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How to Look at PDE

Modelling

Analysis

Simulation
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and show how they motivate our research
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About PDE
Essential idea: local information ⇒ Global conclusions

u(x, t) function of space (x) and time (t) (say x is one
horizontal direction)

u function of x defined at every point and every instant –
eg, temperature at x

ux = ∂u
∂x is spatial gradient (slope) of u

ut = ∂u
∂t is rate of change in time of u at x

suppose “ut and ux are proportional” (local information)

ut = aux

PDE, first order, two independent variables, linear

Conservation Law: can be written as a space-time
divergence: div(x,t)(−au, u) = 0
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What about it?
Fact: every u satisfying ut − aux = 0 can be written
u(x, t) = f(x + at) for a function f of 1 variable (pf later)

only moderately helpful unless we know f

suppose u(x, 0) = u0(x), then f = u0 & u(x, t) = u0(x + at)

x

u

t=0

x

t>0

u

Whether or not we know f , solution is a wave moving to
the left with speed a.

Could one guess that from ut = aux?

Note that a < 0 means wave moves to the right
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Why Conservation Laws?
express physical basis for equation

conservation of mass, momentum, etc.

need constitutive relation to complete equation

usual form (one dimension) Ut + F (U)x = 0

Wave Eq: (ρut)t = (Tux)x
Newton’s law (conservation of momentum) and
Hooke’s law (elasticity)
Suppose ρ and T constant: c2 = T

ρ , then utt = c2uxx

Define v = ut and w = cux

U =

(

ut

cux

)

, F (U) = AU =

(

0 c

c 0

)

U

Example of a 1-D System of Con-
servation Laws

TT

u, vertical displacement

x

Force
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Basic Conservation Laws

Standard simplification: ignore viscosity, dispersion
Physics is “mono-scale”

Multi-D (“more than one space dimension”): elastic
membrane or solid

utt − c2∆u = 0, utt −∇ · (c2∇u) = 0

∆ = ∂2
x + ∂2

y(+∂2
z )

Quasilinear if c = c(u) for example

Standard multidimensional form:

Ut +
∑

∂xi
Fi(U) = 0; U = (u1, . . . , un) ∈n, Fi ∈

n
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Modelling (Example)
Continuum model for traffic flow

q qu

x+hx

x = distance down one-way street

u(x, t) = density of traffic (cars per mile)

Amount of traffic in control length is T =
∫ x+h

x u(y, t) dy

Evolution of T : ∂T
∂t = q(x, t) − q(x + h, t)

q(x, t) is flux at (x, t) (cars per minute)

So ∂
∂t

∫ x+h

x u(y, t) dy = q(x, t) − q(x + h, t) for any h.

Apply MVT for integrals:
∫ x+h

x u(y, t) dy = hu(x∗, t)

So ∂u(x∗,t)
∂t = q(x,t)−q(x+h,t)

h

Now let h → 0, so x∗ → x and we have ut + qx = 0
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Completing the Model
ut + qx = 0 is not like ut − aux = 0 because there are two
unknown functions, u and q

Study q. Notice q = uv (density × speed)

Study v

Case 1: v = const = a: ut + aux = 0 wave moves right

u

v

u

q

Case 2: v = v(u), say: de-
pends on density with given
relation

q = uv(u) = flux across line = function of u

∂u
∂t + ∂q(u)

∂x = 0 ut + q′(u)ux = 0

Now it’s a PDE, but not the one we solved
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Conservation Law Modelling

Advantage

Physics is trusted

Disadvantage

Conservation principles are not sensitive to some subtle
but important details, such as multiscale physics
(viscosity, dispersion)

Good question: what aspects of physical behaviour are
well-modelled by conservation laws, and what is left out?
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Ideal Gas Dynamics (Important)
ρt + (ρu)x + (ρv)y = 0

(ρu)t + (ρu2 + p)x + (ρuv)y = 0

(ρv)t + (ρuv)x + (ρv2 + p)y = 0

(ρE)t + (ρuH)x + (ρvH)y = 0

E =
1

γ − 1

p

ρ
+

1

2
(u2 + v2), H =

γ

γ − 1

p

ρ
+

1

2
(u2 + v2)

Variables ρ (density), (u, v) (velocity), and p (pressure)
First equation is analogue of traffic flow model

