale sites of
schemes, we may identify Het,T

∗ (S,Γ(•)) with H∗
et,ET×

T
S(ET×

T
S̃,Γ(∗)). We will denote this by HT

∗ (S,Γ(•)). In view

of this we obtain a restriction map u∗ : HT
∗ (S,Γ(∗))→ H∗

T (T ,Γ(•)). Moreover one has a localization isomorphism
HT
∗ (S,Γ(∗))(p)

∼= HT
∗ (T ,Γ(∗))(p) induced by both u∗ and hence u∗. Therefore this formula follows by multiplying

both sides of the formula ( 1.1.5) in Theorem 1.8 by Eu((K0
S)∨) and applying projection formula to the resulting

term on the left hand side. This completes the proof of Theorem 1.9.

5. Equivariant Bredon homology and cohomology:Lefschetz Riemann-Roch

First we observe from [J-6] that π∗(K(X,G)) is a λ-ring where X is a scheme provided with the action of a
linear algebraic group. However the corresponding γ-filtration is not nilpotent. Therefore, we let π∗(K(X,G))abs

Q =
Π
i
π∗(K(X,G))Q(i), where π∗(K(X,G))Q(i)= the eigen-space for the Adams operation ψk with eigen value ki. We

will let the presheaf on [X/G]iso.et be defined by U 7→ π∗(K(U,G))abs
Q be denoted π∗(K( , G)[X/G])Q.

Let S denote an algebraic stack as before for which a coarse moduli space M exists. Assume that a smooth group
scheme G acts on S: clearly G has an induced action on M. We will assume further that S is provided with a sheaf
of dgas A so that (S,A) is a dg-stack in the sense of the next section. Taking X = M̃ (for a closed G-equivariant
immersion M → M̃), the above definition defines π∗(K( , G)abs

[M̃/G]
)Q. For each i ≥ 0, let π∗K( , A,G)SQ(i) be

defined by the co-cartesian square:

(5.0.3) π∗(K( )[M/G])Q(i)
//
π∗(K( ,A, G)S)Q(i)

π∗(K( )[M/G])Q

OO

// π∗(K( ,A, G)S)Q

OO

Then we let π∗(K( ,A, G)S)abs
Q = Π

i
π∗(K( ,A, G)S)Q(i)

Now we will define the complexes of presheaves:

KΓh
[S/G](•) = Homi−1π∗(K( ,G)abs

[M̃/G]Q
)(π∗(p

G
∗ K( ,A, G)abs

S Q), π∗(H( , G, Sp(Γh(•)))Q)) and

KΓ[S/G](•) = π∗(pG
∗ K( ,A, G)S

abs
Q )

L
⊗

i−1π∗(K( ,G)[M̃/G]
abs

Q
)

π∗(H( , G, SpΓ(•))Q)
(5.0.4)

as presheaves on [M/G]iso.et. i : M→ M̃ is a G-equivariant closed immersion into a smooth scheme, H( , G, Sp(Γh(•)))
(H( , G, Sp(Γ(•)))) is the presheaf U → Het(EG×

G
U, Sp(Γh(•)))

(U → Het(EG×
G
U, Sp(Γ(•)))), Uε[M/G]iso.et respectively ) and the functor V 7→ K[M̃/G](V,G) is the presheaf of

spectra on [M/G]iso.et defined by K[M̃/G](V,G) = K(Perf([V/G])).

Remarks 5.1. 1. For Het(EG×
G
U, Sp(Γh(•))) to be defined, we will need to assume either that Γh(•) is a complex

of sheaves on the big étale site of all algebraic spaces, or that the hyper-cohomology Het(X,Sp(Γh(•))) is con-
travariantly functorial in X for all smooth maps. In the former case, Γh(•) defines a complex on the étale site of
the simplicial algebraic space EG×

G
U , so that Het(EG×

G
U, Sp(Γh(•))) is defined. In the latter case, one may adopt

the technique in [J-2] section (3.6.4) to define this: i.e. one first takes {Het((EG×
G
U)n, Sp(Γh(•)))|n}. This forms

a co-chain complex of abelian spectra; one applies a functor DN that produces a cosimplicial object from this and
then takes its homotopy limit over ∆ to define Het(EG×

