DERIVED FUNCTORS FOR MAPS OF SIMPLICIAL SPACES

Roy JosHuA

ABSTRACT. In this paper we discuss in detail a site for simplicial spaces which is particularly suitable for defining
derived functors for maps between simplicial spaces. It is shown that the derived category of sheaves on this site is
closely related to the derived category of sheaves on another well known site. Applications to equivariant derived
categories associated to algebraic group actions in positive characteristics are also discussed.

0. Introduction. The derived category of a simplicial space is often defined using a Grothendieck topology
originally defined by Deligne. (See [De].) This topology plays a fundamental role in the cohomological study of
simplicial spaces (see [De], [Fr] and [J-1] for some applications). However, this topology is not often convenient for
defining derived functors for maps between simplicial spaces. To see the difficulty, consider a map fo : Xo — Y,
of simplicial spaces. Then one may define points of Y, in such a way so that if p, is a point of Y,, the fiber
of fo over p, (denoted X,,.) is a sub-simplicial space of X,. If f is proper and F' is a sheaf on X, it would
often be desirable to identify the stalks Rf.(F), with H*(X,),; F|x,,, ). However, this is never possible with
the site in [De]. This problem arises in the setting of equivariant derived categories and one reason for often
adopting a non-simplicial setting to define these is to circumvent this problem. However such approaches do
not apply in general to group-scheme actions in positive characteristics (see Theorem (5.1) for example) nor to
general simplicial algebraic spaces or schemes which, for example, arise in the study of algebraic stacks. For this
purpose we had introduced a topology called the simplicial topology in [J-T] and discussed briefly in [J-1]. One
of the goals of this short paper is to give a better and more detailed formulation of the basic ideas introduced
there in a more general setting. This is clearly justified in view of the fact that this simplicial topology plays a
key role in establishing derived functors associated to maps of simplicial spaces in positive characteristics: apart
from a much more technically complicated approach using algebraic stacks (see [Be]) this seems to be the only
technique available for defining such derived functors. In fact one of the original motivations for the present
paper is a new application to actions of non-connected groups which plays a crucial role in extending the results
of the paper [B-J] on vanishing of odd dimensional intersection cohomology to positive characteristics. This is
discussed in the last section. It should be pointed out that in order to establish decent properties for sheaves
on the simplicial site, one has to still invoke the topology due to Deligne. In fact, as we show below, much is
gained by relating these two topologies and the two topologies seem to complement each other rather nicely.

Here is an outline of the paper. Sections and 1 and 2 are devoted to basic definitions. Section 3 is devoted to
a detailed comparison of the simplicial site with a more familiar site and in section 4 we discuss Theorem (4.2)
which is one of our key techniques. The discussion here extends the brief discussion of some of these techniques
in [J-T] and [J-1], making them strong enough for the applications considered in the last section. Our discussion
in the first 3 sections, which form the foundations for the rest of the paper, is kept sufficiently general (and
somewhat detailed) so as to be applicable to other contexts. We thank the referee for several helpful comments.

1. The basic definitions.

(1.0) Throughout the paper we will adopt the following conventions. We will only consider schemes and
algebraic spaces defined over a fixed Noetherian base scheme S. These will be provided with a Grothendieck
topology; typically this will be either the Zariski, étale or Nisnevich topologies. The category of all algebraic
spaces (schemes) over S will be denoted (alg.spaces/S) ((schemes/S), respectively). Our results also hold for
locally compact Hausdorff topological spaces with reasonable properties (as in [Verd] (1.2)), though we do not
consider them explicitly and are left to the reader.
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A simplicial space will always mean a simplicial object in the category of algebraic spaces over S. The
category of simplicial algebraic spaces over S (simplicial schemes over S) will be denoted (simpl.spaces/S)
((simpl.schemes/S), respectively). We put three basic hypotheses on the sites we consider. These will be
marked A.1, A.2 and A.3 and will be spread out in the first section.

Our first goal is to extend Grothendieck topologies defined on algebraic spaces to simplicial spaces. For this
we will begin with a class P of maps of algebraic spaces that satisfy the following conditions:

(i) If o : X! — X is an isomorphism, o belongs to P
(ii) f 0 : X" — X' belongs to P and 7 : X’ — X belongs to P, then the composition 7o o belongs to P and

(iii) If 0 : X' — X belongs to P and Y — X is an arbitrary map, the pull-back X' )); Y — Y belongs to P.

The language of fibered categories (see [SGA] 1, Expose VI) seems to provide a convenient technique for
handling both big and small sites simultaneously for simplicial spaces. (From the description below, one may
see that such sites are put together from the corresponding sites on the algebraic spaces in each degree. Since
we need to relate the sites of the algebraic spaces in each degree by means of the structure maps of the
simplicial space, the language of fibered categories is unavoidable.) We define a Grothendieck topology Top, on
(alg.spaces/S) as a fibered category, fibered over (alg.spaces/S), provided with a class P as above and satisfying
the following hypotheses:

A.1(i) for each algebraic space X, Top(X) is a full sub-category of the category of all algebraic spaces ¥
over X,

(ii) closed under finite inverse limits and such that for any Y — X in Top(X) and any map U — Y in P,

the composition U — Y — X belongs to Top(X). We also require that X 2y x belong to Top(X). (Observe
as a consequence that any o : Y — X in P also belongs to Top(X).)

We define the coverings of any object Y in T'op(X) to be given by families {f, : Uy =Y in P|a} so that
Ua faUs) =Y.

Remarks 1. Observe that the property of being a fibered category implies that for each map f : Y — X of
algebraic spaces, there is an induced functor f=! : Top(X) — Top(Y), sending U € Top(X) to f~1(U) = U;<(Y.

Moreover, if g : Z — Y is another map of algebraic spaces, there is given a natural isomorphism between the
two functors g~ o f~! ~ (f o g)~! and such natural isomorphisms are required to satisfy certain compatibility
conditions.

2. This definition is broad enough to include both big and small topologies: if one lets Top(X) denote the
category of all algebraic spaces over X, one obtains a big topology. On the other hand, if one lets the objects
in Top(X) to be the maps f : Y — X in P, then one obtains a small topology, provided for each X, the
category {f : Y — X|f in P} is a small (or skeletally small) category. Given a big topology, Top(X), we
may consider the associated small topology T'op(X, P), where the objects are maps ¥ — X that are in P.

3. When considering small topologies, it will be convenient to add the following hypothesis on the class P
which will ensure that the category Top(X) is closed under finite inverse limits for any X:

(iv)if 0 : X' — X is in P, the diagonal map X’ — X'x X’ is also in P.
X

4. Tt is clear that the (small) étale topology where the objects of Top(X) are étale maps Y — X is a small
topology in the above sense satisfying all the four conditions on P, whereas the flat (h-, qfh -) topology on an
algebraic space X which is the category of all algebraic spaces Y — X and where the coverings are all flat
maps ( topological epimorphisms, topological epimorphisms that are also quasi-finite, respectively) forms a big
topology.

(1.1.1) (The basic topologies on simplicial algebraic spaces). Let Top denote a Grothendieck topol-
ogy on (alg.spaces/S) satisfying A.1. We will extend this to the following two Grothendieck topologies on
(simpl.spaces/S).
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(i) Let X, denote a simplicial algebraic space. We let T'op(X,) denote the following category. The objects
are U — X, in Top(X,,) for some n. Given two objects U — X,, and V — X, in Top(X,), a map (U —
Xpn) = (V — X,;,) is a commutative square

v — V

! !

X, — X,

where the bottom row is a structure map of the given simplicial space X,. Given any object U — X,, in T'op(Xa),
the coverings of U — X, are maps V,, — U in Top(X,) belonging to the class P so that Ue,(V,) = U. (This

topology is originally due to Deligne - see [De](5.1.6).)

(ii) We will next define another Grothendieck topology, STop, on simplicial algebraic spaces (again as a
fibered category, fibered over (simpl.spaces/S)). We define the objects of STop(X,.) to consist of all maps
fo : Yo — X, of simplicial algebraic spaces so that each f, : Y, — X, belongs to Top(X,,). Morphisms between
two such objects will be defined to be commutative triangles in the obvious manner. One defines a family of
maps {feq : Voo — Us|a} to be a covering if each {f,, : Vo, — Unla} is a covering in Top(X,) i.e. fn,
belongs to P and fn, (Vn.) = Up for all n. We will often call this the simplicial topology associated to the

(o4
given topology Top. We may define a class of maps P, between simplicial spaces as follows: a map fo : Vo — U,
belongs to P, if each f, : V,, — U, belongs to the class P.

(1.1.2) One may observe readily that, for each fixed X,, the category STop(X,) is closed under finite inverse
limits. (This follows from the hypotheses that each Top(X,,) is closed under finite inverse limits. Observe that
the inverse limit of a diagram of simplicial schemes may be computed in each simplicial degree.)

(1.1.3) The small étale (smooth) topology on any algebraic space X will be denoted Et(X) (Smt(X)). In
case we are using the small étale topology on algebraic spaces, the induced topologies on simplicial algebraic
spaces X, will be denoted Et(X,) and SEt(X,) respectively. The corresponding smooth topologies will be
denoted Smt(X,) and SSmt(X,).

(1.2) Hypercoverings. We may define hypercoverings in ST'op(X,) to be simplicial objects V4 in STop(X,)
(i.e. bisimplicial algebraic spaces over X,) so that for each ¢t > 0, the map V; — (cosk;*,V4); is a covering.
(Here (cosk™3V4)o = X,.) The hypercoverings in Top(X,) are defined in [Fr] p. 23 to be bisimplicial algebraic
spaces Ve o in Top(X,) satisfying the same conditions. It follows that the hypercoverings in the above two
categories are the same. The category of hypercoverings in STop(X.) (T'op(X.)) will be denoted HR(STop(X.))
(HR(Top(X,)), respectively).

One may define the homotopy category of hypercoverings as in [SGA4] Expose V, (7.3.2). These will be
denoted HHR(STop(X,)) and HHR(Top(X,)): as shown in [SGA4] Expose V, (7.3.2) the opposite of these
categories are filtered categories.