State U =











ρ

ρu

ρv

ρE











Flux F =











ρu

ρu2 + p

ρuv

ρuH











G =











ρv

ρuv

ρv2 + p

ρvH










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Method of Characteristics
Traffic flow model: ut + q′(u)ux = 0 ut + a(u)ux = 0
Seek distinguished curves in (x, t) (not an assumption)

x

t

u0

(x(s), t(s)):

ṫ = 1

ẋ = a(u)

u̇(x(s), t(s)) = uxẋ+utṫ = a(u)ux+ut

u = constant on curve: u = u0(x0)

ẋ = constant on curve

curve is line x = a(u0(x0))t + x0

Implicit solution u(x0 + q′(u0(x0))t, t) = u0(x0)
Invert (okay at t = 0):

dx

dx0
=

d

dx0

(

x0 + q′(u0(x0))t

)

= 1 + q′′(u0)u
′

0t 6= 0

, October 8-13, 2007 – p.11/35



Linear Equation
u(x0 + q′(u0(x0))t, t) = u0(x0)
ut + aux = 0, a constant

x = x0 + at

u(x0 + at, t) = u0(x0) or u(x, t) = u0(x − at)

x

t

x0

x=at+x0
Solution for all t for any u0

(even discontinuous u0)
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Weak Solutions

Another advantage of conservation law form: it allows
generalizing the notion of “weak solution” to quasilinear
equations.

Divergence form equations (conservation laws):

∇ · F (U) = 0 ⇒

∫∫

F (U) · ∇θ = 0, ∀θ

∃ weak solutions that are not dif-
ferentiable: plausible

ut + aux = 0

u = f(x − at)

f not differentiable

Discontinuous
across

characteristics

Locally smooth
solution

x

t
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Weak solutions for nonlinear equation
Apply

∫

uθt + f(u)θx = 0 across a discontinuity at x = st:
Find s[UR − UL] = f(UR) − f(UL) (Rankine-Hugoniot rel)
Discontinuities on shocks
& RH relation holds (from integral)
Burgers equation, ut + (u2/2)x = 0

s[u] =

[

u2

2

]

or s =
uL + uR

2
x

t

UR (x,t)

x=s(t)

UL(x,t)

u=0
u=1

u=x/t

x

t Rarefaction wave (Burgers Equation)

u(x, t) =











u = 0, x < 0

u = x/t, x < t

u = 1, x > t

Interesting continuity properties: ux(·, t) not bdd in Lp, p > 1
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Analysis of PDE
• We’ve seen: Local information ⇒ Global conclusions

ut + aux = 0 ⇒ u(x, t) = f(x − at)

Eq’n + enough initial, boundary conditions (Cauchy P)

• “Applied analysis”: study of properties of solutions of
PDE, “well-posedness”

• Function spaces in action: Functions and Mappings

Lp(n) Lp(Ω) Wm,p(n) Wm,p(Ω)

(typically not C∞, Cω or Ck)

• Type of analysis depends on type of equation, (another
story): Equations with t typically hyperbolic

• Conservation laws or quasilinear hyperbolic equations

ut + uux = 0 Burgers equation

• Story could be called ‘horrible functions’ (rarefaction
wave)
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Analysis

Finding solutions or proving they exists usually involves
approximation

When does a sequence of approximations converge?

Compactness an important tool

One space dimension ut + f(u)x = 0, u ∈ R
n

Approximate by Riemann problems (self-similar)

Riemann Data

u(x, 0) =

{

uL, x < 0

uR, x ≥ 0 u0

u1 u2

un x

t
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Development of CL Theory

One space dimension ut + f(u)x = 0, u ∈ R
n

Riemann Problem (Lax, 1956)

u(x, 0) =

{

u`, x < 0

ur, x ≥ 0
u0

u1 u2

un x

t

Form of Riemann solutions suggests right space is BV

Approximate initial data by piecewise constant data

Approximate solution by (local) Riemann solutions

For convergence use Compactness
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Random Choice and Wave Front Tracking
Weak solutions defined for u ∈ L∞ (bdd, mble)
1-D, more regularity: u(x, 0) ∈ BV ⇒ sol’n in BV
“Outside a set of 1-D Hausdorff measure 0, a BV fn is either
approx continuous or has an approx jump discont.”
Use Riemann solutions to prove existence:
Glimm’s random choice

x

t

Risebro-Bressan’s wave
front tracking

x

t

Varu(·, 0) ≤ ε ⇒ Varu(·, t) ≤ M ,
∫

|u(t, x) − u(s, x)| ≤ L|t − s|
Helly’s theorem ⇒ subsequence cvges ptwise to BV soln.
Bressan: SRS (Standard Riemann Semigroup) –
uniqueness, well-posedness, & regularity (cont’s except for
countable set of shock curves & interaction points)
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The Paradox of Multidimensional CL
Systems of Conservation Laws

Ut + F (U)x + G(U)y = 0,

• no existence theory, even for “small data”.

