“Oh yes, I remember Clifford. I seem to always feel him near somehow.”
– Jon Hendricks
The Chabauty-Coleman method

The Chabauty-Coleman method is an effective method for bounding the number of rational points on a curve of genus $g \geq 2$. It does not work for all higher genus curves unlike Faltings’ theorem, but it gives bounds that can be helpful for explicitly determining the number of points.
The Chabauty-Coleman method

The Chabauty-Coleman method is an effective method for bounding the number of rational points on a curve of genus \(g \geq 2 \). It does not work for all higher genus curves unlike Faltings’ theorem, but it gives bounds that can be helpful for explicitly determining the number of points.

Let \(C \) be a curve defined over \(\mathbb{Q} \) with good reduction at a prime \(p > 2g \). This means that viewed as a curve over \(\mathbb{Q}_p \), it can be extended to \(\mathbb{Z}_p \) such that the fiber over \(p \) is smooth. Let \(\text{MWR} = \text{rank}(J(\mathbb{Q})) \) be the Mordell-Weil rank of \(C \). Computing MWR is now an industry among number theorists.
The Chabauty-Coleman method

The Chabauty-Coleman method is an effective method for bounding the number of rational points on a curve of genus $g \geq 2$. It does not work for all higher genus curves unlike Faltings’ theorem, but it gives bounds that can be helpful for explicitly determining the number of points.

Let C be a curve defined over \mathbb{Q} with good reduction at a prime $p > 2g$. This means that viewed as a curve over \mathbb{Q}_p, it can be extended to \mathbb{Z}_p such that the fiber over p is smooth. Let $\text{MWR} = \text{rank}(J(\mathbb{Q}))$ be the Mordell-Weil rank of C. Computing MWR is now an industry among number theorists.

Theorem: (Coleman) If $\text{MWR} < g$ and $p > 2g$ then

$$\# C(\mathbb{Q}) \leq \# C_0(\mathbb{F}_p) + 2g - 2.$$
The Chabauty-Coleman method

The Chabauty-Coleman method is an effective method for bounding the number of rational points on a curve of genus $g \geq 2$. It does not work for all higher genus curves unlike Faltings’ theorem, but it gives bounds that can be helpful for explicitly determining the number of points.

Let C be a curve defined over \mathbb{Q} with good reduction at a prime $p > 2g$. This means that viewed as a curve over \mathbb{Q}_p, it can be extended to \mathbb{Z}_p such that the fiber over p is smooth. Let $\text{MWR} = \text{rank}(J(\mathbb{Q}))$ be the Mordell-Weil rank of C. Computing MWR is now an industry among number theorists.

Theorem: (Coleman) If $\text{MWR} < g$ and $p > 2g$ then

$$\# C(\mathbb{Q}) \leq \# C_0(\mathbb{F}_p) + 2g - 2.$$

In the case $p \leq 2g$, there’s a small error term.
The Chabauty-Coleman method does give a bound on the number of rational points, but it doesn’t tell you anything about their height. If the bound says that there are at most 5 points, and you’ve found 4, you don’t know if there’s an additional point. So you never know when to give up your search. It’s important to get the bound as small as possible.

The bound was lowered by Stoll in the case that \(\text{MWR} \) is even smaller than \(g - 1 \):

Theorem: (Stoll) If \(\text{MWR} < g \) then \(\# C(\mathbb{Q}) \leq \# C_0(F_p) + 2 \text{MWR} \).
The Chabauty-Coleman method does give a bound on the number of rational points, but it doesn’t tell you anything about their height. If the bound says that there are at most 5 points, and you’ve found 4, you don’t know if there’s an additional point. So you never know when to give up your search. It’s important to get the bound as small as possible.

The bound was lowered by Stoll in the case that MWR is even smaller than $g - 1$:

Theorem: (Stoll) If $\text{MWR} < g$ then $\# C(\mathbb{Q}) \leq \# C_0(\mathbb{F}_p) + 2 \text{MWR}$.
Idea of proof of Chabauty-Coleman:

First, work p-adically. If C has a rational point x_0, use it for the base-point of the Abel-Jacobi map $C \to J$. If $\text{MWR} < g$ by an argument involving p-adic Lie groups, we can suppose that that $J(\mathbb{Q})$ lies in an Abelian subvariety $A_{\mathbb{Q}_p} \subset J_{\mathbb{Q}_p}$ with $\dim(A_{\mathbb{Q}_p}) \leq \text{MWR} < g$.

