# Hyperbolic Partial Differential Equations and Conservation Laws

Barbara Lee Keyfitz
Fields Institute and University of Houston

bkeyfitz@fields.utoronto.ca

Research supported by US Department of Energy,
National Science Foundation,
and NSERC of Canada.

#### **How to Look at PDE**

- Modelling
- Analysis
- Simulation

Objective at this meeting: describe these aspects of PDE and show how they motivate our research

Co-authors: Sunčica Čanić, Eun Heui Kim, Gary Lieberman, Katarina Jegdić, Allen Tesdall, Mary Chern, David Wagner

#### **About PDE**

- ullet Essential idea: local information  $\Rightarrow$  Global conclusions
- u(x,t) function of space (x) and time (t) (say x is one horizontal direction)
- u function of x defined at every point and every instant eg, temperature at x
- $u_x = \frac{\partial u}{\partial x}$  is spatial gradient (slope) of u
- $u_t = \frac{\partial u}{\partial t}$  is rate of change in time of u at x
- suppose " $u_t$  and  $u_x$  are proportional" (local information)

$$u_t = au_x$$

- PDE, first order, two independent variables, linear
- Conservation Law: can be written as a space-time divergence:  $div_{(x,t)}(-au,u)=0$

#### What about it?

- Fact: every u satisfying  $u_t au_x = 0$  can be written u(x,t) = f(x+at) for a function f of 1 variable (pf later)
- ullet only moderately helpful unless we know f
- suppose  $u(x,0) = u_0(x)$ , then  $f = u_0 \& u(x,t) = u_0(x+at)$



- Whether or not we know f, solution is a wave moving to the left with speed a.
- Could one guess that from  $u_t = au_x$ ?
- Note that a < 0 means wave moves to the right

## Why Conservation Laws?

- express physical basis for equation
- conservation of mass, momentum, etc.
- need constitutive relation to complete equation
- usual form (one dimension)  $U_t + F(U)_x = 0$

Wave Eq: 
$$(\rho u_t)_t = (Tu_x)_x$$

Newton's law (conservation of momentum) and Hooke's law (elasticity)

Suppose  $\rho$  and T constant:  $c^2 = \frac{T}{\rho}$ , then  $u_{tt} = c^2 u_{xx}$ 

Define  $v = u_t$  and  $w = cu_x$ 

$$U = \begin{pmatrix} u_t \\ cu_x \end{pmatrix}, F(U) = AU = \begin{pmatrix} 0 & c \\ c & 0 \end{pmatrix} U$$

Example of a 1-D System of Conservation Laws



#### **Basic Conservation Laws**

- Standard simplification: ignore viscosity, dispersion Physics is "mono-scale"
- Multi-D ("more than one space dimension"): elastic membrane or solid

$$u_{tt} - c^2 \Delta u = 0, \quad u_{tt} - \nabla \cdot (c^2 \nabla u) = 0$$
  
$$\Delta = \partial_x^2 + \partial_y^2 (+\partial_z^2)$$

- Quasilinear if c = c(u) for example
- Standard multidimensional form:

$$U_t + \sum \partial_{x_i} F_i(U) = 0; \quad U = (u_1, \dots, u_n) \in {}^n, \quad F_i \in {}^n$$

# **Modelling (Example)**

#### Continuum model for traffic flow



- $\bullet$  x = distance down one-way street
- u(x,t) = density of traffic (cars per mile)
- ▶ Amount of traffic in control length is  $T = \int_x^{x+h} u(y,t) \, dy$
- Evolution of T:  $\frac{\partial T}{\partial t} = q(x,t) q(x+h,t)$
- q(x,t) is flux at (x,t) (cars per minute)
- So  $\frac{\partial}{\partial t} \int_x^{x+h} u(y,t) \, dy = q(x,t) q(x+h,t)$  for any h.
- **●** Apply MVT for integrals:  $\int_x^{x+h} u(y,t) dy = hu(x^*,t)$
- Now let  $h \to 0$ , so  $x^* \to x$  and we have  $u_t + q_x = 0$