Why?
• smooth data lead to discontinuous solutions (need to

study weak solutions)

• discontinuities in quasilinear equations propagate on
shocks, not on characteristics

• Characteristics in multiD are complicated (WF sets)

• Don’t even know right function space to approximate
solutions
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A Blow to Generalization

ut +
∑

Aj(u)uxj
+ B(u) = 0

• Linear & semilinear: Hs theory for smooth data (short
time for QL)

Theorem (Rauch): No BV bounds. For C∞ data, if
∫

Rn

|∇xu(x, t)| dx ≤ C

∫

Rn

|∇xu(x, 0)| dx

then AjAk = AkAj ∀j, k.

What’s wrong with AjAk = AkAj? No physically interesting
system has this property.
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Approach Via Self-Similar Solutions
Basic tool in 1-D: ut + f(u)x = 0, ut + A(u)ux = 0

u(x, 0) =

{

uL, x < 0

uR, x > 0 u0

u1 u2

un x

t

Solution u = u(ξ) = u(x/t)
1-D analogue of our work: 2-point BVP for ODE for u(ξ)

−ξu′+A(u)u′ = 0 or (−ξI+A)u′ = 0, u(−∞) = uL, u(∞) = uR

Two types of solutions (locally in ξ):

ξ = λ(u), u′ = ~r(u) Rarefaction if λ increasing with u

ODE holds weakly at a discontinuity at ξ = s if
(

− ξu + f(u)
]s+

s−
= 0 or s[u] = [f(u)]

Shock, λ decreasing across discontinuity
Do not solve ODE in conventional way
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Why Study 2-D Riemann Problems?

• Analogy with 1-D

• Occurrence in physically interesting problems
Shock reflection by a wedge

X=    tΞ

S=    tΣFlow Wedge
Incident Shock

Reflected
Shock

t<0 t=0 t>0

• Shock interactions

• Numerical simulations
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Similarity Reduction in Two-D Systems
Ut + F (U)x + G(U)y = 0, U ∈n, hyperbolic

Riemann Data: U(x, y, 0) = f
(

x
y

)

Similarity Variables:

ξ =
x

t
, η =

y

t
U = U(ξ, η)

Reduced System in Two Variables
∂ξ(F − ξU) + ∂η(G − ηU) = −2U

x

y

Sectorially Const Data
Method: resolve 1-D far-field discont; IV/BVP in 2-D

RP in 2 + 1 dim ⇒ CP in 2 ind. vbles. w. data at ∞
Reduced to a previously solved problem

BUT
Type Changes: hyperb in far field; ‘subsonic’ region near 0
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Acoustic-type Structure
Ut + AUx + BUy = 0; det |Iτ + Aλ + Bµ| =

(

n−2
∏

i=1

`i · σ
)

σT QNσ

−2
0

2

−2

0

2
−6

−4

−2

0

2

4

6

Shear

µ

Acoustic

Characteristic Normals

σ=(µ,ν,τ)

ν

τ

−2 0 2 4
−2

0
2

4

−3

−2

−1

0

1

2

3

x

Envelopes in Physical Space

Shear
Acoustic

y

t
For PDE enthusiasts: a
new type of PDE sys-
tem & BC

CHANGE OF TYPE THEOREM
Reduced equation hyperbolic outside
acoustic wave cone

NONDEGENERATE

CHARACTERISTICS

  Ξ
0DEGENERATE CHARACTERISTICS

SUBSONIC REGION:
ELLIPTIC OR MIXED

SUPERSONIC REGION: HYPERBOLIC

τ
−

τ
+

L

S
P

A
C

E
LIK

E
 

 C
U

R
V

E

ξ

η
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Paradoxical Problems

• Shock reflection & interaction patterns

• No ∃ or ! theorems

• von Neumann paradox

Sample data for shock reflection problems

U
1
=(ρ

1
,m

1
,n

1
)