Eric Katz (Waterloo)
Rank functions
January 9, 2013 4 / 19
Idea of proof of Chabauty-Coleman:

First, work p-adically. If C has a rational point x_0, use it for the base-point of the Abel-Jacobi map $C \to J$. If MWR $< g$ by an argument involving p-adic Lie groups, we can suppose that that $J(\mathbb{Q})$ lies in an Abelian subvariety $A_{\mathbb{Q}_p} \subset J_{\mathbb{Q}_p}$ with $\dim(A_{\mathbb{Q}_p}) \leq \text{MWR} < g$.

We might expect $C(\mathbb{Q}_p)$ to intersect $A_{\mathbb{Q}_p}$ in finitely many points. In fact, there is a 1-form ω on $J_{\mathbb{Q}_p}$ that vanishes on A, hence on the images of all points of $C(\mathbb{Q})$ under the Abel-Jacobi map. Pull back ω to $C_{\mathbb{Q}_p}$. By multiplying by a power of p, can suppose that ω does not vanish on the central fiber C_0.
We should view a curve over \mathbb{Z}_p as a family of curves over a disc with generic fiber being the curve over \mathbb{Q}_p and the central fiber being its reduction over \mathbb{F}_p. Each rational point of $C(\mathbb{Q}_p)$ is a zero of ω. Think of zeroes of ω degenerating and slamming together as we approach the central fiber. Each residue class $\tilde{x} \in C_0(\mathbb{F}_p)$ is the reduction of a tube $[\tilde{x}]$ of \mathbb{Q}_p-points. The vanishing behaviour of the restriction of ω near \tilde{x} tells us about the zeroes of ω in $[\tilde{x}]$.
Outline of Coleman’s proof (cont’d)

To make this insight precise, Coleman defines a function $\eta : C(\mathbb{Q}_p) \to \mathbb{Q}_p$ by a p-adic integral,

$$\eta(x) = \int_{x_0}^x \omega$$

that vanishes on points of $C(\mathbb{Q})$. By a Newton polytope argument for any residue class $\tilde{x} \in C_0(\mathbb{F}_p)$, we get

$$\#(\eta^{-1}(0) \cap [\tilde{x}]) \leq 1 + \text{ord}_{\tilde{x}}(\omega|_{C_0}).$$
To make this insight precise, Coleman defines a function $\eta : C(\mathbb{Q}_p) \to \mathbb{Q}_p$ by a p-adic integral,

$$\eta(x) = \int_{x_0}^{x} \omega$$

that vanishes on points of $C(\mathbb{Q})$.

By a Newton polytope argument for any residue class $\tilde{x} \in C_0(\mathbb{F}_p)$,

$$\#(\eta^{-1}(0) \cap [\tilde{x}]) \leq 1 + \text{ord}_{\tilde{x}}(\omega|_{C_0}).$$

Summing over residue classes $\tilde{x} \in C_0(\mathbb{F}_p)$, we get

$$\#C(\mathbb{Q}) \leq \#\eta^{-1}(0) = \sum_{\tilde{x} \in C_0(\mathbb{F}_p)} (1 + \text{ord}_{\tilde{x}}(\omega|_{C_0})) = \#C_0(\mathbb{F}_p) + \deg(\omega) = \#C_0(\mathbb{F}_p) + 2g - 2.$$
Proof of Stoll’s improvement

Stoll improved the bound by picking a good choice of ω vanishing on $C(\mathbb{Q})$ for each residue class.
Stoll improved the bound by picking a good choice of ω vanishing on $C(\mathbb{Q})$ for each residue class.

Let $\Lambda \subset \Gamma(J_{\mathbb{Q}_p}, \Omega^1)$ be the 1-forms vanishing on $\overline{J(\mathbb{Q})}$. For each residue class $\tilde{x} \in C_0(\mathbb{F}_p)$, let

$$n(\tilde{x}) = \min \{ \text{ord}_{\tilde{x}}(\omega|_{C_0}) | 0 \neq \omega \in \Lambda \}.$$

Let the Chabauty divisor on C_0 be

$$D_0 = \sum n(\tilde{x})(\tilde{x}).$$

So each $\omega \in \Lambda$ vanishes on D_0.
Proof of Stoll’s improvement

Stoll improved the bound by picking a good choice of ω vanishing on $C(\mathbb{Q})$ for each residue class.

Let $\Lambda \subset \Gamma(J_{\mathbb{Q}_p}, \Omega^1)$ be the 1-forms vanishing on $\overline{J(\mathbb{Q})}$. For each residue class $\tilde{x} \in C_0(\mathbb{F}_p)$, let

$$n(\tilde{x}) = \min \{ \text{ord}_{\tilde{x}}(\omega|_{C_0}) | 0 \neq \omega \in \Lambda \}. $$

Let the Chabauty divisor on C_0 be

$$D_0 = \sum_{\tilde{x}} n(\tilde{x})(\tilde{x}).$$

So each $\omega \in \Lambda$ vanishes on D_0

Coleman integration works between points in the same tube, so by summing over residue classes, one gets

$$\# C(\mathbb{Q}) \leq \# C_0(\mathbb{F}_p) + \deg(D_0).$$
Now, we just need to bound \(\deg(D_0) \). Every \(\omega \in \Lambda \) extends (up to a multiple by a power of \(p \)) to a regular 1-form vanishing on \(D_0 \).
Now, we just need to bound $\deg(D_0)$. Every $\omega \in \Lambda$ extends (up to a multiple by a power of p) to a regular 1-form vanishing on D_0.

