VANISHING OF ODD DIMENSIONAL INTERSECTION COHOMOLOGY
FOR SPHERICAL VARIETIES IN POSITIVE CHARACTERISTICS

Roy JosHUA

ABSTRACT. In this note we show that the odd dimensional intersection cohomology sheaves vanish for all
spherical varieties in all characteristics, extending the results of Michel Brion and the author in characteristic
0.

0. Introduction. Both the global intersection cohomology and the cohomology sheaves of the
intersection cohomology complexes are known to vanish in odd degrees for a large number of varieties.
One of the successes of equivariant intersection cohomology (introduced in [Bryl] and [J-1] independently)
was to provide a geometric proof of this phenomenon. These results were extended and strengthened
in [B-J]. One of the results established there was that the above vanishing phenomenon extends to
all complex spherical varieties. In the present paper, we extend this to spherical varieties over an
algebraically closed field of arbitrary positive characteristic.

In order to keep the paper rather self-contained, we begin by recalling the relevant facts about equi-
variant derived categories and equivariant intersection cohomology complexes in positive characteristics.
(One may consult [J-1] and [J-2] for further details.) This concludes with a result (see Proposition (1.6)
) about the direct images of the equivariant intersection cohomology complexes under finite maps. We
discuss the local structure and weak-resolution of singularities for spherical varieties in positive charac-
teristics in the next section. The last section is devoted to a proof of the above vanishing result, which
may be summarized as follows:

Main Theorem. Let G denote a connected reductive group, X a G-spherical variety and £ a G-
equivariant local system on the open dense orbit. Now H!(IC(X; L)) = 0 for all odd i. In case X is also
projective, TH(X; L) = 0 for all odd i as well. (Here IC(X;L) denotes the intersection cohomology
complex with the middle perversity whose restriction to the open G-orbit is £ and IH*(X; L) denotes
the corresponding equivariant intersection cohomology groups.) O

The author thanks Michel Brion for several discussions on this paper. He would also like to thank
the Max Planck Institut and the IHES for support and hospitality.

Throughout the paper, we will let & denote an algebraically closed field of characteristic p > 0 and
will only consider schemes of finite type over k. [ will denote a prime different from p.

1. Equivariant derived categories and equivariant intersection cohomology in positive
characteristics.

(1.0) We begin by recalling the definition of equivariant derived categories and equivariant intersection
cohomology from [J-1] and [B-J]. The main difference from the characteristic 0 situation will be that we
adopt the definition of EG, BG and EGxX as simplicial schemes defined in the usual manner. (See

G
[Fr] pp. 89.) Observe that now BGy = Spec(k) and we will call this the base point of BG,. The
above simplicial schemes will be provided with the following étale topology. Let X, denote a simplicial
scheme. Now Et(X,) will denote the category whose objects are étale maps u : U — X, for some n; a
morphism v : U - X, to v : V — X, will denote a map w : U — V lying over some structure map
Xn = X Now a sheaf F on ET(X,) is given by a collection of sheaves {Fy|n}, with F}, a sheaf on
Et(X,,) provided with maps ¢, : a*(F,,) = F, for any structure map « : X;, — X,,,. (These maps are



required to satisfy an obvious compatibility condition. See [Fr] p.14.) This definition applies to abelian
sheaves as well as l-adic sheaves. Dy(X,) will denote the derived category of complexes of I-adic sheaves
that are bounded.

(1.1) Equivariant derived categories (positive characteristics). Now assume X, is the simplicial scheme
EGXX associated to the action of G on X. A sheaf F' on EGxX will be called equivariant if the above

structure maps {¢q|a} are isomorphisms. The category of equlvarlant sheaves is an abelian sub-category
closed under extensions in the category of all sheaves on EGXX therefore one defines D (X) to be the

full sub-category of Db(EG x X) consisting of complexes K whose cohomology sheaves are all equivariant.