(1.3.1) Presheaves and sheaves. Let C denote a category that is closed under all small limits and colimits.
A presheaf on any of the above topologies with values in the category C is a contravariant functor taking values
in C. A presheaf is a sheaf if it satisfies the usual sheaf axiom. For the topology Top(X,), such a presheaf
(sheaf) F' corresponds to a collection of presheaves (sheaves, respectively) {F,|n} on each Top(X,) so that for
each structure map a : X,, = X, of the simplicial space X,, there is given a map ®,, : o*(F,,) — F, satisfying
certain obvious compatibility conditions. Given a presheaf F' on Top(X,), F;, always will denote the restriction
of F to Top(X,,) for each n > 0. Given two presheaves (sheaves) F = {F,|n} and F' = {F}|n}, a morphism
a: F — F'is given by a compatible collection of maps {a, : F,, = F}|n}.

(1.3.2) We say such a presheaf (sheaf) F' = {F,|n} has descent if each of the above structure maps ®,, is an
isomorphism. If C = A is an abelian category, the sub-category of presheaves (sheaves) with descent defines
a full abelian sub-category of the category of all presheaves (sheaves, respectively) on Top(X,) with values in
A. The key observation is that the sub-category of presheaves (sheaves) with descent is also closed under
extensions in the abelian category of all presheaves (sheaves, respectively). For the most part we will restrict
our discussion to the case where A is the category of modules over a given ring R, but most of our results
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readily extend to other situations as well - this will be left to the reader. If R is a commutative ring with a
unit, the category of all presheaves (sheaves) of R-modules on Top(X,) will be denoted Presh(Top(X,);R)
(Sh(Top(X,); R), respectively). The corresponding categories on STop(X,) are denoted Presh(STop(X,); R)
and Sh(STop(X,); R), respectively.

(1.3.3) One can see readily that the categories of presheaves and sheaves are closed under all small limits and
colimits and that filtered colimits are exact.

Remark. Assume that X, is the classifying simplicial space associated to an atlas  : X — S for an algebraic
stack. (i.e. z is a smooth surjective map from an algebraic space to the stack S and X, = coskg (z).) Then a
sheaf F' on Smt(X,) has descent if and only if it descends to a sheaf on the smooth site of the stack. We have
adopted this terminology to all simplicial spaces, even if they are not the classifying simplicial spaces associated
to algebraic stacks.

Points.

Since points of different types are used extensively in the paper, we begin with a general discussion on points:
see [SGA] 4, Expose IV, section 6 for further details.

(1.4.0) Given any site C, a point of C is a map of sites p : (sets) — C where (sets) denotes the obvious site
whose objects are all small sets, morphisms being maps of sets and coverings being surjective maps of sets. Let
p~1:C — (sets) denote the associated functor. The point p now defines maps of topoi: p* : Sh(C) — Sh((sets))
and p. : Sh((sets)) — Sh(C) where Sh denotes the category of abelian sheaves on the corresponding sites.
Associated to each point p, one may define a fiber (or stalk) functor sending a sheaf F on the site C to its stalk
F, as in [SGA] 4, Exposé IV (6.8.2). Under the assumption that the category C is closed under finite inverse
limits, one may show that this functor is exact on abelian sheaves. We say the site C has a conservative family
of points (or equivalently there are enough points) if it is provided with a small family of points {p} so that a
sequence of abelian sheaves 0 — F' — F — F"" — 0 is exact if and only if 0 = F}) — F, — F}' — 0 is exact for
all points p.

(1.4.1) Next we make the following observation. A given family of points is conservative if and only if the
following holds: a family {U, — Ul|a} in C is a covering family if and only if for each of the given points p,
{p~Y(Uy) = p~1(U)|a} is a covering. This is proved in [SGA] 4, Exposé TV, Proposition (6.5).

A.2: We assume that there exists (a small set of) algebraic spaces * which are acyclic in cohomology with
respect to any abelian sheaf on Top(x) and so that the only objects of T'op(x) are finite disjoint unions of copies
of *. We assume that for each simplicial space X, and each n > 0, one is provided with a set X,, so that for
each p, € X, one is given a map P, : * — X, of algebraic spaces (where  is as above). We require that each
such P, defines a point of the site Top(X,) sending a U = X,, to all possible liftings of pn to U and that the
set of all such points forms a conservative family of points for the site Top(X,,). We will identify the set X,
with the corresponding set of points of the site T'op(X,,).

(1.4.2) A simplicial point (or simply point) of X, is defined as a map of simplicial spaces P, : A[n] ® * — X,

so that in each degree, k, (D) is a disjoint union of the given points of Xj. (Recall (A[n] ® *)g %[ | *
a € ans

with the structure maps of A[n] ® * induced from the structure maps of the simplicial set A[n]). Let p,, denote
a point of X,, as above. Then such a point defines a map (pn)e : A[n] ® * — X, of simplicial spaces so
that (pn)e restricted to i, ® * is p, where i, € A[n], is the generator of A[n]. It also defines a map of sites
(sets) = STop(X,) by sending a U, to the set of all liftings of (p,,)e to U,. (In fact we may identify liftings of
the simplicial point (p,)e to U, with the set of all liftings of the point B, to Uy,.) This observation shows that
simplicial points define points of the site STop(X,) in the usual sense. Notation: given a point p, of X,, the
associated simplicial point of Xo will be denoted (Pr)e-

(1.4.3) In the case of the étale site, one may obtain a more explicit definition of a simplicial (geometric) point
of X, as a map Z. : (Spec Q) ® A[n] — X, of simplicial algebraic spaces, where 2 is a separably closed field.

Observe also that the cohomology of A[n]® * with respect to any abelian sheaf on Top(A[n] ® %) that has de-
scent is trivial in all positive degrees. (See (3.7.7) below for this computation.)
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(1.5.1) (Simplicial) neighborhoods of a point. Let p, : A[n] ® x — X, denote a point of X,. A
(simplicial) neighborhood of p, is a commutative triangle

U,
L
Aln] @ x —= X,

where the map U, — X, is in STop(X,). Observe that for small topologies, this implies the last map is in the
class P, as well. (In the setting of étale topologies, this definition is originally due to Friedlander.)

(1.5.2) Let Uy € STop(X,.) and let {U&|a} denote a family of maps to U, in STop(X,.). Let {ps} denote
the family of simplicial points of STop(X,) defined as in (1.4.2) associated to a family of points of X, for all
n > 0: recall these define points of the site STop(X,). In view of the hypothesis in A.2, (1.4.1) shows the
family {U2 — U,|a} is a covering if and only if for each given point p,, of X,, {p, (U2) — p,*(U,)|a} is
a covering. Therefore the family {U&|a} is a covering family of U, if and only if the corresponding family of
sets {ps 1(U&)|a} is a covering of p;t(U,) for each given point p,. Therefore, it follows from the discussion in
(1.4.1), that the given family of simplicial points is a conservative family of points for the site STop(X,).

A.3: We will assume that the system of neighborhoods in both T'op(X,) and STop(X,) of any point has a
small cofinal family.

(1.5.3) Let ju, : Uy = X, denote the obvious map corresponding to a simplicial neighborhood of a point ps.
Even though the sites we consider are not necessarily small, one may see from [SGAJ4, I, (5.10) (or [Mi] p.78)
that the restriction functor j7; : Presh(STop(X,); R) — Presh(STop(U,); R) has a left adjoint denoted ju,.
The same holds for the functor j7; : Presh(Top(X,); R) — Presh(Top(U,); R) as well as the corresponding
restriction functors on the categories of sheaves. Using this functor and the hypothesis on the existence of a small
cofinal system of neighborhoods of any point, one may show readily that the categories Sh(Top(X,); R) and
Sh(STop(X,); R) have a generator and are Grothendieck categories. In particular they have enough injectives
and in fact an injective co-generator. (The hypothesis A.3 is necessary since we are in general considering big
sites.)

(1.6) Morphisms. Let f : X, — Y, denote a map of simplicial algebraic spaces. Then f induces a map of
sites: f*: Top(Ys) — Top(X,) sending (V,, — Y,,) to (an>/< Vi) — X, and also 5 f* : STop(Y,) — STop(X,)

sending (Vo — Y5) to (X.}>/< Vo = X,)

2. Cohomology and Derived functors.

Throughout this section f : X4 — Y, will denote a map of simplicial algebraic spaces. Let R denote a
commutative Noetherian ring with unit.

(2.1) Then f defines a direct image functor f. : Presh(Top(X.); R) — Presh(Top(Y,); R). One may
readily verify that f. = {fn« : Presh(Top(X,); R) — Presh(Top(Yy); R)|n}. Similarly f induces an in-
verse image functor f* : Presh(Top(Y,); R) — Presh(Top(X,.); R) and f* = {f} : Presh(Top(Y,);R) —
Presh(Top(Xy); R)|n}. The obvious functor induced by f* at the level of sheaves will also be denoted f*.
One may readily verify that f. sends sheaves to sheaves and both f. and f* are exact functors at the level of
presheaves. At the level of sheaves f, is left-exact while f* is exact. The exactness of the functor f* depends
on our hypothesis that each of the categories Top(Y,,) is closed under finite limits.

(2.2) f also defines a direct image functor Presh(STop(X,); R) — Presh(STop(Y,); R). We will denote this
by sf«. The inverse image functor Presh(STop(Y,); R) — Presh(STop(X,); R) is denoted ,f*. Both are exact
functors.

(The exactness of the inverse image functors sf* once again depends on our hypothesis that the topologies
are closed under finite limits.) Observe that ,f. sends sheaves to sheaves: at the level of sheaves this functor is
only left-exact. The functor induced by ,f* at the level of sheaves will still be denoted ,f*.
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(2.3) Since the categories Sh(Top(X,); R) and Sh(STop(X,); R) have enough injectives, we may define the
right derived functors of f. and ,f, in the usual manner.

(2.4) Proposition. Let X, be a simplicial algebraic space as before and let F' be an abelian sheaf on
STop(X,). (i)Then Hp, v, \(Xe; F) = limH*(I'(Uss, F')) where the direct limit is taken over the (filtered)
. —
Us,e
homotopy category of hypercoverings and the left-hand-side denotes the cohomology of X, computed on the
site STop(X,).

(ii) Similarly, if f : X, — Y, is a map of simplicial algebraic spaces,

L(Us, Rsf«(F)) = li_IPF(V"; F)

Ve,e

where U, € STop(Y,) and V,, varies in the the homotopy category of all hypercoverings of U, 1>/< X..