U
0
=(ρ

0
,m

0
,n

0
)

x →

y
↑

x=κ a
 yx=−κ

a  y

U
1

U
0

U
1a

U
1b

ξ  →

η
↑

Linear WaveLinear Wave

ShockShock

2-state data: U0, U1

Data give 2 shocks
Far field solution: 4 waves
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Regular Reflection Patterns

• Non-paradoxical case

• Two types of solution postulated

• ‘Local’ existence
(Canic, Jegdic, Kim)

INCIDENT
SHOCK

WALL

DOWNSTREAM
STATE

U  = (1, −a)1

U  = (0,0)0
*

U  = (1, a)1

EXAMPLE:
SHOCK
REFLECTION
(BY A WEDGE)
IN THE
UTSD
EQUATION

UPSTREAM STATE

RIEMANN DATA

x

y

x = a y

x = −a y

WEAK STRONG

Incident Shock Incident Shock

Reflected
Shock Reflected

Shock

Sonic Line
ELLIPTIC
REGION

ELLIPTIC
REGION

FREE BOUNDARY

DEGENERACY IN ELLIPTIC EQUATION
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Gas Dynamics, UTSD & NLWS

3 systems with char structure similar to gas dynamics:

UTSD system (no linear/degenerate waves)

ut + uux + vy = 0

−vx + uy = 0

Isentropic Gas Dyn: p = ργ/γ
ρt + (ρu)x + (ρv)y = 0
(ρu)t + (ρu2 + p)x + (ρuv)y = 0
(ρv)t + (ρuv)x + (ρv2 + p)y = 0

Nonlinear Wave System:
ρt + mx + ny = 0
mt + px = 0 m = ρu
nt + py = 0 n = ρv

In Y. Zheng’s P-G Sys, p(ρ) = eρ, u = c2(ρ) = p′(ρ) = eρ
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NLWS: Analysis of Regular Reflection
‘Strong’ RR: (Nondegenerate) Elliptic Free Boundary Prob
Jegdic-K-Canic; using work on UTSD and NLWS with Kim
Existence theorem for NLWS - local result
Q ≡

(

(c2(ρ)−ξ2)ρξ−ξηρη

)

ξ
+
(

(c2(ρ)−η2)ρη−ξηρξ

)

η
+ξρξ+ηρη

Incident Shock

Reflected Shock

Free Boundary

Σ

U1

U0Ω

σ Cutoff Boundary

sΞ

Σ0

Q(ρ) = 0 (degenerate elliptic) in Ω
ρ = f on σ (cutoff boundary)
ρξ = 0 (symmetry) on Σ0

Free boundary from RH equations:
N(ρ) ≡ β · ∇ρ = 0 (oblique deriv) on Σ

dr

dθ
= r

√

r2

s2
− 1 s2 =

[p]

[ρ]

ρ = ρF at Ξs

Approach: Fixed Point Theorem (CK & Lieberman, CKK)
• Nonlinear evolution eqn may not be well-defined
• Compare with work of Zheng, Chen-Feldman, etc.
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Some Simulations
Regular Reflection Not Possible

−15 −10 −5 0 5 10 15

−10

−5

0

5

10

Contour Plot of Density ρ.  Data U
0
 = (64,0,507.9222); U

1
 = (1,0,0);  κ

a
 = 1;  κ

b
 = −1

ξ axis

η 
ax

is

Alex Kurganov (high-order centered scheme)
focus on ‘triple point’
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Weak Shock Reflection: Triple Points

2

u1

u3

S3

S2

S1

0Ξ

u
Theorem (Serre) 6 ∃ triple points:
6 ∃ states u1,u2, u3, shock angles
κ1, κ2, κ3 and meeting point Ξ0

Resolution of paradox for strong shocks: slip line

2

u3

S3

S2

S1

0

u1

1u’ Ξ

u

For weak shocks, slip line cannot occur

What happens in weak shock reflection?
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Guderley Mach Reflection
• Classical: mention of ‘rarefactions’ (Guderley)

• UTSD model for weak shock refl: only wave available is a
rarefaction (Canic-K conjecture, 1998, no evidence)

• Evidence: simulations of Tesdall & Hunter on UTSD
(2003)

• Quasi-steady simulation
Uτ + (F (U) − ξU)ξ + (G(U) − ηU)η = −2U , τ = log t

SELF-SIMILAR SOLUTIONS FOR WEAK SHOCK REFLECTION 53

x/t

y/
t

1 1.005 1.01
0.505

0.51

0.515

0.52

(a)

x/t

y/
t

1 1.005 1.01
0.505

0.51

0.515

0.52

(b)

