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Abstract

Many models for multi-fluid flow result in equations which fail to be hyperbolic.
One example is one-dimensional flow of an incompressible two-phase fluid. In the
simplest model, the principal part of the differential operator has characteristics
with nonzero imaginary part for any state of the fluid which contains both phases.
Thus, the linearized equations are catastrophically unstable.

This fact has caused distrust of the equations and concern about the modeling
processes.

However, these nonlinear equations behave very differently from their lineariza-
tions. Although states which are linearly unstable are also unstable in the nonlinear
equations, nonlinear theory predicts jump transitions, via stable shocks, from un-
stable to stable states. Furthermore, the nonlinear theory eliminates both infinite-
growth modes and high-frequency oscillations. The solution depends continuously
on the data except at certain values where threshold or bifurcation phenomena
occur. This overall stability is not affected by viscous or drag terms in the system.

Key words: Two-fluid flow modeling, loss of hyperbolicity, singular shocks,
Riemann problems

1 Introduction

Systems of conservation laws (first-order partial differential equations in space
and time) which are not of classical, strictly hyperbolic type have been ob-
served by mathematicians and other scientists over the past forty years. Such
equations appear in models for the dynamics of complicated flow systems.
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Typical examples are a model for three-phase convection-driven flow in porous
media, described by Bell Trangenstein and Shubin [1]; and a model for two-
phase elastodynamics, given by James [2].

Conservation law models for steady transonic flow also change type. There
are fundamental differences between steady and unsteady change of type: not
in the equations themselves, which are identical in form, but in the bound-
ary conditions and entropy conditions for shocks, which are necessary for the
formulation of a well-posed problem. Here we are concerned only with the
mysterious and controversial problem of unsteady change of type.

Considerable mathematical analysis has been done on unsteady models. This
work, by many researchers, solves Riemann problems for the model equa-
tions, derives admissibility and uniqueness criteria for shocks, relates the
conservation-law solutions to those of viscous perturbations, and attempts to
prove existence and continuous dependence theorems for Cauchy data. (For a
review of the literature, see [3]. My contribution has been to relate change of
type to other manifestations of nonclassical behavior, such as failure of strict
hyperbolicity and nonexistence of classical Riemann solutions for some strictly
hyperbolic equations.) The theory is incomplete; however, to put this in con-
text, a theory of well-posedness for classical, strictly hyperbolic conservation
laws in one space dimension is only now in progress. People use strictly hy-
perbolic conservation laws with great confidence. I believe a complete theory
for conservation laws that change type can be constructed as well.

How is such a theory possible in the face of the linear instability? The well-
known Hadamard example predicts catastrophic failure: exponential growth
of unstable modes of all frequencies, with the most rapid growth at the highest
frequencies. The initial-value problem for Laplace’s equation gives the general
idea. For any integers k and n, the Cauchy problem

utt + uxx = 0, u(x, 0) = 0, ut(x, 0) = nk sinnx

has the solution u(x, t) = nk−1 sinnx sinhnt. For negative values of k, the
initial conditions are uniformly small, but the solution is exponentially large
for t 6= 0. The conclusion is that the constant value u = 0 is completely
unstable, and the initial-value problem meaningless.

There are three reasons this example may not carry over to nonlinear problems.

First, the initial condition is small in the uniform norm, but not in the energy
norm. In a physical problem, either the perturbation is localized or boundary
conditions become important. We shall see that this is significant.

Second, in a nonlinear equation, the instability does not grow exponentially,
but saturates: once u takes values in the hyperbolic region, then the solution
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stops growing. This is primarily a matter of scale: the size of the resulting
oscillations is, roughly, the width of the nonhyperbolic region in phase space. If
the model is physically correct, then there is a physical reason for an instability
on this scale; for example, in two-phase elasticity, a jump whose amplitude is
the width of the unstable (nonhyperbolic) zone represents a propagating phase
boundary.