(1.2) G-equivariant local systems in positive characteristics. A G-equivariant local system on X is a
G-equivariant l-adic sheaf F' = {F,|n} on EGxX so that Fp is a lisse sheaf on X. These correspond
G

to l-adic representations of the étale fundamental group m (EGx X, Z) (where Z is a geometric point of
G

X): this correspondence sends a G-equivariant local system to its stalk at the geometric point Z. To
keep the notation uniform, we will identify geometric points with points: i.e. z will be denote Z as well.

(1.3) Let £ be a G-equivariant l-adic local system on EG EX such that the action of m (EG éX ,To)

on the stalk £, is through a finite quotient group F. Then the local system £ corresponds to a
representation of F' on the (-vector space associated to £,, which splits up into the sum of irreducible
representations of F' on (-vector spaces. Since the group F' is finite, one may show by standard
arguments that each of the summands corresponds to an irreducible /-adic representation of F' and
therefore to a G-equivariant irreducible local system on EG é X.

(1.3.%) It follows that, under the hypothesis that m1 (EGxX,x,) acts on the stalk L, through a finite
G
quotient group, any G-equivariant local system L is semi-simple.
We will presently recall the definition of equivariant intersection cohomology from [J-1] p. 242. Let

X be an equi-dimensional G-variety of dimension d. Let p = X_1 C X C X1 C X, C...C X3 =X
denote a filtration by closed G-invariant sub-varieties so that each X; is closed in X and each X;—X;_; is
smooth, ¢ = 0,... ,n. Next one considers the complementary filtration Uy AN JSEN LN Ujgp1 =X
where U; = X — X4_; and j; denotes the obvious G-equivariant open immersion. Now one applies the
construction of in (1.1) to this filtration to obtain the following diagram:

ig is i§
EGxU, —— EGxU, > ... y EGxX
G G G
(1.4.1) ’”l ’% “l
BG —“, BG b, ., BG

Let £ denote a G-equivariant local system on EG éUl- We extend L to EG é X to obtain a complex
ICY(X; L) in DbG(EGéX), defined by IC%(X; L) = 1<q-1RjS, -+ - T<oRjo« (L) (see [J-1] for details).
This is the equivariant intersection cohomology complex (with respect to the middle perversity) obtained

from £. In case £ is the constant sheaf Q (@l in positive characteristics), we will denote the corresponding

complex by IC%(X). (Starting with [J-1], we have used the cohomology notation for perverse sheaves.
This differs from the one adopted in [B-B-D] as follows: a complex of sheaves K on a variety X of
dimension d is perverse if the dimensions of the supports of the sheaves H"(K) and H"(D(K)[2n]) are
<d—mnfor all n. (In [B-B-D] a complex K is defined to be perverse if the dimensions of the supports
of the sheaves H"(K) and H"(D(K)) are < —n for all n.) We define

(1.4.2) THL(X; L) = 5 (X;ICY(X; L)) = HY (EGéX; ICY(X; L))

This is a module over H*(BG; Q).



(1.5.1) Theorem. (Degeneration of the spectral sequence in equivariant intersection cohomology). Let
X be a projective equi-dimensional G-variety, where G is connected. Let £ denote a G-equivariant local
system on an open dense smooth sub-variety of X such that £ is semi-simple as a local system. Let
ICY(X; L) denote the corresponding equivariant intersection cohomology complex. Now the spectral
sequence:

Ey' = H*(BG; R'7.(IC%(X; L)) = THE (X; L)

degenerates, where 7 : EGéX — BQG is the obvious map. Thus, TH;(X; L) = H*(BG) ® IH*(X; L).

