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FREE BOUNDARY PROBLEMS FOR NONLINEAR WAVE
SYSTEMS: MACH STEMS FOR INTERACTING SHOCKS∗

SUNČICA ČANIĆ† , BARBARA LEE KEYFITZ‡ , AND EUN HEUI KIM§

Abstract. We study a family of two-dimensional Riemann problems for compressible flow
modeled by the nonlinear wave system. The initial constant states are separated by two jump
discontinuities, x = ±κay, which develop into two interacting shock waves. We consider shock
angles in a range where regular reflection is not possible. The solution is symmetric about the y-axis
and on each side of the y-axis consists of an incident shock, a reflected compression wave, and a
Mach stem. This has a clear analogy with the problem of shock reflection by a ramp. It is well
known that no triple point structure exists in which incident, reflected, and Mach stem shocks meet
at a point. In this paper, we model the reflected wave by a continuous function with a singularity in
the derivative. This fails to be a weak solution across the sonic line. We show that a solution to the
free boundary problem for the Mach stem exists, and we conjecture that the global solution can be
completed by the construction of a reflected shock, by a similar free boundary technique.

The point of our paper is the capability to deal analytically with a Mach stem by solving a
free boundary problem. The difficulties associated with the analysis of solutions containing Mach
stems include (1) loss of obliqueness in the derivative boundary condition corresponding to the jump
conditions across the Mach stem, and (2) loss of ellipticity at the formation point of the Mach stem.

We use barrier functions to show that for sufficiently large values of κa the subsonic solution is
continuous up to the sonic line at the Mach stem.
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1. Introduction. This paper marks another step in our program to solve two-
dimensional Riemann problems for hyperbolic conservation laws. Our first results
involved a method [6] for solving the free boundary problems which arise in the study
of small time-independent perturbations of steady transonic shocks in the small dis-
turbance equation. We extended this technique to analyze quasi-steady transonic
shocks that are not necessarily small perturbations of known solutions by focusing on
weak shock reflection by a wedge, modeled by the unsteady transonic small distur-
bance (UTSD) equation. We solved this problem in two stages: first, a case corre-
sponding to strong regular reflection in which the free boundary involved a strictly
elliptic subsonic state [3] and, second, the case of weak regular reflection, in which
proving existence of the free boundary was complicated by the failure of strict ellip-
ticity in the downstream state [4]. The use of a simplified equation was necessary, as
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our construction relied in an essential way on reducing the self-similar system to a
second-order equation with particular structure which changed type from hyperbolic
to elliptic across the sonic line. In [3, 4] we obtained an existence result in only a
finite neighborhood of the shock reflection point.

More recently, we have outlined a program for extending our results to a larger
class of equations, choosing for a model the nonlinear wave system [5]. This system
is a slightly more realistic simplification of the compressible Euler equations of gas
dynamics and hence is a better test case for the program. It offers the advantage of
being linearly well-posed in space and time (which the UTSD equation is not) and of
having a nonlinear acoustic-wave dependence similar to the gas dynamics equations.
It also has the convenient feature, just as the UTSD equations have, of reducing to a
second-order quasi-linear self-similar equation which, at the sonic line, changes type
from hyperbolic to elliptic. It has the additional feature, a more realistic prototype
for gas dynamics, of being coupled to a transport equation, so that the change of type
takes one from a hyperbolic to a mixed type system. The feature that makes the
system more tractable than gas dynamics is that the coupling is very weak: it comes
into play only at the point of reconstructing the solution in primitive variables.

As indicated in [5], a number of obstacles must be overcome before a theory for the
general Riemann solution, even for this simplified model, can be given. The present
result looks at a prototype for a Mach stem. We consider a problem characterized by
symmetry and otherwise simplified data. Our eventual goal is to cover all situations
which arise with general sectorially constant data. The innovations in this paper are
twofold:

1. We are able handle the entire Mach stem without cutoff functions.
2. We overcome the technical difficulty posed by the fact that at the foot of a

Mach stem the static boundary condition on the free boundary is no longer
a uniformly oblique derivative condition.

We prove existence of a solution in a case where the equation is sonic at the formation
point of the Mach stem. However, the correct modeling of the shock interaction is
limited to the Mach stem and interaction point itself; we have not attempted to
construct the reflected shock. Rather, we have replaced the reflected shock by a weak
shock at the sonic boundary, which does not give a weak solution in the neighborhood
of the sonic line. Although we have not completely solved the problem, we feel that
our result is a significant advance and that this approach will help in solving the full
problem. We explain this in section 5.

The analysis applies to the nonlinear wave system (NLWS), a reduction of the
inviscid system for compressible isentropic gas dynamics, obtained by neglecting the
inertial terms. The system is

ρt + mx + ny = 0,
mt + p(ρ)x = 0,
nt + p(ρ)y = 0.

(1.1)

We consider (1.1) with sectorially constant Riemann data consisting of two states
separated by discontinuities at x = ±κay for y ≥ 0 and with the states chosen so that
the one-dimensional Riemann problems at each discontinuity are solved by upward-
moving shocks and linear waves only. These determine the solution in the far field.
One expects to see a shock interaction consisting either of regular reflection or of Mach
reflection, depending on whether the angle between the incident shocks is small or
large (see [16]). The scenario we study here for Mach reflection places the formation
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Fig. 1.1. Sketch of global solution structure.

point of the Mach stem exactly at the sonic circle, and hence, since this system does
not admit triple points, the reflected wave has strength zero at this formation point.
This scenario thus requires that the angle between the incident shocks be large enough
that the shocks intersect the sonic circle before their extensions intersect each other.
Numerical simulations in [17] suggest that such a formation does indeed occur and
suggest, further, that the reflected shock is weak.

In this paper, we match a piecewise constant solution outside the sonic circle with
a solution of the self-similar equation inside the sonic circle, demanding continuity at
the circle. See Figure 1.1 for a sketch of such a solution. Our main result is the
existence of a solution to the subsonic problem. The composite function is not a weak
solution across the sonic circle. This leaves open the question of what is the actual
solution; it differs from the construction here and from the simulations. One possibility
is that the reflected wave is a weak, nearly circular shock, which has strength zero at
the formation point. Based on the successful construction of the Mach stem in this
paper, it may be possible to solve the complete problem by finding this reflected shock
as the solution of another free boundary problem. Another possibility is a cascade of
supersonic patches, as reported by Tesdall and Hunter for the UTSD equation [25].
We leave this for a future paper.

The techniques we use in this paper to prove global existence of a solution rely on
an application of the Schauder fixed point theorem, developed in [6, 3, 4]. A similar
approach was used by Chen and Feldman to prove stability of steady transonic shocks
for the full potential equation [8, 9]. Chen and Feldman use the potential formulation
of the equation to obtain a second-order operator. Both approaches prove existence of
a fixed point which solves the underlying free boundary problem. The main difference
lies in the compactness arguments used. Owing to the presence of the gradient of
the potential in the principal coefficient of the full potential operator, the mapping in
[8, 9] is not compact, but it is shown to operate on a compact space. Steady transonic
shock perturbation analyses, both in [6] and in [8, 9], examine small perturbations of
a uniform solution. A perturbation analysis of steady transonic shocks is also given
by Chen, Geng, and Li in [12]. Using partial hodograph transformations which map
the free boundary (shock) into a fixed boundary, combined with classical elliptic tech-
niques, [12] obtains stability results for perturbations of conical shocks attached to the
tip of a perturbed cone. Chen has used this same partial hodograph technique in a qua-
sisteady problem [11] and has also found an analytical solution for a linearized problem
corresponding to quasisteady regular reflection in the gas dynamics equations, [10].

The compressible Euler equations cannot, in general, be written in potential form
and self-similar reduction of the compressible Euler equations (see [5, 24, 26]) leads
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to a system related in structure to the model studied in the present paper. In this
connection, we mention also recent work by Zheng on diverging shocks in the pressure
gradient system, a type of nonlinear wave system, [27].

In section 2, we derive the second-order operator and derivative boundary condi-
tion at the shock for the nonlinear wave system, (1.1); give the technical statement of
our result, Theorem 2.3; set up the mapping to find the free boundary; and establish
some preliminary estimates. In section 3, using a regularized differential operator,
with εΔ added, we prove the existence of a fixed point corresponding to the free
boundary for the uniformly elliptic problem. The main point here is to deal with loss
of obliqueness in the derivative boundary condition. In section 4, we proceed to the
limit ε → 0. The novelty here is that a uniform upper barrier at the intersection of
the Mach stem with the sonic line cannot be found by standard barrier estimates. In
section 5, we explain the significance of the result in providing a first step in the con-
struction of Mach stems and other configurations where oblique derivative boundary
conditions can become degenerate and where shocks cross the sonic line.

2. Background on the nonlinear wave system. Our point of departure is
the compressible Euler system for isentropic flow in two space dimensions,

ρt + (uρ)x + (vρ)y = 0,
(uρ)t + (u2ρ + p)x + (uvρ)y = 0,
(vρ)t + (uvρ)x + (v2ρ + p)y = 0,

(2.1)

where ρ, u, and v are the density and the components of velocity, respectively, and
p = p(ρ) is the pressure. While we have in mind a power-law relation p(ρ) = Aργ ,
where γ > 1 is the ratio of specific heats, all that we require in this paper is p′ > 0 and
p′′ > 0. We recall that the local speed of sound is c and that c2 = dp/dρ. The nonlinear
wave system is a reduction of (2.1) obtained by neglecting the quadratic terms in u
and v. (We do not know if any physical situation is represented by this assumption.
However, it underlies the scaling for Stokes flow and was used by Pironneau [23]
in a case study of the shallow-water equations, which are modeled by (2.1) with
γ = 2.) In the resulting nonlinear wave system, (1.1), we work with the conserved
momentum variables (m,n) = (ρu, ρv). The NLWS (1.1) can be written as a second-
order nonlinear wave equation for the density and a transport equation for the specific
vorticity ω = nx −my:

ρtt = ∇(c2(ρ)∇ρ),
ωt = 0.

(2.2)

Since ω is stationary in this simplification of (2.1), then in any regions where the
initial data satisfy the irrotationality condition nx = my, the solutions, classical or
weak, satisfy the same condition.

Introducing self-similar coordinates ξ = x/t, η = y/t, we can write the system
(1.1) as

−ξρξ − ηρη + mξ + nη = 0,(2.3)

−ξmξ − ηmη + c2(ρ)ρξ = 0,(2.4)

−ξnξ − ηnη + c2(ρ)ρη = 0.(2.5)

In self-similar coordinates the nonlinear wave equation in (2.2), with its principal part
in divergence form, is

Q(ρ) ≡
(
(c2 − ξ2)ρξ − ξηρη

)
ξ
+
(
(c2 − η2)ρη − ξηρξ

)
η

+ ξρξ + ηρη = 0.(2.6)
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Fig. 2.1. Riemann data and far-field solution.

The equation is hyperbolic when c2(ρ) < ξ2 + η2, elliptic when c2(ρ) > ξ2 + η2, and
degenerate on the sonic circle c2(ρ) = ξ2 + η2.

It is because we can formulate the problem in terms of ρ that we can apply our
fixed point method to this equation.

2.1. Setting up the problem. We consider two-dimensional Riemann data
which are constant in sectors. Specifically, in this paper we look at data which cor-
respond to two symmetric converging shocks. This may alternatively be regarded as
the reflection of an oblique shock at a vertical wall. The data are constant in two
sectors bounded by {x = ±κay, y ≥ 0} and symmetric with respect to x = 0, as
shown in Figure 2.1. Let U denote the vector of conserved quantities, U = (ρ,m, n).
The Riemann data are

U(x, y, 0) =

{
U1 ≡ (ρ1, 0, 0), −κay < x < κay, y > 0,
U0 ≡ (ρ0, 0, n0) otherwise.