G
U, Sp(Γh(•))).
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2. If one is interested only in Riemann-Roch at the level of Grothendieck groups one may define

KΓh
[S/G](•) = Homπ0(K( ,G)abs

[M/G]Q
)(π0(pG

∗ K( ,A, G)abs
S Q), π∗(H( , G, Sp(Γh(•)))Q)) and

KΓ[S/G](•) = π0(pG
∗ K( ,A, G)S

abs
Q )

L
⊗

π0(K( ,G)[M/G]
abs
Q )

π∗(H( , G, SpΓ(•))Q)
(5.0.4)

Here it is possible to ignore the imbedding i : M→ M̃ by making use of [Ful] Theorem 18.2.

Just as in [J-5] section 5, one may now provide the following definition of G-equivariant Bredon cohomology
and homology for an algebraic stack S with a coarse moduli space M and provided with the action by a smooth
group scheme G. For the purposes of this paper, we only need a Lefschetz-Riemann-Roch theorem at the level of
Grothendieck groups so that one may adopt the alternate definition of the above complexes given above.

Definition 5.2. (i) Hs
Br(S, G; Γ(t)) = Gr−s,t(Γ([M/G],KΓ[S/G](•)))

(ii) HBr
s (S, G; Γh(t)) = Grs,t(Γ([M/G],KΓ[S/G](•)))

Theorem 5.3. (Existence of equivariant Bredon-style theories with good properties) Assume that for all algebraic
stacks considered below, a coarse moduli space exists which is a quasi-projective scheme. Moreover assume that a
fixed smooth group scheme G acts on the stack and hence on its moduli space.

(i) Assume that f : S ′ → S is a G-equivariant map of algebraic stacks. Then f∗ defines a map Hs
Br(S, G,Γ(t))→

Hs
Br(S ′, G,Γ(t)) making Bredon style cohomology a contravariant functor (alg.stacks/S with G − action) →

(graded rings). Both Bredon style cohomology and Bredon style local cohomology are provided with ring structures.

(ii) If, in addition f is proper, one obtains a map f∗ : HBr
s (S ′;G,Γ(t))→ HBr

s (S;G,Γ(t)) making Bredon style
homology a covariant functor for proper maps (alg.stacks) → (abelian groups). In case f : S ′ → S is a flat
map of relative dimension c, one also obtains a pull-back f∗ : HBr

s (S;G,Γh(t)) → HBr
s+2c(S ′;G,Γh(t+ c)) making

Bredon style homology a contravariant functor for flat maps.

(iii) HBr
∗ (S;G,Γ(•)) is a module over H∗

Br(S;G,Γ(•)) and the latter is a module over π∗(K(S, G,AS)).

(iv) Projection formula. Let f : S ′ → S denote a proper G-equivariant map of algebraic stacks. Now the
following diagram commutes:

H∗
Br(S;G,Γ(s))⊗HBr

∗ (S ′;G,Γ(t))
f∗⊗id //

id⊗f∗

��

H∗
Br(S ′;G,Γ(s))⊗HBr

∗ (S ′;G,Γ(t)) // HBr
∗ (S ′;G,Γ(t− s))

f∗

��
H∗

Br(S;G,Γ(s))⊗HBr
∗ (S;G,Γ(t)) // HBr

∗ (S;G,Γ(t− s))

(v) In case the algebraic stack S is a separated algebraic space of finite type over the base scheme, one obtains
an isomorphism H∗

Br(S, G,Γ(•)) ∼= H∗
et(S, G,Γ(•)) where the right hand side is the G-equivariant étale hyperco-

homology of S defined with respect to the complex Γ(•). Under the same hypothesis, one obtains an isomorphism
HBr
∗ (S, G,Γ(•)) ∼= Het

∗ (S, G,Γ(•)) ∼= H∗
et(S, G,Γh(•)). (The corresponding statements hold generically if the alge-

braic stack S is a separated Deligne-Mumford stack which generically is an algebraic space, i.e. if the stack S is an
orbifold.)