Proof. Since the proof of (ii) is entirely similar, we will only consider (i). To prove the proposition, it suffices to
show that the functor sending F' to the right hand side is an effaceable d-functor. The proof is quite standard
and follows as in [SGA4] Expose V. O

(2.5) Derived categories. If A is an abelian category, C(A) (C1+(A), Cy(A), Co(A)) will denote the cate-
gory of all unbounded complexes (complexes that are bounded below, complexes that are bounded, complexes
that are trivial in negative degrees, respectively). One may then define the homotopy categories and derived
categories associated to the first three in the usual manner: these are denoted D(A), D4 (A) and Dy(A). For
the most part we will only consider the derived category of bounded below complexes, i.e. Dy (A).

If f: Xo — Y, is a map of simplicial algebraic spaces, it is clear the derived functors Rf. and Rf. are in
fact functors at the level of the associated derived categories of bounded below complexes.

If X, is a simplicial algebraic space D%°*(Absh(Top(X,))) will denote the full subcategory of
D, (Absh(Top(X,))) consisting of complexes K whose cohomology sheaves have descent. The discussion in
(1.3.2) shows that the full (abelian) subcategory Absh*(Top(X,)) of sheaves with descent is closed under
extensions in the category Absh(T'op(X,)). Therefore, D3°*(Absh(Top(X,))) is indeed a triangulated category.

(2.6) Remarks. (i) Observe that (2.4) extends readily to the case where F' is replaced by a complex

K e Co(Absh(STop(X,))) and li_r>nH*(1"(U.., F)) is replaced by 1i_r>nH*(A1"(U.., DN(K))). Here DN(K)
Uare Ueo

denotes the obvious cosimplicial object associated to the co-chain complex K and A is the diagonal. (See
the appendix.) In the next section (see (3.7.3)) we show that there is a functor 7. : Absh(Top(X,)) —
Co(Absh(STop(X,))). One may show from the definition of the functor 7, that AT'(U,.., DN(n.(F))) =
T'(A(Us.), F), as U,,e varies in the category HHR(STop(X,)) and for each F' ¢ Absh(Top(X,)). But
lgnH*(AF(U.,.,DN(n*(F)))) = I[-]IgTop(X.)(X.,n*(F)) as shown above. ((3.7.7) below shows that one may
Ueo

replace the complex 7, (F) by the sheaf 7, (F) if F' € Absh®®*(Top(X.,)).)
On the other hand, [Fr] Corollary (3.10) shows H7. (Xo, F) = 1i_r>nH*(I’(A(U..), F)). Recall from (1.2)

Ue,o
that the hypercoverings in the two sites T'op(X,) and STop(X,) are the same. Therefore, the above observations
readily provide the isomorphism Hg; x \(Xe,n(F)) = Hi, ) (Xe, F) for any sheaf F' e Absh(Top(X.))
(established by different techniques in (3.11).) A similar argument using (2.4)(ii) will provide a different proof

of (3.11)(ii).
(ii) Let K € D4 (Absh(Top(X.))). Then one obtains a spectral sequence
E}' = H (X, K,) = HPH (X, K)

op(Xa)

exactly as in [Fr] p. 19. This is strongly convergent since the complex K is bounded below by assumption.



3. Comparison of sites.

In this section we compare the derived category on the two sites STop(X,) and Top(X,) associated to a
simplicial algebraic space.

(3.1) Let X, denote a simplicial space and let k¥ > 0 be a fixed integer. Observe that the functor sending
U, € STop(X,) to Uy defines a map of sites ny : Top(Xy) — STop(X.): the underlying functor sends U, to Uy.

(3.2) The functor n, sending a V, € STop(X,) to Vi has a right adjoint L* defined as follows. Let V be in
Top(Xy). Then L¥(V), is the simplicial space with each L¥(V'),, defined by the cartesian square

LEV)y, —— X 1%
a ¢ Homa([k],[n])

! !

X, — X
a ¢ Homa([k],[n])
Here the bottom row sends X, to the factor X}, indexed by « using the map X,(a) : X,, — Xj. Therefore, we
may define a map of sites ¥y : STop(Xe) — Top(Xy) by V = L¥(V),, V € Top(Xk).

(3.3) Proposition.

(i) Let ps : A[n] ® x — X, denote a given point of X,. Let k > 0 be an integer and let W denote a
neighborhood of (fs)r. Then there exists a neighborhood V, of pe so that the map Vi — X}, factors through
the given map W — Xj;. Moreover, the system of neighborhoods W of (p,)s for which the obvious map
mo((Be)r) — mo(W) is bijective is cofinal in the set of all neighborhoods of (Pe )-

(ii) Let Zy denote a given point of Xj. Given any map W — X} which is a neighborhood of Zj as well
as Xo(a)(Zg), for all structure maps « : [k] — [k], there exists a neighborhood W, of the corresponding point
(Zr)e : Alk] ® * — X, in the topology STop(X,) so that the map (W), — X} factors through the given map

(iii) Given any covering W — X, in Top(X}) there exists a simplicial object V, € STop(X,) so that for each
n, Vo, = X, is a covering in Top(X,,) and the map V}, — X}, factors through the given map W — Xj.

Proof. (i) Take V, = L¥(W),. In order to show V, is a neighborhood of p., it suffices to show there is a lift
of the point P, : in ® x = X,, to L¥(W),, (here i, is the generator of A[n]): this follows from the definition of
L¥(W), and the hypothesis that W is a neighborhood of (Ps), = {Xe(a)(pr)|a € Homa([k], [n]). The assertion
that the map V3 — X factors through W — X follows from the definition of L*(WW),. This proves the first
assertion in (i). (iii) is proved similarly.

Now we consider the second assertion in (i). First observe that, given any neighborhood W of (, ), one may
find a neighborhood W' satisfying the given condition and dominating W. Next, given any two neighborhoods
V and W of p, with two maps f,g: V — W of neighborhoods, one may let U = V xV = the the equalizer of

w

f and g; U is also a neighborhood of (s);. At this point, one may find a neighborhood satisfying the given
condition and dominating U. This completes the proof of (i).

Next we consider (ii). Let k denote a fixed integer > 0 and let Z denote a point of X,. Let W — X} denote
an object in T'op(X}y) so that it is a neighborhood of T, as well as all X,(a)(Zy), for all @. Then the hypothesis
in (i) is satisfied for ps = (Zt)e by W. Therefore, (L¥(W)), — X is a neighborhood of Z; and the above map
factors through the given map W — Xj,. Therefore, let W, = LF(W),. This proves (ii). O

(3.4.1) Proposition. Let Z, : A[n] ® * - X, denote a fixed simplicial point of X,. Let k > 0 and let W
denote a fixed neighborhood of Zj, = (Z,)r. Then there exists a simplicial neighborhood V, of Z, so that:

i) for every m > 0, the map mo(Zm) = mo(Vin) is bijective and
ii) the map V}, — Xy, factors through the given map W — X,

Proof. We will define V! = L*¥(W),. Therefore, the last assertion is clear for V! and it is a neighborhood of 4
by (3.3)(i). Let v, € V,, be the image of i, ® *, where i, is the generator of A[n].
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Let V3, be the connected component of V;; containing v,,. For each map o : [m] — [n] in A, let V, , denote
the connected component of V,), containing @(9,). (Here @& : V,, — V,!, is the map induced by @.) Then the
collection {V} () |a} defines a sub-simplicial object of V. We define the simplicial neighborhood V, by letting

Vi = : I]_I : ]Vé(i ) where LI denotes the disjoint union. The simplicial structure is defined by letting Vi
a:[m]—=[n " "

map to the summand V, , by the map & restricted to V5 . (ie. Vo = A[n]® V5 .) Now it is clear that for
every m > 0, the map 7o (Z,,) = mo(Vin) is bijective. Moreover, since V, dominates V, it is clear that the map
Vi = Xy factors through the given map W. 0O

We define a category C to be left-filtered if the opposite category C°? is filtered in the sense of [Mac] Chapter
IX, section 1.

(3.4.2) Corollary. Assume the hypotheses of the proposition. Then the category of all simplicial neighbor-
hoods of a simplicial point Z, is left-filtered and the sub-category of all simplicial neighborhoods satisfying the
hypotheses in (3.4.1) is cofinal in the category of all such simplicial neighborhoods. Moreover, when the site
considered is the small étale site, there is at most one map between two neighborhoods satisfying the hypothesis
in (3.4.1).

Proof. Clearly, given any two simplicial neighborhoods V, and W,, of the point Z,, one may form the fibered
product V, X W, which dominates both V, and W,. The proof of (3.4.1) shows that one may find a simplicial

neighborhood satisfying the conditions there and dominating this fibered product. Given any two maps f,g :
Ve = W, of two simplicial neighborhoods of Z,, one may form their inverse limit U, which is also a simplicial
neighborhood of Z,. (In the case of small topologies (satisfying the hypothesis (iv) of A.1 on the class of maps
in P) this inverse limit U, is defined by the cartesian square:

Ug — W,

(3.4.2.%) l Ffl

Vo —2 Vax W
The hypothesis (iv) shows the maps I'y and Iy belong to P, and the hypotheses (i) and (iii) (of A.1) show
Us = X, belongs to P,.) Now the map U, — V, is the equalizer of f and g. This shows the category of all
simplicial neighborhoods of a point Z, is left-filtered.

Let Zo : Aln] ® * = X, denote the given point. If U, denotes the simplicial neighborhood given in the above
paragraph, one may replace it with A[n] ® Uy, o where U, o denotes the connected component of U,, containing
the point Z, = Z(i, ® *). This shows that the neighborhoods satisfying the conditions in (3.4.1) are cofinal in
the category of all neighborhoods of Z,. Let V, (V]) denote a neighborhood of Z, with @, : A[n] ® x = V, (
0, : A[n] @ * = V], respectively) denoting the given lifting of Z,. Recall that a morphism ¢ : Vo — V, is a map
of simplicial objects over X, sending the lifting @, to ©,. Now it is clear that there is at most one map between
simplicial neighborhoods satisfying the hypothesis in (3.4.1) in case the site is the small étale site. (See [Mi]
Chapter I, Corollary (3.13).) O

(3.5) Definition (The stalk or the fiber functor associated to a simplicial point). Let Zo : Aln] ® x = X,

denote a simplicial point as before and let F' denote a sheaf on STop(X,). We let Fj = li_r>n1“(U., F'") where the
Ue

colimit is over all simplicial neighborhoods of the point Z,. The above colimit is a filtered colimit and therefore
exact. In particular, it defines a fiber functor in the sense of [SGA]4, Exposé IV, section 7.