The third difference with linear theory is that the domination of a mixed-mode
solution by high-frequency oscillations has no counterpart in the nonlinear
problem. This is due to the mechanism of shock formation. Shocks cause decay
of energy even in the absence of an explicit dissipative mechanism such as
viscosity. Again, this is a matter of scale, in this case the time scale. On a given
time scale, oscillations of a particular frequency grow and form shocks, owing
to the nonlinearity of the system. A periodic pattern of shocks is established;
the shocks interact, resulting in decay. Oscillations of higher frequency develop
into shocks more rapidly; since the shock wave speeds are independent of the
frequency, higher frequency oscillations interact and decay more rapidly than
those of lower frequency. Eventually, only oscillations of some characteristic
frequency will remain.

I conjecture that the total variation of the solution satisfies a bound of the
form K/t, where K is a constant which depends on the initial data: as t
decreases to zero, the variation of the solution grows without bound, as in
some hyperbolic systems. However, there would be no catastrophic Hadamard
instability for t positive.

While nonlinear nonhyperbolic systems are not catastrophically unstable, they
do not enjoy the same kind of well-posedness as hyperbolic systems. Can their
solutions be of any use?

Here is a sense in which one can use the solutions exhibited later in this
paper: Model systems which change type are only approximate descriptions of
the complete physics. Such model systems are often regularized by adding a
dissipative mechanism, to produce a system which is parabolic and well-posed.
One reason scientists view the regularized systems with suspicion is that they
fear that there is no reasonable sense in which their solutions converge as the
dissipation is reduced.

However, if one can prove that solutions to the dissipative equations converge
as the dissipation tends to zero, then the limits represent, in the usual weak
sense, solutions to the nonhyperbolic model system. Existence of limits does
not prove that this system contains the correct physics; however, it does give
predictions about dynamics, based on the physics which is contained in the
model system. The predictions can be tested against experiment, common
sense or solutions of models which are known to be more complete.
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2 The Simplest Model

The remainder of this note focuses on the simplest model for two-phase, one-
dimensional incompressible flow, exhibited under this name in Drew and Pass-
man’s book, [4, page 248]. Call the phases 1 and 2, and their (constant) densi-
ties ρ1 and ρ2. Let αi be the volume fraction of the i-th phase, ui the velocity
and pi the pressure of the phase. Then conservation of mass and balance of
momentum yield the four averaged equations:

∂t(αi) + ∂x(αiui) = 0, (1)

αi∂t(ρiui) + αiui∂x(ρiui) + αi∂xpi =Gi, (2)

where G1 and G2 = −G1 are balance terms involving the interfacial force
density. This lower-order term does not influence the type of the equation. We
shall proceed as though the Gi were both zero.

We make two standard scaling assumptions: α1 +α2 = 1 and ρ1− ρ2 = 1, and
we make the “single pressure” hypothesis,

p1 ≡ p2, (3)

which is often blamed for the controversial type of the equation. However,
in at least one case, that of separated flow, where α1 and α2 represent the
fraction of a channel filled by each fluid, then the pressures in each phase are
equal, except for the effects of surface tension, which we ignore.

The two equations in (1) both govern the time-evolution of a single volume
fraction, while there is no term at all for the time-evolution of the pressure.
Drew and Passman describe this by saying that the quasilinear system (1),
(2) has two infinite-speed characteristics. (The incompressible Euler equation,
governing the evolution of a single ideal fluid, also features an infinite speed.)
An interpretation of this feature is that two of the four variables adjust instan-
taneously to changes in the other two, and therefore one can reduce (1), (2) to
a system of two equations for two variables, and solve by integration for the
other two. The following procedure was suggested by Constantine Dafermos.

Adding the two equations in (1) and using α2 = 1−α1 gives ∂x(α1u1 +α2u2) =
0, and so α1u1 +α2u2 = f(t). By rescaling u1, u2 and x, we can set f ≡ 0 and
deduce the identity

α1u1 + α2u2 = 0 (4)

in a coordinate system moving with weighted average flow speed. This elimi-
nates one variable, and we can eliminate the pressure by subtracting the two
equations in (2), and then use one of those equations to solve for p. Hence, we
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can write (1), (2) as a system of two equations in two conserved quantities,
from which we can recover the others. Define

β= ρ2α1 + ρ1α2, (5)

v= ρ1u1 − ρ2u2. (6)

Then

α1 =
β − ρ1

ρ2 − ρ1

, α2 =
β − ρ2

ρ1 − ρ2

, u1 =
(β − ρ2)v

β(ρ1 − ρ2)
, u2 =

(ρ1 − β)v

β(ρ2 − ρ1)
(7)

expresses α1, α2, u1 and u2 in terms of β and v. Furthermore, β and v are affine
functions of the conserved quantities in (1), (2), so conservation equations for
β and v are equivalent to the original equations, (1) and (2).