By a semi-continuity argument together with Clifford’s theorem, one gets

$$\dim \Lambda \leq \dim H^0(C_0, \Omega_{C_0}^1 - D_0) \leq g - \frac{\deg(D_0)}{2}.$$
Proof of Stoll’s improvement (cont’d)

Now, we just need to bound $\text{deg}(D_0)$. Every $\omega \in \Lambda$ extends (up to a multiple by a power of p) to a regular 1-form vanishing on D_0.

By a semi-continuity argument together with Clifford’s theorem, one gets

$$\dim \Lambda \leq \dim H^0(C_0, \Omega^1_{C_0} - D_0) \leq g - \frac{\text{deg}(D_0)}{2}.$$

Since $\dim \Lambda = g - \text{MWR}$, $\text{deg}(D_0) \leq 2 \text{MWR}$.
Proof of Stoll’s improvement (cont’d)

Now, we just need to bound \(\text{deg}(D_0) \). Every \(\omega \in \Lambda \) extends (up to a multiple by a power of \(p \)) to a regular 1-form vanishing on \(D_0 \).

By a semi-continuity argument together with Clifford’s theorem, one gets

\[
\dim \Lambda \leq \dim H^0(C_0, \Omega^1_{C_0} - D_0) \leq g - \frac{\text{deg}(D_0)}{2}.
\]

Since \(\dim \Lambda = g - \text{MWR} \), \(\text{deg}(D_0) \leq 2 \text{MWR} \).

Therefore, we get

\[
\# C(\mathbb{Q}) \leq \# C_0(\mathbb{F}_p) + 2 \text{MWR}.
\]
Bad reduction case

Now, the above argument breaks down in the bad reduction case because if C_0 is reducible, even if replace $\Omega^1_{C_0}$ by K_{C_0}, $H^0(C_0, K_{C_0} - D_0)$ goes completely haywire with 1-forms vanishing on components. However,
Bad reduction case

Now, the above argument breaks down in the bad reduction case because if C_0 is reducible, even if replace $\Omega^1_{C_0}$ by K_{C_0}, $H^0(C_0, K_{C_0} - D_0)$ goes completely haywire with 1-forms vanishing on components. However,

Theorem: (K-Zureick-Brown ’12) Let C by a regular minimal model for C over \mathbb{Z}_p. Suppose $\text{MWR} < g$ then

\[
C(\mathbb{Q}) \leq \#C_0^{\text{sm}}(\mathbb{F}_p) + 2 \text{MWR}
\]
Bad reduction case

Now, the above argument breaks down in the bad reduction case because if C_0 is reducible, even if replace $\Omega^1_{C_0}$ by K_{C_0}, $H^0(C_0, K_{C_0} - D_0)$ goes completely haywire with 1-forms vanishing on components. However,

Theorem: (K-Zureick-Brown ’12) Let C by a regular minimal model for C over \mathbb{Z}_p. Suppose $\text{MWR} < g$ then

$$C(\mathbb{Q}) \leq \#C^{\text{sm}}_0(\mathbb{F}_p) + 2 \text{MWR}$$

These are the Stoll bounds. The bad reduction case of Coleman’s bound was proved independently by Lorenzini-Tucker and McCallum-Poonen. The bad reduction case of the Stoll bound was proved for hyperelliptic curves by Stoll and the general case was posed as a question in a paper of McCallum-Poonen.
Bad reduction case

Now, the above argument breaks down in the bad reduction case because if C_0 is reducible, even if replace $\Omega^1_{C_0}$ by K_{C_0}, $H^0(C_0, K_{C_0} - D_0)$ goes completely haywire with 1-forms vanishing on components. However,

Theorem: (K-Zureick-Brown ’12) Let C by a regular minimal model for C over \mathbb{Z}_p. Suppose $\text{MWR} < g$ then

$$C(\mathbb{Q}) \leq \#C^\text{sm}_0(\mathbb{F}_p) + 2 \text{MWR}$$

These are the Stoll bounds. The bad reduction case of Coleman’s bound was proved independently by Lorenzini-Tucker and McCallum-Poonen. The bad reduction case of the Stoll bound was proved for hyperelliptic curves by Stoll and the general case was posed as a question in a paper of McCallum-Poonen.