Remark. (3.4.2) shows that the sub-category, {V,}, of all simplicial neighborhoods of Z, so that the map
7o(Zm) — 7o (Vi) is bijective for every m > 0 is cofinal in the category of all simplicial neighborhoods. Therefore,
without loss of generality, one may take the colimit over only such simplicial neighborhoods to define the stalk.
While (3.4.2) is not essential for us, it shows that, in the étale case, the filtered colimit involved in the definition
of the stalk may replaced by the colimit over a directed set.

(3.6) Next observe that the functors associated to 7 and 1y, are adjoint. Using the observation in (3.3)(ii),
one may readily show that the functors ng« : Sh(Top(Xy); R) — Sh(STop(X,.);R), k > 0 are all exact. If
8



F € Sh(STop(X.; R)), the stalk of n;(F') at a point Zj of X may be computed to be isomorphic to the stalk
of F at the corresponding simplicial point (Zy).. Therefore, it follows that the functors 7} are also exact. Since
Ny is left adjoint to . it follows that each of the functors n« sends injectives to injectives.

(3.7.1) We may now define a functor 7. : Sh(Top(X,.);R) — Sh(STop(X,);R) as follows. Let F =
{Fr|k} € Sh(Top(X.);R). Then {ng.«(Fi)|k} forms a cosimplicial object in Sh(STop(X.); R). Therefore,
its inverse limit liin{nk*(Fk)|k} defines an object in Sh(STop(X,); R). We let 7, (F) = 1i£1{nk*(Fk)|k}.

(3.7.2) Next observe that the derived functor of the inverse limit functor lign from the category of cosim-

plicial R-modules to the category of R-modules is given as follows. Let {K*|k} be a cosimplicial R-module.
Then Rslign({K k|k}) = H*(N({K*|k})) = the s-th cohomology of the associated normalized chain complex

N({K¥|k}). (See for example [B-K] p. 310.) Since each 7. was observed to be an exact functor, it follows that
Réij(F) = Rsligl({nk*FMk}) = H*(N({mi«Fr|k})), F = {Fy|k} € Sh(Top(X.); R). (See (3.7.6) below.)

Next let Co(Sh(STop(X,)); R) denote the category of all co-chain complexes in Sh(STop(X,); R) that are
trivial in negative degrees. Then one may define a functor

(3.7.3) i : SA(Top(X,); R) — Co(Sh(STop(X,); R))

as follows. Given a sheaf F' = {Fj|k} € Sh(Top(X,); R), we let n.(F) be the co-chain complex obtained by
normalizing the cosimplicial object {nx«(F))|k}. One may extend this functor to a functor

n? : Co(Sh(Rop(X.); R)) — Co(Sh(STop(X.); R))

as follows. For this, first consider a co-chain complex K in Sh(Top(X,); R) trivial in negative degrees. By
denormalizing it, it defines a cosimplicial object DN (K) in Sh(Top(X,.); R). Then {ni.(DN(K})|k} defines a
double cosimplicial object in Sh(STop(X,); R). One may now define n(K) = N(A{n.(DN(Ky))|k})= the
co-chain complex obtained by normalizing the cosimplicial object A{ng.(DN(K}y))|k}. One may further extend
the above functor to a functor

(3.7.4) mf : C1(Sh(Top(X,); R)) — C1.(Sh(STop(X,); R))

as follows. Let K e Cy(Sh(Top(X,);R)) so that K = 0 for all i < n, for some n < 0. Then Kl[n] is a
complex that is trivial in negative degrees. One defines n} (K) = (n°(K[n]))[—n]. This functor is defined on
Cr(Sh(Top(X,); R)) which is the full sub-category of Cy(Sh(Top(X,); R)) consisting of complexes K that are
trivial in degrees below n. One may readily verify that this defines a functor 7, as in (3.7.4). Since each of the
functors ng.« is exact, the functor i} preserves distinguished triangles and provides a spectral sequence

Byt = B (. (H! (K))) (= R (H!(K))) = H+ (o (K)

This spectral sequence converges strongly since K is a bounded below complex. It follows that the func-
tor n} preserves quasi-isomorphisms and therefore induces a derived functor R, : Dy (Sh(Top(X,); R)) —
D (Sh(STop(X.); R))-

(3.7.5) Observe that the above functor 7. preserves all small limits. Next observe that the category Sh(Top(X.);
is well-powered i.e. the sub-objects of each object can be indexed by a small set. (This follows readily since
the sub-objects of any fixed stalk forms a small set and there is a small conservative family of points.) More-
over, the above category is closed under all small limits, has small hom-sets and a co-generator. The category
Sh(STop(X,); R) has small hom-sets. Therefore, one may apply the special adjoint functor theorem (see [Mac]
Chapter 5, section 8) to conclude that 7, has a left adjoint. We denote this by 77*. We proceed to show that
this functor is ezact: clearly it suffices to show its right adjoint 7, sends injectives to injectives.

First we begin by recalling the construction of standard injectives from [Ill-2] Chapter VI, section 6 and
also [Fr] chapter 2. Let A°P:4® denote the discrete category associated to AP, i.e. it has the same objects as
A°P_ but the morphisms are only the identity maps. Given a simplicial space X,, let X* denote the space
. lZ'AX”' (i.e. X, is the diagram of spaces associated to the discrete category A°P:?) A sheaf F' on the

space X&* is simply a collection of sheaves {F,|n} with F}, a sheaf on Top(X,): this category of sheaves of
R-modules on X will be denoted Sh(Top(X&#); R). Tt is shown in [Ill-2] p.57 that there is a direct image
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functor e, : Sh(Top(X*); R) — Sh(Top(X,); R) that sends injectives to injectives. Let X% = LIX, be a
n
set of points for LIX,, and let p : X% — X&* denote the obvious map. Any injective sheaf I on Top(X,)
n

of the form e,(p.(J)) for some injective sheaf J on Top(X%*) will be called a standard injective. A more
explicit description of such injectives is given in [Fr] chapter 2; these are the injectives denoted IIR,,(p«Jn),
n

where R, : Sh(Top(X,); R) — Sh(Top(X,); R) is a right adjoint to the obvious restriction functor (), :
Sh(Top(X,); R) = Sh(Top(X,); R), Jn is an injective in Sh(Top(X,); R) and p, : X,, = X, is the obvious
map. It is shown there that any sheaf F' in Sh(Top(X,); R) can be imbedded in a standard injective.

(3.7.6) Proposition Let I = e.(p.(J)), for some injective sheaf J = {J,,|[n} in Sh(Top(X%*); R). Then the
following hold:

(i) 7. (I) is an injective in Sh(STop(X,); R)

(ii) m«(I) is an (injective) resolution of the sheaf 7,(I)

(iii) If I' is any injective in Sh(Top(X,); R), 7j.(I') is an injective in Sh(STop(X,); R)
Proof. Recall I = e.(p«(J)) = IR, (PrsJn), where Ry (Prw(Jn))m = il Xo()s(Prx(Jn)). More-

n a:[m]—[n] in A

over, recall that 7. (I) = ker(6° — 6* : no«(Ip) = m«(I1)). In view of the description of the functor R, as
above, one may observe that ker(6° — &' : o« (Io) — m1«(I1)) is a product of sheaves of the form ker(6° — §' :
10+ X (B 0 0°)s (B (Jn)) X 110« Xe(B © 0%)x(Brs(Jn)) — MxXo(B)s(Pns(Jn))) where B : [1] — [n] is a map in
A. Therefore, an explicit computation shows that 7,(I) is a product of sheaves of the form 7, (i (L)),
where u € X, is a point of X,, L is an injective sheaf on * and 4 : Top(x) — Top(X,) is the associ-
ated map. Since these are injectives (see (3.6)), it follows that 7, (I) is an injective in Sh(STop(X,); R)
thereby proving (i). In order to prove (ii), it suffices to show that the stalk of 7.(I) at a simplicial point
To of X, is acyclic. Therefore, let T, : A[n] ® x — X, denote a fixed simplicial point of X, and let U,
denote a neighborhood of Z,. Now one may use the isomorphism in (3.11)(i) (or (2.6)(i)) to show that
HYT(Us, (1)) = Hipopy U, (D)) = Hiy oy (Us, I) 22 0 for all i > 0 since I is an injective sheaf
on Top(X,). Therefore taking the direct limit over all neighborhoods of the simplicial point Z,, we see that
Zg(m«(I)) is acyclic. This proves (ii).

Now (i) shows that Hom/( ,%.(I)) is an exact functor on Sh(STop(X,); R). In particular 0 = Ext! (M, 7. (I)) =
HY(Hom(M,n,(I))), for any M € Sh(STop(X,); R): the last isomorphism makes use of (ii) which shows
that 7,(I) is an injective resolution of 7, (I). Finally, in order to prove (iii), observe that any injective I'
imbeds into a standard injective I: since I' is also an injective, it in fact splits as a summand of I. There-
fore n.(I') (Hom(M,n.(I'))) is a split summand of n.(I) (Hom(M,n.(I)), respectively). It follows that
HY(Hom(M,n.(I'))) = 0 for any injective I’ ¢ Sh(Top(X,); R) and any sheaf M ¢ Sh(STop(X,); R). Recall
from (3.6)) that 7.(I') is a complex of injectives in Sh(STop(X.); R); therefore, Hom( ,n.(I')) sends a short-
exact-sequence of sheaves in Sh(STop(X,); R) to a short exact sequence of complexes. Since Hom(M, ij.(I')) =
H(Hom(M,n.(I')) and H'(Hom(M,n.(I')) = 0 for any sheaf M € Sh(STop(X,); R), it follows that Hom( ,7.(I"))
is an exact functor in the first argument. This proves 7, (I’) is an injective in Sh(STop(X,); R) for any injective
I' e Sh(Top(X.); R). O

——

It follows that 77* is an exact functor and hence preserves quasi-isomorphisms between objects in C (Absh(STop(X.))).
Since it has a right adjoint it also commutes with colimits, hence with sums and therefore with mapping cones.
Therefore, one may show readily that 7* preserves distinguished triangles as well as quasi-isomorphisms and
induces a derived functor 7* : D4 (Sh(STop(X,); R)) — D1 (Sh(Top(X,); R)).