Proof is essentially the same as in [J-1] Proposition (13) where only the case G is a one dimensional
torus is considered. That G be connected is necessary to ensure that all local systems on BG are in
fact constant. Let U denote an open smooth G-stable sub-variety of X on which £ is a local system.
Since X is equi-dimensional, U is the disjoint union of its connected components U; all of which are of
the same dimension. Since G is connected the U; are stable under the group action. Now let £; denote
the G-equivariant local system on U defined by £,-|Uj = Ly, if j = i and = 0 otherwise. Then one
may see that IC%(X; L) = ®;,IC%(X; L;). Clearly each £; is a semi-simple local system; therefore each
IC(X; L;) and hence IC(X; L) is a pure perverse sheaf. Therefore the Hard Lefschetz theorem holds
for ITH*(X; L) and the same proof as in [J-1] Proposition (13) applies. O

(1.5.2) Theorem. Let X denote a projective equi-dimensional variety provided with the action of a
torus 7" and let £ denote a T-equivariant local system on an open smooth T-stable sub-variety of X.
Assume that £ is semi-simple as a local system. Let i : X7 — X denote the inclusion of the fixed point
sub scheme. Now one obtains the isomorphisms after inverting all non zero elements of H*(BT') (i.e. on
localization at the prime ideal (0)):

(1.5.2.%) TH3#(X; L)) = H*(BT)(o) ® IH*(X; £) = H*(BT) (o) ® H* (X"; Ri'IC(X; L)).

In particular, if TH!(X; L) = 0 for all odd i and z is an isolated fixed point of T', then TH:(X;L) = 0
for all odd i. O

Proof. The first isomorphism follows from (1.5.2) by localizing at (0). By the localization theorem in
(1.4.5), one has the isomorphism:

(1.5.2.1) TH7(X; L)) = Hp (XT; Ri'TTCT (X5 L)) (0)-

Now Hj (XT; Ri'ICT (X; L)) (o) = H*(BT) o) ® H* (XT, RiI'ICT (X; L)) (o).

Next let i, :  — X7 be the inclusion of an isolated fixed point of 7. Then Ri'ICT (X ;L) breaks up
into the sum of two complexes one of which is

RiLICT(X; L) = Di*D(ICT(X; L)) ~ (iICT(X; L))V [-2n]

where n is the dimension of X. This proves the last assertion of the theorem. O
Next we consider the following proposition which will be used repeatedly in the paper.

(1.6) Proposition Let 7 : Y — X denote a finite G-equivariant surjective map of equi-dimensional
varieties. Let Xo denote a G-stable open subscheme of X and let Yy = XoxY be its inverse image
X

under 7. If £ is a G-equivariant local system on Yy and 7 : Yy — X is the map induced by 7, after
possibly shrinking Xy, we may assume that mo.(£) is a G-equivariant local system on Xy. Moreover,
now 7, (ICY(Y; L)) ~ ICY(X;me(£)). O

Proof. Since the map 7 is finite, one may readily show that 7, (IC%(Y;L)) satisfies all the axioms of
an intersection cohomology complex on X except possibly for the axiom that says there exists a dense
smooth open subscheme V' of X so that m,(ICY(Y; L))y is a local system. We proceed to show this
presently.
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Since intersection cohomology is invariant under normalization, we normalize all the varieties and
assume the varieties are integral. Let yo and zy be the generic points of ¥ and X. Assume the
characteristic of k(zg) is p. Now either k(yo) is separable over k(xo) or there exists some positive integer
N so that k(yo)”N .k(x0) is separable over k(o). If k(yo) is separable over k(zo), we take N =0, p™¥ = 1;
otherwise pV is the inseparable degree of k(yo) over k(zg). Let Y™) be the pull-back of 7 : ¥ — X
along the Frobenius FV : X — X and let Y — Y®) be the map induced by FV¥ : Y — Y and
7 :Y — X. Now the function field of Y(V) is k(yo)pN.k(wo) which is separable over X. Thus the

projection Y () Ty X induces an étale map of the generic point of YV) to the generic point of X;
therefore there exist open subsets U of Y™ and V of X so that the map My : U — V is étale. We
proceed to show that we may take U = 7~ (V) = VxYV),

X

Let F={ze Y™ |7 isnot étale at z}. This is a proper closed subset of Y (™). Since 7 is induced
by base-change from 7, it is also finite. Therefore 7(F') is a proper closed subset of X. Let V = X —7(F)
and U = 77 1(V). Now 7|y is étale. Moreover, since 7|y is also obtained by base-change from , it is
also a finite map.