Since C is a regular minimal model, the total space is regular, but there are no conditions of the types of singularities on the central fiber. They can be worse than nodes.
If you adapt Stoll’s proof and try to apply semi-continuity arguments, you end up in the following situation:
Let C be a regular minimal model of a curve C over a valuation field \mathbb{K} with residue field k. Let L be a line-bundle on C (think Ω^1_C). Let D_0 be a divisor on $C^{\text{sm}}_0(k)$. Let

$$|L|_{D_0} = \{D \in |L| \mid D_0 \subset \overline{D}\}$$

where $D \subset C$ is a divisor of a section of L and \overline{D} denotes its closure in C.

Definition: We say the rank $r(L, -D_0)$ is greater than or equal to r if for any rank r effective divisor E supported on $C(\mathbb{K})$,

$$|L(-E)|_{D_0} \neq \emptyset.$$
A natural framework

If you adapt Stoll’s proof and try to apply semi-continuity arguments, you end up in the following situation:

Let C be a regular minimal model of a curve C over a valuation field \mathbb{K} with residue field k. Let L be a line-bundle on C (think Ω^1_C). Let D_0 be a divisor on $C^{\text{sm}}(k)$. Let

$$|L|_{D_0} = \{D \in |L| \mid D_0 \subset \overline{D}\}$$

where $D \subset C$ is a divisor of a section of L and \overline{D} denotes its closure in C.

Definition: We say the rank $r(L, -D_0)$ is greater than or equal to r if for any rank r effective divisor E supported on $C(\mathbb{K})$, $|L(-E)|_{D_0} \neq \emptyset$.
A natural framework

If you adapt Stoll’s proof and try to apply semi-continuity arguments, you end up in the following situation:
Let C be a regular minimal model of a curve C over a valuation field \mathbb{K} with residue field k. Let L be a line-bundle on C (think Ω^1_C). Let D_0 be a divisor on $C_{0\text{sm}}(k)$. Let

$$|L|_{D_0} = \{D \in |L| \mid D_0 \subset \overline{D}\}$$

where $D \subset C$ is a divisor of a section of L and \overline{D} denotes its closure in C.

Definition: We say the rank $r(L, -D_0)$ is greater than or equal to r if for any rank r effective divisor E supported on $C(\mathbb{K})$, $|L(-E)|_{D_0} \neq \emptyset$.

One can prove by a specialization argument similar to Matt Baker’s specialization lemma that if $\Lambda \subset H^0(C, L)$ is a linear subspace such that for every $s \in \Lambda$, $(\overline{s}) \supset D_0$, then $\dim \Lambda \leq r(L, -D_0) + 1$.
A natural framework

If you adapt Stoll’s proof and try to apply semi-continuity arguments, you end up in the following situation:
Let C be a regular minimal model of a curve C over a valuation field \mathbb{K} with residue field k. Let L be a line-bundle on C (think Ω^1_C). Let D_0 be a divisor on $C^{sm}_0(k)$. Let

$$|L|_{D_0} = \{D \in |L| \mid D_0 \subset \overline{D}\}$$

where $D \subset C$ is a divisor of a section of L and \overline{D} denotes its closure in C.

Definition: We say the rank $r(L, -D_0)$ is greater than or equal to r if for any rank r effective divisor E supported on $C(\mathbb{K})$, $|L(-E)|_{D_0} \neq \emptyset$.

One can prove by a specialization argument similar to Matt Baker’s specialization lemma that if $\Lambda \subset H^0(C, L)$ is a linear subspace such that for every $s \in \Lambda$, $(s) \supset D_0$, then $\dim \Lambda \leq r(L, -D_0) + 1$.

Question: Can we prove a Clifford bound $r(\Omega^1_C, -D_0) \leq g - \frac{\deg(D_0)}{2} - 1$?
Bounding $r(L, -D_0)$

Problem: It is really hard to work with $|L|_{D_0}$ directly. It’s a rigid analytic subspace of projective space and it’s not even clear if its rank has nice properties. Working with it requires developing a missing theory of rigid analytic/algebraic compatibility.
Bounding $r(L, −D_0)$

Problem: It is really hard to work with $|L|_{D_0}$ directly. It’s a rigid analytic subspace of projective space and it’s not even clear if its rank has nice properties. Working with it requires developing a missing theory of rigid analytic/algebraic compatibility.

Solution: Instead, we’ll bound $r(L, −D_0)$ in terms of more tractable ranks involving separate obstructions to finding a section of L whose zero locus contains D_0 in its closure.
Bounding $r(L, -D_0)$

Problem: It is really hard to work with $|L|_{D_0}$ directly. It’s a rigid analytic subspace of projective space and it’s not even clear if its rank has nice properties. Working with it requires developing a missing theory of rigid analytic/algebraic compatibility.