Remark. Tt may be worth pointing out the need to define the functor 7* as we have done above. The main
difficulty is that the collection of functors {n;|k} do not, in general, send a sheaf on STop(X,) to a sheaf
on Top(X,): this difficulty may be seen from (3.9)(i) and (iii) below. (The maps in (3.9)(i) go in the wrong
direction for {n¥ (F!,)|m} to define a sheaf on Top(X,).) Therefore, we need to invoke the special adjoint
functor theorem to be able to define the functor 7* as a left adjoint to 7. in general. However, as shown in
(3.9)(iii), if one restricts to sheaves F' on STop(X,) with descent, 7*(F") = {n;(F')|k}.

We proceed to show that R*7.(F) =0 if s > 0 for any sheaf F' ¢ Sh(Top(X,); R) with descent.
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(3.7.7) Let F = {F}y|k} e Sh(Top(X,); R) have descent. Since F has descent, we will show that H(n.(F)) =0
if t # 0. To see this we may argue as follows. Let Z, : (A[n] ® *) = X, be a point of X,. It follows from (3.3)
and (3.5) that H!(n.(F)z,) is the t — th cohomology of the cosimplicial abelian group

L((A[nJo ® %); (Ze)5F0) = T((Aln)y ® *); (Ze)1F1) — ...
As F has descent, we may identify this cosimplicial abelian group with the cosimplicial abelian group

Aln]y ® Fpy — Aln]; ® Fyq ...

where Fg, is the stalk of Fy at the point Zg = dy(Zy) of Xo. (Here d, : X, — X is any structure map of
the simplicial scheme X, and Z, = i, ® * — X, is the point of X,. i, is the generator of A[n].) Clearly
HE (e (F))z. =0 for t # 0 and HO(nu(F))z. = Fy,. It follows that we obtain the identification:

Rijo(F) = H(n«(F)) = 7«(F), F € Sh®*(Top(X.); R)

(3.8.1) Let Z,, be a given point of X,,, let a : X,, = X be a structure map of the simplicial scheme X, and
let Zog = X (a)(Zm) denote the corresponding point of Xg. Let (Z,,)e and (Zg)e denote the associated simplicial
points. (Observe that there exists a natural map (Zg)e — (Z:)e and therefore every neighborhood of (Z,,). is
also a neighborhood of (Zg)..)

(3.8.2) Definition. Let F' € Sh(STop(X.),R). We say that F' has descent if the induced map F(’jo). —
F{; ). is anisomorphism for all points Z;, asin (3.8.1), alla : Xr, = Xp and allm > 0. If K" € Dy (Sh(STop(X.), R),
we say that K’ has descent if the corresponding maps are quasi-isomorphisms. The full subcategory of complexes
K' having descent will be denoted D%°*(Sh(STop(X.), R)).

(3.9) Proposition. Let F' € Sh(STop(X,); R).

(i) For each map a : [n] — [m] in A, there exists a map 0, (F') = Xo(@)*(n:(F")), natural in F', satisfying
certain obvious compatibility conditions.

(i) If F = {Filk} € Sh(Top(X.); R) is a sheaf with descent and F' = 7. (F), the above maps are all
isomorphisms so that {5}, (7.(F)|m} defines a sheaf with descent on T'op(X,).

(iii) If F' € Sh(STop(X.), R) has descent, the collection {n},(F")|m} defines a sheaf with descent in Sh(Top(X.,); R).
R L B e ) s

(v) For each F e Shi*(Top(X,); R), the natural map 7*(7.(F)) — F is an isomorphism.

(vi) The functor 7, sends a sheaf with descent on T'op(X,) to sheaf with descent on STop(X,).

Proof. (i) is equivalent to showing that there exist natural transformations 7. © X (a)x — Nm«. This follows
readily from the definition of 77,. and 7«-

(i) Clearly it suffices to consider the case n = 0. Let Z,, be a fixed point of X,,, and let Zg = Xo(a)(Z,)-
One may observe that

Xo(@)* (06 (7 (F)z,. = 15 ((F))zo = (7 (F)) (z0).

By (3.7.7) the latter is isomorphic to Fpz,. On the other hand 7y, (7«(F))z,, = 7«(F)(z,.). = Fo,z, as well
by (3.7.7).
Moreover, it again follows from (3.7.7) (see also (3.3)) that the map of the right-hand-sides above is the identity.

Since the map n};, (7. (F)) Py X, (@)*(n} (7« (F))) is an isomorphism, so is its inverse ®, = (¥,) 1. The sheaves
{nk (7« (F))|n} along with the maps {®,|a} now define a sheaf with descent on the simplicial space X,. This
proves (ii).

(iii) Let %, and Zo be as in (ii). Then (5}, F')z, = F(’im). while (ngF')z, = F(z,),- The hypothesis on F"

implies that one obtains an isomorphism Xe(a)*(ng(F"))z,, =k (F")z,,. It follows that {n},(F')|m} defines a
sheaf with descent on T'op(X.,).

m
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(iv) The first assertion follows readily in view of the natural isomorphism:
Homgn(rop(x.);r) ({nk (1« (F)) [k}, L) = Homsn(sTop(x.);r) (T« (F), 7« (L))

= Homgh(Top(X,);R) (77* (ﬁ* (F)): L)

for all L € Sh(Top(X,);R). The first isomorphism follows from the definition of 7, as in (3.7.1) and the
observation that each 7. is right adjoint to 77;. Observe that giving an element in the left-hand-side corresponds
to giving a map from the constant cosimplicial object 7. (F') (in Sh(STop(X,); R)) to the cosimplicial object
{Nk«(Lk)|k}; this in turn corresponds to giving a map from the object 7* (F) to the inverse limit ligl{nk*(Lk)|k}.

The last isomorphism follows from the fact 7* is left adjoint to 7, by definition.) The last assertion in (iv) also
follows by a similar argument in view of (iii).

(v) Since both sheaves have descent, it suffices to show that there exists an isomorphism on restriction to
Top(Xp). This is clear in view of the above discussion.

(vi) follows readily in view of the computation in (3.7.7). O

(3.10)Corollary. The natural transformation of functors

* o Rij. — id : D4*(Sh(Top(X.); R)) — D%**(Sh(Top(X.); R)) is an isomorphism. The functor R, :
Dies(Sh(Top(X.); R)) — D3 (Sh(STop(X.); R)) is fully-faithful.
Proof. Since both 7* and R7),. preserve distinguished triangles one obtains a spectral sequence:

Ey' = H* (1" (R HN(K))) = HV (7 (Rij. (K))

In view of the hypothesis that the cohomology sheaves of K have descent, this spectral sequence degenerates
and ES'' = 0if s > 0 and = 7*7.(H!(K)) if s = 0 by the arguments earlier and by (3.9)(iv). By (3.9)(v) this is
isomorphic to H!(K). This proves the first assertion. The second is now clear since 77* is left-adjoint to Rij,. O

(3.11) Proposition.

(i) If Ke D4 (Sh(Top(X.); R)), H}OP(X.)(X.; K) = HETOP(X.)(X.; R7.(K)). If, in addition,
K € Sh¥e*(Top(X,); R), the last term is isomorphic to Hopix.y (KXo 7(K)).

(i1). Let f : Xo — Y, be a map of simplicial algebraic spaces and let K €D, (Sh(Top(X,); R)). If sfe.
denotes the induced functor (as in (2.2)),

Rﬁ*(Rf-*K) = RSfo*Rﬁ*(K)-

Proof. The first isomorphism in (i) follows from the definition of the functors R, and 5} along with the
observations that R7.(K) = n§(K) and that each 7. sends injectives to injectives and is also exact. The
second isomorphism in (i) follows from the computation in (3.7.7). Now we consider (ii). Observe that for each
k > 0, there is a natural isomorphism: 7. o fr« ™~ sfx © N«. Next observe that both 7, and fi. send injectives
to injectives while the functor f, commutes with inverse limits. Therefore, the identification in (ii) is clear
from the definition of R7,. O

4. Hyper-cohomology of fibers for a cohomologically proper map

(4.0) Definition. Let f : X — Y be a map of algebraic spaces and K*® denote a bounded below complex in
Absh(Top(X)). Then (K*, f) is cohomologically proper if for every map g : Y’ — Y, the canonical base-change
g*Rf.K* — Rf'.g'""K* is a quasi-isomorphism, where f’, g’ are defined by the cartesian square

x -4, x
f'l lf
y' 4 v

(4.1) Examples.(i). Let the topology be the étale topology, f be proper and F' a torsion sheaf; then the proper-
base-change theorem (see [Mi] chapter 4 or [SGA]4 Expose XVI) shows (F, f) is cohomologically proper.
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(ii). Let ps : X X Z — Z denote the projection to the second factor between schemes of finite type over
an algebraically closed field k. If F' is an [-adic sheaf on Et(Z), (F = p5(F"),p2) is cohomologically proper.
To see this, one may identify Z with Spec k x Z so that the projection p, identifies with the map p x id.

L

Here p : X — Spec Fk is the structure map. Then F' = Q, X F' so that Rps.(F) ~ Rp.(Q,)XF'. Next

consider a point Z : Spec k — Z; let iz : Spec k A Spec k x Spec k Jdxz, Spec k x Z and let
idXiz

iz : X x Spec k —=% X x Z. Let ps : X x Spec k — Spec k x Spec k = Spec k be the obvious
projection. Clearly i(Rp2.(F)) = Rp.(Q,) ¥ F; while Rp;, (iZ(F)) = Rp;,.(Q, K F}) ~ Rp.(Q) K F%.

z

(iii). Let k denote an algebraically closed field, X a scheme of finite type over k and G an algebraic group
acting on X . Let H denote a closed subgroup of G and let GxX denote the object defined in (4.3.1) below. If F
H

is a G-equivariant [-adic sheaf on Et(G x X) and p: G x X — Gx X is the projection, (F,p) is cohomologically
proper. "
To see this we may proceed as follows. First one defines maps pr; : G I)}X — G/H and m : G I>§X — X as

follows: pry is induced by the projection sending all of X to Spec k, while the map m sends (g, z) to g.z. (One

may observe that (gh~!, h.z) = gh~l.h.x = g.z, for any h € H, so that the map m is well defined as stated.)