(2.7)

To obtain converging shocks in the far field, we choose ρ0 > ρ1 and determine n0,
depending on ρ1, ρ0, and κa, so that the one-dimensional wave between U0 and U1

at angle κa consists of a backward shock, S−
a , and a linear wave, la, with a state U1a

between them:

S−
a : {ξ = κaη + χ−

a }, la : {ξ = κaη}, U1a = (ρ0,m1a, n1a).(2.8)

Using the formula (6.1) in [5] these values are

χ−
a = −

√
1 + κ2

a

√
p(ρ0) − p(ρ1)

ρ0 − ρ1
;

m1a = −

√
(p(ρ0) − p(ρ1))(ρ0 − ρ1)

1 + κ2
a

; n1a = −κam1a;(2.9)

n0 =
1

κa

√
(1 + κ2

a)(p(ρ0) − p(ρ1))(ρ0 − ρ1).

By symmetry, the resolution of the discontinuity at x = −κay is

S+
b : {ξ = −κaη − χ−

a }, lb : {ξ = −κaη}, U1b = (ρ0,−m1a, n1a).

For the Riemann data (2.7), the sonic circle is important:

C0 ≡ {(ξ, η) : ξ2 + η2 = c20 ≡ c2(ρ0)}.(2.10)

We also define C1 ≡ {(ξ, η); ξ2 + η2 = c21 ≡ c2(ρ1)}.
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Several types of shock interaction seem possible in this model, depending on the
relative positions of the incident shock and the sonic circle. They are described in
more detail in [17]. For small κa, the shocks intersect at a point Ξc ≡ (0, ηc) =
S+
b ∩ S−

a = (0,−χ−
a /κa) on the η axis, and two symmetric downward-moving shocks

leave Ξc. For values of κa less than a critical value κR which depends on ρ0 and ρ1

one expects two solutions of this form, corresponding to “weak” and “strong” regular
reflection. For κa > κR, no solutions of this form exist. On the other hand, for κa

greater than a value κA (with κA > κR), one finds that ηc < c0, so Ξc is inside the
sonic circle C0, and the farfield shocks intersect C0 before reaching the symmetry axis.
In this case, it is appealing to believe that a solution like that shown in Figure 1.1
is possible: the subsonic flow interacts with the shocks, which bend to form a single
discontinuity; and the flow is continuous at C0 below the shock. This phenomenon
can be thought of as a perturbation of the uniform case κa = ∞.

In this paper, we prove the existence of a solution to the subsonic problem which
contains a Mach stem and is continuous up to the sonic line, for sufficiently large
values of κa; that is, κa > κ∗ > κA. In the remainder of the paper, we assume
κa > κA. The paper [17] gives a more detailed discussion of the regions. There, we
also give scenarios (without proof) for solutions in the intermediate range of κ where
neither regular reflection nor a solution with a weak reflected wave exists.

2.2. The shock evolution equation. At a shock, the Rankine–Hugoniot jump
conditions are satisfied across the line of discontinuity. A key element of our solution
method has been to rewrite the equations as a problem for a single variable—in this
case, ρ. With this goal, we reformulate the Rankine–Hugoniot conditions to obtain
two equations: an evolution equation for the shock curve—that is, a relation between
the slope of the curve, η′ = dη/dξ, and the variable ρ which appears in (2.6)—and
an oblique derivative boundary condition for ρ—that is, an equation linear in the
gradient of ρ with coefficients depending on (ξ, η), ρ, and η′. The second equation
then becomes a boundary condition for the differential equation (2.6), and we play
these two conditions against each other to obtain a mapping on approximate shock
positions.

We proceed to derive the jump conditions and formulate the shock evolution
equation using the Rankine–Hugoniot conditions.

Writing U ≡ (ρ,m, n) and Ξ = (ξ, η), system (2.3)–(2.5) can be put in conserva-
tion form:

∂ξF (U,Ξ) + ∂ηG(U, ξ) = −2U(2.11)

with

F ≡

⎛⎝ m− ξρ
p(ρ) − ξm

−ξn

⎞⎠ and G ≡

⎛⎝ n− ηρ
−ηm

p(ρ) − ηn

⎞⎠ .

Inside the sonic circle C0 = {ξ2 + η2 = c2(ρ0)}, the incident shock need no longer be
rectilinear. The state ahead of the shock, U1, is constant, but the state on the other
side, U , is subsonic and is not uniform. The Rankine–Hugoniot conditions along the
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line of discontinuity η = η(ξ) are, from (2.11),

dη

dξ
=

−η[ρ] + [n]

−ξ[ρ] + [m]
,(2.12)

dη

dξ
=

−η[m]

[p] − ξ[m]
,(2.13)

dη

dξ
=

[p] − η[n]

−ξ[n]
,(2.14)

where [f ] = f − f1 denotes a jump in the state f across the shock η(ξ). There are
three families of discontinuities; two are genuinely nonlinear, and one is linear (see
[5]). For nonlinear waves, [ρ] �= 0. Solving for [m] in (2.13) and for [n] in (2.14) yields

[m] =
−[p]η′

−η′ξ + η
, [n] =

[p]

−η′ξ + η
.(2.15)

A simple consequence of (2.15) is

[m] = −η′[n].(2.16)

Using (2.16) in (2.13) we obtain

η =
[p] − ξ[m]

[n]
,(2.17)

while equating the right sides of (2.12) and (2.13) and using (2.17) gives a relation

[p][ρ] = [m]2 + [n]2(2.18)

valid for states across a shock.
Using equations (2.15) in (2.12) we get an equation for η′ involving only the state

variable ρ:

([p] − ξ2[ρ])(η′)2 + 2ξη[ρ]η′ + [p] − η2[ρ] = 0.(2.19)

To streamline the discussion, we define a function

s(a, b) ≡

√
(p(a) − p(b))

(a− b)
;(2.20)

s is the speed of a one-dimensional shock between states with densities a and b.
Proposition 2.1. If p is a convex function of ρ, then s2 is an increasing function

of a for fixed b; s(b, b) ≡ lima→b s(a, b) = c(b); and s(a, b) < c(a) for a > b.
Proof. We have

d

da
s2 =

p′(a)

a− b
− p(a) − p(b)

(a− b)2
=

p′(a)(a− b) − (p(a) − p(b))

(a− b)2
.

Expanding p(b) = p(a) + p′(a)(b− a) + p′′(β)(b− a)2/2 for some β ∈ (a, b), we obtain
ds2/da = p′′(β)/2 > 0 if p is convex. As a → b, s2 → p′(b) = c2(b) and if a > b,

c2(a) − s2(a, b) =
p′(a)(a− b) − (p(a) − p(b))

a− b
> 0.
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For fixed b, we can write

a = s−1
b (η) when s(a, b) = η.(2.21)

Now, solving (2.19) for η′ in terms of ρ and writing s2 for [p]/[ρ] yields

dη

dξ
=

−ξη ±
√
s2(ξ2 + η2 − s2)

s2 − ξ2
.(2.22)

Since the subsonic region is symmetric with respect to ξ = 0, we solve the problem
in the half of the domain in the right half-plane, ξ ≥ 0, and impose a zero Neumann
boundary condition on ξ = 0. We may now specify the plus sign in (2.22) for the
shock curve Σ in the first quadrant, as we anticipate (and will prove) that the shock
slope is nonnegative. This gives the shock evolution equation

dη

dξ
=

−ξη +
√
s2(ξ2 + η2 − s2)

s2 − ξ2
=

η2 − s2

ξη +
√

s2(ξ2 + η2 − s2)
.(2.23)

The second expression is equivalent to the first, and so both are well defined provided

s2 ≤ ξ2 + η2.(2.24)

We will establish this condition in Proposition 2.5. We define Ξs ≡ (0, ηs) ≡ (0, η(0)),

the point at the foot of the shock, and observe that we want η′(0) =
√

η2 − s2/s to
equal zero, by symmetry, and so η2 = s2 at Ξs. Thus we require

ηs = η(0) = s(ρ, ρ1) =

√
p(ρ) − p(ρ1)

ρ− ρ1
.(2.25)

This can be interpreted as a condition which determines ρ(Ξs) in the subsonic region
at the base of the shock (the symmetry boundary).

We also define Ξ0 ≡ (ξ0, η0) = S−
a ∩ C0, the point where the incident shock S−

a

and the sonic circle C0 meet. Using (2.8) for S−
a and (2.10) for C0 we determine Ξ0:

ξ0 =
κa

√
c20 − s2

0 − s0√
1 + κ2

a

, η0 =
κas0 +

√
c20 − s2

0√
1 + κ2

a

,(2.26)

where s2
0 = (p(ρ0) − p(ρ1))/(ρ0 − ρ1). The initial condition for the shock position is

η(ξ0) = η0.

2.3. The oblique derivative boundary condition. We next use the Rankine–
Hugoniot conditions to formulate a boundary condition along the shock Σ = {(ξ, η(ξ))}.

Since vorticity is confined to the lines of discontinuity of the Riemann data (see
(2.2) and [5]), and these lie below the shock (see Figure 2.1), the vorticity is zero
along the shock:

mη − nξ = 0.(2.27)

Using this equation and (2.3)–(2.5), we express all the partial derivatives of m and n
in terms of the derivatives of ρ:

nξ = mη =
1

ξ2 + η2

(
η(c2 − ξ2)ρξ + ξ(c2 − η2)ρη

)
,(2.28)

mξ =
1

ξ2 + η2

(
ξ(c2 + η2)ρξ − η(c2 − η2)ρη

)
,(2.29)

nη =
1

ξ2 + η2

(
ξ(−c2 + ξ2)ρξ + η(c2 + ξ2)ρη

)
.(2.30)
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Differentiating (2.18) along Σ (′ = d/dξ = ∂ξ + η′∂η) we get

(c2(ρ)[ρ] + [p])(ρξ + η′ρη) = 2[m]m′ + 2[n]n′

= 2[n](−η′m′ + n′) = 2[n](−η′mξ + (1 − (η′)2)mη + η′nη),

where [m] = −η′[n] (equation (2.16)) is used in the second equality and mη = nξ

(equation (2.27)) in the last equality. We simplify the last expression, replacing
derivatives Dm and Dn by Dρ using (2.28), (2.29), (2.30), and

[n] =
[p]

−η′ξ + η
(2.31)

from (2.15), and finally we get

β · ∇ρ ≡ β1ρξ + β2ρη = 0,(2.32)

where β is a function of Ξ, ρ, and η′ with components

(2.33) β1 = (ξ2 + η2)(−η′ξ + η)(c2(ρ) + s2(ρ, ρ1))

− 2s2
{
−η′ξ(c2 + η2) + (1 − (η′)2)η(c2 − ξ2) + η′ξ(−c2 + ξ2)

}
and

(2.34) β2 = η′(ξ2 + η2)(−η′ξ + η)(c2(ρ) + s2(ρ, ρ1))

− 2s2
{
η′η(c2 − η2) + (1 − (η′)2)ξ(c2 − η2) + η′η(c2 + ξ2)

}
.

We now examine the obliqueness condition by comparing β with the inward nor-
mal to Ω at Σ, ν = (η′,−1). It turns out that the operator β · ∇ in (2.32) is oblique
at all points on the shock except the symmetry point. In fact, obliqueness holds
along any monotonic curve which satisfies the shock equation (2.23) at (ξ0, η0), that
is, η(ξ0) = η0 and η′(ξ0) = 1/κa, and for any subsonic function ρ. We prove the
following result.

Proposition 2.2. Let Σ = {(ξ, η(ξ))} be any curve which has positive slope on
(0, ξ0], lies inside the sonic circle C0, and at ξ = ξ0 satisfies (2.23) and η = η0; let
ν be its inward normal. Then for any function ρ(ξ, η) with c2(ρ) > ξ2 + η2, we have
β · ν > 0 on Σ for ξ ∈ (0, ξ0].

Proof. We calculate

β · ν = β1η
′ − β2

= − 2s2
{
−(η′)2ξ(c2 + η2) + η′(1 − (η′)2)η(c2 − ξ2) + (η′)2ξ(−c2 + ξ2)

−η′η(c2 − η2) − (1 − (η′)2)ξ(c2 − η2) − η′η(c2 + ξ2)
}

= 2s2(η′η + ξ)
{
(c2 − ξ2)(η′)2 + 2ξηη′ + c2 − η2

}
.