Carrying out the calculations leads to a system for β and v:

βt +
(
vB1(β)

)
x

= 0 (8)

vt +
(
v2B2(β)

)
x

= 0, (9)

where

B1(β) =
(β − ρ1)(β − ρ2)

β
, B2(β) =

β2 − ρ1ρ2

2β2
, (10)

and we have used the normalization ρ1 − ρ2 = 1. This is a system of conser-
vation laws,

Ut + Fx = 0, (11)

with state variable U = (β, v) and flux function F = (vB1(β), v2B2(β)). The
physical range for β is ρ2 ≤ β ≤ ρ1.

3 Mathematical Analysis

The characteristics of the system (8), (9) are

λ = 2vB2(β)± v
√
B1B′2 (12)

and since B1 ≤ 0 and B′2 > 0 on the physical range of β, the system is never
strictly hyperbolic. The eigenvalues have nonzero imaginary part except when
β = ρ1, β = ρ2 or v = 0. On this subset of state space, shaped like the letter
‘H’, which we will call H, there is a real double characteristic speed.
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Each segment of H is an invariant set for the system (8), (9); that is, if initial
data (β0(x), v0(x)) are given in the set, then the solution remains in the set
for all t > 0. On the sets {β = ρ1} and {β = ρ2}, the system reduces to the
scalar equation

vt +B2(ρi)(v
2)x = 0

with quadratic flux function, convex up at ρ1 and convex down at ρ2. Along
the β-axis, the system reduces to a trivial linear system, βt = vt = 0, with
zero characteristic speed. On the vertical sides of H, solutions in the form of
shock and rarefaction waves can be found, while the horizontal line admits
weak solutions in the form of contact discontinuities with speed zero. One
can pose Riemann problems with data in H, and if the local wavespeeds are
ordered so that they increase from left to right in physical space, then a stable
solution, completely contained in H, exists. This is the only case in which
classical Riemann solutions exist.

3.1 Singular Shocks in the Model System

Bounded, piecewise smooth weak solutions to systems of conservation laws
satisfy Rankine-Hugoniot equations at discontinuities. In this example, the
Rankine-Hugoniot equations are

s[β] = [vB1], s[v] = [v2B2],

where [·] represents the jump in a quantity across a shock of speed s. The
Rankine-Hugoniot equations have no real solutions for states in the interior of
the physical region. Instead, we find the partial differential equation admits
singular shock solutions, which satisfy the first Rankine-Hugoniot relation but
not the second. Singular shocks were studied in [5] and [6]; there they appeared
in strictly hyperbolic problems. The theory in [6] shows that singular shocks
are limits of approximate solutions which can be obtained in a number of ways,
including by the addition of viscous regularization, and that the limits are
independent of the type of approximation used. Furthermore, approximations
to singular shocks are approximate solutions with small residuals.

Singular shocks are self-similar solutions, of the form U(x/t) = U(ξ), to equa-
tion (11), which are concentrated at a particular speed ξ = s, the singular
shock speed. One way to approximate singular shocks is through the self-
similar viscosity approximation to the conservation law system,

Ut + Fx = εtUxx. (13)

Approximate singular shocks are solutions to (13) which, at distances O(ε)
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from s, can be described with regular shock profiles, of the form U(ξ) =
U((ξ − s)/ε). However, closer to the shock they have singular behavior:

Ũ =

 β
v

 =

 β̃
(
ξ−s
ε2

)
1
ε
ṽ
(
ξ−s
ε2

)
 .

The singular part of the shock, Ũ , and the regular part, U , can be found using
asymptotic expansions as in [5]. Details can be found in [7]. In the limit ε→ 0,
a singular shock disappears: Because, for small ε, the unbounded part of the v
component is very narrow compared to its height, the singular part has mass
zero in the limit (in this respect it differs from, for example, an approximation
to a Dirac delta-function, which has unit mass). Thus, the singular shock
appears merely as a discontinuity in the exact solution, as drawn in Figure 2;
in approximations it may appear as a sharp spike.