Then pr; and m define a map pm : GxX — G/H x X which one may verify readily to be bijective (on points)
H

and hence purely inseparable. Therefore, it suffices to show that (F,7 = pm o p) is cohomologically proper.
Next consider the automorphism ¢ : G x X — G x X defined by o(g,z) = (g9,9%), g € G, x ¢ X. One may now
observe that m = (p x id) o o where p: G — G/H is the obvious projection. Therefore, it suffices to show that
(F,p x id) is cohomologically proper.

Next the G-equivariance of the sheaf F' shows, as in (4.4.5) below, that F = QK F', for some [-adic sheaf
F' on Et(X). Therefore, R(p X id)«(F) ~ Rp.(Q) X F'.

Let iz : Z = G/H, iz : T — X denote two points and let iz : H = G be the closed immersion of the
geometric fiber over z into G. Then (i; x iz)"(R(p x id)«(F)) =~ Ri;Rp.(Q,) K F7. Using the observation that
the cohomology sheaves of Rp.(Q,) are G-equivariant and hence lisse (i.e. each term in the inverse system
defining the corresponding l-adic sheaf is locally constant) on Et(G/H), one may identify the last term with
Rps . (i% (Q,)) ® F; where p; is the projection from the geometric fiber above z (=2 H) to z. Then the last term
identifies with Rm; 5. (iz x iz)*(F) where 7, z : H x & — Z x & is the obvious projection.

. (4.2) Theorem (Joshua: see [J-T] appendix C.) Let fo : Xo — Y, be a map of simplicial algebraic spaces. If
Ke D, (Absh(STop(X,))), we obtain a Leray spectral sequence:
EP? = HP(Y,; RY,f.K) = WP+ (X,; K).

If, in addition, K = Rij.(K), Ke D, (Absh(Top(X,))) and each (K,, f,) is cohomologically proper, then we
obtain the identification of the stalks:

(Rq3f°*K)Z7- :Hq(g.;/(X.; Klgongo)

for any point g. of Y,
Proof. We begin with the hypercohomology spectral sequence
EpY = HP(Y; H(R, f.K)) = HP¥(Ya; R, f.K) ~ PO (X,; K).

This clearly provides the required spectral sequence. We proceed to identify the stalks of R, f, K. Let §, denote
a simplicial point of Y,. Observe that

(RI5foK)y, = imHY (Us x X,o; K)
5 Y.
where the colimit is over all (simplicial) neighborhoods of e as in (3.5) and the cohomology is computed on the

site STop(Us X X,). Next recall the isomorphism
Y.
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Warop(xs) (Us X Xo3 K) = Hipy i,y (Us X Xo; K)
since K = R (K). Therefore, we are able to make use of the spectral sequence
EP® = W (U, x X,; K,) = H'+ (U x X3 K)
Y- Y.
as in (2.6)(ii). Taking the direct limit over all simplicial neighborhoods U, of g, we obtain the spectral sequence

(4.2.1) imE"® = imH?® (U, x X,; K,) = ImH** (Us x X,; K)
— > Y, g Y.

Ue Ue

Now we use the assumption that each (K, f,) is cohomologically proper along with (3.3) to identify the left-side
as H® (ﬂr;f Xr; Kr|ﬂr1>/< X,). Comparison with the spectral sequence in (2.6)(ii) for the simplicial scheme jjq, X X,

shows we may identify the right side of (4.2.1) as H'* (g, X Xo; K |7 X X,). O
Y, Y,

We will conclude this section by recalling an important application of the above theorem to equivariant
derived categories in positive characteristics. (Another application is the main theorem of the next section.)

(4.3.0) We assume throughout the rest of the paper that all schemes and algebraic spaces are defined over
an algebraically closed field k of characteristic p > 0 and that these are provided with the étale topology. Now
sheaves are [-adic sheaves. (In case k = C, one may consider complex analytic spaces and varieties using the
transcendental topology; now sheaves will be sheaves of Q or C-vector spaces.) Let X denote an algebraic
space provided with the action of an algebraic group G, which we will assume is not in general connected.
The action G x X — X will be denoted o. In this situation, one may define the simplicial algebraic spaces
EG éX and BG in the usual manner. One defines the equivariant derived category DY (X; Q) as the full sub-

category of D (Et(EGxX); Q) consisting of complexes that have G-equivariant and constructible cohomology
G

sheaves or equivalently have cohomology sheaves which are constructible and have descent. (See [B-J] (1.3.1)
for more details.) We let D$(BG;Q) = Df(EGé(Spec k); Q). We let DY(X) = D¢ (X;Q) which is the

full sub-category of DY (X; Q) consisting of bounded complexes.

(4.3.1) Let i : H — G denote the closed immersion of a closed algebraic subgroup of G, let o : H x X — X
denote the induced action and let i : EH XX — EGxX denote the induced map where X is a scheme with
H G

G-action.

Let H act on G x X by h.(g9, z) = (9-h™!, hz),he H,ge G and z ¢ X. Then a geometric quotient GEX

exists for this action and the obvious map s: G x X — GxX is smooth with fibers isomorphic to H.
H

(4.3.2) Then G has an action on G x X induced from its action by translation on the first factor of G x X;
this induces a G-action on Gx X which will be denoted ;. One verifies that the map s is equivariant for these
H

actions of G.

(4.3.3). Let m : GxX — X denote the map induced by the action o : G x X — X. One verifies that m is
G-equivariant for theHG—action on G I>§X as in (4.3.2) and the G-action on X. It follows that m defines a map
m: EGé(GﬁX) — EGéX.

(4.3.4) Let r : G x X — X denote the projection to the second factor.

(4.3.5) Next let G x H act on G x X by (g1, h1).(9, z) = (g19h; ', hiz), g1, g € G, by € H and z € X. This
action will be denoted o2. We observe that the maps r and s are such that we obtain the commutative squares:

(GxH)x(GxX) 2 GxX

prlxsl sl

G x (GxX) — GxX
H H
14



(GxH)x(GxX) 25 GxX
and pher, TJ,

HxX 5 X
It follows that r and s induce maps 7 : E(G x H)GxH(G x X) — EH;;X
X
and §: E(Gx H) x (Gx X)— EGx(GxX).
GxH G H

(4.4) Theorem. (See [J-1] Theorem (6.4).) Assume the above hypotheses. Then we obtain the equivalences
of categories:

DH(X) L) DGXH(G x X) and DG(G;(IX) E_*) DG’xH(G x X)

Outline of Proof. Observe first that each r, has as geometric fibers G®*! while each s, has geometric fibers
o~ H™+l. Therefore, observe that the geometric fiber of 7 over a point Ze : A[n] ® Spec k — EH I>;X (of 5
over a point T, : A[n]® Spec k- EG X (G X X)) is isomorphic to the simplicial space A[n]® EG (A[n]® EH,

respectively); hence they have trivial cohomology with respect to any locally constant abelian sheaf. Since
(EH)y = H ((EG)p = G) any constructible H-equivariant (G-equivariant) abelian sheaf on Et(EH) (Et(BG),
respectively) is locally constant; if F' (K) is a constructible H-equivariant (G-equivariant, respectively) abelian
sheaf on Et(EH EX Y Et(EG é(G EX ))), 7 (F)(5*(K), respectively) is a G x H-equivariant constructible sheaf

on Et(E(G x H)GxH(G x X)). Recall the geometric fibers of 7 (5) were observed to be A[n]® EG (A[n]® EH,
X
respectively). Therefore, one may make the following observations :

(i) the cohomology sheaves of 7 (F') (5*(K)) are lisse (and therefore, in fact, constant) on the geometric fibers
of 7(5, respectively) and hence

(ii) the geometric fibers of 7 (5) are acyclic with respect to 7 (F')(5*(K), respectively). Moreover H*(A[n] ®
EG;7(F)) =2 H*(A[n]® Spec  k;z5(F)) ( H*(An]® EH;5*(K)) = H*(A[n]® Spec  k;Z;(K)), respectively)
if Aln] ® EG (A[n] ® EH) is the geometric fiber over the point Z,.

Next (4.1)(i1) ((4.1)(ii) and (4.1)(iil)) applies to show that (FX(F),), ) ((8%(K,), 8n), respectively) is coho-

mologically proper for each n > 0. In view of the above observations, Theorem (4.2) shows that the natural

map

F ={F,|n} = {Rrp.riFyu|n}, (K ={Ku|n} = {Rsn«siKp|n})
induces an isomorphism

(44.1) H(EHXX; F) = H'(E(G x H) x (G x X); r*F)

GxH

((442) (HU(BGX(GxX); K) ~ H(B(G x H) x (G x X); §'K)) , respectively.)

As these isomorphisms are natural in K and F' they induce a map of the hypercohomology spectral sequences
proving thereby that such an isomorphism holds for any Fe D¥(X) (Ke D%(GxX), respectively). (Recall that
H

the above derived categories consist of bounded complexes.)

Now we show that 7 and §* are fully faithful. For this it is necessary to define an internal hom functor,
Hom, for the category D3°*(Sh(Et(Z,)); Q) on any simplicial space Z,. The main defining property of this
functor is that we obtain the isomorphism

(4.4.3) Hom(Mé)N, P) = Hom(M,Hom(N, P))

where M, N and P belong to Dy (Sh(Et(Z,)); Q) and the two Homs denote the external Homs in the derived
category D4¢*(Sh(Et(Z,)); Q). Taking M = the constant sheaf Z z,, we obtain:
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Hom(N, P) = H*(Z,,Hom(N, P))

where the right-hand-side is cohomology computed on Et(Z,). Next assume that all the face maps d; : Z,, —
Zn—1, for all ¢ and all n > 1 are smooth. One may then show that if N and P belong to D$°*(Sh(Et(Z,)); Q:),
one obtains the quasi-isomorphism

(4.4.4) Hom(N, P),, = Hom(Ny, P,,) for each n > 0

Using this and the observation that each of the maps r,, is smooth, one may also show that if N, P ¢ DH(X),
the natural map 7% (Hom(N,, P,)) — Hom(r} Np,rkP,) is a quasi-isomorphism. It follows #*Hom(N, P) ~
Hom/(7*N,7*P).