# Completing the Model

- $u_t + q_x = 0$  is not like  $u_t au_x = 0$  because there are two unknown functions, u and q
- Study q. Notice q = uv (density  $\times$  speed)
- ightharpoonup Study v
- Case 1: v = const = a:  $u_t + au_x = 0$  wave moves right



Case 2: v=v(u), say: depends on density with given relation

- Now it's a PDE, but not the one we solved

## **Conservation Law Modelling**

#### Advantage

Physics is trusted

#### Disadvantage

 Conservation principles are not sensitive to some subtle but important details, such as multiscale physics (viscosity, dispersion)

Good question: what aspects of physical behaviour are well-modelled by conservation laws, and what is left out?

## **Ideal Gas Dynamics (Important)**

$$\rho_t + (\rho u)_x + (\rho v)_y = 0$$

$$(\rho u)_t + (\rho u^2 + p)_x + (\rho uv)_y = 0$$

$$(\rho v)_t + (\rho uv)_x + (\rho v^2 + p)_y = 0$$

$$(\rho E)_t + (\rho uH)_x + (\rho vH)_y = 0$$

$$E = \frac{1}{\gamma - 1} \frac{p}{\rho} + \frac{1}{2} (u^2 + v^2), \quad H = \frac{\gamma}{\gamma - 1} \frac{p}{\rho} + \frac{1}{2} (u^2 + v^2)$$

Variables  $\rho$  (density), (u, v) (velocity), and p (pressure) First equation is analogue of traffic flow model

State 
$$U = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho E \end{pmatrix}$$
 Flux  $F = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ \rho uH \end{pmatrix}$   $G = \begin{pmatrix} \rho v \\ \rho uv \\ \rho v^2 + p \\ \rho vH \end{pmatrix}$ 

#### **Method of Characteristics**

Traffic flow model:  $u_t + q'(u)u_x = 0$   $u_t + a(u)u_x = 0$ Seek distinguished curves in (x, t) (not an assumption)



$$\bullet$$
  $(x(s),t(s))$ :

$$\dot{x}$$
  $\bullet$   $\dot{t}=1$ 

$$\dot{x} = a(u)$$

$$\dot{u}(x(s), t(s)) = u_x \dot{x} + u_t \dot{t} = a(u)u_x + u_t$$

• 
$$u = \text{constant on curve: } u = u_0(x_0)$$

$$\hat{y} = \hat{x} = \hat{y}$$

• curve is line 
$$x = a(u_0(x_0))t + x_0$$

Implicit solution  $u(x_0 + q'(u_0(x_0))t, t) = u_0(x_0)$ Invert (okay at t = 0):

$$\frac{dx}{dx_0} = \frac{d}{dx_0} \left( x_0 + q'(u_0(x_0))t \right) = 1 + q''(u_0)u_0't \neq 0$$

## **Linear Equation**

$$u(x_0 + q'(u_0(x_0))t, t) = u_0(x_0)t$$
  
 $u_t + au_x = 0$ , a constant

- $x = x_0 + at$
- $u(x_0 + at, t) = u_0(x_0)$  or  $u(x, t) = u_0(x at)$



Solution for all t for any  $u_0$  (even discontinuous  $u_0$ )

#### **Weak Solutions**

Another advantage of conservation law form: it allows generalizing the notion of "weak solution" to quasilinear equations.