(vi) There exists a multiplicative homomorphism ch : π∗K(S, G,A)→ H∗
Br(S;G,Γ(•)) called the Chern charac-

ter

For the remaining statements we will need to require that the obvious map p : S → M (from the stack to its
coarse moduli space) is of finite cohomological dimension.

(vii) The Riemann-Roch transformation. In this case there exists a Riemann-Roch transformation:

τG : π∗G(S, G,A)→ HBr
∗ (S;G,Γ(•))

Moreover the Chern-character and τ are compatible in the usual sense:

i.e. τ(α ◦ β) = τ(α) ◦ ch(β), where αεπ0(G(S, G,AS)) and βεπ0(K(S, G,AS)).
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(viii)Assume that the complex Γh(•) is defined on the smooth site of the stack [S/G]. Then there exists a
map σ∗ from HBr

∗ (S, G,Γ(•)) to the G-equivariant hypercohomology of the underlying (non-dg) stack computed
on the smooth site, namely H∗

smt([S/G],Γh(•)) ⊗ Q ∼= H∗
smt(EG×

G
S,Γh(•)) ⊗ Q. This theory will be denoted

Hsmt
∗ (EG×

G
S,Γ(•)). In case S is a Deligne-Mumford stack provided with the action by a smooth affine group scheme

G, and Γh(•) is any of the complexes considered in [J-5] section 4, one obtains a similar map σ∗ : HBr
∗ (S, G,Γ(•))→

H∗
et(EG×

G
S+,Γh(•)) ⊗ Q where EG×

G
S+ is the semi-simplicial algebraic stack obtained from EG×

G
S by forgetting

the degeneracies: this type of cohomology is discussed in [J-5] Appendix B and also in [Ol]. This map is compatible
with respect to push-forward associated to G-equivariant closed immersions, for all such algebraic stacks.

Proof. The proof of this theorem follows entirely along the same lines as the proof of Theorem 1.1 in [J-5] and is
therefore skipped. �

Theorem 5.4. (Lefschetz-Riemann-Roch: first form) Let f : S ′ → S denote a G-equivariant proper map strongly
of finite cohomological dimension between algebraic dg-stacks provided with the action of a smooth group scheme
G. Assume that a coarse moduli space M′ (M) exists for the stack S ′ (S, respectively ) as in [J-5] 1.0.2.

Now one obtains the commutative square:

π∗G(S ′, G)
τ[S′/G]//

f∗

��

HBr−G
∗ ([S ′/G],Γh(∗))

f∗

��
π∗G(S, G)

τ[S/G]//
HBr−G
∗ ([S/G],Γh(∗))

(The notion of a map being strongly of finite cohomological dimension is defined in [J-5] section 8. )

Proof. Once again the proof the theorem follows along the same lines as the proof of Theorem 1.4 in [J-5] and is
therefore skipped. �

6. Appendix A: G-theory and K-theory of DG-stacks, Equivariant homology for algebraic stacks

For the convenience of the reader, we summarize some of the key definitions and properties of dg-stacks and
their G-theory and K-theory. Further details may be found in [J-6] and [J-7].

Definition 6.1. A DG-stack is an algebraic stack S of Artin type which is also Noetherian provided with a sheaf
of commutative dgas, A, on Ssmt, so that Ai = 0 for i > 0 Hi(A) = 0 for i << 0 and each Ai is a coherent
OS -module. We will further assume that each H∗(A) is a sheaf of graded Noetherian rings. (The need to consider
such stacks should be clear from from the applications to virtual structure sheaves and virtual fundamental classes
considered in this paper. See [J-7] for a comprehensive study of such stacks from a K-theory point of view.) For
the purposes of this paper, we will define a DG-stack (S,A) to have property P if the associated underlying stack
S has property P : for example, (S,A) is smooth if S is smooth.Often it is convenient to also include disjoint unions
of such algebraic stacks into consideration.

