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Introduction

Systems of quasilinear hyperbolic PDE (conservation laws)

“. . . the umbilical cord joining Continuum Physics with
the theory of partial differential equations should not be
severed . . . ” C. Dafermos

This talk:

A mathematical view of conservation laws

Some analytical results

Some puzzling challenges
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Mathematics vs Physics
View from physics vs View from mathematics

“trust conservation
principles”

"quasilinear hyperbolic eqns in
divergence form have advantages
(well-defined weak solutions)"

Adiabatic, compressible, ideal gas dynamics as an example

ρt + (ρu)x + (ρv)y = 0

(ρu)t + (ρu2 + p)x + (ρuv)y = 0

(ρv)t + (ρuv)x + (ρv2 + p)y = 0

(ρE)t + (ρuH)x + (ρvH)y = 0

Variables ρ (density), (u, v) (velocity), and p (pressure)

E =
1

γ − 1

p

ρ
+

1

2
(u2 + v2), H =

γ

γ − 1

p

ρ
+

1

2
(u2 + v2)
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Form and Features
General form

∂tu +
∑

∂xi
fi(u) + b(u) = ∂tu +

∑

Ai(u)∂xi
u + b(u) = 0

or
div (t,x)(u, f(u)) + b(u) = 0

Hyperbolicity: EV of
∑

Aiµi real

Discontinuities arise from smooth data; are not on chars
but on a nonlinear version; are not invariant under
(nonlinear) mappings

Time-symmetry is broken in a system that is formally
time-reversible

Admissibility defined via “entropy” or “dissipation”

Analysis of conservation laws uses nonlinear tools (eg,
compactness)
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Quasilinear Hyperbolic Equations

Burgers Equation ut + uux = 0
Solution u(y + u(y)t, t) = u(y)

Converging characteristics: form shock, weak solution
(weak solution:

∫

uϕt + f(u)ϕx = 0)
Diverging characteristics: form rarefaction

x

t

y

x−ut=y

Loss of time reversibility: information is lost in forward time
QL eqns are irreversible – are they really hyperbolic?
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Weak Solutions
Linear theory:

1. Sobolev spaces are useful – W s,p, often with p = 2

2. “weak convergence” is useful, and is a different concept
from “weak solution”

3. combine with regularity to get classical solutions
(especially for elliptic equations)

Three difficulties with nonlinear equations:

1. need to define f(u); in 1-D, most useful space is BV

2. weak convergence does not preserve nonlinear relations

3. hyperbolic and elliptic theory very different
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Irreversibility and Entropy
Complete defn of weak solution known in one case: scalar
eqn ∂tu +

∑

∂xi
fi(u) = 0 (Kruzkov): ∀k ∈ R, ϕ ∈ C∞,

∫ T

0

∫

Rn

|u − k|∂tϕ +

n
∑

1

sgn (u − k)(fi(u) − fi(k))∂xi
ϕdx dt

+

∫

Rn

|u0(x) − k|ϕ(x, 0) dx ≥ 0

Quasilinear system ∂tu +
∑

∂xi
fi(u) + b(u) = 0

Discontinuity must satisfy RH s[u] = [f(u) · ν] and more:

Vanishing viscosity

∂tu+
∑

Ai(u)∂xi
u+b(u) = ε∆u

x

t

y

x−ut=y

Entropy: convex function η(u), with ∂tη(u) +
∑

∂xi
qi(u) ≤ 0
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Riemann Solutions

One space dimension ut + f(u)x = 0, u ∈ R
n

Riemann Data

u(x, 0) =

{

u`, x < 0

ur, x ≥ 0

Self-similar: ξ = x
t

u0

u1 u2

un x

t

(Linear analogue: 1-D characteristic decomposition of a dis-
continuity)
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Random Choice and Front Tracking
1-D solution space is BV: u(x, 0) ∈ BV ⇒ sol’n in BV
“Outside a set of 1-D Hausdorff measure 0, a BV fn is either
approx continuous or has an approx jump discont”
Use Riemann solutions to prove existence:
Glimm’s random choice

x

t

Risebro-Bressan’s wave
front tracking

x

t

Varu(·, 0) ≤ ε ⇒ Varu(·, t) ≤ M ,
∫

|u(t, x) − u(s, x)| ≤ L|t − s|
Helly’s theorem ⇒ subsequence cvges ptwise to BV soln.
Bressan: SRS (Standard Riemann Semigroup) –
uniqueness, well-posedness, & greater regularity (cont’s
except for ct’ble set of shock curves & interaction points)
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Large Data
Things go wrong; here’s an example (K-Kranzer)

