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Introduction

o .

Systems of quasilinear hyperbolic PDE (conservation laws)

“... the umbilical cord joining Continuum Physics with
the theory of partial differential equations should not be
severed ...’ C. Dafermos

This talk:

# A mathematical view of conservation laws
# Some analytical results

#® Some puzzling challenges
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Mathematics vs Physics

View from physics vs View from mathematics T
"quasilinear hyperbolic egns in

divergence form have advantages
(well-defined weak solutions)"

“trust conservation
principles”

Adiabatic, compressible, ideal gas dynamics as an example
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Variables p (density), (u,v) (velocity), and p (pressure)

1 1 1
E = —Z—?—I——(uQ—I—Uz), H = LZ—?—I——(uQ—I—Uz)
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Form and Features

fGeneraI form T

8tu“|'z@x¢fi(u) @tu—I-ZA )0z, u + b(u) =0
or
div (¢ o) (u, f(u)) + b(u) =0
Hyperbolicity: EV of > A;u; real

#® Discontinuities arise from smooth data; are not on chars
but on a nonlinear version; are not invariant under
(nonlinear) mappings

# Time-symmetry is broken in a system that is formally
time-reversible

# Admissibility defined via “entropy” or “dissipation”
# Analysis of conservation laws uses nonlinear tools (eg,

L compactness) J
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Quasilinear Hyperbolic Equations

o .

Burgers Equation u; + uu, = 0
Solution u(y + u(y)t, t) = u(y)
Converging characteristics: form shock, weak solution
(weak solution: [ ue; + f(u)p, = 0)
Diverging characteristics: form

A// y//?u:)

Loss of time reversibility: information is lost in forward time
L QL eqgns are irreversible — are they really hyperbolic? J
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Weak Solutions
fLinear theory: T

1. Sobolev spaces are useful — W#*P, often with p = 2

2. “weak convergence” Is useful, and is a different concept
from “weak solution”

3. combine with regularity to get classical solutions
(especially for elliptic equations)

Three difficulties with nonlinear equations:
1. need to define f(u); in 1-D, most useful space is BV
2. weak convergence does not preserve nonlinear relations

3. hyperbolic and elliptic theory very different

o -
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Irreversibility and Entropy

fCompIete defn of weak solution known in one case: scalarT
eqgn dwu + > 0y, fi(u) = 0 (Kruzkov): Vk € R, p € C°,

T n
/0 /n’u_MaW“LZSg”(“_k)(fi( ) — fi(k))Op, 0 dx dt
1

+ / ] lug(x) — k|o(x,0)dxr >0

Quasilinear system d;u + > 0, fz( ) ( ) =0
Discontinuity must satisfy RH s[u| = v| and more:

-
Vanishing viscosity /é/
Opu+Y  Ai(u)0putb(u) = eAu
V

LEntropy: convex function n(u), with on(u) + > 0z,qi(u) <0 J
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Riemann Solutions
fo

Riemann Data
0 Self-similar: € = £
U(Iao){ ue, T § 7

ne space dimension u; + f(u), =0, u € R"

Upr, >0

(Linear analogue: 1-D characteristic decomposition of a dis-
~ continuity)
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Random Choice and Front Tracking

1-D solution space is BV: u(z,0) € BV = sol'nin BV T
“Outside a set of 1-D Hausdorff measure 0, a BV fn is either
approx continuous or has an approx jump discont”

Use Riemann solutions to prove existence:

Glimm’s random choice Risebro-Bressan’s wave

front tracking

X

Varu(-,0) <e = Varu(-,t) < M, [ |u(t,z) —u(s,z)| < L|t — s

Helly’s theorem = subsequence cvges ptwise to BV soln.

Bressan: SRS (Standard Riemann Semigroup) —

uniqueness, well-posedness, & greater regularity (cont’s
Lexcept for ct’ble set of shock curves & interaction points) J

ICIAM 07, Zurich, July 17, 2007 — p.9/2!