6.1. Morphisms of dg stacks. A 1-morphism f : (S ′,A′)→ (S,A) ofDG-stacks is a morphism of the underlying
stacks S ′ → S together with a map A → f∗(A′) compatible with the map OS → f∗(OS′). Such a morphism will
have property P if the associated underlying 1-morphism of algebraic stacks has property P . Clearly DG-stacks
form a 2-category. If (S,A) and (S ′,A′) are two DG-stacks, one defines their product to be the product stack
S × S ′ endowed with the sheaf of DGAs A�A′. An action of a group scheme G on a DG-stack (S,A) will mean
morphisms µ, pr2 : (G× S,OG �A)→ (S,A) and e : (S,A)→ (G× S,OG �A) satisfying the usual relations.

Let i : S → S̃ denote a closed immersion of algebraic stacks. Assume S is provided with a sheaf of dgas A making
(S,A) a dg-stack. One may now define a dg-structure sheaf Ã = i∗(A). For the following discussion we consider
the category of modules over Ã: clearly this discussion reduces to the case of modules over A by considering the
case i = the identity.

6.2. A left Ã-module is a complex of sheaves M of OS̃ -modules, bounded above and so that M is a sheaf of left-
modules over the sheaf of dgas Ã. The category of all left Ã-modules and morphisms will be denoted Modl(S, Ã).
A diagram M ′ → M → M ′′ → M [1] in Modl(S, Ã) is a distinguished triangle if it is one in Modl(S,OS̃). We
define a map M ′ →M in Modl(S, Ã) to be a quasi-isomorphism if it is a quasi-isomorphism in Mod(S,OS̃). Since
we assume A is a sheaf of commutative dgas, there is an equivalence of categories between left and right modules;
therefore, henceforth we will simply refer to Ã-modules rather than left or right Ã-modules. The derived category
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D(S̃, Ã) is the localization of Modl(S, Ã) by inverting maps that are quasi-isomorphisms. An Ã-module M is
perfect if the following holds: there exists a non-negative integer n and distinguished triangles FiM → Fi+1M →
A

L
⊗
OS

Pi → FiM [1] in Mod(S, Ã), for all 0 ≤ i ≤ n − 1 so that F0M ' Ã
L
⊗
OS̃

P0 with each Pi a perfect complex of

OS̃ -modules. (In the presence of a group-scheme action G on the stack, we define a Ã-module M to be perfect if it
has a similar filtration with each Pi a perfect complex of G-equivariant OS̃ -modules.) The morphisms between two
such objects will be just morphisms of Ã-modules. This category will be denoted Perf(S̃, Ã). One may similarly
define the category PerfS(S̃, Ã) where the complexes Pi are required to be perfect complexes of OS̃ -modules
with supports contained in S. Let Perffl,S(S̃, Ã) denote the full sub-category of PerfS(S̃, Ã) consisting of flat
Ã-modules. We will let Coh(S,A) (Per(S,A)) denote the above category with this Waldhausen structure.

An Ã-module M is coherent if H∗(M) is bounded and finitely generated as a sheaf of H∗(Ã)-modules. Again
morphisms between two such objects will be morphisms of Ã-modules. This category will be denoted Coh(S, Ã).

Definition 6.2. The categories Coh(S, Ã), Perf(S̃, Ã) and PerfS(S̃, Ã) along with quasi-isomorphisms as Ã-
modules form Waldhausen categories with fibrations and weak-equivalences. The fibrations are maps of Ã-modules
that are degree-wise surjections (i.e. surjections of OS -modules) and the weak-equivalences are maps of Ã-modules
that are quasi-isomorphisms. The K-theory (G-theory) spectra of (S̃, Ã) will be defined to be the K-theory
of the Waldhausen category Perf(S, Ã) (Coh(S, Ã), respectively ) and denoted K(S, Ã) (G(S, Ã), respectively
). KS(S̃, Ã) will denote K(PerfS(S̃, Ã)). When A = OS , K(S,A) (G(S,A)) will be denoted K(S) (G(S),
respectively ).