Now s2 = [p]/[ρ] �= 0, since c2(ρ) > ξ2 + η2 > c2(ρ1). Also, if η′ > 0 and ξ > 0 we
have η′η + ξ > 0; so to get obliqueness we need only verify that

(c2 − ξ2)(η′)2 + 2ξηη′ + c2 − η2 > 0.(2.35)

We first note that (2.35) holds at ξ = ξ0, since c2(ρ0) > s2(ρ0, ρ1) and (s2−ξ2)(η′)2 +
2ξηη′ + s2 − η2 = 0 (equation (2.19)) holds at (ξ0, η0).
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Fig. 2.2. Sketch of the domain.

Now, the left-hand side of (2.35) is a quadratic polynomial, P (η′), where P (Y ) =
(c2 − ξ2)Y 2 + 2ηξY + (c2 − η2), with coefficients depending smoothly on ξ, η, and
ρ. For any (ξ, η, ρ) with ξ2 + η2 < c2(ρ), P (Y ) has a fixed sign for all Y since
disc(P ) = c2

(
ξ2 + η2 − c2(ρ)

)
< 0. Thus, P has a fixed sign inside C0. Since

P (η′) > 0 at (ξ0, η0), then P > 0 on {(ξ, η(ξ)) | ξ ∈ [0, ξ0]}.
Thus obliqueness holds for ξ > 0. However, obliqueness fails at ξ = 0, where the

factor η′η + ξ vanishes because we impose the condition η′ = 0.

2.4. The free boundary problem. We can now give a technical statement of
the main result in this paper. The subsonic domain is bounded by the part of the
circle ξ2 +η2 = c2(ρ0) which lies below the shock and by the a priori unknown curved
transonic shock itself. Taking advantage of the symmetry, we solve the problem in
the right half of this domain, which we will call Ω in the remainder of the paper. We
define σ to be the closed segment of C0 bounding Ω and Σ0 to be the relatively open
segment of the η axis which forms the symmetry boundary. See Figure 2.2. The use
of a half-domain results in a technical issue at the bottom corner, where Σ0 meets
σ, which is easily dealt with by standard continuity arguments. In addition, the fact
that the upper boundary Σ is free means that Σ0 is also not defined a priori. This
matter of nomenclature we shall also ignore in the interest of simplicity.

We define Q to be the governing second-order quasi-linear operator in the domain
Ω, given in (2.6) (repeated indices are summed):

Qρ =
(
(c2(ρ) − ξ2)ρξ − ξηρη

)
ξ
+
(
(c2(ρ) − η2)ρη − ξηρξ

)
η

+ ξρξ + ηρη

≡ Di(aij(Ξ, ρ)Djρ) + bi(Ξ)Diρ = 0.(2.36)

In principle, we should modify Q so that it is elliptic in Ω for any value of ρ. However,
in Proposition 2.4, we immediately obtain a priori bounds which enable us to use the
original operator. We denote by M the quasi-linear oblique derivative boundary
operator on Σ = {(ξ, η(ξ))| ξ ∈ (0, ξ0)}:

Mρ ≡ β(Ξ, ρ, η′) · ∇ρ = 0.(2.37)

Here β is the vectorfield defined by (2.33) and (2.34). The second condition on the
free boundary is the shock evolution equation (2.23) for Σ:

dη

dξ
= f(Ξ, ρ) ≡ −ξη +

√
s2(ξ2 + η2 − s2)

s2 − ξ2
with η(ξ0) = η0.(2.38)
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Here s = s(ρ(ξ, η(ξ)), ρ1) is the function given by (2.20). On the fixed segments of
the boundary, Σ0 and σ, we impose Neumann and Dirichlet conditions, respectively:

ρξ = 0 on Σ0 ⊂ {ξ = 0}; ρ = ρ0 on σ ⊂ {ξ2 + η2 = c2(ρ0)}.(2.39)

At the Dirichlet boundary, the equation is degenerate elliptic, in a manner described
in our previous work, [1, 2, 7]. In particular, we expect that the solution will have an
algebraic singularity along this boundary segment.

Now, it is easy to see that the trivial solution ρ(ξ, η) ≡ ρ0 solves this problem,
with Σ simply the straight-line extension of the incoming shock S−

a , except at the
point where the shock meets the symmetry boundary. Thus, we must in addition
impose a one-point condition at this a priori unknown point, which we label Ξs. We
impose the condition that the curved shock is smooth for the full domain problem,
and hence that η′(0) = 0. As shown in section 2.2, this is equivalent to (2.25). We
may alternatively express this as a one-point Dirichlet condition at the corner Ξs by
solving ηs = s(ρ(0, ηs), ρ1), for ρ(Ξs), or, using the notation of equation (2.21),

ρ(Ξs) = s−1
ρ1

(ηs).(2.40)

We establish the following existence theorem.
Theorem 2.3. There is a value κ∗ such that for any Riemann data (2.7) with

κa > κ∗, the free boundary problem consisting of (2.36), (2.37), (2.38), (2.39), and
(2.40) has a classical solution ρ ∈ C2+α(Ω) ∩ C(Ω) which is twice continuously dif-
ferentiable up to Σ and Σ0 except at Ξs and Ξ0. The free boundary is of Hölder class
H2+α for some α which is determined by the Riemann data of the problem.

We prove this theorem using the fixed point argument we developed in our earlier
papers and in work with Lieberman [3, 4, 6] for the slightly simpler small disturbance
equations. The main technical difficulty which is new in this case is that the bound-
ary condition on the free boundary is no longer uniformly oblique. To be precise,
obliqueness fails at the point Ξs. On the other hand, because it is the nature of the
Mach stem to strengthen as it approaches the wall, we find that we can control the
quantity under the square root sign in (2.38). Thus our result is not restricted to
being local, as in [3] and [4], or perturbative, as in [6].

We formulate the fixed point argument in terms of the position of the free bound-
ary. We work with a regularized, uniformly elliptic, operator Qε = Q+εΔ and then, as
in [4], send the regularizing parameter, ε, to zero. The mapping on the free boundary
is obtained by solving a fixed boundary problem using the oblique derivative condition
on the shock boundary and then integrating the shock evolution equation to update
the position of the shock. However, unlike our problem in [4], obliqueness fails at the
corner Ξs representing the foot of the Mach stem. Following ideas outlined by Lieber-
man [20, 21], we establish local Schauder estimates at Ξs which are independent of the
obliqueness ratio (Theorem 3.5). In section 3.2 we apply these results to the nonlinear
regularized fixed boundary problem. The regularized free boundary problem is solved
in section 3.3, and results for the limit ε → 0 are obtained in section 4.

Before beginning the analysis, we establish that the equations above are well-
defined for the approximations we use. The following monotonicity result is used
throughout.

Proposition 2.4. For a given monotonic function η(ξ) forming the boundary Σ,
suppose that ρ ∈ C1(Ω ∪ Σ ∪ Σ0) ∩ C(Ω) is a solution of the boundary value problem
(2.36), (2.37), (2.39), and (2.40) with ρ ≥ ρ0. Then ρ(0, ηs) = ρmax is the maximum
value of ρ in Ω and ρ is monotonic on Σ.
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Proof. Since the operator Q in (2.36) has no undifferentiated terms, the classical
and Hopf maximum principles apply. That is, the local and absolute extrema of ρ
occur on the boundary ∂Ω (classical); and at any point on ∂Ω where ρ has a local
extremum, the normal derivative is nonzero (Hopf [15, p. 34]). On the Neumann and
oblique derivative boundaries, Σ0 and Σ, if ρ has an extremum along the boundary
then two linearly independent directional derivatives of ρ are zero, and so ∇ρ is zero
there, which is impossible, by the Hopf maximum principle. Thus there are no local
extrema in the interior of Σ0 or of Σ. There cannot be absolute extrema, either, and
hence ρmax = ρ(0, ηs) is the absolute maximum of ρ in Ω, and we obtain the bounds
ρ0 < ρ < ρmax in Ω from the classical maximum principle. And since in Ω we have
ξ2 + η2 < c2(ρ0) < c2(ρ), it follows that the solution is strictly subsonic in Ω.

To prove monotonicity, we argue by contradiction. Let us first examine the C1

function ρ restricted to Σ. This is now a function of a single variable, say, the first
component of a point Ξ = (ξ, η) on Σ. Without confusion, we can label this component
by the name of the point, we can order the points along Σ by this component, and we
can refer to intervals along Σ by the labels. Then lack of monotonicity means there
exist points Z1 and Z2 on Σ with Ξs < Z1 < Z2 < Ξ0 at which ρ(Z1) < ρ(Z2). We
immediately deduce that

1.

in (Ξs, Z2) ∃ C̃ with ρ(C̃) = min
[Ξs,Z2]

ρ;2.

in (C̃,Ξ0) ∃ D with ρ(D) = max
[C̃,Ξ0]

ρ.

We want to identify points C and D, C < D, on Σ such that the following three
properties hold:

(i) ρ(Ξs) ≥ ρ ≥ ρ(C) on [Ξs, C];
(ii) ρ(C) ≤ ρ ≤ ρ(D) on [C,D];
(iii) ρ(D) ≥ ρ ≥ ρ(Ξ0) on [D,Ξ0].

Now, property (ii) may not hold with C = C̃ because ρ(C̃) is the minimum value of
ρ only on the interval [Ξs, Z2], and we may have D > Z2. So, if there is a point in

(Z2, D) at which ρ < ρ(C̃), then we let C be a point at which ρ has its minimum value

in this interval; if there is no such point, then let C = C̃. Then all three properties
hold.

Now we look at the function ρ in the domain Ω. The idea is to partition Ω into
subdomains by two curves ΓC and ΓD from C and D, respectively, to points A and
B, respectively, on Σ0, in such a way that ρ(A) < ρ(B) and so that we can deduce
that there is a point m on Σ0 at which ρ reaches a minimum on either the domain ΩA

or the domain ΩB , thus violating the Hopf maximum principle, as stated in the first
paragraph of this proof. See Figure 2.3. It is of course sufficient to show that ρ(m) is
the minimum value of ρ on the boundary of ΩA or ΩB .

It would be simplest to find curves on which ρ is monotonic, but it is not clear
that such curves exist, or what properties they would have. Instead, we construct
Lipschitz curves on which ρ is monotonic on average. To be precise, we construct
curves on which, for a certain number μ,

ρ(A) ≤ ρ ≤ ρ(C) + μ on ΓC and ρ(A) < ρ(C);(2.41)

ρ(B) ≥ ρ ≥ ρ(D) − μ on ΓD and ρ(B) > ρ(D).(2.42)
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Fig. 2.3. Illustration of the proof of Proposition 2.4.

We begin by identifying some useful constants. Let

μ =
1

4
min{ρ(D) − ρ(C), ρ(Ξs) − ρ(D), ρ(C) − ρ(Ξ0)}.

Since ρ ∈ C(Ω), then ρ is uniformly continuous, and there is an ε > 0 such that
ρ(Ξ) ≤ ρ0 + μ if dist(Ξ, σ) < ε. Let Ωε = {Ξ ∈ Ω | dist(Ξ, σ) > ε}, and let
σε = {Ξ ∈ Ω | dist(Ξ, σ) = ε}. As we shall see, we can restrict our attention to
Ωε. The purpose of constructing this domain is to be able to bound |∇ρ|. Since
ρ ∈ C1(Ωε), we have |∇ρ| ≤ M there, say. (We could estimate M from Schauder
theory, but this is not important here.)

Now, on any ball of radius r, the oscillation of ρ is bounded by 2Mr, and we now
choose a radius, R = μ/(2M), so that

osc
BR∩Ωε

ρ ≤ μ.

Now we construct ΓD as follows. Consider a ball BR(D) centered at D. In BR(D)∩Ωε,
ρ(D) cannot be the maximum value of ρ (because D is not a point of local maximum
in Ω); hence there are points of ∂BR(D) ∩ Ωε where ρ > ρ(D). Let X1 be a point at
which ρ attains its maximum value in BR(D). The first segment of ΓD is a straight
line from D to X1. We have ρ(X1) > ρ(D), and on the segment, ρ(X) ≥ ρ(D) − μ
and ρ(X) < ρ(X1).