Fig. 5. A detailed contour plot of (a) u and (b) v near the triple point for a = 0.5. The u-
contour spacing is 0.0005 and the v-contour spacing is 0.001. The sonic line is plotted in Figure 3(b)
and Figure 6. The figure shows a sequence of shock and expansion waves. Each expansion wave
is centered at a triple shock intersection and reflects off the sonic line into a compression wave.
The compression wave forms a shock wave that intersects the Mach shock, resulting in a sequence
of triple points. Three shock-expansion wave pairs and triple points are visible in the plots, with
indications of a fourth. The region shown contains the refined uniform grid, which has 768 × 608
grid points.

behind the shock is sonic. This point is very close to the corresponding triple point
on the Mach shock, as shown in Figure 6. It is not possible, however, to determine
from the numerical solution whether or not this sonic point coincides exactly with
the triple point, as argued by Guderley [9] in the case of steady weak shock Mach
reflections.

Three shocks and an expansion fan appear to connect four states at the leading
triple point. We label these states 1–4 in Figure 6. Table 4.2 gives values of u and v
for each of the states, computed from the numerical solution. For states 2–4, these
values were computed at the locations indicated in the figure. The values of (u, v)
for state 3 behind the reflected shock were computed close to the point where the
flow behind the shock is sonic. This ensures that states 2 and 3 are connected by the
reflected shock and not by any part of the expansion fan, which connects states 3 and
4. For state 1, the values for (u, v) were computed at a location sufficiently far ahead
of the incident shock so that they were not influenced by the effects of numerical
diffusion near the shock.

The velocity components (ū, v̄) in a reference frame moving with the triple point
are given by [12] as

ū = u−
(
ξ∗ +

1

4
η2
∗

)
, v̄ = v −

1

2
η∗u,(4.1)

where (ξ∗, η∗) are the (ξ, η)-coordinates of the triple point. From the numerical solu-

54 ALLEN M. TESDALL AND JOHN K. HUNTER

x/t

y/
t

1.005 1.006 1.007 1.008 1.009

0.512

0.513

0.514

0.515

1

2

4

x/t

y/
t

1.005 1.006 1.007 1.008 1.009

0.512

0.513

0.514

0.515

3

(a)

x/t

y/
t

1.005 1.006 1.007 1.008 1.009

0.512

0.513

0.514

0.515

1

2

4

x/t

y/
t

1.005 1.006 1.007 1.008 1.009

0.512

0.513

0.514

0.515

3

(b)

Fig. 6. An enlargement of the solution in Figure 5 near the leading triple point, showing (a)
u-contours and (b) v-contours. The u-contour spacing is 0.005, and the v-contour spacing is 0.001.
The dashed line in the plots is the sonic line. Table 4.2 gives the values of u and v from the numerical
solution for the states labeled 1–4 in the plots.

tion shown in Figure 6, we obtain ξ∗ = 1.008, η∗ = 0.5128. We show the corresponding
values of (ū, v̄) in Table 4.2. In Figure 7(a), we plot the shock and rarefaction curves
for the steady transonic small disturbance equation [12] through each of the four states
for (ū, v̄). The plot in Figure 7(b) is an enlarged view of the shock and rarefaction
curves for the states 2, 3, and 4. The curves coincide almost exactly with those of
a triple point with an expansion fan. We show similar curves through the numerical
values of the analogous states at the second triple point in Figure 7(c)–(d). These
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Guderley Mach Reflection in Gas Dynamics
Simulations by Allen Tesdall, Gas Dynamics

x/t

y/
t

1.0746 1.0748 1.075 1.0752 1.0754 1.0756

0.41

0.4102

0.4104

0.4106

0.4108

Mach contours and sonic line
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Experimental Evidence

Experimental data of B. W. Skews & J. T. Ashworth (JFM)
following Tesdall-Hunter calculation

Ref: simulations of E. Vasil’ev and A. Kraiko
(Comp. Math. & Math. Phys., 1999)
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Future Directions

Extend UTSD & NLWS results to Gas Dynamics:
technical difficulties

Large Data: obstructions to existence of weak solutions

“Resonances” among different wave families (exploring
the nature of hyperbolicity in the large for quasilinear
systems)

Relation to kinetic theory and other “more physical”
continuum mechanics theories

Multidimensional problems:
- BV not the correct space: what are good candidates?
- what are good model problems?
- what information can numerical simulations give?
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