Proposition 6.3. (i) There exists a natural tensor-product pairing PerfS(S̃,OS̃)⊗ PerfS(S̃, Ã)→ PerfS(S̃, Ã)
making K(PerfS(S̃, Ã)) a module-spectrum over K(PerfS(S̃,OS̃)).

(ii) Given a distinguished triangle M ′ → M → M ′′ → M ′[1] of Ã-modules, with two of M ′, M and M ′′ in
PerfS(S̃, Ã), the third also belongs to PerfS(S̃, Ã).

(iii) Let MεPerfS(S̃, Ã). Then there exists a flat Ã-module M̃εPerffl,S(S̃, Ã) together with a quasi-isomorphism
M̃ →M .

Proof. We skip the details here. One may consult [J-5] and [J-7] for details. �

We conclude this section with a brief discussion on the G-theory of DG-stacks. First we consider devissage as
it relates to showing the G-theory with supports in a closed sub-stack is weakly-equivalent to the G-theory of the
sub-stack. Let i : (S ′,A′) → (S,A) denote the closed immersion of an algebraic DG sub-stack defined by the
sheaf of ideals I in OS , i.e. A′ = i∗(A). We say that a bounded complex of sheaves F of A-modules on S has
supports in S ′, if the cohomology sheaves, H∗(F ) have supports in S ′. We let GS′(S,A) denote the K-theory of
the Waldhausen category of bounded complexes of A-modules with cohomology sheaves that have supports in S ′.
(Observe that this implies the obvious map lim

∞→k
RHomOS (OS/Ik, F ) → F is a quasi-isomorphism.) If F ′ is a

bounded complex of sheaves of A′-modules on S ′, then clearly i∗(F ) is an A-module on S with supports in S ′. We
begin with the following lemma.

Lemma 6.4. Let F denote a bounded complex of A-modules with coherent cohomology sheaves that have supports
in S ′. Then there is an integer k >> 0 so that, Extn(OS/Ik, F ) ∼= Hn(F ) for all n. i.e. There exists an integer
k >> 0 so that the obvious map F → RHomOS (OS/Ik, F ) is a quasi-isomorphism.

Proof. Since the cohomology sheaves of F have supports in S ′, the spectral sequence Es,t
2 = lim

∞→k
ExtsOS

(OS/Ik,Ht(F )) =

0 for all s > 0 and ∼= Ht(F ) for s = 0. Therefore, lim
∞→k

ExtnOS
(OS/Ik, F ) ∼= lim

∞→k
HomOS (OS/Ik,Hn(F )) for all n.

Since H∗(F ) has bounded cohomology sheaves and S is quasi-compact, there exists a k >> 0 so that the last term
is isomorphic to HomOS (OS/Ik,Hn(F )) ∼= Hn(F ) for all n. This proves the lemma. �

Proposition 6.5. (Devissage) The induced map G(S ′,A′)→ GS′(S,A) is a weak-equivalence.

Proof. Let Mod(S,A/Ik) denote the full sub-category of A-modules that are killed by Ik. Clearly this inherits the
structure of a Waldhausen category and one obtains natural maps G(S ′,A′) → K(Mod(S,A/Ik)) → GS′(S,A).
Moreover, the obvious induced map lim

∞→k
K(Mod(S,A/Ik)) → GS′(S,A) is a weak-equivalence. Now we will fix

an integer k0 > 0 and consider the functor Fk0 = RHomOS (OS/Ik0 , ) : Mod(S,A)→Mod(S,A). (This may be
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defined using the canonical Godement resolution.) Clearly, the above functor, restricted to Mod(S,A/Ik0) induces
the identity on the associated derived catgeories. One may now observe that, the functors RHomOS (OS/Ij , ),
1 ≤ j ≤ k0 define functors Mod(S,A/Ik0) → Mod(S,A/Ik0); since they preserve weak-equivalences they induce
maps of the corresponding K-theory spectra. Moreover one has a distinguished triangle Fi−1(M) → Fi(M) →
Fi/Fi−1(M) = RHomOS (Ii−1/Ii,M), MεMod(S,A).