Large Data

fThings go wrong; here’s an example (K-Kranzer) T

pe+ (pu)z = 0

Isentropic GD
{ (ou)e + (pu* + Ap7)e = 0

Isothermal GD (v = 1) use specific enthalpy q(p) = Alog p

w + (3u° +q(p)), =0

Conserve u (velocity) and v = 2u —q = %uZ — log p, (cvx fn
of u and p): ut+(u2—v)x = 0

v + ( w —u)y = 0
e Strictly hyperbolic, but no Riemann solutions for large data

e Generalize with singular shocks

e Obstructions to solving Cauchy problem:
L — oscillations producing blow-up in BV (Sever)J
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Large Data; and Hyperbolicity

f.o Counterexamples also in systems of 3 equations T

® Related to ‘nonlinear resonance’ between characteristic
families (‘non-strict hyperbolicity’)?

o Bressan’s SRS theory requires ‘tame oscillation
condition’ for uniqueness

# Def'n of a wk soln for a system is still incomplete

# |f hyperbolic does not imply “well-posed”, then does loss
of hyperbolicity imply “catastrophically ill-posed”?

o Examples from two-fluid model for two-phase flow;
three-phase porous media flow; continuum model for
traffic flow

# Phase-changing shocks stable in ways similar to
L hyperbolic shocks J
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Multidimensional problems

e . o

uasilinear systems in more than one space dimension
Ut + Z Aj(u)ug, +b(u) =0

Linear & semilinear: W#*? theory for smooth data (short
time for QL)

Theorem (Rauch): No BV bounds. For C* data, if
/ Vou(z, t)|de < C’/ Vu(x,0)| dx

then A]Ak = AkA] V7, k.

What's wrong with 4;A;, = A;A;? No physically interesting
Lsystem has this property. J
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Self-similar Approach to 2-D CL
- -

WEAK STRONG
Reflected
oo FREE BOUNDAR
ELLIPTI / _
o Incident Shock Incident Shock

REGION . ¢ REGION

»
LDEGENERACY IN ELLIPTIC EQUATION

Simplified data: 2-D RP e Canic, K, Kim, Jegdic, Tesdall
von Neumann paradox e T Chang (D Zhang), J-Q Liu

Self-similar problems e S-X Chen
Model equations e Y Zheng, K-W Song
Holder & Sobolev spaces o G-Q Chen & M Feldman

Existence results e T-P Liu, V Elling

o -
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Nature of the Analysis

Isentropic gas dynamics T
pe + (pu)z + (pv)y =0

(pu)e + (pu® + p)a + (puv), =0

(p)t + (puv)y + (pv° +p)y = 0

(&mn) = (x/t,y/t)
(U,V) — (u_€7v _77)
Elliptic equation for p (Where (u — €)? + (v — n)? < p?):
(U? — ) pee +2UVpy + (V2 = A ppp + ... =0
Transport system for (U, V):
(U, V)- VU +pe/p+U=0 (U V)-VV +py/p+V =0
Free boundary (reflected shock): shock evolution + OD BC
T = - st}g(fjijvo = B(p.UV) - Vp=F(p,U.V)
Solution (local) in weighted Holder space
LSchauder FP thm for p (cpct); Contraction Mapping for (U, V)J

-

Apq yond

symmetry boundary
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Types of Shock Reflection

fReguIar reflection not always possible (nonlinear effect) T
“Mach Stem” configurations are seen

No Triple Points:  Slip line in “large For smaller

the pictured shock” regime is shocks or systems

configuration is not mathematically without linear

mathematically possible for small  waves, rarefaction

impossible (Serre) shocks (von IS “mathematically
L Neumann paradox) possible”
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Guderley Mach Reflection

f. Classical: mention of ‘rarefactions’ (Guderley) T

e UTSD model for weak shock refl: only wave available is a
rarefaction (Canic-K conjecture, 1998, no evidence)

e Evidence: simulation by Tesdall & Hunter on UTSD, 2003

e Quasi-steady simulation
Ur+ (F(U)=&U)e +(GWU) —nU), = =2U, 7 = logt

ALLEN M. TESDALL AND JOHN K. HUNTER

0.514 |-

Vit

S 0513}

-
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Experimental Evidence

Experimental data of B. W. Skews & J. T. Ashworth (JFM)
following Tesdall-Hunter calculation

rich, July 17, 2007 —p.17/2




GMR in Compressible GD Equations

f Recent simulation by Allen Tesdall, Gas Dynamics T

Mach contours and sonic line
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Future Directions
.

# “Resonances” among different wave families (exploring
the nature of hyperbolicity in the large for quasilinear
systems)

=

Large Data: obstructions to existence of weak solutions

# Relation to kinetic theory and other “more physical”
continuum mechanics theories

# Multidimensional problems:
- BV not the correct space: what are good candidates?
- what are good model problems?
- what information can numerical simulations give?

Slides for talk
o http//www.math.uh.edu/~blk o
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