Now we continue inductively, forming a sequence of line segments with corners at
{Xi} (take D = X0), along which ρ ≥ ρ(D) − μ and such that ρ(X1) < ρ(X2) < · · · .
To show that we can do this, let

Ωj = Ωε\{∪j−1
0 BR(Xi)};

we have Xj ∈ ∂Ωj , and we consider BR(Xj). We note that ρ(Xj) is the largest value
of ρ on the part of BR(Xj) inside the complement of Ωj . However, ρ(Xj) is less than
the maximum value of ρ on BR(Xj), by the mean value property. Hence there is a

point Xj+1 ∈ ∂BR(Xj)∩Ωj at which ρ attains its maximum value in BR(Xj). Again,
along the straight line from Xj to Xj+1 we have ρ ≥ ρ(Xj) − μ > ρ(D) − μ.
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Now,

dist(Xi−1,Ωi) = R

and

Ωj ⊂ Ωj−1 ⊂ · · · ⊂ Ω1,

so

dist(Xi,Ωk) ≥ R

for k ≥ i + 1; and since Xk ∈ ∂Ωk, the estimate

dist(Xj+1, Xi) ≥ R ∀ i ≤ j

follows.
Hence dist(Xi, Xj) ≥ R for i �= j for all points in the sequence. But only a finite

number of balls with radius R and separated centers will fit in Ωε, so this process
must terminate after a finite number of steps when we reach a point XL = B ∈ ∂Ωε.
By construction, ΓD has the properties indicated in (2.42).

Similarly, we construct ΓC , with termination point A ∈ ∂Ωε.
Next we show that the points A and B lie on Σ0. First, the curves cannot

cross each other, because at every point on ΓD, ρ ≥ ρ(D) − μ > ρ(C) + μ, while at
every point on ΓC we have ρ < ρ(C) + μ. Also, ΓD cannot terminate at σε where
ρ ≤ ρ0 +μ < ρ(D). For the same reason, B cannot lie on Σ in the segments [D,Ξ0] or
[C,D] where ρ ≤ ρ(D). Finally, B cannot lie in the segment [Ξs, C] of Σ because this
would trap ΓC in a region where ρ ≥ ρ(C) (or, more simply, this would contradict
the fact that C is not a local minimum in Ω). Hence B ∈ Σ0.

Similarly, A cannot lie on Σ, where ρ ≥ ρ(C) in the interval [Ξs, D], and must lie
on Σ0, between B and Ξs.

Now we find our final contradiction. Since there is a point, A, in the interval
[Ξs, B] of Σ0 where ρ is smaller than its value at either endpoint, then there must be
a point m where ρ, restricted to the interval [Ξs, B] of Σ0 attains its minimum. We
recall that m cannot be a local minimum in Ω, and so it cannot be a minimum in Ω1 or
in Ω2. The relevant domain is Ω1 if m ∈ [Ξs, A]; otherwise it is Ω2. In particular, there
would have to be points on the boundary of the relevant domain at which ρ < ρ(m).
But the construction we have performed prevents this. To verify this, suppose first
that m ∈ [Ξs, A]. Then ρ ≥ ρ(m) on [Ξs, A]. In particular, ρ(m) ≤ ρ(A) ≤ ρ(X)
for X ∈ ΓC , and ρ(m) ≤ ρ(A) < ρ(C), by (2.41). In addition, ρ ≥ ρ(C) on the
top boundary, [Ξs, C] in Σ, of Ω1. Thus, we have a contradiction to the maximum
principle if m ∈ [Ξs, A].

But if m ∈ [A,B], then again there are no points on the interval [A,B] of Σ0 at
which ρ < ρ(m), and again ρ ≥ ρ(A) ≥ ρ(m) along ΓC . As before, ρ(C) > ρ(A) ≥
ρ(m). Now, ρ ≥ ρ(C) on the interval [C,D] of the top boundary, Σ, of Ω2, and
by (2.42) we have ρ ≥ ρ(D) − μ > ρ(C) along ΓD. Thus in this case also, ρ(m) is
the smallest value of ρ along the entire boundary of Ω2. This again contradicts the
maximum principle, as stated in the first paragraph of the proof.

We conclude that C and D do not exist, and hence that Z1 and Z2 do not exist,
and ρ is monotonic on Σ.

As a second basic result, we prove that the shock evolution equation can always be
integrated, defining the mapping whose fixed point is the free boundary. Beginning
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with a given curve η(ξ), assume we have solved the fixed boundary value problem
(2.36), (2.37), (2.39), and (2.40). We then produce a new approximate shock position
η̃(ξ) by integrating (2.38):

η̃(ξ) = η0 +

∫ ξ

ξ0

f(x, η(x), ρ(x, η(x))) dx,(2.43)

where f is defined in (2.38). Note that on the right side of (2.43) we evaluate all
quantities along the old shock position, η(ξ). We have the following proposition.

Proposition 2.5. Suppose that η is a monotone function and that ρ satisfies
the boundary value problem (2.36), (2.37), (2.39), and (2.40). Then η2 > s2 and
η2 + ξ2 > s2 for all ξ ∈ (0, ξ0) so the new curve η̃ is defined for all ξ ∈ [0, ξ0] and is
monotonic. Furthermore, η̃′(0) = 0.

Proof. Because ρ satisfies (2.40), we see that at ξ = 0 the quantity under the
square root sign in (2.38) is zero. Since η is monotonic, the quantity η2(ξ) is an
increasing function of ξ. We use Proposition 2.4 to conclude that s2 along Σ is a
decreasing function of ξ (since ρ decreases and s is a monotonic function of ρ). Hence
η2 − s2 is strictly positive when ξ > 0. In addition, this implies that ξ2 + η2 − s2 is
positive, and so the right-hand side of (2.43) is well defined (see the equivalent form
in (2.23)). In addition, (2.23) also shows that dη̃/dξ is positive as long as η2 − s2 > 0.
Finally, this derivative is zero at ξ = 0, where the right side of (2.38) vanishes.

We now define K = Kε, a closed, convex subset of a Hölder space H1+α1([0, ξ0]);
the value of α1 ∈ (0, 1) depends on the regularizing parameter ε and will be specified
later. The functions in K satisfy
(K1) η(ξ0) = η0, and η′(ξ0) = 1/κa, where ξ0 and η0 are defined in (2.26);
(K2) η′(0) = 0;
(K3) ηc ≤ η(ξ) ≤ η0; recall that ηc =

√
1 + κ2

as0/κa < η0 < c0 if κa > κA;

(K4) 0 ≤ η′ ≤
√
c20/s

2
0 − 1.

Then (2.43) defines a mapping on K:

J : η �→ η̃.(2.44)

The upper bound in (K4) is justified by the following proposition.
Proposition 2.6. If η(ξ) is a monotonic function with η(ξ0) = η0 and ρ a

solution to (2.36), (2.37), (2.39), and (2.40), then the function f given by (2.38) is
bounded above by

√
c20 − s2

0/s0 ≡ 1/κA.
Proof. By Proposition 2.4, s(ξ, η) is a decreasing function on η(ξ) with s2(0, η(0)) =

η2(0), and by Proposition 2.5, η ≥ s on η(ξ). For the function f defined by (2.38), a
calculation shows

∂f

∂ξ
= −

(η2 − s2)
(
sξ + η

√
ξ2 + η2 − s2

)√
ξ2 + η2 − s2

(
ξη +

√
s2(ξ2 + η2 − s2)

)2 < 0,

∂f

∂η
=

ξ2 + η2√
ξ2 + η2 − s2

(
sη + ξ

√
ξ2 + η2 − s2

) > 0,

∂f

∂s2
= −

1
2η

2(ξ2 + η2 − s2) + 1
2s

2ξ2 + ξηs
√
ξ2 + η2 − s2(

ξη +
√

s2(ξ2 + η2 − s2)
)2 < 0,

Hence, f is largest when η has its maximum value η0, and ξ and s their minimum val-
ues, 0 and s0, respectively. This gives the stated upper bound, which is the reciprocal
of the limiting value κA, as calculated in [17].
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We also note the upper bound for the solution ρ of (2.36), (2.37), (2.39), and
(2.40) when η ∈ K. Since ηs ≤ η0 and s2 is monotonic, for given Riemann data
(ρ0, ρ1, κa), the value of ρmax in Proposition 2.4 is bounded above by ρM , where, from
(2.40),

ρM = s−1
ρ1

(η0).(2.45)

We will use this upper bound in the proofs.
We prove Theorem 2.3 in two stages. First, in section 3 we solve the regularized

free boundary value problem for Qε = Q + εΔ. In section 4, we consider the limit
ε → 0 and show that this limit yields a solution of (2.36)–(2.40).

3. The regularized problem. For a fixed ε ∈ (0, 1) we solve the free boundary
problem defined at the beginning of section 2.4, but with Q replaced by the regularized
operator Qε. The equation for ρ in the subsonic region is now

Qερ = Qρ + εΔρ = 0;(3.1)

the shock evolution equation remains the same,

η′ = f(ξ, η, ρ), η(ξ0) = η0;(3.2)

and the boundary conditions are, as before,

Mρ = β · ∇ρ = 0 on Σ ≡ {(ξ, η(ξ)); 0 < ξ < ξ0},(3.3)

ρ = ρ0 on σ; ρξ = 0 on Σ0,(3.4)

and

ρ(Ξs) = ρs ≡ s−1
ρ1

(ηs).(3.5)

The theorem we prove in this section is as follows. (See (3.7) for the spaces.)

Theorem 3.1. For each ε ∈ (0, 1), there exists a solution (ρε, ηε) ∈ H
(−γ)
1+α (Ωε)×

H1+α([0, ξ0]) to the regularized free boundary problem (3.1), (3.2), (3.3), (3.4), and
(3.5) such that

ρ0 < ρε ≤ ρs ≤ ρM and c2(ρε) > ξ2 + η2 in Ωε \ σ.(3.6)

Here, α, γ ∈ (0, 1) both depend on ε and on the Riemann data κa, ρ0, and ρ1. The
curve ηε(ξ), defining the position of the free boundary Σε, is in Kε; Ωε is bounded by
σ, Σ0, and Σε.

We prove Theorem 3.1 in the following steps (which take up the three subsections
of this section).

Step 1. First we show the existence of a solution to a linear problem with fixed
boundary Σ defined by η(ξ) ∈ K and establish Hölder and Schauder estimates at Σ.
For this, it is convenient to define a weighted Hölder space; see [15] for the general
definition of weighted Hölder spaces. Let V = {Ξ0} denote the corner point at which
Σ meets the degenerate boundary σ. Set Ω′ = Ω ∪ σ ∪ Σ0 \ V . We anticipate loss of
regularity at V , because of the mixed boundary condition and the degeneracy of the
operator Q at σ. At Ξs, we also find loss of regularity because of loss of obliqueness
of the operator M . The third corner, between Σ0 and σ, is an artifact of our decision
to work in a half-domain. Since it does not contribute to any loss of regularity, we
ignore it in the discussion. We define the corner region near Ξ0:

ΩV (δ) = {x ∈ Ω : dist(V, x) ≤ δ}.
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In [3, 4, 6], in which the derivative condition was uniformly oblique, the only loss of
regularity came from the corners. In the present problem, we overcome the loss of
obliqueness at a single point on Σ, but at a cost: the Schauder estimates are no longer
independent of the gradients of the coefficients, and hence we do not get a compact
mapping in the same spaces. In this paper, we therefore modify the weighted Hölder
spaces, as follows. We define a region which is close to Σ but does not contain the
corner Ξ0 by taking a covering of Σ with balls of radius δ centered at points on Σ
which are bounded away from Ξ0. Define Σ′′(δ) = {Ξ ∈ Σ | dist(Ξ,Ξ0) > δ} and

Σ(δ) =

⎧⎨⎩x ∈ Ω ∩
⋃

Ξ∈Σ′′(δ)

Bδ(Ξ)

⎫⎬⎭ ,

where Bδ(Ξ) is a ball of radius δ centered at Ξ. We then define

H(b)
a ≡

{
‖u‖(b)

a ≡ sup
δ>0

δa+b|u|a,Ω\{Σ(δ)∪ΩV (δ)} < ∞
}
.(3.7)

For the linear problem, we establish a priori Schauder and Hölder bounds at Σ, in
particular near the point where the data lose obliqueness; we use Hölder estimates
near V , and C2+α estimates locally in the rest of the domain. We prove existence
of a solution by regularizing the oblique boundary condition to be uniformly oblique,
then passing to the limit using the a priori bounds.