However, one needs to show that each Fi(M) has bounded cohomology sheaves. To prove this one may proceed
as follows. Let N denote an OS/I-module. Then RHomOS (OS/In, N) ' N for all n and therefore, by the
distinguished triangle

RHomOS (In−1/In, N)→ RHomOS (OS/In, N)→ RHomOS (OS/In−1, N),

one may conclude that RHomOS (In−1/In, N) has bounded cohomology sheaves for all n ≥ 1. If N is an OS/Ik-
module for some k ≥ 1, one may use ascending induction on k along with the obvious filtration of N by submodules
FiN so that FiN/Fi+1N is an OS/I-module, to conclude that the same conclusion now holds for N . Next
let FεMod(S,A) so that all the cohomology sheaves of F are OS/Ik-modules. Then in the spectral sequence
Es,t

2 = ExtsOS
(OS/Ik,Ht(F ))⇒ Exts+t

OS
(OS/Ik, F ), there exist integers N >> 0 and M >> 0 so that Es,t

2 = 0 for
all s > N and all t > M , all s < 0 and t < −M . Therefore, the abutment has cohomology only in finitely many
degrees. This proves the required assertion.

By additivity, one now obtains:

(6.2.1) M ' Fk0(M) = Σi(−1)iRHomOS (Ii−1/Ii,M), MεMod(S,A/Ik0)

It follows that the identity map of K(Mod(S,A/Ik0)) factors as Σi(−)iFi/Fi−1 : K(Mod(S,A/Ik0))→ G(S ′,A′)
followed by the obvious map of the latter into K(Mod(S,A/Ik0)). (Observe that the composition G(S ′,A′) →
K(Mod(S,A/Ik0)) → G(S ′,A′) is clearly the identity.) It follows, therefore, that the obvious map G(S ′,A′) →
K(Mod(S,A/Ik0)) is a weak-equivalence. Taking the direct limit as k0 → ∞, one obtains the weak-equivalence:
G(S ′,A′)→ GS′(S,A). �

Proposition 6.6. (Localization for G-theory) Let i : (S ′,A′) → (S,A) denote a closed immersion of DG-stacks
with open complement j : (S ′′,A′′) → (S,A). Now one obtains the fibration sequence G(S ′,A) → G(S,A) →
G(S ′′,A′′)→ ΣG(S ′,A′) of spectra

Proof. This follows from Waldhausen’s fibration theorem making use of the last proposition to identify GS′(S,A)
with G(S ′,A′). In more detail, one lets w denote the category of weak-equivalences on Mod(S,A) defined by quasi-
isomorphisms, while one lets v denote the coarser category of weak-equivalences on Mod(S,A) given by morphisms
that are quasi-isomorphisms after restriction to S ′′. One may show readily that any map α : F ′′ → j∗(F ),
FεMod(S,A), F ′′εMod(S ′′,A′′), may be factored as the composition of a quasi-isomorphism F ′′ → j∗(F̃ ) and
a map j∗(c) : j∗(F̃ ) → j∗(F ). (Recall that we have let Coh(S,A) denote all complexes of OS -modules M
having the structure of an A-module and whose cohomology sheaves are all bounded and finitely generated H∗(A)-
modules. Therefore, one may simply let F̃ = j!(F ′′).) Therefore, the approximation theorem of Waldhausen
(see [Wald] (1.6.7)) applies to provide a weak-equivalence K(Mod(S,A), v) ' G(S ′′,A′′); the fibration theorem of
Waldhausen (see [Wald] (1.6.4)) then provides the fibration sequence GS′(S,A)→ G(S,A)→ G(S ′′,A′′). Finally
the proposition above provides the weak-equivalence G(S ′,A′) ' GS′(S,A) to complete the proof. �

Next we consider the homotopy property and projective space bundle formulae for G-theory. This will follow by
suitable modifications of Quillen’s arguments and is proved in detail in [J-7]. Therefore we will merely quote this
result.

Proposition 6.7. (Homotopy property of G-theory) Let (S,A) denote a DG-stack and let π : S ×A1 → S denote
the obvious projection. Now π∗ : G(S,A)→ G(S × A1, π∗(A)) is a weak-equivalence.