Divergence form equations (conservation laws):

$$\nabla \cdot F(U) = 0 \Rightarrow \iint F(U) \cdot \nabla \theta = 0, \quad \forall \theta$$

∃ weak solutions that are not differentiable: plausible

$$u_t + au_x = 0$$

$$u = f(x - at)$$

f not differentiable



# Weak solutions for nonlinear equation

Apply  $\int u\theta_t + f(u)\theta_x = 0$  across a discontinuity at x = st:

Find  $s[U_R - U_L] = f(U_R) - f(U_L)$  (Rankine-Hugoniot rel)

Discontinuities on shocks

& RH relation holds (from integral)

Burgers equation,  $u_t + (u^2/2)_x = 0$ 

$$s[u] = \left\lceil \frac{u^2}{2} \right\rceil$$
 or  $s = \frac{u_L + u_R}{2}$ 



Rarefaction wave (Burgers Equation)

Interesting continuity properties:  $u_x(\cdot,t)$  not bdd in  $L^p$ , p>1

### **Analysis of PDE**

We've seen: Local information ⇒ Global conclusions

$$u_t + au_x = 0 \qquad \Rightarrow \qquad u(x,t) = f(x - at)$$

Eq'n + enough initial, boundary conditions (Cauchy P)

- "Applied analysis": study of properties of solutions of PDE, "well-posedness"
- Function spaces in action: Functions and Mappings

$$L^p(^n)$$
  $L^p(\Omega)$   $W^{m,p}(^n)$   $W^{m,p}(\Omega)$ 

(typically not  $C^{\infty}$ ,  $C^{\omega}$  or  $C^k$ )

- Type of analysis depends on type of equation, (another story): Equations with t typically hyperbolic
- Conservation laws or quasilinear hyperbolic equations

$$u_t + uu_x = 0$$
 Burgers equation

Story could be called 'horrible functions' (rarefaction number 8-13, 2007 - p.15/3 wave)

## **Analysis**

Finding solutions or proving they exists usually involves approximation

When does a sequence of approximations converge?

Compactness an important tool

One space dimension  $u_t + f(u)_x = 0$ ,  $u \in \mathbb{R}^n$ Approximate by Riemann problems (self-similar)

#### Riemann Data

$$u(x,0) = \begin{cases} u_L, & x < 0 \\ u_R, & x \ge 0 \end{cases}$$



# **Development of CL Theory**

One space dimension  $u_t + f(u)_x = 0$ ,  $u \in \mathbf{R}^n$ 

Riemann Problem (Lax, 1956)

$$u(x,0) = \begin{cases} u_{\ell}, & x < 0 \\ u_{r}, & x \ge 0 \end{cases}$$



Form of Riemann solutions suggests right space is BV

Approximate initial data by piecewise constant data

Approximate solution by (local) Riemann solutions

For convergence use Compactness

### Random Choice and Wave Front Tracking

Weak solutions defined for  $u \in L^{\infty}$  (bdd, mble)

1-D, more regularity:  $u(x,0) \in BV \Rightarrow$  sol'n in BV

"Outside a set of 1-D Hausdorff measure 0, a BV fn is either approx continuous or has an approx jump discont."

Use Riemann solutions to prove existence:

Glimm's random choice

Risebro-Bressan's wave front tracking





 $\operatorname{Var} u(\cdot,0) \le \varepsilon \Rightarrow \operatorname{Var} u(\cdot,t) \le M$ ,  $\int |u(t,x) - u(s,x)| \le L|t-s|$ 

Helly's theorem  $\Rightarrow$  subsequence cyges ptwise to BV soln.

Bressan: SRS (Standard Riemann Semigroup) -

uniqueness, well-posedness, & regularity (cont's except for

countable set of shock curves & interaction points)

#### The Paradox of Multidimensional CL

#### Systems of Conservation Laws

$$U_t + F(U)_x + G(U)_y = 0,$$

no existence theory, even for "small data".

# Why?

- smooth data lead to discontinuous solutions (need to study weak solutions)
- discontinuities in quasilinear equations propagate on shocks, not on characteristics
- Characteristics in multiD are complicated (WF sets)
- Don't even know right function space to approximate solutions

#### A Blow to Generalization

$$u_t + \sum A_j(u)u_{x_j} + B(u) = 0$$

• Linear & semilinear:  $H^s$  theory for smooth data (short time for QL)

Theorem (Rauch): No BV bounds. For  $C^{\infty}$  data, if

$$\int_{R^n} |\nabla_x u(x,t)| \, dx \le C \int_{R^n} |\nabla_x u(x,0)| \, dx$$
 then 
$$A_j A_k = A_k A_j \quad \forall j,k.$$

What's wrong with  $A_jA_k=A_kA_j$ ? No physically interesting system has this property.