Step 2. Using the Hölder gradient bounds to the linear problem, we establish
existence results for the nonlinear fixed boundary problem, via the Schauder fixed
point theorem.

Step 3. We apply the Schauder fixed point theorem again to prove existence of a
solution to the nonlinear free boundary problem.

3.1. The regularized linear fixed boundary problem. Replace ρ in the
coefficients aij of (2.36) and βi of (2.33), (2.34) by a function w in a set W defined
with respect to a given boundary component Σ, and depending on given values Ξs

and ρs (see (3.5)), as follows.

Definition 3.2. The elements of W ⊂ H
(−γ1)
2 satisfy

(W1) ρ0 ≤ w ≤ ρM , w = ρ0 on σ, w(Ξs) = ρs, wξ = 0 on Σ0;

(W2) ‖w‖(−γ1)
2 ≤ K;

(W3) |w|α0,Ω′
loc

≤ K0.
The weighted Sobolev space is defined by (3.7); the values of γ1, α0 ∈ (0, 1) will

be specified following (3.29), as will the values of K and K0. The set W is clearly
closed, bounded, and convex.

The quasilinear equations (3.1) and (3.3) are now replaced by linear partial dif-
ferential and boundary equations (repeated indices are summed)

Lεu = Di(aij(Ξ, w)Dju) + εΔu + bi(Ξ)Diu = 0 in Ω,
Nu = βiDiu = βi(Ξ, w)Diu = 0 on Σ = {η = η(ξ)},(3.8)

with a given η ∈ K ⊂ H1+α1
and w ∈ W. Because of the bound (W1), Lε is uniformly

elliptic in Ω with ellipticity ratio depending on the Riemann data and on ε. In this
section, we demonstrate the key point that for a given function w ∈ W, the solution
u to the linear equations (3.8) with the remaining boundary conditions

u = ρ0 on σ, uξ = 0 on Σ0 and u(Ξs) = ρs,(3.9)
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satisfies Hölder and Schauder estimates in Ω′ and a uniform H1+p,Σ(d0) bound near
Σ for any p < min{γ1, α1}. This bound gives rise to enough compactness to establish
the existence of a solution to the quasilinear problem by applying the Schauder fixed
point theorem.

We first note L∞ a priori bounds for the solution u to the linear problem.

Proposition 3.3. The solution u to the linear problem (3.8), (3.9) satisfies

ρ0 < u ≤ ρs ≤ ρM in Ω ∪ Σ ∪ Σ0,(3.10)

where ρs = ρ(0, ηs) is defined in (3.5) and ρM , defined in (2.45), is independent of ε.
Moreover,

c2(u) > c2(ρ0) > ξ2 + η2 in Ω ∪ Σ ∪ Σ0.(3.11)

Proof. The linear problem is uniformly elliptic for ε > 0 and w ∈ W, so the
classical maximum principle applies, as well as the boundary considerations used in
the proof of Proposition 2.4.

Next, we state the Schauder estimates including the Dirichlet and fixed Neumann
boundaries, σ and Σ0, and the Hölder estimates at the corner, Ξ0.

Theorem 3.4. Assume that Σ is given by {(ξ, η(ξ))} with η ∈ K for some
α1 ∈ (0, 1) and that w is in W for given K, K0, α0, and γ1. Then there exist
γV , αΩ ∈ (0, 1) such that any solution u ∈ H2+αΩ,Ω′ ∩HγV ,ΩV (d0) to the linear problem
(3.8), (3.9) satisfies

|u|γ,ΩV (d0) ≤ C1|u|0(3.12)

for any γ ≤ γV and

|u|2+α,Ω′
loc

≤ C2|u|0(3.13)

for any α ≤ αΩ. The exponent γV depends on the Riemann data, and both αΩ and
γV depend on ε but are independent of α1 and γ1. The constant C1 is independent of
the bounds K and K0. The constant C2 is independent of K but depends on K0.

Proof. The proof is immediate. We refer to Theorem 1 of Lieberman [22] for the
corner estimate. Here γV depends on the angle between Σ and σ at V , a fixed value
that depends only on the Riemann data, and on the obliqueness ratio at V , which is
also fixed, as well as on the ellipticity ratio ε, but not on γ1, α1, K, or K0.

Standard interior and boundary Schauder estimates, for example, [15, p. 98], give
the local estimate (3.13). The constant C2 depends on ε, on the Hα norm of the
coefficients aij , and on the domain.

Because interior Schauder estimates can be applied once more, a solution in
H2+α,Ω′ is actually in C3(Ω).

Finally, we establish Hölder gradient estimates at Σ. It is at this point that we
need to derive basic estimates at the point Ξs where the boundary operator N is not
oblique. To avoid discussing the Neumann boundary separately at each step of this
proof, we reflect Ω across the ξ axis, without further comment; Ω includes Σ0 and we
let Σ stand for the full H1+α1 boundary in Theorem 3.5. The remaining assumptions
are the same as in Theorem 3.4.

Theorem 3.5. Assume that Σ is given by {(ξ, η(ξ))} with η ∈ K for some
α1 ∈ (0, 1) and that w is in W for given K, K0, α0, and γ1. Then, there exists a
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positive constant d0 such that for every d ≤ d0, any solution u ∈ C1(Ω ∪ Σ) ∪ C3(Ω)
to the linear problem (3.8), (3.9) satisfies

|u|1+p,Σ(d) ≤ C(ε, α1, γ1,K, d0)|u|0(3.14)

for any p < min{γ1, α1}.
Proof. Away from a neighborhood Bd0

(Ξs) of Ξs the boundary operator N in
(3.8) is oblique and thus we can apply known regularity theory, for example, [15,
Theorem 6.30], to get (3.14) in Σ(d0) \Bd0

(Ξs), with a constant C which depends on
ε, α1, Ω, d0, and K0. Hence we consider only estimates near Ξs in the remainder of
the proof.

For a given solution u to (3.8) and (3.9) we define

v =
u

1 + |Du|0
and z = Nv = βi(Ξ)Div.(3.15)

We construct a barrier function f for z on B ≡ Bd0(Ξs)∩Ω to get a Hölder estimate
for the gradient of the solution of (3.8), (3.9). Let ψ = z + f(ζ), where ζ is the
regularized distance function (from the boundary component Σ); see [18]. A smooth
approximation to d(Ξ) = dist(Σ,Ξ) is necessary since Σ has minimal regularity. The
regularized distance function has the properties 1 ≤ ζ/d ≤ 2, 0 < ζ0 ≤ |Dζ| ≤ ζD and
|D2ζ| ≤ ζDdα1−1. We let f(0) = 0 and we first construct the lower barrier, −f , by
finding a suitable positive, increasing function f such that ψ > 0. Note that, with f
positive, we get ψ ≥ z on ∂B. Where no confusion is likely, we let subscripts denote
partial derivatives and calculate

Diψ = βjDijv + DiβjDjv + f ′ζi,(3.16)

whence

βjDijv = Diψ − (DiβjDjv + f ′ζi).(3.17)

We also have

Dijψ = βkDijkv + DjβkDikv + DiβkDjkv + DijβkDkv + f ′ζij + f ′′ζiζj .(3.18)

In addition, since w satisfies (W2) with a given constant K, we get estimates on
the derivatives of aij . Using the definition of the weighted norms, we have (noting
|Dw| ≤ |w|1 and so on)

|D(aij)| ≤ |aij,x| + |aij,u||Dw| ≤ |aij,x| + |aij,u|‖w‖(−γ1)
1 dγ1−1 ≤ mdγ1−1,

|D2(aij)| ≤ |aij,x,x| + 2|aij,x,u||Dw| + |aij,u,u||Dw|2 + |aij,u||D2w|

≤ |aij,x,x| + 2|aij,x,u|‖w‖(−γ1)
1 dγ1−1 + |aij,u,u|(‖w‖(−γ1)

1 dγ1−1)2

+ |aij,u|‖w‖(−γ1)
2 dγ1−2

≤ m(dγ1−2 + d2γ1−2).

(3.19)

Here subscripts denote derivatives of aij with respect to the variables in Ξ (, x) and
with respect to w (, u). The symbol m = m(K) denotes a quantity which depends
on the structure of the derivatives of aij and the bound K on w. We absorb terms
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which are less singular as d → 0. We also get estimates on the derivatives of βi. Let
γ2 = min{γ1, α1}. Then

|Dβi| ≤ mdγ2−1, |D2βi| ≤ m(dγ2−2 + d2γ2−2),(3.20)

where m = m(K) > 0 depends on the structure of the derivatives of β. In deriving
this estimate, we use the fact that η′, η′′, and η′′′ are bounded by dα1 , dα1−1, and
dα1−2, respectively, as we can apply Lemma 2.8 of [14] to η(ξ) − η.

Since β2(Ξs, w) = 0 and β1(Ξs, w) �= 0, we can take 0 < d1 ≤ 1 small enough so
that for all 0 < d0 ≤ d1 and all w ∈ W we have β1(Ξ, w) �= 0 in Bd0

. Now we solve
the two equations in (3.17) along with Lv = 0, that is,

aijDijv = −(DjaijDiv + biDiv),(3.21)

as a linear system for the three derivatives Dijv. The assumption that β1 is bounded
away from zero, coupled with the ellipticity of L, gives a uniform bound c1(Λ, λ, |β|0)
on the inverse of the coefficient matrix of the linear system. Here we may let Λ and
λ be the eigenvalues of (aij) restricted to B. These are order one constants which
depend only on the Riemann data. Furthermore, we can estimate the right-hand sides
of (3.17) and (3.21) using (3.19) and (3.20). We get

|D2v| ≤ c1(Λ, λ, |β|0)
(
|Dψ| + (mdγ2−1 + |b|0)|Dv| + f ′ζD

)
.(3.22)

This bounds the second derivatives of v in terms of |Dψ|. Now we proceed to obtain
bounds for ψ. The idea is to find an elliptic operator for which ψ is a subsolution in B
and simultaneously to force ψ > 0 on ∂B, by choice of the function f . A second-order
operator for ψ involves third derivatives of v, so we estimate these. By using Lv = 0,
(3.22), (3.19), and (3.20) (recall that |Dv| ≤ 1), we get

aijDijkv = −
(
DkaijDijv + DjaijDikv + biDikv + DjkaijDiv + DkbiDiv

)
≤ (mdγ2−1 + |b|0)|D2v| + (mdγ2−2 + md2γ2−2 + |b|1)|Dv|
≤ c1(mdγ2−1 + |b|0)|Dψ| + c1(mdγ2−1 + |b|0)2

+ c1(mdγ2−1 + |b|0)f ′ζD + mdγ2−2 + md2γ2−2 + |b|1
≤ c2

{
(mdγ2−1 + 1)|Dψ| + (mdγ2−1 + 1)2

+ (mdγ2−1 + 1)f ′ + mdγ2−2 + md2γ2−2 + 1
}
,

where c2 = c2(Λ, λ, ρM , |β|0, |b|0, |b|1, ζD). Thus, using (3.18) and making the esti-
mates indicated, we have

aijDijψ ≤ c2|β|0
{
(mdγ2−1 + 1)|Dψ| + (mdγ2−1 + 1)2 + (mdγ2−1 + 1)f ′

+ mdγ2−2 + md2γ2−2 + 1
}

+ 2Λmdγ2−1c1
{
|Dψ| + mdγ2−1 + |b|0 + f ′ζD

}
+ Λm(dγ2−2 + d2γ2−2) + Λf ′|ζij | + f ′′aijζiζj

≤ c3
{
(mdγ2−1 + 1)|Dψ| + mdγ2−2 + (m2 + m)d2γ2−2

+ mdγ2−1(1 + f ′)
}

+ Λf ′|ζij | + f ′′aijζiζj .