Finally let the inverse image of U in Y by the induced map Y — Y™ be W. i.e. W =Y x U. Now
)
the map 7 restricted to W factors as the composition of the purely inseparable map W — U and the

finite étale surjective map U — V. Therefore, if £ is a local system on W, the direct image 7. (L) is
a local system on V. The G-equivariance is clear from the above argument; therefore 7, (IC%(Y; L)) ~
ICY(X;mw.(L)). This completes the proof. O

2. Spherical varieties in positive characteristics: local structure and weak-resolution of
singularities

(2.1) In positive characteristic, the local structure of spherical varieties is due to Knop (see [Kn]),
which we recall presently. Let G denote a connected reductive group and let X denote a G-spherical
variety and let z € X. After replacing X by an open G-stable sub-scheme we may assume Gz is the
unique closed G-orbit in X. Now one can find a G-linearized ample line bundle L, and a global section
s of L which is an eigenvector of a Borel subgroup B of G. Let X, be the open subset of X where s
is non zero; let P be the subgroup of G which stabilizes X;. Then P is a parabolic subgroup of G and
Xs = Xp, = {Byly € X,By D Bz} and Gz N Xp, = Bz. Knop shows the following: the unipotent
radical P, of P acts properly on X, the quotient X,/P, exists and there exists a subvariety Z of X
such that the natural maps p: P, X Z — X, and p: Z — X, /P, are finite and surjective. Moreover, Z
is stable under a maximal torus 7" of P. We may further assume that T is contained in B.

In characteristic zero, there exists Z such that the above maps are isomorphisms and so that Z is
stable under a Levi subgroup L of P. This may fail in positive characteristics, but X,/P, still has an
action of P/P, and the latter is isomorphic to L. Moreover, if X is spherical, then X, contains a dense
B-orbit and hence X, /P, contains a dense orbit of B/P, so that X;/P, is an affine spherical L-variety.
Moreover the the image of Lz is closed in X,/P,.

(2.2.1) Now this closed orbit is a torus (= GI,, for some r > 0) by the choice of L. This follows
from the observation that Px = Bz (since Gx N Xp, = Bz) and that therefore the stabilizer of z in
L contains the derived group of L. Let fi, ..., fr € k[Lx] be the eigen-vectors of L (actually of L/L,)
that provide the isomorphism Lz = G, . By standard arguments from [GIT], see for example [MFK]
p- 195 there exists a large enough ¢ so that f!, i = 1,...,r extend to maps ¢; : X,/P, = G, which
are also eigen-vectors of L/L,. Let ¢ = (¢1,...,¢,) : Xs/Py, — G, be the corresponding induced map.
Now the composition Lz — X, /P, — G, is the identity map raised to the g-th power. Let S = ¢~1(1),
1=(1,...,1) e GI,. Now the dimension of S = dimension of X, /P, —r = the codimension of the G-orbit
of z.

(2.2.2) The observation that the {¢;|i} are eigen-vectors of L/L, shows that S is stable under the
action of L,. Now one obtains an induced L-equivariant map r : L x S — X,/P,. The same observation
4



that the {¢;|i} are eigen-vectors of L/L, shows that the resulting induced map 7 : LxS — X /P, is
L,

bijective and therefore purely inseparable.

(2.3) Weak resolution of singularities. In positive characteristic, we have the following statement,
weaker than resolution of singularities. Using the embedding theory of spherical homogeneous spaces
(which also works in positive characteristics), one can construct a spherical variety X along with a
proper equivariant birational map 7 : X — X such that X is covered by open subsets X, as above,
where the (X' )s/ P, are affine toric varieties with quotient singularities. In characteristic zero, this gives
a resolution of singularities. In the general case, one obtains a rationally smooth X. To see this, consider
the finite surjective map p : P, x Z — X,. The variety Z is rationally smooth since it is a simplicial
toric variety (i.e. a toric variety whose fan is simplicial). Therefore P, x Z is rationally smooth and
the local cohomology groups of X with supports in any fixed geometric point are trivial in all degrees
except the top degree. One may readily show that these are equal to @ as well proving X is rationally
smooth.