# **Approach Via Self-Similar Solutions**

Basic tool in 1-D:  $u_t + f(u)_x = 0$ ,  $u_t + A(u)u_x = 0$ 

$$u(x,0) = \begin{cases} u_L, & x < 0 \\ u_R, & x > 0 \end{cases}$$



Solution  $u = u(\xi) = u(x/t)$ 

1-D analogue of our work: 2-point BVP for ODE for  $u(\xi)$ 

$$-\xi u' + A(u)u' = 0$$
 or  $(-\xi I + A)u' = 0, u(-\infty) = u_L, u(\infty) = u_R$ 

Two types of solutions (locally in  $\xi$ ):

- $\xi = \lambda(u)$ ,  $u' = \vec{r}(u)$  Rarefaction if  $\lambda$  increasing with u
- ODE holds weakly at a discontinuity at  $\xi = s$  if  $\left(-\xi u + f(u)\right]_{s-}^{s+} = 0$  or s[u] = [f(u)]

Shock,  $\lambda$  decreasing across discontinuity

Do not solve ODE in conventional way

## Why Study 2-D Riemann Problems?

- Analogy with 1-D
- Occurrence in physically interesting problems
   Shock reflection by a wedge



- Shock interactions
- Numerical simulations

# Similarity Reduction in Two-D Systems

$$U_t + F(U)_x + G(U)_y = 0, \quad U \in {}^n, \quad \text{hyperbolic}$$

Riemann Data:  $U(x, y, 0) = f\left(\frac{x}{y}\right)$ Similarity Variables:

$$\xi = \frac{x}{t}, \quad \eta = \frac{y}{t} \qquad U = U(\xi, \eta)$$

Reduced System in Two Variables  $\partial_{\xi}(F - \xi U) + \partial_{\eta}(G - \eta U) = -2U$ 



Sectorially Const Data

Method: resolve 1-D far-field discont; IV/BVP in 2-D RP in 2+1 dim  $\Rightarrow$  CP in 2 ind. vbles. w. data at  $\infty$  Reduced to a previously solved problem RLIT

Type Changes: hyperb in far field; 'subsonic' region near 0

## **Acoustic-type Structure**

$$U_t + AU_x + BU_y = 0; \quad \det |I\tau + A\lambda + B\mu| = \left(\prod_{i=1}^{n-2} \ell_i \cdot \sigma\right) \sigma^T Q_N \sigma$$



For PDE enthusiasts: a new type of PDE system & BC

#### **CHANGE OF TYPE THEOREM**

Reduced equation hyperbolic outside acoustic wave cone



#### **Paradoxical Problems**

- Shock reflection & interaction patterns
- No ∃ or ! theorems
- von Neumann paradox

Sample data for shock reflection problems





2-state data:  $U_0$ ,  $U_1$  Data give 2 shocks

Far field solution: 4 waves

#### **Regular Reflection Patterns**

- Non-paradoxical case
- Two types of solution postulated
- 'Local' existence (Canic, Jegdic, Kim)





#### Gas Dynamics, UTSD & NLWS

3 systems with char structure similar to gas dynamics:

UTSD system (no linear/degenerate waves)

$$u_t + uu_x + v_y = 0$$
$$-v_x + u_y = 0$$

Isentropic Gas Dyn: 
$$p = \rho^{\gamma}/\gamma$$
 Nonlinear Wave System:  $\rho_t + (\rho u)_x + (\rho v)_y = 0$   $\rho_t + m_x + n_y = 0$ 

In Y. Zheng's P-G Sys,  $p(\rho) = e^{\rho}$ ,  $u = c^2(\rho) = p'(\rho) = e^{\rho}$ 