Here c3 is a constant depending on the same parameters as c1 and c2, and terms which
are bounded as d → 0 have again been omitted. Now we define

L1ψ ≡ aijDijψ − c3(mdγ2−1 + 1)|Dψ|
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and we calculate

L1ψ ≤ c3
{
mdγ2−2 + (m2 + m)d2γ2−2 + mdγ2−1(1 + f ′)

}
+ ΛζDf ′dα1−1 + λf ′′ζ2

0 .

(3.23)

To obtain this estimate, we have assumed f ′′ < 0 and estimated

f ′′aijζiζj ≤ f ′′ min aijζiζj = f ′′λ|Dζ|2 ≤ f ′′λζ2
0 .

We have also used the property of regularized distance: |ζij | ≤ ζDdα1−1. We now
specify f(ζ) = f0ζ

p for any p < γ2, so that

f ′′ = f0p(p− 1)ζp−2 ≤ f0p(p− 1)dp−2 < 0,

and f ′dα1−1 ≤ 2p−1f0pd
p+α1−2. Finally, we choose f0 big enough and d2 ∈ (0, 1) small

enough to get L1ψ < 0 in Bd0 for every d0 ≤ d2. We now define d0 ≡ min{d1, d2}.
Additionally, since (3.14) holds near Σ, away from Ξs, and hence is valid on ∂B,

we can choose f0 larger if necessary so that ψ > 0 on ∂B. Therefore, by the maximum
principle, ψ > 0 in B. Thus, z > −f in B.

Similarly, f is an upper barrier for z. We now have an estimate for z. In addition
we have, since ψ = z + f ,

|ψ| ≤ c4(m
2 + 1)dp for d ≤ d0.

Since ψ = 0 on Σ, we can use Schauder estimates, applying [15, Lemma 6.20] or [14,
Lemma 7.1, Theorem 7.2], using the fact that ψ and −ψ are upper and lower solutions
of an operator L1 with a Dirichlet boundary condition and estimating the right side
of (3.23), to obtain

‖ψ‖(−p)
2+γ2

≤ C1

(
sup d−p|ψ| + |ψ|0 + |ψ|p,∂B

)
≤ c4(m

2 + 1) + c(m) = C(m).

The constant C1 depends only on λ and Λ (the ellipticity constants in B) and on γ2.
To obtain the second inequality in this expression, we have used the fact that |ψ|p,∂B
is bounded, with a bound which depends only on |ψ|0 and on Λ/λ. This follows from
ψ = 0 on Σ and from interior Schauder estimates for v, a solution to a linear problem,
on ∂B ∩ Ω. Finally, this leads to

|Dψ| ≤ ‖Dψ‖(1−p)
γ2+1 d

p−1 ≤ C(m)dp−1 for d < d0.(3.24)

We now use (3.24) in (3.22) and drop lower-order terms to get

|D2v| ≤ c1(|Dψ| + mdγ2−1 + f ′) ≤ c1(C(m)dp−1 + mdγ2−1 + f0pd
p−1) ≤ Cdp−1.

Now Hölder estimates on Dv follow by integrating the last inequality. More precisely,

|D2v| ≤ Cdp−1 implies that ‖Dv‖(−p)
1 ≤ C, and by [14, Lemma 2.1] we have

|Dv|p = ‖Dv‖(−p)
p ≤ C(p)‖Dv‖(−p)

1 ,

and therefore we get

|v|1+p ≤ C.(3.25)
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Finally, using the definition of v in (3.15), we apply the interpolation inequality, [15,
Lemma 6.32], with a small δ > 0 to get

|u|1+p ≤ C(1 + |Du|0) ≤ C(1 + δ|u|1+p + Cδ|u|0)(3.26)

and thus (3.14) holds. Therefore we get Hölder gradient estimates at Σ for the solution
u of (3.8).

Now we can establish existence of a solution to (3.8) and (3.9).
Theorem 3.6. Assume that Σ is given by {(ξ, η(ξ))} with η ∈ K for some

α1 ∈ (0, 1) and that w is in W for given K, K0, α0, and γ1. Then there exist
γV , αΩ ∈ (0, 1), and d0 > 0, where γV , αΩ, and d0 are independent of γ1 and α1,
such that a solution u ∈ H1+p,Σ(d) ∩H2+α,Ω′ ∩Hγ,ΩV (d0) for the linear problem (3.8)
and (3.9) exists for any α ≤ αΩ, p < min{γ1, α1}, γ ≤ γV , and d ≤ d0 and satisfies
(3.12), (3.13), and (3.14).

Proof. To show the existence of a solution u to (3.8) and (3.9), we approximate
the oblique derivative boundary condition on Σ. To be precise, noting that the unit
inward normal to Σ at Ξs is (0,−1), for 0 < δ < 1 we let βδ = β + (0,−δ) so that
βδ · ν = β · ν + δ ≥ δ > 0 at Ξs. Then, for sufficiently small δ, βδ is uniformly
oblique. The boundary condition is now discontinuous at the corner Ξs, where Σ
and Σ0 meet. Results from [21] and [19] imply that there exists a solution uδ to
Luδ = 0 in Ω, βδ · ∇uδ = 0 on Σ, and (3.9). Now we apply Theorems 3.4 and
3.5, which are independent of δ, to see that the sequence uδ is uniformly bounded in
H1+p,Σ(d0) ∩ H2+αΩ,Ω′ ∩ HγV ,ΩV (d0) for any p < min{γ1, α1}. Thus by the Arzela–
Ascoli theorem, there exists a subsequence converging uniformly to a function u.
Using the uniform bounds (3.12), (3.13), and (3.14), we conclude that the limiting
function solves the problem (3.8), (3.9).

3.2. The regularized nonlinear fixed boundary problem. This subsection
is devoted to proving the existence of solutions to the nonlinear problem (3.1) with a
fixed boundary. We again assume that an approximate shock boundary Σ is given by
a function η = η(ξ) ∈ K. We also are given the value ρs = s−1

ρ1
(η(0)). We prove the

following theorem.
Theorem 3.7. For each ε ∈ (0, 1), and for given η ∈ K ⊂ H1+α1 , there exists a

solution ρε ∈ H
(−γ)
2+α (Ωε) to (3.1), (3.3), (3.4), and (3.5) such that

ρ0 < ρε ≤ ρs ≤ ρM , and c2(ρε) > ξ2 + η2 in Ω
ε \ σ(3.27)

for some α(ε), γ(ε) ∈ (0, 1). Moreover, for some d0 > 0 the solution ρε satisfies

|ρε|γ,Σ(d0)∪ΩV (d0) ≤ K1,(3.28)

where γ and K1 depend on ε, γV and K but both are independent of α1.
Proof. We suppress the dependence on ε to simplify the notation.
Recall that K ⊂ H1+α1([0, ξ0]) is a closed convex set of functions satisfying the

additional conditions (K1) to (K4) given in section 2.4. For any function w in W
we define a mapping T : W ⊂ H

(−γ1)
2 → H

(−γ1)
2 by letting ρ = Tw be the solution

to the linear regularized fixed boundary problem, (3.8), (3.9) solved in Theorem 3.6.
Because w satisfies (W1), Lε is strictly elliptic, with ellipticity ratio depending on ε.

By Theorem 3.6, T maps W ⊂ H
(−γ1)
2 to a bounded set in H

(−γV )
2+α , where γV is the

value given by Theorem 3.6. Since γV is independent of γ1, we may take γ1 = γV /2

and then T (W) is precompact in H
(−γ1)
2 .
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To show T maps W into itself, we need to show that Tw satisfies (W1), (W2),
and (W3). Now, (W1) is immediate by Proposition 3.3 and the boundary conditions.

By applying interior and boundary Hölder estimates (see [15, Theorems 8.22 and
8.27]), we get the local estimate

|ρ|α∗,Ω′
1
≤ C0,(3.29)

where 0 < α∗ < 1 and C0 depend only on ε (the ellipticity ratio), the Riemann data,
and on d′ = dist(Ω′

1, ∂Ω′) with Ω′
1 ⊂ Ω′. Notice that, as in the remark following

Theorem 8.24 in [15, p. 202], the constant C0 is nondecreasing and the constant α∗
nonincreasing with respect to d′. Since Ω′ ⊂ Ω is bounded, we can find an upper
bound for C0 and a lower bound for α∗ depending only on the size of Ω and the
ellipticity ratio. Thus, if we define W with K0 = C0 and α0 = α∗, with C0 the upper
bound and α∗ the lower bound, then ρ = Tw satisfies (W3). Note that K0 and α∗
are independent of α1 and γV .

To verify (W2), we need to find a value K such that

sup
δ>0

δ2−γ1 |ρ|2,Ω\{Σ(δ)∪ΩV (δ)} < K,(3.30)

assuming ‖w‖−γ1

2 ≤ K. We start by noting that Theorem 3.5 implies the existence of a
positive constant d0 > 0 such that for every d ≤ d0, any solution u ∈ C1(Ω∪Σ)∪C3(Ω)
to the linear problem (3.8), (3.9) satisfies the Hölder gradient estimate (3.14), where
the constant C depends on K but is uniform in d ≤ d0. Based on this estimate, we
get a local bound for the weighted norm of ρ on Σ(d0) of the form

d2−γ1 |ρ|2 ≤ d1−γ1+pC(3.31)

which holds for all d < d0. Here C depends on K, α1, and γ1. To show (3.30) we
estimate the supremum by considering separately domains Ω \ {Σ(δ) ∪ ΩV (δ)} for
which δ > d̃, where d̃ ≤ d0 will be specified later, and domains for which δ ≤ d̃.

In domains of the first kind, Ω\{Σ(δ)∪ΩV (δ)} with δ > d̃, the solution is smooth
and its C2-norm bound is independent of K. More precisely, we can use the uniform
Hölder estimate (3.29) and bootstrap iteratively (see [15, Theorem 6.6]) to get the
local Schauder estimate

|ρ|2+αΩ,Ω′ ≤ C(K0).(3.32)

Notice that since the Hölder estimate (3.29) is independent of the distance between Ω′
1

and the boundary Σ, so is the Schauder estimate (3.32). The interpolation inequality
[15, Lemma 6.32] gives

|ρ|2,Ω′ ≤ c|ρ|0 + μ|ρ|2+α,Ω′ ≤ cρM + μC(K0)(3.33)

for any μ > 0 and c = c(μ). We fix μ = 1 and get

sup
δ>d̃

δ2−γ1 |ρ|2,Ω\{Σ(δ)∪ΩV (δ)} ≤ K ′,(3.34)

where K ′ depends on the size of the domain Ω, on C(K0), and on ρM but is indepen-
dent of the distance to Σ.

Next we study δ2−γ1 |ρ|2,Ω\{Σ(δ)∪ΩV (δ)} when δ ≤ d̃. We divide the subdomain

Ω \ {Σ(δ) ∪ ΩV (δ)} into two: the part for which δ > d̃ and the complement. Then
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the upper bound over the subdomain Ω \ {Σ(δ) ∪ ΩV (δ)} is equal to the larger of
the suprema over the two subdomains. The supremum over the subdomain for which
δ > d̃ has been calculated above. The supremum over the complement is calculated
using the estimates for the behavior of the solution near Σ, namely, estimate (3.31) and
the corner estimate (3.12). In (3.12), the constants C1 and γV are independent of K,
K0, and α1, while |ρ|0 is bounded by ρM from Proposition 3.10. By the interpolation
inequality [14, Lemma 2.1], since γ1 = γV /2 we have

|ρ|γ1,ΩV (dV ) ≤ CV |ρ|γV ,ΩV (dV ) ≤ CV C1ρM ,(3.35)

where CV = CV (γ1, γV ,ΩV (dV )), for some dV > 0. From here we get that

d2−γ1 |ρ|2 ≤ KV ∀d < dV ,

where KV is independent of K. Hence we can take K ≡ max{KV ,K
′}, using the

bound (3.34), and now K is independent of α1 and of d̃. Since KV and K ′ are
independent of d̃ we can change d̃ without affecting K. Therefore, we can choose
d̃ ≤ min{d0, dV }/2 in (3.31) small enough that d̃1−γ1+pC < K. Therefore, (3.30) is
satisfied and we have chosen parameters K, K0, and α0 defining W so that T maps
W into itself.