Isentropic GD

{

ρt + (ρu)x = 0

(ρu)t + (ρu2 + Aργ)x = 0

Isothermal GD (γ = 1) use specific enthalpy q(ρ) = A log ρ

ut +
(

1
2u2 + q(ρ)

)

x
= 0

Conserve u (velocity) and v = 1
2u2 − q = 1

2u2 − log ρ, (cvx fn
of u and ρ): ut + (u2 − v)x = 0

vt + (1
3u3 − u)x = 0

• Strictly hyperbolic, but no Riemann solutions for large data
• Generalize with singular shocks
• Obstructions to solving Cauchy problem:

– oscillations producing blow-up in BV (Sever)
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Large Data; and Hyperbolicity
Counterexamples also in systems of 3 equations

Related to ‘nonlinear resonance’ between characteristic
families (‘non-strict hyperbolicity’)?

Bressan’s SRS theory requires ‘tame oscillation
condition’ for uniqueness

Def’n of a wk soln for a system is still incomplete

If hyperbolic does not imply “well-posed”, then does loss
of hyperbolicity imply “catastrophically ill-posed”?

Examples from two-fluid model for two-phase flow;
three-phase porous media flow; continuum model for
traffic flow

Phase-changing shocks stable in ways similar to
hyperbolic shocks
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Multidimensional problems

Quasilinear systems in more than one space dimension

ut +
∑

Aj(u)uxj
+ b(u) = 0

Linear & semilinear: W s,2 theory for smooth data (short
time for QL)

Theorem (Rauch): No BV bounds. For C∞ data, if
∫

Rn

|∇xu(x, t)| dx ≤ C

∫

Rn

|∇xu(x, 0)| dx

then AjAk = AkAj ∀j, k.

What’s wrong with AjAk = AkAj? No physically interesting
system has this property.
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Self-similar Approach to 2-D CL

WEAK STRONG

Incident Shock Incident Shock

Reflected
Shock Reflected

Shock

Sonic Line
ELLIPTIC
REGION

ELLIPTIC
REGION

FREE BOUNDARY

DEGENERACY IN ELLIPTIC EQUATION

Simplified data: 2-D RP
von Neumann paradox
Self-similar problems
Model equations
Hölder & Sobolev spaces
Existence results

• Canic, K, Kim, Jegdic, Tesdall
• T Chang (D Zhang), J-Q Liu
• S-X Chen
• Y Zheng, K-W Song
• G-Q Chen & M Feldman
• T-P Liu, V Elling
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Nature of the Analysis

U

U

0

1

reflected shock

incident s
hock

subsonic

cutoff b
d

ry

symmetry boundary

transport

Isentropic gas dynamics
ρt + (ρu)x + (ρv)y = 0

(ρu)t + (ρu2 + p)x + (ρuv)y = 0
(ρv)t + (ρuv)x + (ρv2 + p)y = 0

(ξ, η) = (x/t, y/t)
(U, V ) = (u − ξ, v − η)

Elliptic equation for ρ (where (u − ξ)2 + (v − η)2 < ρ2):
(U2 − c2)ρξξ + 2UV ρη + (V 2 − c2)ρηη + . . . = 0

Transport system for (U, V ):
(U, V ) · ∇U + pξ/ρ + U = 0 (U, V ) · ∇V + pη/ρ + V = 0

Free boundary (reflected shock): shock evolution + OD BC
dη
dξ =

U0V0−

√
s2(U2

0
+V 2

0
−s2)

U2

0
−s2

β(ρ, U, V ) · ∇ρ = F (ρ, U, V )

Solution (local) in weighted Hölder space
Schauder FP thm for ρ (cpct); Contraction Mapping for (U, V )
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Types of Shock Reflection
Regular reflection not always possible (nonlinear effect)
“Mach Stem” configurations are seen

2

u1

u3

S3

S2

S1

0Ξ

u

No Triple Points:
the pictured
configuration is
mathematically
impossible (Serre)

2

u3

S3

S2

S1

0

u1

1u’ Ξ

u

Slip line in “large
shock” regime is
not mathematically
possible for small
shocks (von
Neumann paradox)

2

u3

S3

S2

S1

0

u1

1u’ Ξ

u

For smaller
shocks or systems
without linear
waves, rarefaction
is “mathematically
possible”
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Guderley Mach Reflection
• Classical: mention of ‘rarefactions’ (Guderley)