3. Vanishing of odd dimensional intersection cohomology.

(3.1)Lemma. Let X denote a not-necessarily normal spherical variety and let £ denote a local
system on the open G-orbit. Let 7 : X — X denote the normalization and let 7*(£) = £. Let IC(X; L)
(IC(X; L)) denote the intersection cohomology complex of X with respect to £ (of X with respect to £,
respectively ). Now the intersection cohomology sheaves H*(IC(X; L)) vanish for all odd i if and only
if the sheaves H!(IC(X; L)) vanish for all odd i.

Proof. First observe that the map 7 is an isomorphism on the dense G-orbit. Therefore one may readily
show that Rm.(IC(X;L)) =2 IC(X;L). Now consider the Leray spectral sequence:

E;:;"t = RPm H(IC(X;L))) = RV (IC(X; L)) 2 H Y (R (IC(X; £))) = HTHIC(X; L)).
Since 7 is a finite map, Eg’t = 0 for all s > 0 in this spectral sequence; therefore one obtains the
isomorphism m, H!(IC(X; £)) = Ey't = E%t = HY(IC(X; £)). Now the lemma follows readily. O

(3.2) Proposition. Let X denote a projective G-spherical variety and let £ denote a G-equivariant
local system on the open G-orbit. Then IH*(X ;L) = 0 for all odd i. The same holds for all T-equivariant
local systems.

Proof. Exactly the same proof as in characteristic 0 applies here in view of the discussion on local
systems in positive characteristics as in (1.2) and (1.3). However, we sketch the details, for the sake of
completeness. We will first use the following technique to reduce to the case of the constant local system.
We may first assume that X is normal by (3.1). Next let Gz, = G/G,, denote the open G-orbit in
X. Let X denote the normalization of X in the function field k(G/ GY.). Now we obtain the cartesian
square

G/GS, —— X

~| |~

G/Gy,y, — X

where the maps 7, and 7 are finite. Note that G' acts on X and that X is a spherical G-variety. Let
Q, denote the constant G-equivariant local system on G/G} . Now R7ox(Q;) = mox(Q,). The stalk of
this sheaf at z, is the l-adic regular representation of the finite group G,/ Ggo. Therefore, by (1.3), the
G-equivariant local system 7,.(Q,) can be written as a sum E)I?dim(x)ﬁx, where £, is the local system

corresponding to the irreducible character x of the finite group G, /G? and the sum varies over all
such characters. Therefore,

mIC(X,Q) = %dim(x)IC(X, Ly)-
5



Taking the hyper-cohomology, it follows that

IH (X) = @ dim(x)[H (X, L,)

for all ¢. Thus, it suffices to consider X with the constant local system.

Next, let 7 : X — X denote a G-equivariant weak-resolution of singularities as in (2.3). Now X is a
projective rationally smooth spherical variety. Now 7' acts on X with only finitely many fixed points.
The fixed point formula for torus actions (i.e. (1.5.2)) now gives the isomorphism:

Hi(X;Q)o ~ H(BT) @ H*(X"; Ri'(Q))

Since X is rationally smooth, it follows that Ri’(@l) ~ Q,[-2n] where n is the dimension of X. It

follows as in (1.5.2) that H™(X; Q,) =0 for all odd n. Now the decomposition theorem in intersection

cohomology shows that TH*(X;Q,) is a split summand of H i(X; Q,) for any 4. The latter is trivial for
all odd 4; this completes the proof of the Proposition for all G-equivariant local systems. The assertion
about the T-equivariant local systems follows from proposition (3.3) below. O

(3.3) Proposition. Let G denote a connected reductive group, T a fixed maximal torus, B a Borel
subgroup containing 7" and P a parabolic subgroup containing B. Let X denote a scheme with an
action by P. Now the restriction functor from the category of P-equivariant local systems on X to
T-equivariant local systems is an equivalence of categories. If X is G-scheme, the restriction functor
from the category of G-equivariant local systems on X to B (or T')-equivariant local systems is also an
equivalence of categories.