If we let U− and U+ be the end states on the left and right sides, respectively,
of a singular shock, then we have the following proposition. (Here < means the
real part of a complex number, and λ± refer to the characteristics, equation
(12), evaluated at U±.)

Proposition 3.1 If a singular shock connects U− and U+, then both states
are in the same vertical half-plane. The end states satisfy the generalized
Rankine-Hugoniot conditions,

s(β+ − β−) = v+B1(β+)− v−B1(β−) (14)

s(v+ − v−) = (v+)2B2(β+)− (v−)2B2(β−) + C (15)

where C may have any finite value and is positive for end states in the upper-
half-plane, negative in the lower. Singular shocks satisfy an admissibility con-
dition ,

<(λ−) ≥ s ≥ <(λ+). (16)

Strict inequalities in (16) yield overcompressive singular shocks, which are
locally isolated transitions. On the other hand, when equality holds in one of
the conditions in (16), then a singular shock may form part of a complex wave
pattern, as it may lie at the head or tail of a rarefaction. A calculation gives

Corollary 3.2 For a strictly overcompressive singular shock with left state
U−, the right state U+ lies in the interior of a cusped triangular region Q(U−)
bounded by the curves

v+ = v−
(

2B2(β−)(β+ − β−) +B1(β−)

B1(β+)

)
(17)
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and

v+ = v−
(

B1(β−)

B1(β+)− 2B2(β+)(β+ − β−)

)
. (18)

On the boundary segment (17), s = <(λ−), and on (18), s = <(λ+).

The curve (18) meets H at a point U0 defined by

U0(U−) =

(
ρ2,−

v−B1(β−)

2B2(ρ2)(ρ2 − β−)

)
or

(
ρ1,−

v−B1(β−)

2B2(ρ1)(ρ1 − β−)

)

according as v is positive or negative. The significance of this point is that
the singular shock from U− to U0 can form part of a composite wave, with a
rarefaction on the right. There is an analogous description of overcompressive
shocks from the viewpoint of a fixed state U+ on the right; in this case, there
is a unique point U1(U+) to which U+ can be joined by a singular shock
preceded by a rarefaction. The curves (17) and (18) and the region Q where
overcompressive shock solutions exist are illustrated in Figure 1.

3.2 Riemann Problems

In conservation law theory and computation, Riemann problems are the build-
ing blocks for solving initial and boundary value problems. Riemann data,

U(x, 0) =

UL, x < 0

UR, x > 0,
(19)

give rise to self-similar solutions U(x, t) = U(x/t) = U(ξ). Four types of waves
occur in our model: besides singular shocks, we see rarefactions and regular
shocks (between states on the vertical sides of H) and contact discontinuities
(along the horizontal line in H). When multiple types of wave occur in a
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solution connecting two states, the waves abut to form a single composite
transition between the states. We have the following proposition.

Proposition 3.3 In the class of self-similar solutions, with the admissibility
condition (16) for singular shocks and the standard Lax admissibility condition
for regular shocks, a nontrivial solution of the Riemann problem exists for any
pair of states UL, UR in the physical region.

We illustrate a typical case. When UL and UR are both in the interior of the
nonhyperbolic region, and vL and vR have the same sign, there is a solution
containing two singular shocks, with a composite wave between them consist-
ing of a rarefaction followed by a contact discontinuity followed by another
rarefaction. Several views of the solution are given in Figure 2: On the left are
illustrated the phase portrait, showing the location of the intermediate states;
a sketch in physical x,t space, showing the relative wave speeds; and profiles
of the β and v components of the solution.

When UR is in the cusped region Q(UL) defined in Proposition 3.1, then a sec-
ond solution consisting of a single overcompressive singular shock can also be
constructed. We note that the simpler solution is the one seen in calculations,
but no uniqueness criterion exists at present.