• UTSD model for weak shock refl: only wave available is a
rarefaction (Canic-K conjecture, 1998, no evidence)

• Evidence: simulation by Tesdall & Hunter on UTSD, 2003

• Quasi-steady simulation
Uτ + (F (U) − ξU)ξ + (G(U) − ηU)η = −2U , τ = log t

SELF-SIMILAR SOLUTIONS FOR WEAK SHOCK REFLECTION 53
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Fig. 5. A detailed contour plot of (a) u and (b) v near the triple point for a = 0.5. The u-
contour spacing is 0.0005 and the v-contour spacing is 0.001. The sonic line is plotted in Figure 3(b)
and Figure 6. The figure shows a sequence of shock and expansion waves. Each expansion wave
is centered at a triple shock intersection and reflects off the sonic line into a compression wave.
The compression wave forms a shock wave that intersects the Mach shock, resulting in a sequence
of triple points. Three shock-expansion wave pairs and triple points are visible in the plots, with
indications of a fourth. The region shown contains the refined uniform grid, which has 768 × 608
grid points.

behind the shock is sonic. This point is very close to the corresponding triple point
on the Mach shock, as shown in Figure 6. It is not possible, however, to determine
from the numerical solution whether or not this sonic point coincides exactly with
the triple point, as argued by Guderley [9] in the case of steady weak shock Mach
reflections.

Three shocks and an expansion fan appear to connect four states at the leading
triple point. We label these states 1–4 in Figure 6. Table 4.2 gives values of u and v
for each of the states, computed from the numerical solution. For states 2–4, these
values were computed at the locations indicated in the figure. The values of (u, v)
for state 3 behind the reflected shock were computed close to the point where the
flow behind the shock is sonic. This ensures that states 2 and 3 are connected by the
reflected shock and not by any part of the expansion fan, which connects states 3 and
4. For state 1, the values for (u, v) were computed at a location sufficiently far ahead
of the incident shock so that they were not influenced by the effects of numerical
diffusion near the shock.

The velocity components (ū, v̄) in a reference frame moving with the triple point
are given by [12] as

ū = u−
(
ξ∗ +

1

4
η2
∗

)
, v̄ = v −

1

2
η∗u,(4.1)

where (ξ∗, η∗) are the (ξ, η)-coordinates of the triple point. From the numerical solu-

54 ALLEN M. TESDALL AND JOHN K. HUNTER
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Fig. 6. An enlargement of the solution in Figure 5 near the leading triple point, showing (a)
u-contours and (b) v-contours. The u-contour spacing is 0.005, and the v-contour spacing is 0.001.
The dashed line in the plots is the sonic line. Table 4.2 gives the values of u and v from the numerical
solution for the states labeled 1–4 in the plots.

tion shown in Figure 6, we obtain ξ∗ = 1.008, η∗ = 0.5128. We show the corresponding
values of (ū, v̄) in Table 4.2. In Figure 7(a), we plot the shock and rarefaction curves
for the steady transonic small disturbance equation [12] through each of the four states
for (ū, v̄). The plot in Figure 7(b) is an enlarged view of the shock and rarefaction
curves for the states 2, 3, and 4. The curves coincide almost exactly with those of
a triple point with an expansion fan. We show similar curves through the numerical
values of the analogous states at the second triple point in Figure 7(c)–(d). These
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Experimental Evidence
Experimental data of B. W. Skews & J. T. Ashworth (JFM)
following Tesdall-Hunter calculation

Ref: simulations of E. Vasil’ev and A. Kraiko
(Comp. Math. & Math. Phys., 1999)
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GMR in Compressible GD Equations
Recent simulation by Allen Tesdall, Gas Dynamics

x/t
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Mach contours and sonic line
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Future Directions

Large Data: obstructions to existence of weak solutions

“Resonances” among different wave families (exploring
the nature of hyperbolicity in the large for quasilinear
systems)

Relation to kinetic theory and other “more physical”
continuum mechanics theories

Multidimensional problems:
- BV not the correct space: what are good candidates?
- what are good model problems?
- what information can numerical simulations give?

Slides for talk
http://www.math.uh.edu/∼blk

ICIAM 07 , Zurich, July 17, 2007 – p.19/20



References
A. BRESSAN. Hyperbolic systems of Conservation Laws:
The One-Dimensional Cauchy Problem. Oxford
University Press, Oxford, 2000.
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