Solution: Instead, we’ll bound $r(L, -D_0)$ in terms of more tractable ranks involving separate obstructions to finding a section of L whose zero locus contains D_0 in its closure.

Reduction step: We can suppose that C is a semistable model. All rational points of C specialize to smooth points of C_0 and they are not messed up too badly by the operations in semistable reduction. This does require a technical lemma.
We apply a certain extension hierarchy to this question. This is very closely related to tropical lifting. The steps have technical names which are inspired by the Néron model. The steps should be reminiscent of how one thinks about tropical lifting. Let D_0 be a divisor supported on smooth points of $C_0(\mathbb{F}_p)$.

Try to construct a rational section s_0 on the central fiber whose vanishing behaviour is controlled by D_0.

(a) numerical: Is there an extension L of L to C such that $L|_{C_0}(D_0)$ has non-negative degree?

(b) Abelian: For each component C_v of the central fiber, is there a section s_v on C_v of $L|_{C_v}(D_0)$?

(c) toric: Can the sections s_v be chosen to agree on nodes?

Use deformation theory to extend the glued together section s_0 to C. We will concentrate on the first step.
Extension hierarchy for sections

We apply a certain extension hierarchy to this question. This is very closely related to tropical lifting. The steps have technical names which are inspired by the Néron model. The steps should be reminiscent of how one thinks about tropical lifting. Let D_0 be a divisor supported on smooth points of $C_0(\mathbb{F}_p)$.

1. Try to construct a rational section s_0 on the central fiber whose vanishing behaviour is controlled by D_0. Use deformation theory to extend the glued together section s_0 to C. We will concentrate on the first step.
We apply a certain extension hierarchy to this question. This is very closely related to tropical lifting. The steps have technical names which are inspired by the Néron model. The steps should be reminiscent of how one thinks about tropical lifting. Let D_0 be a divisor supported on smooth points of $C_0(\mathbb{F}_p)$.

1. Try to construct a rational section s_0 on the central fiber whose vanishing behaviour is controlled by D_0.

 (a) numerical: Is there an extension \mathcal{L} of L to C such that $\mathcal{L}|_{C_0}(D_0)$ has non-negative degree?
We apply a certain extension hierarchy to this question. This is very closely related to tropical lifting. The steps have technical names which are inspired by the Néron model. The steps should be reminiscent of how one thinks about tropical lifting. Let D_0 be a divisor supported on smooth points of $C_0(\mathbb{F}_p)$.

1. Try to construct a rational section s_0 on the central fiber whose vanishing behaviour is controlled by D_0.

 (a) numerical: Is there an extension \mathcal{L} of L to \mathcal{C} such that $\mathcal{L}|_{C_0}(D_0)$ has non-negative degree?

 (b) Abelian: For each component C_v of the central fiber, is there a section s_v on C_v of $\mathcal{L}|_{C_v}(D_0)$?
We apply a certain extension hierarchy to this question. This is very closely related to tropical lifting. The steps have technical names which are inspired by the Néron model. The steps should be reminiscent of how one thinks about tropical lifting. Let D_0 be a divisor supported on smooth points of $C_0(\mathbb{F}_p)$.

1. Try to construct a rational section s_0 on the central fiber whose vanishing behaviour is controlled by D_0.

 (a) **numerical**: Is there an extension \mathcal{L} of L to C such that $\mathcal{L}|_{C_0}(D_0)$ has non-negative degree?

 (b) **Abelian**: For each component C_v of the central fiber, is there a section s_v on C_v of $\mathcal{L}|_{C_v}(D_0)$?

 (c) **toric**: Can the sections s_v be chosen to agree on nodes?

Use deformation theory to extend the glued together section s_0 to C.

We will concentrate on the first step.
We apply a certain extension hierarchy to this question. This is very closely related to tropical lifting. The steps have technical names which are inspired by the Néron model. The steps should be reminiscent of how one thinks about tropical lifting. Let D_0 be a divisor supported on smooth points of $C_0(\mathbb{F}_p)$.

1. Try to construct a rational section s_0 on the central fiber whose vanishing behaviour is controlled by D_0.
 (a) **numerical:** Is there an extension \mathcal{L} of L to C such that $\mathcal{L}|_{C_0}(D_0)$ has non-negative degree?
 (b) **Abelian:** For each component C_v of the central fiber, is there a section s_v on C_v of $\mathcal{L}|_{C_v}(D_0)$?
 (c) **toric:** Can the sections s_v be chosen to agree on nodes?