Proposition 6.8. (Projective space bundle formula) Let (S,A) denote a DG-stack and let E denote a vector bundle
of rank r on S. If π : Proj(E)→ S is the obvious map, G(Proj(E), π∗(A)) ' t

i=0,··· ,r−1
G(S,A).[OProj(E)(−i)].

.

Remark 6.9. In view of the localization sequence, we reduce to proving both statements for the case where the stack
S is smooth. In this case, the projective space bundle formula is proved in detail in [J-7] adapting the arguments
in [T-T]. The homotopy property may be established again using the projective space bundle formula and the
localization sequence.
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Equivariant cohomology for smooth group-scheme actions on algebraic stacks

If G is a smooth affine group scheme acting on an algebraic stack S, the quotient stack [S/G] is also an algebraic
stack as shown in [J-4] section 7. Therefore one may define equivariant cohomology and homology of S with respect
to the action of G as the cohomology of the stack [S/G] as in [J-2] and [J-3]. If the complexes Γ(•) and Γh(•)
extend to the smooth site of all algebraic stacks, one may define these as hypercohomology on the smooth site of
the stack [S/G]. When this is not the case, as in the case of the higher cycles complexes, one may define these
theories as in [J-2] and [J-3]. Then we may make the following observations readily.

6.2.2.
• Let π : [S/G] → [B/G] = BG denote the obvious map, where B is the base scheme. Then there exist

spectral sequences : Es,t
2 = Hs(BG,Rtπ∗(Γh(•))) ⊗ Q ⇒ Hs+t

G ([S/G],Γh(•)) ⊗ Q and similarly for the
complex Γ(•). These converge for each fixed complex Γh(r) and Γ(r) in view of our hypotheses. The stalks
of Rtπ∗(Γ(r)) identify with Ht(S,Γ(r)) and similarly for the complex Γh(r). In particular the sheaves
Rtπ∗(Γ(r)) and Rtπ∗(Γh(r)) are locally constant on BG. (The last assertion follows readily from the
definition of a locally constant sheaf on the étale site of a simplicial stack or simplicial algebraic space- see
[Fr] p. 14, for example.)

• A key observation now is the following. If F is a perfect complex of O-modules on [S/G] (i.e. a G-
equivariant perfect complex of O-modules on S), then the Chern classes ci(F) define classes in E0,2i

2 =
H0(BG,R2iπ∗(Γ(i)))⊗Q which are in fact infinite cycles and produce the equivariant Chern Class
cGi (F)εH2i([S/G],Γ(i)). (The fact that such Chern classes are defined for G-equivariant perfect complexes
on any of the truncated simplicial stacks obtained from EG×

G
S by truncating at the n-th stage shows the

classes above are in fact infinite cycles: see the description of the differentials of spectral sequences as in
[C-E], Chapter XV.)

• In case the stack S is an algebraic space M and Gεπ0(G[S/G]), then each term of τM(G) of degree 2i and
weight i also belongs to E0,2i

2 = H0(BG,R2iπ∗(Γh(i))). This also is an infinite cycle and produces a class
in H−2i([S/G],Γh(i)).

7. Appendix B: Operational Chern classes for vector bundles on Deligne-Mumford stacks

Here we will outline how to extend the operational Chern classes defined, for example, in [Ful] to Deligne-
Mumford stacks. The Chow groups of algebraic stacks may be defined as in [J-2] section 4: we will denote this
Chow group of dimension n cycles (= integral linear combination of closed integral sub-stacks of dimension n
modulo rational equivalence) by CHn(S). It is shown in [J-2] that this naive Chow group is isomorphic modulo
torsion to the intrinsic Chow group CHn(S, 0)⊗Q which is defined as the hypercohomology on Set (in degree 0)
with respect to the higher cycle complex Zn( , •)⊗Q.