# **NLWS:** Analysis of Regular Reflection

"Strong' RR: (Nondegenerate) Elliptic Free Boundary Prob Jegdic-K-Canic; using work on UTSD and NLWS with Kim Existence theorem for NLWS - local result

$$Q \equiv \left( (c^2(\rho) - \xi^2) \rho_\xi - \xi \eta \rho_\eta \right)_\xi + \left( (c^2(\rho) - \eta^2) \rho_\eta - \xi \eta \rho_\xi \right)_\eta + \xi \rho_\xi + \eta \rho_\eta$$



 $Q(\rho) = 0$  (degenerate elliptic) in  $\Omega$   $\rho = f$  on  $\sigma$  (cutoff boundary)  $\rho_{\xi} = 0$  (symmetry) on  $\Sigma_0$ 

Free boundary from RH equations:

$$N(\rho) \equiv \beta \cdot \nabla \rho = 0$$
 (oblique deriv) on  $\Sigma$ 

$$\frac{dr}{d\theta} = r\sqrt{\frac{r^2}{s^2} - 1} \quad s^2 = \frac{[p]}{[\rho]}$$

$$\rho = \rho_F$$
 at  $\Xi_s$ 

Approach: Fixed Point Theorem (CK & Lieberman, CKK)

- Nonlinear evolution eqn may not be well-defined
- Compare with work of Zheng, Chen-Feldman, etc.

#### **Some Simulations**

#### Regular Reflection Not Possible

Contour Plot of Density  $\rho$ . Data  $U_0 = (64,0,507.9222); U_1 = (1,0,0); \kappa_a = 1; \kappa_b = -1$ 



Alex Kurganov (high-order centered scheme) focus on 'triple point'

## Weak Shock Reflection: Triple Points



#### Theorem (Serre) /= triple points:

 $\not\exists$  states  $u_1,u_2,\ u_3,\ \text{shock angles}$   $\kappa_1,\ \kappa_2,\ \kappa_3$  and meeting point  $\Xi_0$ 

Resolution of paradox for strong shocks: slip line



For weak shocks, slip line cannot occur

What happens in weak shock reflection?

## **Guderley Mach Reflection**

- Classical: mention of 'rarefactions' (Guderley)
- UTSD model for weak shock refl: only wave available is a rarefaction (Canic-K conjecture, 1998, no evidence)
- Evidence: simulations of Tesdall & Hunter on UTSD (2003)
- Quasi-steady simulation

$$U_{\tau} + (F(U) - \xi U)_{\xi} + (G(U) - \eta U)_{\eta} = -2U, \ \tau = \log t$$







# Guderley Mach Reflection in Gas Dynamic

Simulations by Allen Tesdall, Gas Dynamics

Mach contours and sonic line



## **Experimental Evidence**

Experimental data of B. W. Skews & J. T. Ashworth (JFM) following Tesdall-Hunter calculation



October 8-13, 2007 - p.33/3

#### **Future Directions**

- Extend UTSD & NLWS results to Gas Dynamics: technical difficulties
- Large Data: obstructions to existence of weak solutions
- "Resonances" among different wave families (exploring the nature of hyperbolicity in the large for quasilinear systems)
- Relation to kinetic theory and other "more physical" continuum mechanics theories
- Multidimensional problems:
  - BV not the correct space: what are good candidates?
  - what are good model problems?
  - what information can numerical simulations give?

#### References

- A. Bressan. Hyperbolic systems of Conservation Laws: The One-Dimensional Cauchy Problem. Oxford University Press, Oxford, 2000.
- S. Čanić, B. L. Keyfitz, and E. H. Kim. A free boundary problem for a quasilinear degenerate elliptic equation: Regular reflection of weak shocks. *Communications on Pure and Applied Mathematics*, LV:71–92, 2002.
- C. M. DAFERMOS. Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin, 2000.
- B. L. KEYFITZ. Self-similar solutions of two-dimensional conservation laws. *Journal of Hyperbolic Differential Equations*, 2004.
- P. D. LAX. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. Society for
   Industrial and Applied Mathematics, Philadelphia, 1973.