Proof. Consider the diagram B/T — EB J>§(B ;X ) —» EB ]>;X . (This is induced by the B-equivariant
map BxX — BxX = X which is a smooth map with fibers B/T.) We choose a geometric point for
T

B
X and for B; this choice provides base-points for all of the above simplicial schemes. If Z is a pointed
simplicial scheme, we will let Z.; denote the pointed étale topological type of Z as in [Fr] chapter 4:
recall this is an inverse system of pointed simplicial sets. Now Corollary 10.8 of [Fr] shows readily

that in each degree n, (EBXBxX), ¢ ~ BJ; x (BxX)¢ and similarly (EBxX )y ™~ Bl x Xey.
B T T B

Here we may assume that the above inverse systems are indexed by the same indexing set and that
therefore the ~ denotes a weak-equivalence of each term of the corresponding inverse systems. As

n varies, {(EBX(BxX))net|n}, {(EBet X (BXX)et)n|n}, {(EBXX)pn,et|n} and {Bit X Xet|n} form
B T Be T B

inverse systems of pointed bisimplicial sets. Since taking the diagonal of pointed bisimplicial sets sends
degree-wise weak-equivalences of pointed bisimplicial sets to weak-equivalences, it follows that we obtain
the weak-equivalences:

(EBXBxX)et ~ EBe; X (BXxX)et and
B T Bet T
(EBXX)et ~ EBet X Xet
B Bey

of inverse systems of pointed simplicial sets. Clearly (B/T)¢t = (EBX(BXX))et = (EBxX)¢ is now
B T B
an inverse system of fibrations. It follows that (B/T)¢ — (EBXBXX)et — (EBXX)e provides a
B T B

long-exact sequence of homotopy groups:

(3.3.%) .. > m((B/T)et) = 7r1((EB]>;B¥X)et) — ﬂl((EBgX)et) = o ((B/T)et) — -

Observe that (B/T).; ~ * and therefore that the map m (EBX(BxX))et) = m(EBXX,) is an iso-
BT B

morphism. 7 (Zg:) = m1,4(Z) is the étale fundamental group classifying [-adic local systems on any
pointed connected simplicial scheme Z as shown in [Fr] Corollary 5.8. (See also [J-2].) Observe that all
6



the simplicial schemes appearing above are connected. Therefore we have proven the first assertion for
when P-equivariant local systems are replaced by B-equivariant local systems.

Next observe that (G/T)et ~ (G/B)et which is simply connected. Therefore an entirely similar
argument shows that the map w1 (EG é(G ¥X )) - m(EG (>§X ) is an isomorphism proving the last

assertion. Now it suffices to prove the first assertion for P-equivariant local systems. Observe that
P/B = L/(LN B) where L is a Levi-subgroup of P. Since L N B is a Borel subgroup of L, one
observes that P/B is also simply connected. Therefore an argument as above proves the first assertion
for P-equivariant local systems. O

Remarks. In view of the above discussion, it suffices to consider T-equivariant local systems in the rest
of the paper: observe that the variety Z appearing in (2.1) is only stable by T' and not by G. Observe
that, in the above proposition, we only need the existence of étale fundamental groups of simplicial
schemes and the exactness of only the part of the long-exact sequence appearing in (3.3.%). If one is
willing to assume this, one can avoid the use of the étale topological type which may be somewhat
unfamiliar.

(3.4) Proposition. Let X denote a G-spherical variety and let € X be a fixed point for T. Now
HYIC(X; L)), =0 for all odd i and all T-equivariant local systems £ on the open G-orbit.

Proof. By Lemma 3.1, we may assume that X is normal. Then z admits an open G-stable quasi-
projective neighborhood U, (see [Su]). Thus, we may replace X by the closure of U,, and assume that
X is projective. Now we conclude by Theorem (1.5.2) applied to £V in the place of £, together with
Proposition (3.2). (Observe that the fundamental group of the open orbit, m; (Gz,) acts on the stalks of
L through its image in 71 (EG é Gzx,) which is finite. Therefore £ is semi-simple as a local system, and

Theorem (1.5.2) applies.) O

(3.5) Proposition. Let X denote a G-spherical variety and let £ denote a T-equivariant local system
on the open dense orbit. Now H*(IC(X; L)) = 0 for all odd i.