Lemma 7.1. Assume the above situation. If x : X → S is an atlas and BxS is the associated simplicial classifying
space of S, then

(7.0.3) CHn(S, 0)⊗Q = π0(Kernel(Zn(X, •)⊗Q
δ∗0−δ∗1→ Zn(X×

S
X, •)⊗Q))

Moreover, if S = [X/G] is a finite quotient stack for the action of a constantétale group scheme on a scheme
X, one obtains the isomorphism

(7.0.4) CHn(S, 0)⊗Q = Kernel(CHn(X, 0)⊗Qδ∗0−δ∗1→ CHn(G×X, 0)⊗Q)

Proof. (Outline). By the results in [J-2], CHn(S, 0)⊗Q = π0(holim
∆
{Het(BxSm, Zn( , •)⊗Q)|m})

∼= π0(holim
∆
{Zn(BxSm, •)⊗Q|m}). Since generically the stack S is a finite quotient stack, a localization sequence

argument as in [J-2] section 4, shows that one of the spectral sequences for this homotopy inverse limit degenerates
providing the isomorphism as in the first statement of the lemma. The second statement is clear since one uses
Q-coefficients. �

Let E denote a rank r vector bundle on a Deligne-Mumford stack S. Let P(E) = Proj(E) denote the associated
projective space bundle. In view of the projective space bundle formula in [J-2] Theorem 1(ii), c1(OP) may be
defined as the class of a divisor on P(E). Now one may define the first Chern class of the tautological bundle OP(1)
as the operation c1(OP) ∩ − : CHn(P(E)) → CHn−1(P(E)) sending the class [T ] of a closed integral sub-stack T
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to the class of the corresponding divisor on T pushed forward to P(E). (This image is denoted c1(OP(1)) ∩ [T ].)
Now one may define the i-th Segre class si(E) as the operation CHn(S)→ CHn−i(S), α 7→ p∗(c1(OP)r+i ∩ p∗(α))
where p : P(E)→ S is the obvious projection.

In view of ( 7.0.3 and 7.0.4) one may extend all the properties of the Segre class as in [Ful] Proposition 3.1 to
this setting, by doing local computations on the étale site of the stacks and by replacing all maps by representable
maps of stacks.

Given a rank r vector bundle on the stack S, one may now define Chern classes ci(E) by the same formula
as in [Ful] 3.2: i.e. one first defines the Segre series st(E) = Σ∞i=0si(E)ti and then the Chern polynomial ct(E) =
Σ∞i=0ci(E)ti as its formal inverse. A local calculation on the étale site of the stacks making use of ( 7.0.3 and 7.0.4)
shows that obtains the following results as in [Ful] Theorem 3.2.

Theorem 7.2. (i) If E is a rank r vector bundle on S, then ci(E) = 0 for all i > r.

(ii) If E is a vector bundle on a stack S, αεCHn(S ′, 0) and f : S ′ → S is a proper representable map, then
f∗(ci(f∗(E)) ∩ α) = ci(E) ∩ f∗(α) for all i.

(iii) If E is a vector bundle on a stack S, αεCHn(S, 0) and f : S ′ → S is a representable flat map, then
ci(f∗(E)) ∩ f∗(α) = f∗(ci(E) ∩ α).

(iv) Whitney sum formula If 0 → E ′ → E → E ′′ → 0 is a short exact sequence of vector bundles on a stack S,
then ck(E) = Σi+j=kci(E ′) ◦ cj(E ′′) where ◦ denotes the composition of the operations corresponding to ci(E ′) and
cj(E ′′).

Definition 7.3. For each vector bundle E on the stack S, one may now define the Chern character Ch(E) :
CH∗(S, 0)⊗Q→ CH∗(S, 0)⊗Q by the usual universal polynomial in the Chern classes ci(E).

One establishes readily using ( 7.0.3) that the Chern character satisfies the usual properties: if E ′ and E are
two vector bundles on the stack S, then

(i) Ch(E ⊕ E ′) = Ch(E) + Ch(E ′) and (ii) Ch(E ⊗ E ′) = Ch(E) ◦ Ch(E ′) where ◦ once again denotes the
composition of the operations corresponding to Ch(E) and Ch(E ′).
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