Now we may show 7* is fully-faithful as follows. Let M, Ne D¥(X) and let F = Hom(M, N) ; observe that
Fe DH(X). The left-side of (4.4.1) is Ezt!(M, N) while the right-side is Ext!(7* M, #*N). This proves that
the functor 7 is fully faithful; the proof for §* is similar.

Once 7 and §* are known to be fully-faithful, in order to show they are equivalences of categories, it suffices
to show they are equivalences on the hearts of the appropriate derived categories. (See for example : [Beil]
Lemma (1.4) .) i.e. It suffices to establish that #* (5*) provides the equivalence:

(4.4.5) (H-equivariant sheaves of Q-modules on Et(EH xX)

H
~ (G x H-equivariant sheaves of (y-modules on Et(E(G x H) x (G x X))
(GxH)

((4.4.6) (G-equivariant sheaves of (-modules on Et(EGé(GxX))) ~
H

((G x H)-equivariant sheaves of Q-modules on Et(E(G x H )( X )(G x X))), respectively.)
GxH

The key observation here is that G x H-equivariance corresponds to suitable descent conditions. O

5. An application to representations of finite groups and to the equivariant derived categories
of non-connected groups in positive characteristics

(5.0) Throughout this section we will assume the hypotheses of (4.3.0). In addition, we will assume that the
group G is not necessarily connected and that H is a connected closed normal subgroup so that the quotient G =
G/H is finite. If K € D(X;Q), we define Hj, (X; K) = H* (EGE(G;;X);(ﬁ*(K)) where ¢ : EGé(GEX) —

EGé(GéX) = EGéX is the obvious map and H, (X; K) = IHI*(EGéX;K).

In order to motivate the following theorem, first consider the special case X = Spec C, H = G°= the con-
nected component of G containing the identity and K = £ a G-equivariant sheaf on BG. Since the fundamental
group of BG is now G, the G-equivariant sheaf £, which is automatically a local system on BG, has an action
by G. Therefore, there is an induced action of G' on the equivariant cohomology H*(BH;L). The following
theorem is a generalization of this fact and it is already established in [B-J] Theorem 1 in characteristic 0. (See
[B-J] (1.3.3) for a discussion of local systems in positive characteristics.)

The only non-simplicial approach to the classifying space of an algebraic group in positive characteristics
is in terms of infinite Grassmanians. However, this does not provide a fibration BG — BG with fibers BH
in positive characteristics. The existence of such a fibration is crucial in characteristic 0 for the proof of the
following theorem. The simplicial techniques introduced in the earlier sections are adequate substitutes for this
(and seem to be essential) for the proof of the following theorem in positive characteristics.

(5.1) Theorem. Let K € D$(X;Q). (i) Then there exists an action of G on Hj; (X; K) that is natural in
K. (ii) Moreover, one obtains an identification HY, (X; K) = (Hj (X; K))%.

Proof Let K € DY(X) and let 7% : EG (>§X — BG denote the obvious map. Now one considers R"7¢ (K),

where 7¢ denotes the direct image functor for sheaves on the site considered in (1.1.1)(i). One may identify the

stalks of this sheaf at any point Z,, of BG,, with H* (X; K). Therefore, one may readily see that R"7¢ K is sheaf

with descent or equivalently a G-equivariant sheaf on BG. Since any G-equivariant sheaf on BG is lisse, the

fundamental group of BG = G/G° has an action on the stalks which are identified with H* (X; K'). Moreover,
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it is clear that this action is natural in K. (Recall that if o : K’ — K is a map in D¢ (X,Q), each R"a, is a
map of G-equivariant sheaves on BG.)

We will next consider the first statement of the Theorem. Let 7 : BG — BG denote the obvious maps. Let
the composition 7 o 7% = 7. One of the key ideas of the proof is to identify Hj; (X; K) with the stalks of the
sheaf ®R"(s7).K at any simplicial geometric point on BG. Since G is finite one may observe that (L, 7x) is

n

cohomologically proper for any L € D4 (Et(BG); Q) and any k > 0. One may also readily observe that (K, 7S’)
is cohomologically proper for any K € DY (X;(Q). Therefore, it follows that (K}, ) is cohomologically proper
for any k > 0. Let Zo denote a fixed geometric point of (BG)y and let #, denote the associated simplicial
geometric point of BG. One may clearly identify the geometric fiber of 7 over Z, with EH I>§X . Therefore, (4.2)

provides the identification of the stalk at T,:

(5.1.1) (H"(RemuRiju(K)))z, = Hy (X;K), K € DF(X;Q), n > 0.

Observe that H"(R,m(R7.K)) is a sheaf on SE#(BG). In order to show there exists an action of G on the
above sheaf that is natural in K, we will first show that for each n, H™(Rsm. (R« (K))) is a sheaf with descent
in the sense of (3.8.2).

First we reduce to the case X = Spec k as follows. By (3.11)(ii), Rsm«Riju(K) = R,T«R,7C R (K) =
R, 7, R, Rr¢ (K). Therefore, we may replace EG (>§X (m, the complex K) by BG (7, K' = Rr¢(K), respec-

tively).

Assume that K’ € Df(Spec k; Q). Let Z,, be a fixed (geometric) point of BG,, = G* and let Zo = (Z)e :
A[m]®* — BG denote the associated simplicial point. Let & : (BG),, — (BG)o denote a structure map of the
simplicial scheme BG, let Ty = a(Z,,) be the corresponding geometric point of BGy and let (Z)s denote the
associated simplicial geometric point of BG. There exists a map (Zo)e — T of simplicial points and therefore
an induced map of the corresponding geometric fibers of the map 7. These are isomorphic to the simplicial
scheme A[0]® BH (= the diagonal of the bi-simplicial scheme {A[0]; ® H"|r,l}) and A[m]® BH (= the diagonal
of the bisimplicial scheme {A[m]; ® H"|r,l}). One also obtains an induced map of the stalks:

(5.1.2) (RTu(Rij«(K"))) (50)s 4 (RsTu (R (K")))z,

Assume for the time being that the map in (5.1.2) is a quasi-isomorphism for all structure maps @. We immedi-
ately observe that if @ : (BG),, — (BG)o is a structure map of BG, the natural map a*(ng (Rs7«(Rij«(K')))) <
i (RsTo (R (K'))) (see (3.9)(1)) is a quasi-isomorphism. (To see this observe that the stalk on left-hand-
side at Z,, identifies with (Rs7.«(R7«(K')))(z,). While the stalk on the right-hand-side at Z,, identifies with
(Rs7s (R« (K'")))z,-) Tt will follow therefore as in (3.9)(iii), that for each fixed n, {n(H"(Rs7.(R7:(K"))))|k}
is a sheaf with descent on Et(BG) and that therefore there exist an action of G on the stalks of the above
sheaf thereby proving the first statement of the theorem. (Observe the action of G is natural since there is an
equivalence of categories between G-equivariant sheaves and sheaves with descent on BG.)

We proceed to show that the map in (5.1.2) is a quasi-isomorphism. In view of the identification of the stalks
as in (4.2), the map in (5.1.2) corresponds to a map

H* (A[0]s ® BH; K') + H*(A[m], ® BH; K')

Observe that the above map is induced by the map of bi-simplicial schemes: {A[0]; ® H"|r,l} La®id, {A[m]; ®
H"|r,1}, where a : [0] = [m] in A induces the map &. Using the spectral sequence for the hypercohomology of
a bisimplicial scheme (see [Fr] p. 19), one reduces to showing that the corresponding maps

(5.1.3) H* (A[0]e ® H"; K') « H* (Afm]s @ H"; K?)

are isomorphisms for each fixed r. Recall that we have already replaced X by Spec k and the map 7 by 7.

Therefore, the geometric fiber of the map 7,, over each geometric point of BG,, is isomorphic to H"; moreover

all the geometric fibers of m, over A[m], are contained in G" = (BG),. Since K' has G-equivariant cohomology

sheaves, one may now compute H(A[m]s ® H"; K!) ~ A[m]e @ H(H"; K). Therefore, the map in (5.1.3) is
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indeed an isomorphism. We have therefore completed the proof that the map in (5.1.2) is a quasi-isomorphism
and therefore also the proof of the first statement in the Theorem.

Next consider the Leray spectral sequence for the map 7 : BG — BG and for the complex
Ri.Rn¢(K) € D (SEt(BG); Q). We obtain:

Ey* = H"(BG; R (7). (Rl R (K))) = H™+"(BG; Rm.(K)) = HE" (X; K).

Since G is a finite group, E,"" = 0 unless u = 0 in which case it is given by (R?(s7)+ (R (R7C (K))))C
(I (X; K)) by the above results. This completes the proof of the theorem. O

1%

The remainder of this section will be devoted to a proof of (5.6) below: this is needed in [B-J]. We will make
a slight change of notation: the map BG — BG denoted 7 above will now be denoted p. The composite functor
R;p. o Rij, will be henceforth denoted Rp..

(5.2.1) Assume the situation of (5.1). If Q, is the obvious constant sheaf on Et(BG), Rp«(Q,) = R(sp)«7«(Q,)
is a complex of I-adic sheaves on SEt(BG). The obvious pairing Q, ® Q, — Q, induces an associative pairing:
Rp.(Q,) ® Rp.(Q,) — Rp«(Q,). This shows Rp.(Q,) is an l-adic sheaf of differential graded algebras on
SEt(BG).

(5.2.2) Let BiMod, (SEt(BG); Rp. (Q,)) denote the category of bounded below complexes of [-adic sheaves
of bi-modules over the l-adic sheaf of differential graded algebras Rp.(Q,) on SEt(BG). An object in this
category is a bounded below complex complex of I-adic sheaves M on SEt(BG) provided with (coherently)
associative pairings Rp.(Q,) ® M — M and M ® Rp.(Q,) — M that make the obvious diagrams commute.
Morphisms M' — M in this category are morphisms of complexes that are compatible with the extra structure.
(See [K-M] for details on differential graded algebras and modules over them.)