Proof. The proof proceeds by ascending induction on the dimension of the G-spherical variety for any
connected reductive group G. Since a spherical variety of dimension 1 may be assumed to be normal
and hence non-singular, we may start the induction with spherical varieties of dimension 1.

The discussion on the local structure in (2.2.1) and (2.2.2) provides us with the commutative square:

P,xZ —2 5 X,

(3.5.1) l;, lw
z -5 x,/P,

We may assume X is irreducible and that Gx denotes the open G-orbit on X; observe that X, N Gz =
Bz = Pz= the open P-orbit on X, where B is a Borel subgroup containing 7" and contained in P.
Now Lo = L|p, a T-equivariant local system on Pz. (Observe that, by (3.3), there is an one-to-one
correspondence between T-equivariant local systems on Pz, B-equivariant local systems on Pz and P-
equivariant local systems on Pz. Therefore we may assume that Lg is a P-equivariant local system. The
map p is T equivariant when T acts on P, x Z by t.(p,z) = (t.p.t 1,t.2). Moreover all the other maps
in (3.5.1) are T-equivariant and that the same map p is also P,-equivariant when P, acts on P, X Z
by left-translation on the factor P,. Therefore, the pull-back p*(Lg) is a T-equivariant local system on
a T-stable sub-scheme of P, x Z of the form P, x Zy where Zy is a T-stable open subscheme of Z.
Therefore it clearly descends to a T-equivariant local system on Zy. Call this local system L;.

We may replace the varieties Z and X, /P, by their normalizations, if necessary and assume all the
varieties in the diagram in (3.5.1) are normal. Next recall that the maps p and p are finite surjective
maps between normal varieties. Therefore one may invoke Proposition (1.6) to show that p.(p*Lo) is a
T-equivariant local system on a T-stable open subscheme of X,; we will denote this by £f,. Similarly
p«(L1) is a T-equivariant local system on a T-stable open subscheme of X,/P, and
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(3.5.2) p.(ICT(P, x Z; p*(Lo))) ~ ICT (X, L)) while
(3.5.3) p(ICT(Z; L)) = ICT (X/ Py, ps(L1)).

Moreover one may also observe that Ly is a split summand of the local system £, = p.(p*(Lo)). Therefore
it suffices to show the odd dimensional cohomology sheaves of ICT (X, £}) are trivial. Since the map p
is finite, by (3.5.2) one may identify H*(ICT (X,, £}))z with eal( )’H"(ICT(PU x Z,p*(Lo)))5. Now
gyep (T
observe that the map 7 in (3.5.1) is evidently smooth with fibers = P,; therefore (ICT (P, x Z; p*(Lo)) =~
#*(ICT(Z; L£1)). Therefore one reduces to showing H*(ICT(Z;£1)) = 0 for all odd i. Now the finiteness
of the map p and (3.5.3) show: H!(ICT(Xs/Pyu;p«(L1)))z = 691( )Hi(ICT(Z, L1))y- Therefore it
e p—1(z

Y
suffices to show H!(IC(Xs/Py; px(£1))) = 0 for all odd i.

Now we recall that there exists an L-equivariant retraction r : X;/P, — Lz= a torus with the fiber at

x being isomorphic to the Lj-spherical variety S. Now IC(X,/Py; p«(L1))e ~ IC(S;p«(L1)|s)e- This

follows from proposition (1.6) applied to the purely inseparable map 7 : L xS — X;/P,. Therefore
Lo

it suffices to prove that H*(IC(S;L)) = 0 for any T? = T N L%-equivariant local system on the open
L,-orbit in §. (Observe that T, is a maximal torus in L, by the choice of L and T'.) Since the dimension
of S is the codimension of the G-orbit at z, the inductive hypothesis applies to complete the proof. O
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