Now, by the Schauder fixed point theorem, there exists a fixed point ρ such that

Tρ = ρ ∈ H
(−γ1)
2 . Thus, ρ solves (3.1), (3.3), (3.4), and (3.5). By a bootstrap argu-

ment we get ρ ∈ H
(−γ1)
2+α for any α ≤ αΩ, the value given in Theorem 3.6. For reference,

we note that we have chosen γ1 = γV /2; the exponent γV ∈ (0, 1) depends on the
corner angle at Ξ0 and αΩ and γV depend on ε. The bounds on ρ in Proposition 3.3
give the first estimate in (3.27), and the second follows.

Finally, since T (W) ⊂ W is a bounded set in H
(−γ1)
2 , then by (W2) and by the

interpolation inequality [14, Lemma 2.1], any fixed point ρ satisfies (3.28) for any
γ ≤ γ1 = γV /2. Note that K1 and γ1 are independent of α1.

3.3. The regularized nonlinear free boundary problem. We now prove
existence of a solution to the regularized free boundary problem.

Proof of Theorem 3.1. Again, we suppress the ε dependence.
For each η ∈ K ⊂ H1+α1 , using the solution ρ of the nonlinear fixed boundary

problem (3.1), (3.3), (3.4), and (3.5) given by Theorem 3.7, we define the map J on
K, η̃ = Jη as in (2.44), by integrating (2.43):

η̃(ξ) = η0 +

∫ ξ

ξ0

f(x, η(x), ρ(x, η(x))) dx.(3.36)

First, we check that J maps K into itself. Property (K1) follows from (3.36). By
Proposition 2.5, property (K2) holds, while the upper and lower bounds in (K4) hold
by Proposition 2.6 and in turn imply (K3).

The Hölder class of ρ at Σ is given by the estimate (3.28), along with a bound on
the Hölder γ-norm, and from estimate (3.28) in the proof of Theorem 3.7 we saw that
we could choose γ = γV /2. Evaluating f(Ξ, ρ(Ξ)), we get a bound |f |γV /2 ≤ C(K1),
and thus |η̃|1+γV /2 ≤ C(K1). The constants here are simple functions of the Riemann
data and the structure of the pressure function. The important feature of the mapping
is that γV is independent of α1, the Hölder exponent of the space K. Thus, we
have J(K) ⊂ H1+γV /2; since properties (K1)–(K4) hold, we then have J(K) ⊂ K if
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α1 ≤ γV /2. Furthermore, J is compact if α1 < γV /2. We now take α1 = γV /3. By
standard arguments, the map J is continuous.

Therefore, J has a fixed point ηε ∈ H1+γV /3([0, ξ0]) by the Schauder fixed point
theorem. This gives a curve Σε on which (3.2) holds. Together with the corresponding
solution ρε from Theorem 3.7, this establishes the existence of a solution (ρε, ηε) ∈
H

(−γ)
2+α ×H1+α of the regularized free boundary problem (3.1), (3.2), (3.3), (3.4), and

(3.5) for sufficiently small γ(ε) and α(ε).

This completes the proof of Theorem 3.1.

4. The limiting solution. In this section we study the limiting solution, as
the elliptic regularization parameter ε tends to zero. We start with the regularized
solutions of (3.1), (3.2), (3.3), (3.4), and (3.5), whose existence is guaranteed by The-
orem 3.1. Denote by ρε a sequence of regularized solutions of the partial differential
equation.

Proposition 4.1. For each ε the constant function ρ0 is a lower barrier for ρε

and c2(ρ0) > ξ2 + η2 in Ωε \ σ.

Proof. For each ε we have ρε > ρ0, and by the monotonicity of c2 we get c2(ρε)
> c2(ρ0) > ξ2 + η2 in Ωε ∪ Σ0. The same inequality holds on Σε since (ξ, ηε(ξ))
lies inside C0. Thus c2(ρ0) > ξ2 + η(ξ)2 for ξ ∈ [0, ξ0) and ρ0 is a uniform lower
barrier.

The existence of a uniform lower bound ρ0 in ε allows us to apply standard local
compactness arguments (see, for example, [3, Lemma 4.2]) to get a limit ρ, locally,
in the interior of the domain. Here, the issue is ensuring ellipticity uniformly in ε in
compact subsets of Ω. We first show that the sequence of domains Ωε converges to a
domain Ω, as ε → 0.

Lemma 4.2. The sequence ηε has a convergent subsequence, whose limit η belongs
to Cγ([0, ξ0]) for all γ ∈ (0, 1). The limiting curve η is convex.

Proof. Theorem 3.1 gives the existence of a sequence (ρε, ηε) of solutions of the
regularized free boundary problems for which ηε belongs to the set Kε for each ε.
Now, ρ0 < ρε ≤ ρεs ≤ ρM , where ρM is independent of ε, and the property (K4)
of Kε, specified in section 2.4, immediately gives a C1 bound on ηε, uniformly in ε.
Thus by the Arzela–Ascoli theorem, ηε has a convergent subsequence, and the limit
η ∈ Cγ([0, ξ0]) for all γ ∈ (0, 1).

To see that η is convex we first show that ηε is convex for each ε > 0. Recall that
η′ = f(ξ, η(ξ), ρ(ξ, η(ξ))) and calculate η′′ = fξ + fηη

′ + fρρ
′. By observing that if ρ

were constant the shock would be a straight line, we get fξ + fηη
′ = 0. Therefore,

the sign of η′′ is determined entirely by the sign of fρ and ρ′. Since ρ is decreasing by
Proposition 2.4, this implies ρ′ ≤ 0. Furthermore, by Lemma 2.1 we have d(s2)/dρ ≥ 0
and by the proof of Proposition 2.6 we have fs2 < 0, so fρ = fs2(s

2)′ ≤ 0. This shows
that ηε is convex for each ε > 0, and so the limiting function is convex.

The limit value η(0) = lim ηε(0) is also established, and the corresponding subse-
quence of domains Ωε also has a limit, Ω.

In the remaining lemmas, without further comment, we carry out the limiting
argument using the convergent subsequence of ηε, which we again call ηε.

Lemma 4.3. The sequence ρε has a limit ρ ∈ C2+α′
(Ω) for some α′ > 0. The

limit ρ satisfies the quasi-linear degenerate elliptic equation (2.36). In addition, ρ0 <
ρ < ρM in Ω.

Proof. The proof is based on local compactness arguments and on uniform L∞

bounds for ρε: ρ0 < ρε < ρεs ≤ ρM , where ρM is independent of ε. The main ideas
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follow those used in [13, Theorem 1] and the proof is almost identical to the proof of
[4, Lemma 4.2]. We omit the details.

In the next lemma, we show that the limiting functions ρ and η satisfy both the
shock evolution equation (2.38) and the oblique derivative boundary condition (2.37),
Mρ = 0, on Σ.

Lemma 4.4. The limits η and ρ satisfy

η′ = f(ξ, η, ρ) and Mρ = β(η(ξ), ρ) · ∇ρ = 0 on Σ.(4.1)

Furthermore, η ∈ C2+α′
(0, ξ0) ∩ C1([0, ξ0)) and ρ ∈ C2+α′

(Ω ∪ Σ ∪ Σ0 \ Ξs) ∩ C(Ω ∪
Σ ∪ Σ0) for some α′ > 0. In addition, ρ satisfies ρ = ρs at Ξs = (0, η(0)), where
ρs = s−1

ρ1
(η(0)).

Proof. The proof is similar to that of [4, Lemma 4.3] except for the loss of uniform
obliqueness at Ξs. We omit the local arguments away from Ξs and concentrate on
dealing with the behavior of the solution near Ξs.

The arguments presented in the proof of [4, Lemma 4.3] imply ηε(ξ) → η(ξ) in

C2+α′

loc for ξ �= 0, and since the subsequence ρε converges to ρ in C1+α′

loc , we get

(ηε)′ = f(ξ, ηε, ρε) → f(ξ, η, ρ) ∀ξ �= 0,

thus η′ = f(ξ, η, ρ) for ξ �= 0. Furthermore, by continuity of β and ρ we have

0 = β(ηε, ρε) · ∇ρε(ξ, ηε(ξ)) → β(η, ρ) · ∇ρ(ξ, η(ξ)) ∀ξ �= 0,

and thus β(η, ρ) · ∇ρ = 0 on Σ \ {(0, η(0))}.
We now focus on the behavior of the solution at Ξs. By Lemma 4.2 we have

ηε → η in Cγ([0, ξ0]) for any 0 < γ < 1. Furthermore, by construction, for each ε > 0,

s2(ρεs, ρ1) = (ηε(0))2.

Therefore, as ε → 0, the right-hand side converges to η2(0); hence s2(ρεs, ρ1) → η2(0).
By continuity and monotonicity of s2 this implies that the sequence of numbers ρεs also
has a limit, R. Moreover, s2(R, ρ1) = η2(0). But, this equation defines ρs; therefore
R = ρs and we have shown that the sequence of traces of the functions ρε evaluated
at (0, ηε(0)) converges to ρs. We still have to show that ρ is continuous at Ξs, that
is, that limξ→0 ρ(ξ, η(ξ)) = ρs.

Since η′ε has a limit η′ = f(ξ, η(ξ), ρ(ξ, η(ξ))) in C1+α for ξ �= 0, and since for
each ε > 0 we have η′ε(0) = 0, then for any δ > 0 there exists an h0 �= 0 such that

|η′(h)| ≤ |η′(h) − η′ε(h)| + |η′ε(h)| ≤ δ

for 0 < h < h0, which implies continuity of η′ at ξ = 0 and η′(0) = 0. Thus

f(h, η(h), ρ(h, η(h))) = η′(h) → η′(0) = 0 = f(0, η(0), ρs) as h → 0.

This implies, among other things, that ρ(h, η(h)) → ρs and so ρ is continuous at Ξs,
ρ(Ξs) = ρs and the boundary condition (2.40) is satisfied.

The final task is to prove continuity of ρ up to the degenerate boundary σ. It is
here that we need an additional condition on the Riemann data.

Lemma 4.5. For Riemann data satisfying a bound κa > κ∗(ρ1, ρ0), the limit ρ
satisfies ρ = ρ0 on σ and ρ ∈ C(Ω).
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Fig. 4.1. A sketch of the corner barrier domain.

Proof. Continuity of solutions of Qρ = 0 up to a degenerate boundary was proved
as Corollary 3.3 in [7], at points where the degenerate boundary σ is convex, when the
problem satisfies a Dirichlet condition on the entire boundary, and the entire boundary
is degenerate. In [7], a pointwise upper barrier function ψ was constructed, uniformly
in ε, with ψ > ρε in Ω and ψ = ρε at Ξ ∈ σ. This proof can easily be adapted
to give a local barrier at every interior point of σ in our problem. Thus, to show
continuity everywhere on σ we need only to show continuity at Ξ0. We construct an
upper barrier ψ with ψ(Ξ0) = ρ0 so that ψ ≥ ρε in a fixed set Ω(h, a) (see Figure 4.1)
for all ε > 0. Since ρ0 is a lower barrier, we then have continuity at Ξ0.

It is convenient to work in polar coordinates (ξ, η) = (r cos θ, r sin θ). In this
coordinate system, the operator Qε becomes

Qερ =

(
c2(ρ) − r2 + ε

)
ρrr +

c2

r2
ρθθ + p′′(ρ)

(
ρ2
r +

1

r2
ρ2
θ

)
+

(
c2

r
− 2r

)
ρr.

To compare ψ and ρε we introduce an operator Qε
1(ρ

ε) which is partially linearized:

Qε
1(ρ

ε)u =

(
c2(u) − r2 + ε

)
urr +

c2(ρε)

r2
uθθ + p′′(ρε)

(
u2
r +

1

r2
u2
θ

)
+

(
c2(ρε)

r
− 2r

)
ur.