(5.2.3) Given K € DY (BG;Q), the associative pairings Q&K — K and K ® Q, — K imply that Rp.(K)
belongs to BiMod, (SEt(BG); Rp.(Q,))-

(5.2.4) Let A[l] ® Q, denote the normalization of the simplicial abelian group given by n — A[l], ® Q,.
We will define two maps f,g: M — N in BiMod, (SEt(BG); Rp.(Q,)) to be homotopic if there exists a map
H: M®A[1]®Q, — N sothat f = Hodp and g = Hody, withd; : M =2 M®RA[0]®Q, = M®A[1]®Q, being the
obvious maps. The associated homotopy category (i.e. where a morphism is an equivalence class of maps in the
equivalence relation generated by the above definition of homotopy) is denoted H BiMod. (SEt(BG); Rp«(Q,))-
The corresponding derived category is obtained from HBiMod; (SEt(BG); Rp«(Q,)) by inverting maps that
induce isomorphisms on cohomology. This will be denoted D(BiMod, (SEt(BG); Rp.(Q,)))-

(5.3.1) Let Z,, be a fixed geometric point of BG,, and let a : (BG),, — (BG)o be a structure map of the sim-
plicial scheme BG. Let Zo = a(Z,) be the associated geometric point of (BG)g. If (Z,)s and (Zo)e are the corre-
sponding simplicial geometric points of BG, as observed above, there exists a natural map (Zo)e — (Zn)e. If F' is
a sheaf of differential graded modules on SEt(BG), we will say F' has descent (or is G-equivariant) if the induced
map of stalks (Zo)sF' + (Z,)5F" is a quasi-isomorphism for all geometric points Z, and for all n > 0. Next
we let D%(BiMod, (SEt(BG); Rp.(Q)))) denote the full subcategory of D(BiMod, (SEt(BG); Rp.(Q,)))
consisting of [-adic sheaves of differential graded bi-modules over Rp, (@1) whose cohomology sheaves are G-
equivariant.

(5.3.2) Lemma. Let M ¢ DG(BiMod, (SEt(BG); Rp.(Q,))). Then H

x SEt(B@)(BG,M)) = Hn(ﬁ*(M))é for

all n.

Proof. Let F' denote a sheaf on SEt(BG) with descent. It follows from (3.9)(iii) and (3.7.6) that the natural
map F' — Ri.7*(F') is a quasi-isomorphism. Moreover HgEt(Bé)(BC_J,F’) = Hgt(BG,)(BG‘,ﬁ*(F’)) = g (F)¢
if n = 0 and = 0 otherwise. Therefore, one observes that the spectral sequence

st __ s . S .
B3 = Hypy ) (BG HH(M)) = B, o o (BG; M)

degenerates with ES* = 0 for s > 0 providing the isomorphism ]HIgEt(B@)(BG; M) = T(BG;i*H (M)) =
HGr ()6, D
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Next let M, N e D%(BiMod,(Et(BG); Rp. (Q,)))- Then there exists a spectral sequence:

st 8,t
(5.3.3) By” = £ty ()

Moreover, if at each geometric point Z of BG, H*(M )z is a projective module over H*(Rp«(Q)))z = H*(BH; Q),

(H* (M), H*(N)) = W+ (RHompp, o) (M, N)

then the above spectral sequence degenerates and E;*t = 0 for all s > 0. (The spectral sequence is established

in [K-M] Theorem (7.3), Part V. Recall that the cohomology sheaves #*(M) are G-equivariant and hence lisse.

Therefore the stalk of the term in (5.3.3) at a geometric point Z identifies with Ewti}i (R7.(Q )2) (H*(M)z,H*(N)z).)
*\}, )z

(5.3.4) This holds for example if M = Rp,(F), F ¢ Sh%(Et(BG),Q). To see this, take the stalks of
the Es-terms at a geometric point Z of BG. Since the cohomology sheaves H*(Rp.(F)) are lisse, E;:ti =

Exty). gy, (0. (H (RP-(F)z, 1" (RP«(Q))z)- (5.1) shows thatH*(Rp+(Q,))s = H*(BH; Q) and H* (Rp.F);

H*(BH; Fipy). Observe that (BH;) is simply connected, i.e. 71 (BH, ) = 0 where m; denotes the étale funda-
mental group where " denotes completion away from the characteristic p. Therefore F|gy is the constant [-adic
sheaf associated to a (free) Z;-module. Therefore H*(BH; Figy) is a free module over H*(BH; Q).

R

Next we define the functor

- L
(5.4.1) Lgp* : D(BiMod (SEt(BG); Rp«(Q,))) — D4+ (SEH(BG); Q) by Q, 1(1(? © ))sp—l(N).
sP™ P« (&
(See [K-M] part III for a definition of the derived tensor product functors considered above in a somewhat more
general setting.)

(5.4.2) Proposition. (i) If K ¢ DS (BG;Q), there exists a map 7* Lsp*(Rp)«(K) — K which is a quasi-
isomorphism and is natural in K.

(ii) The functor Rp, : D (BG; Q) — DG (Bi — Mod(SEt(BG); Rp. (Q)))
is fully-faithful.
(iii) If K, L € D§(BG; Q) the map in (i) induces a quasi-isomorphism:

Rp.(RHom(K,L)) — RHomRﬁ*(@l)(Rﬁ*(K ), Rp«(L)). (The two RHom denote derived functors of the
appropriate internal Homs.)

Proof. Observe that Lsp* is the left-adjoint to the functor
Rp.: D4(SEt(BG); Q) — D(BiMod, (SEt(BG); Rp«(Q)));

similarly 77* is left adjoint to 77,. Therefore, the naturality of the map in (i) is clear. To show it is a quasi-
isomorphism, it suffices to show the restriction of the map in (i) to each geometric fiber (of the map p over each
simplicial geometric point of BG) is a quasi-isomorphism. Therefore, we readily reduce to the situation where
the map p is replaced by the obvious map from the geometric fiber of p over a fixed simplicial geometric point
T, of BG. If F;, denotes the geometric fiber of p over Z,, one may readily compute H* (Fj,; K) = H* (BH; K).
One may also compute the stalk of Rp.(K) = R(sp)«R7«(K) at T, using (4.2) to be isomorphic to H* (BH; K).
Therefore, (i) reduces to the case where the group G is replaced by H and G/H by H/H. In this case (i) may
be established as follows. Since the map in (i) is natural in K, it suffices to prove (i) with K replaced by an
H-equivariant sheaf £. Next observe that m (BH ) =0, where m; denotes the étale fundamental group and the
completion is away from the characteristic. Therefore the H-equivariant sheaf £ is the constant sheaf associated
to a free Z;module. In this case, (i) follows readily. It follows from (i) that the functor Rp, is fully-faithful
thereby proving (ii).

L
Observe that the map in (iii) is adjoint to a map Rp,(RHom(K,L) & )Rp.(K)— Rp.(RHom(K,L)®
Rp.(Q)
K) — Rp.(L). This exists in view of the adjunction between Rp. and 7*Lsp*. In order to prove this is a quasi-
isomorphism, once again we reduce to the case where G is trivial as follows. First observe that the cohomology
sheaves of Rp.(K) are lisse on BG. Therefore, if Z is a fixed (simplicial) geometric point of BG,
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(’R’HomRﬁ*(@l)(Rp*(K),Rp*(L))E ~ RHom(Rﬁ*(@l))i((Rp*(K))E, (Rp.(L))z)- Then the computation of the
stalks as in the proof of Theorem (5.1) reduces to the case G is trivial or where G itself is connected. Since the
map in (iii) is natural in K and L, we may reduce to the case these are themselves G-equivariant sheaves. Since
(BGp;) is now simply connected, we may assume that K is the constant sheaf associated to a free Z;-module.
The quasi-isomorphism in (iii) is now clear. O

(5.5.1) Given M e D(BiMod, (SEt(BG); Rp.(Q,)))), we define the dual of M to be
RHompp, (@l))(M, Rp.(Q,)))- This will be denoted Dgp, (@l)(M).

One may re-interpret (5.4.2)(iii) with L = Dg, ~ Q, as
(5.5.2) Dy, (@) (BP«(K)) = Rp.(D(K))
where D(K) denotes the Verdier-dual of K.

(5.6) Proposition. Let K ¢ D(BG;Q) so that for each simplicial geometric point Z, of BG, the stalk
H*(Rp«(K))z, is a projective module over H*(Rp«(Q))z.- Then

H* (BG; D(K)) = H* (BH; D(K))© 2 (Homy+(puq,) (H* (BH; K), H*(BH; Q1)))%.

Proof. The first isomorphism follows from (5.1)(ii) with X = Spec k. Observe that the stalks of H* (Rp.D(K))
on BG are H*(BH; D(K)) and that the cohomology sheaves H*(Rp.D(K)) are G-equivariant. Therefore, one
may identify H* (BH; D(K))¢ with H*(7*(Rp,D(K)))“. By (5.3.2) Lemma, one obtains the isomorphisms:
H*(i7*(Rp.D(K)))® = Hiy, 6, (BG; RB.D(K))) = Hp, po (BG; Drp, (o) (Bp«(K)))). By definition the
last term

(5.6%) = H py gy (BGs RHompg. (o) (R (K), BB (Q)))).

One may observe RHom E(5).(Q,) (Rp«(K), Rp.(Q)) is a complex whose cohomology sheaves are G-equivariant.
(See the proof of (5.1)(ii)). By an argument as in (5.3.2), the term in (5.6.*¥) may now be identified with
H*(7*RHompg, () (B« (K), Rp« (@)))¢. Now the arguments in (5.3.3), (5.3.4) along with the observation
that 7* preserves distinguished triangles applies to identify this with

(Homp-(pu.q)(H* (BH; K), H*(BH;Q)))%. O

Appendix: The Dold-Puppe correspondence. Let A denote an abelian category; a co-chain complex
K in A will denote a sequence K¢ € A provided with maps d : K! — K*! so that d?> = 0. Let Cy(A) denote
the category of co-chain complexes in A that are trivial in negative degrees. One defines the denormalizing
functor:DN : Co(A) — (Cosimplicial objects in A) as in [Ill-1] pp. 8-9. (In [IIl-1] pp.8-9, the corresponding
functors between simplicial objects and chain complexes are considered. Making use of the observation that a
simplicial object (a chain complex) in an abelian category corresponds to a cosimplicial object (co-chain complex,
respectively) in the opposite abelian category, one may adapt these to the present situation.) DN will be inverse
to the functor N : (Cosimplicial objects in A) — Cp(A) defined by (NK)" = .;éi-ocoker(d" : K™ — K™t1) with

Kz

d:(NK)™ — (NK)™*! induced by d°.
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