2. Use deformation theory to extend the glued together section s_0 to C.
Extension hierarchy for sections

We apply a certain extension hierarchy to this question. This is very closely related to tropical lifting. The steps have technical names which are inspired by the Néron model. The steps should be reminiscent of how one thinks about tropical lifting. Let D_0 be a divisor supported on smooth points of $C_0(\mathbb{F}_p)$.

1. Try to construct a rational section s_0 on the central fiber whose vanishing behaviour is controlled by D_0.

 (a) numerical: Is there an extension \mathcal{L} of L to C such that $\mathcal{L}|_{C_0}(D_0)$ has non-negative degree?

 (b) Abelian: For each component C_v of the central fiber, is there a section s_v on C_v of $\mathcal{L}|_{C_v}(D_0)$?

 (c) toric: Can the sections s_v be chosen to agree on nodes?

2. Use deformation theory to extend the glued together section s_0 to C.

We will concentrate on the first step.
The rank hierarchy

This hierarchy lets us define new rank functions following Baker-Norine. We say a pair \((L, D_0)\) where \(L\) is a line-bundle on \(C\) and \(D_0\) is a divisor on \(C_{0}^{\text{sm}}\) has \(i\)-rank \(\geq r\) if for any effective divisor \(E_0\) on \(C_{0}^{\text{sm}(k)}\) of degree \(r\), steps (1) – (i) are satisfied: for an extension \(\mathcal{L}\) of \(L\),
This hierarchy lets us define new rank functions following Baker-Norine. We say a pair \((L, D_0)\) where \(L\) is a line-bundle on \(C\) and \(D_0\) is a divisor on \(C_0^{sm}\) has \(i\)-rank \(\geq r\) if for any effective divisor \(E_0\) on \(C_0^{sm}(K)\) of degree \(r\), steps (1) – (i) are satisfied: for an extension \(L\) of \(L\),

1. **numerical**: there is a divisor \(\varphi = \sum_v a_v C_v\) supported on the central fiber such that \(\deg(L(\varphi)|_{C_v}(D_0 - E_0)) \geq 0\) for all \(v\).
This hierarchy lets us define new rank functions following Baker-Norine. We say a pair \((L, D_0)\) where \(L\) is a line-bundle on \(C\) and \(D_0\) is a divisor on \(C_0^{sm}\) has \(i\)-rank \(\geq r\) if for any effective divisor \(E_0\) on \(C_0^{sm}(k)\) of degree \(r\), steps (1) – (i) are satisfied: for an extension \(\mathcal{L}\) of \(L\),

1. **Numerical**: there is a divisor \(\varphi = \sum_v a_v C_v\) supported on the central fiber such that \(\deg(\mathcal{L}(\varphi)|_{C_v}(D_0 - E_0)) \geq 0\) for all \(v\).

2. **Abelian**: For each component \(C_v\) of the central fiber, there is a non-vanishing section \(s_v\) on \(C_v\) of \(\mathcal{L}(\varphi)|_{C_v}(D_0 - E_0)\).
The rank hierarchy

This hierarchy lets us define new rank functions following Baker-Norine. We say a pair (L, D_0) where L is a line-bundle on C and D_0 is a divisor on C_0^{sm} has i-rank $\geq r$ if for any effective divisor E_0 on $C_0^{\text{sm}}(k)$ of degree r, steps (1) – (i) are satisfied: for an extension \mathcal{L} of L,

1. **numerical**: there is a divisor $\varphi = \sum_v a_v C_v$ supported on the central fiber such that $\deg(\mathcal{L}(\varphi)|_{C_v}(D_0 - E_0)) \geq 0$ for all v.

2. **Abelian**: For each component C_v of the central fiber, there is a non-vanishing section s_v on C_v of $\mathcal{L}(\varphi)|_{C_v}(D_0 - E_0)$.

3. **toric**: The sections s_v be chosen to agree across nodes.
New rank functions

So we have rank functions $r_{\text{num}}, r_{\text{Ab}}, r_{\text{tor}}$.

$r_{\text{num}}(L, D_0)$ depends only on the multi-degree of L and D_0, that is $\deg(L C_v(D_0))$ for all v. It does not depend on the geometry of the components. It is, in fact, identical to the Baker-Norine rank. In fact, a divisor on a graph is the same thing as a multi-degree. r_{Ab} depends on the geometry of the components and the location of the points of D_0, but not the location of the nodes. This is identical to the rank function independently introduced by Amini-Baker.

The rank functions $r_{\text{Ab}}, r_{\text{tor}}$ are sensitive to the residue field k since bigger k allows for more divisors E. But they eventually stabilize.
So we have rank functions $r_{\text{num}}, r_{\text{Ab}}, r_{\text{tor}}$.