The barrier function has the form

ψ(r, θ) = ρ0 + A(c0 − r)b + B(θ1 − θ)2.(4.2)

Here θ1 is the angle subtended by Ξ0; A and B are constants to be determined and
the exponent b is a value, also to be determined, in (0, 1). The barrier is constructed
on a curvilinear quadrilateral, c0 ≥ r ≥ c0 − h, θ1 − a ≤ θ ≤ θε(r), where θε(r) is the
boundary Σε in polar coordinates and h and a are small numbers to be determined.
The use of a barrier function with a singular derivative is motivated by [7], following
[13]. In fact, we conjecture that the solution to the equation, in this case, does have a
square root singularity at C0 and that our value of b, which can be refined a posteriori
to be any number less than 1/2, is optimal.

Before evaluating Qε
1ψ, we write c2 = p′ and expand c2 − r2 as c2(ψ) − r2 =

c2(ψ) − c20 + c20 − r2 = (ψ − ρ0)p
′′(ρ) + c20 − r2, where ρ is a value in the range of ρε.

By assumption, p′′ is bounded above and below by positive numbers for ρ ∈ [ρ0, ρM ].
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We have

Qε
1(ρ

ε)ψ

=

(
p′′(ρ)

{
A(c0 − r)b + B(θ1 − θ)2

}
+ (c0 + r)(c0 − r) + ε

)
b(b− 1)A(c0 − r)b−2

+
c2(ρε)

r2
(2B) + p′′(ρε)

{(
Ab(c0 − r)b−1

)2
+

1

r2

(
2B(θ1 − θ)

)2}
+

(
c2(ρε)

r
− 2r

)
Ab(c0 − r)b−1.

The coefficient of (c0 − r)b−2, the most singular term as r → c0, is

p′′(ρ)(B(θ1 − θ)2 + ε)b(b− 1)A < 0.

The next most singular power is (c0 − r)2b−2, and its coefficient is

A2b

(
p′′(ρ)(b− 1) + p′′(ρ)b

)
≤ A2k0 < 0 if b <

min p′′

2 max p′′
,(4.3)

which we now assume. The next power is (c0 − r)b−1, whose coefficient is a bounded
multiple of A; the remaining terms are bounded and involve only powers of B. Once
we have fixed the lower limit, c0 −h, for r, and have chosen B, we can then choose A,
which appears quadratically in (4.3) with a negative coefficient, large enough to make
the entire expression negative. This is sufficient to guarantee that ψ − ρε does not
have a negative minimum in the interior of Ω(h, a) provided that ψ−ρε is nonnegative
on the boundary of Ω(h, a). For at a negative interior minimum, ∇ψ = ∇ρε, and

(4.4) 0 ≥ Qε
1(ρ

ε)ψ −Qε(ρε)

>
(
c2(ψ) − c2(ρε)

)
ψrr +

(
c2(ρε) − r2 + ε

)
(ψ − ρ)rr +

c2(ρε)

r2
(ψ − ρ)θθ.

However, ψ < ρε implies c2(ψ) − c2(ρ) < 0, while ψrr < 0 by the concavity of ψ in
r; in addition (ψ − ρ)rr and (ψ − ρ)θθ are nonnegative at the minimum, so the sum
of the three terms is positive. This contradiction establishes the conclusion that if
ψ ≥ ρε on the boundary of Ω(h, a), then ψ is an upper barrier for each ρε.

We now turn to establishing bounds for ψ on the sides of the quadrilateral. First,
on σ: ρε = ρ0 < ψ. We fix an angular interval by choosing some a > 0; then we can
choose B large enough that Ba2 > ρM . This gives ψ > ρε on the boundary θ = θ1−a
of Ω(h, a).

The appropriate condition on the oblique derivative boundary is more delicate.
We linearize the boundary condition, obtain an estimate of the form N1(ρ

ε)ψ ≤ 0,
and use the Hopf maximum principle to show that ψ − ρε is positive on Σε. Getting
the estimate N1(ρ

ε)ψ ≤ 0 is rendered difficult by the fact that the part of ∇ψ which
becomes singular near Ξ0 is not the normal derivative (over which we have some
control because the problem is oblique near Ξ0) but the derivative in the direction r.

We can obtain the bound we need, at least as long as κa is large enough. To
see this, we compute the derivative of ψ along Σε, using the linearized operator
N1(ρ

ε) = β(ρε) · ∇. To focus on the singular part, we write β(ρε) · ∇ in terms of its
radial and angular components,

N1ψ = βrψr + βθψθ,
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where

βr = β · (cos θ, sin θ) =
1

r
(β1ξ + β2η),

and we have an analogous expression for βθ. Now a calculation gives

β1ξ + β2η = (η − η′ξ)(ξ + η′η)
(
r2(c2 + 3s2) − 4c2s2

)
.(4.5)

The first two factors are uniformly positive near Ξ0, and if ρM is sufficiently close
to ρ0, then we claim there exists an interval [c0 − h, c0] in which β1ξ + β2η has a
positive lower bound, for there will be a value h > 0 such that the expression in (4.5)
is positive for r > c0 − h as long as 4c2s2/(c2 + 3s2) < c20 for all values in the range
of ρ. Since the left side of this expression is monotone increasing in ρ, it is sufficient
to impose the restriction on c2(ρM ) and s2(ρM ). The condition obviously holds for
ρ = ρ0, and so it certainly holds for ρM sufficiently close to ρ0. Furthermore, for large
κa, ρM = ρ0 + O(1/κa), by a calculation given in [17]. That is, for κa large enough
we have β1ξ + β2η ≥ C > 0 in (4.5). Estimates on κ∗ are given in [17].

We now complete the calculation of

N1(ρ
ε)ψ = −βrA(c0 − r)b−1 − 2βθB(θ1 − θ)

by choosing A large enough that N1ψ ≤ 0 on Σε. We also ensure ψ − ρε > 0 at
r = c0 − h, by increasing A again if necessary, so that Ahb > ρM .

Finally, we confirm that the inequality N1(ρ
ε)ψ < 0 precludes negative values of

ψ−ρε on Σε. If there are negative values, then there is a negative minimum, at which
the tangential derivative of ψ − ρε vanishes, so we have

0 ≥ N1(ψ − ρε) = βt(ψ − ρε)t + βn(ψ − ρε)n = βn(ψ − ρε)n,

where the superscripts mark the tangential and (inward) normal components of β, and
the subscripts the derivatives of ψ−ρε. Since βn > 0, this implies that (ψ−ρε)n ≤ 0.
However, we can write L(ψ− ρε) ≤ 0 at such a point for a suitable linear operator L,
and thus the Hopf maximum principle requires that (ψ − ρε)n > 0, a contradiction.
Thus we conclude that ψ−ρε ≥ 0 on the entire boundary of Ω(h, a). By the argument
following the inequality (4.4), this establishes ψ as an upper barrier. We note that
this construction depends on ε only through the location of the curve Σ = Σε and
that A, B, b, h, and a are independent of ε. Thus, since the domains Ωε converge, it
follows that ψ is a barrier for all ρε for sufficiently small ε.

Thus the solution ρ is continuous up to the degenerate boundary.
Continuity of ρ at Ξ0 allows a strengthening of Lemma 4.4, as follows.
Corollary 4.6. The free boundary η is smooth up to the degenerate boundary,

namely, η ∈ C1[0, ξ0].
Proof of Theorem 2.3. Lemmas 4.2, 4.3, 4.4, and 4.5 show that there exists a

solution pair (ρ, η) ∈ C2+α′
(Ω \ {σ ∪ Ξs)} ∩ C(Ω) × C2+α′

(0, ξ0) satisfying (2.36),
(2.37), (2.38), (2.39), and (2.40). This completes the proof of Theorem 2.3.

5. Conclusions. Theorem 2.3 has constructed a solution ρ of the differential
equation (2.36) in Ω; combining this function with the piecewise constant solution far
from the origin, we obtain a function which is piecewise constant in the supersonic
region, continuous across the degenerate boundary σ, and consistent with the derived
form of the Rankine–Hugoniot conditions across the Mach stem. To recover the
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momentum components, m and n, we could in principle integrate equations (2.4) and
(2.5), which can be written as transport equations in the radial variable r,

∂m

∂r
=

1

r
c2(ρ)ρξ,

∂n

∂r
=

1

r
c2(ρ)ρη,(5.1)

and integrated from the boundary of the subsonic region toward the origin. We note
that the sonic boundary can be written r = r0(θ) and the boundary conditions for m
and n are of the form m(r0(θ), θ) = m0(θ), where m0 is piecewise continuous on σ
and is determined from the Rankine–Hugoniot relation (2.15) on Σ; the component
n is treated exactly the same way.

At σ and at Ξs, where we have proved only that ρ is continuous, equations (5.1),
may not be meaningful. Elsewhere, m and n have the same regularity as ρ, except
that discontinuities in m and n on the line ξ = κaη may persist all the way in to the
origin. In addition, the behavior of c2ρη/r in (5.1) at the origin causes a logarithmic
singularity in n (but not in m: c2ρξ/r remains bounded since ρξ(0, 0) = 0).

Remark. There is some evidence of the unbounded behavior near the origin in the
numerical simulations in [17]. This may presage difficulties in extending these results
to the gas dynamics equations.

We argue heuristically that there is a difficulty at σ. Because of the construction,
(ρ,m, n) is a weak solution of the system (1.1), or equivalently of the self-similar form
(2.3)–(2.5), except possibly at the sonic boundary. It can be checked that the system
(1.1) and the second-order equation (2.6), Q(ρ) = 0, are equivalent for weak solutions
(that is, they conserve the same quantities). We can write (2.6) in the form divA = S,
with

A = (pξ − ξ2ρξ − ξηρη + ξρ, pη − η2ρη − ξηρξ + ηρ),

and S = −2ρ. The usual multiplication by a smooth test function φ supported on
a compact set D containing a segment of the degenerate boundary σ, followed by
integration by parts, gives the weak form of the equation which must be satisfied
for any weak solution in which ∇ρ is integrable (as is the case for our constructed
function). Integrating by parts in the opposite sense on each side of Γ ≡ σ ∩D yields
the condition ∫

Γ

φ[A · ν] ds = 0,

where [ ] denotes the jump in the quantity and ν is the normal to σ. Since this must
hold for all choices of D and φ, it holds pointwise. Furthermore, since the normal
direction is the radial direction at σ, this means we need the function ρ inside Ω to
satisfy

lim
r→r0

r
(
c2(ρ) − r2

0

)
ρr = 0.(5.2)

We observe that for a linear wave equation, c2 is constant and r0 = c, and so this
equation holds. However, for the function we constructed in Theorem 2.3 we have
only the estimate ρ− ρ0 < A(r0 − r)β with β < 1/2 (see Lemma 4.5 and [7]) and this
is not strong enough to give the limit (5.2). In fact, we have calculated, in [2] and
[5], that the the behavior of solutions near a degenerate boundary like σ is exactly
a square root singularity (β = 1/2), and so the function we have constructed fails to
give a weak solution in the neighborhood of σ.
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[17] B. L. Keyfitz, A. Kurganov, S. Čanić, and E. H. Kim, Pattern and paradox: Shock
interactions in the nonlinear wave system, in preparation, 2006.

[18] G. M. Lieberman, Regularized distance and its applications, Pacific J. Math., 117 (1985),
pp. 329–352.

[19] G. M. Lieberman, Mixed boundary value problems for elliptic and parabolic differential equa-
tion of second order, J. Math. Anal. Appl., 113 (1986), pp. 422–440.

[20] G. M. Lieberman, Oblique derivative problems in Lipschitz domains. I. Continuous boundary
data, Boll. Unione Mat. Ital. Ser. B, 7 (1987), pp. 1185–1210.

[21] G. M. Lieberman, Oblique derivative problems in Lipschitz domains. II. Discontinuous bound-
ary data, J. Reine Angew. Math., 389 (1988), pp. 1–21.
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[24] D. Serre, Écoulements de fluides parfaits en deux variables indépendentes de type espace.
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