If the equations are used to model the flow of two separated phases in a pipe,
then reconstructing αi and ui for the two phases gives another representation
of the Riemann solution. This is shown on the right in Figure 2. One sees
a clear alternation between the two phases. The local flow speeds, indicated
with arrows, differ from the speeds of the discontinuities, and the entire pic-
ture is expanding in time. The instantaneous expansion of the flow at the
transitions from mixed to pure phases cannot be captured realistically in a
one-dimensional model. It would necessarily be associated with large veloc-
ity gradients; however, whether this has any relation to the large velocities
predicted by the singular shock approximations is unclear.
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In addition to the nonuniqueness, which awaits further study, solutions to the
Riemann problem exhibit some threshold behavior. For example, there is a
bifurcation at the boundary of the region Q.

Another feature of the Riemann solution given in Proposition 3.3 is that if
UL = UR is a state in the interior of the physical region, then there is a solution
which looks like the illustration in Figure 2. That is, even for constant data,
the solution is nonconstant. In the context of self-similar solutions, this does
not necessarily violate uniqueness or continuous dependence.

3.3 Numerical Approximation of Singular Shock Solutions

Finite difference approximations to the partial differential equation provide
another approximation to singular shocks. Numerical simulations were done
using a first-order Lax-Friedrichs scheme, and, for comparison, numerical solu-
tions to the parabolic system (13) were also calculated. The simulations bear
out our claim that the nonlinear problem has a computable shock structure.
Details will be found in [7].

4 Other Initial-Boundary Problems

The other two claims in the Introduction are that high frequency oscilla-
tions will be rapidly damped and that a localized perturbation will decay.
We present the following argument based on the Riemann solutions we have
constructed. Suppose that a constant state U in the interior of the physically
feasible region is subjected to a small localized perturbation, εV sin(x/ε), for
|x| ≤M . As stated earlier, only if the perturbation is localized can it be con-
sidered small in, say, an energy norm. Now, this perturbation will grow, and
within a time of order ε will produce a shock solution consisting of a periodic
sequence of Riemann solutions, each as described in the previous section. Sup-
pose that we start with this periodic train. If the spatial period is h = 2πε,
then the Riemann solutions begin to interact at time T0 = h/(s2 − s1), where
s2 and s1 are the speeds of the leading and trailing singular shock waves re-
spectively; these speeds differ from zero by an order one quantity, and so T0 is
a time of order ε. As the singular shocks interact with each other and with the
rarefaction waves at their edges, the amplitude of the shocks decreases: the
first component, β, remains constant while the second component, v, has an
amplitude of order t−1 at time t. Thus, the nonlinear structure inside the wave
decays to zero. See Figure 3. Localization of the perturbation on an interval
[−M,M ] plays a key role in this argument.
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5 Interpretation of the Solutions

We have used the simple model for incompressible two-phase flow to illus-
trate how one can construct a predictive mathematical theory for equations
which are not hyperbolic. Using the explicit solution to the Riemann prob-
lem, we have illustrated the three points made in the Introduction: the role
of localization of perturbations of a nonhyperbolic state; the finite amplitude
of oscillations; and the fixed frequency of oscillations (specifically, the sur-
vival of a single oscillatory mode). Further work remains: for example, the
balance terms Gi in equation (2) represent essential physics which could be
included without changing the mathematical framework. In addition, a theory
for compressible two-phase flow was partially worked out in [8].

We close with a comment on the unstable “mixed-phase” states in the incom-
pressible model. Figure 2 offers a plausible-looking illustration of separated
flow; however, the left-most shock, whose speed is negative, will eventually
move out of any finite region. Now, setting f(t) = 0 to obtain the identity (4)
is done by choosing a spatial coordinate system that moves with the average
(weighted) velocity of the fluid mixture. Relative to this velocity, the back-
ward shock moves upstream; however, it would move downstream relative to
an inlet where mixture is introduced with positive velocities.

If the initial-boundary data consisted of a constant, mixed state in the pipe
initially, with the same constant mixture being fed in at the upstream end,
then we would still expect to see the solution of Figure 2. That is, the mixture
would separate into the stable configuration given by the Riemann solution.
The nonconstant solution corresponding to constant initial data thus is phys-
ically correct. However, to fix an origin for the self-similar solution one has
to appeal to some notion of localization. At this level, it is clear that one
cannot completely eliminate the ill-posedness of the problem, and solutions
constructed by the methods of this paper remain only first approximations.
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