$r_{\text{num}}(L, D_0)$ depends only on the multi-degree of L and D_0, that is $\deg(\mathcal{L}_{C_v}(D_0))$ for all v. It does not depend on the geometry of the components. It is, in fact, identical to the Baker-Norine rank. In fact, a divisor on a graph is the same thing as a multi-degree.
So we have rank functions \(r_{\text{num}}, r_{\text{Ab}}, r_{\text{tor}} \).

\(r_{\text{num}}(L, D_0) \) depends only on the multi-degree of \(L \) and \(D_0 \), that is \(\deg(\mathcal{L}_{C_v}(D_0)) \) for all \(v \). It does not depend on the geometry of the components. It is, in fact, identical to the Baker-Norine rank. In fact, a divisor on a graph is the same thing as a multi-degree.

\(r_{\text{Ab}} \) depends on the geometry of the components and the location of the points of \(D_0 \), but not the location of the nodes. This is identical to the rank function independently introduced by Amini-Baker.
So we have rank functions $r_{\text{num}}, r_{\text{Ab}}, r_{\text{tor}}$.

$r_{\text{num}}(L, D_0)$ depends only on the multi-degree of L and D_0, that is $\deg(\mathcal{L}_{C_v}(D_0))$ for all v. It does not depend on the geometry of the components. It is, in fact, identical to the Baker-Norine rank. In fact, a divisor on a graph is the same thing as a multi-degree.

r_{Ab} depends on the geometry of the components and the location of the points of D_0, but not the location of the nodes. This is identical to the rank function independently introduced by Amini-Baker.

The rank functions $r_{\text{Ab}}, r_{\text{tor}}$ are sensitive to the residue field \mathbf{k} since bigger \mathbf{k} allows for more divisors E. But they eventually stabilize.
These rank functions satisfy a specialization lemma:
Specialization lemma

These rank functions satisfy a specialization lemma:

Theorem: We have the following inequalities:

\[
r(L, -D_0) \leq r_{tor}(L, -D_0) \leq r_{Ab}(L, -D_0) \leq r_{num}(L, -D_0).
\]
These rank functions satisfy a specialization lemma:

Theorem: We have the following inequalities:

\[r(L, -D_0) \leq r_{\text{tor}}(L, -D_0) \leq r_{\text{Ab}}(L, -D_0) \leq r_{\text{num}}(L, -D_0). \]

We have examples where the inequalities are strict.
These rank functions satisfy a specialization lemma:

Theorem: We have the following inequalities:

\[r(L, -D_0) \leq r_{\text{tor}}(L, -D_0) \leq r_{\text{Ab}}(L, -D_0) \leq r_{\text{num}}(L, -D_0). \]

We have examples where the inequalities are strict.

So now, we have ways to bound \(r(\Omega_C, -D_0) \).
The appropriate bound would follow from an analogue of Clifford’s theorem: let D_0 be an effective divisor supported on points of $C_{0}^{\text{sm}}(k)$; then we have

$$r(\Omega^1, -D_0) \leq g - \frac{\deg(D_0)}{2} - 1.$$
Clifford Bounds

The appropriate bound would follow from an analogue of Clifford’s theorem: let D_0 be an effective divisor supported on points of $C_0^{sm}(k)$; then we have

$$r(Ω^1, -D_0) \leq g - \frac{\deg(D_0)}{2} - 1.$$

Let K_C be the relative dualizing sheaf of our semistable model C. This is characterized by being the natural extension of the canonical bundle on C to C.

Eric Katz (Waterloo)
Rank functions
January 9, 2013
16 / 19
Clifford Bounds

The appropriate bound would follow from an analogue of Clifford’s theorem: let D_0 be an effective divisor supported on points of $C_{0}^{\text{sm}}(k)$; then we have

$$r(\Omega^1, -D_0) \leq g - \frac{\deg(D_0)}{2} - 1.$$

Let K_C be the relative dualizing sheaf of our semistable model C. This is characterized by being the natural extension of the canonical bundle on C to C.

Now, the multi-degree of its restriction to the central fiber is (considered as a divisor on the dual graph Γ),

$$\deg(K_{C_0}) = \sum_v (2g(C_v) - 2 + \deg(v))(v) = K_\Gamma + \sum_v 2g(C_v)(v)$$

where $K_\Gamma = \sum_v (2g(C_v) - 2)(v)$ is the Baker-Norine canonical divisor.
Clifford Bounds

The appropriate bound would follow from an analogue of Clifford’s theorem: let D_0 be an effective divisor supported on points of $C_{0}^{\text{sm}}(k)$; then we have

$$r(\Omega^1, -D_0) \leq g - \frac{\deg(D_0)}{2} - 1.$$

Let K_C be the relative dualizing sheaf of our semistable model C. This is characterized by being the natural extension of the canonical bundle on C to C.

Now, the multi-degree of its restriction to the central fiber is (considered as a divisor on the dual graph Γ),

$$\deg(K_{C_0}) = \sum_v (2g(C_v) - 2 + \deg(v))(v) = K_\Gamma + \sum_v 2g(C_v)(v)$$

where $K_\Gamma = \sum_v (2g(C_v) - 2)(v)$ is the Baker-Norine canonical divisor.

If all components are rational, then $\deg(K_\Gamma) = 2g - 2$ and the Baker-Norine’s Clifford bounds for r_{num} are sufficient.
In general, we have

Theorem: (Clifford-Brown-Amini-Baker-K) Let D_0 be a divisor supported on smooth k-points of C_0 then

$$r_{Ab}(K_{C_0} - D_0) \leq g - \frac{\deg D_0}{2} - 1.$$

Note: The weird attribution is so I can get “Clifford Brown” in a talk.
In general, we have

Theorem: (Clifford-Brown-Amini-Baker-K) Let \(D_0 \) be a divisor supported on smooth \(k \)-points of \(C_0 \) then

\[
r_{Ab}(K_{C_0} - D_0) \leq g - \frac{\deg D_0}{2} - 1.
\]

Note: The weird attribution is so I can get “Clifford Brown” in a talk.

Amini and Baker proved the Riemann-Roch theorem for \(r_{Ab} \) in the framework of metrized complexes of curves. From this, the Clifford bounds follow. They use a version of reduced divisors.
In general, we have

Theorem: (Clifford-Brown-Amini-Baker-K) Let D_0 be a divisor supported on smooth k-points of C_0 then

$$r_{Ab}(K_{C_0} - D_0) \leq g - \frac{\deg D_0}{2} - 1.$$

Note: The weird attribution is so I can get “Clifford Brown” in a talk.

Amini and Baker proved the Riemann-Roch theorem for r_{Ab} in the framework of metrized complexes of curves. From this, the Clifford bounds follow. They use a version of reduced divisors.

Our proof uses the Baker-Norine version of Clifford’s theorem, classical Clifford’s theorem, and a general position argument. We cook up a divisor E_0 of degree at most $g - \frac{\deg D_0}{2}$ such that for any φ, there is some component C_v such that the line bundle $\mathcal{L}(\varphi)|_{C_v}(D_0 - E_0)$ on C_v has no non-zero sections.
Further Questions

1. Because Clifford’s bounds are usually strict, in any given case, one can probably do better by bounding the Abelian rank by hand. Is there a general statement that incorporates the combinatorics of the dual graph?

2. What can we say about the number of rational points specializing to different components of the central fiber?

3. What about \(r_{tor}\)? Does that help us improve the bounds?

4. What about passing from the special fiber to the generic fiber? This should give even better bounds. We can use deformation-theoretic obstructions from tropical lifting here. Probably really need to understand the bad reduction analogue of the Coleman integral which is the Berkovich integral.
1. Because Clifford’s bounds are usually strict, in any given case, one can probably do better by bounding the Abelian rank by hand. Is there a general statement that incorporates the combinatorics of the dual graph?

2. What can we say about the number of rational points specializing to different components of the central fiber?
1. Because Clifford’s bounds are usually strict, in any given case, one can probably do better by bounding the Abelian rank by hand. Is there a general statement that incorporates the combinatorics of the dual graph?

2. What can we say about the number of rational points specializing to different components of the central fiber?

3. What about r_{tor}? Does that help us improve the bounds?
Further Questions

1. Because Clifford’s bounds are usually strict, in any given case, one can probably do better by bounding the Abelian rank by hand. Is there a general statement that incorporates the combinatorics of the dual graph?

2. What can we say about the number of rational points specializing to different components of the central fiber?

3. What about r_{tor}? Does that help us improve the bounds?

4. What about passing from the special fiber to the generic fiber? This should give even better bounds. We can use deformation-theoretic obstructions from tropical lifting here. Probably really need to understand the bad reduction analogue of the Coleman integral which is the Berkovich integral.
Further Questions

1. Because Clifford’s bounds are usually strict, in any given case, one can probably do better by bounding the Abelian rank by hand. Is there a general statement that incorporates the combinatorics of the dual graph?

2. What can we say about the number of rational points specializing to different components of the central fiber?

3. What about r_{tor}? Does that help us improve the bounds?

4. What about passing from the special fiber to the generic fiber? This should give even better bounds. We can use deformation-theoretic obstructions from tropical lifting here. Probably really need to understand the bad reduction analogue of the Coleman integral which is the Berkovich integral.

5. $r(L, -D_0)$?
O. Amini, M. Baker, *Linear series on metrized complexes of algebraic curves.*

